SlideShare a Scribd company logo
1 of 33
Introduction to simulations:
empirical minimizations
and potentials!
          Heather J Kulik!
        hkulik@stanford.edu!
              2/25/13!
Welcome to BIOS 203!
•  Objective: to introduce students to the theory and application of a
   variety of computational simulations methods.!

•  Instructors: Dr. Heather Kulik, Dr. Lee-Ping Wang, Professor Todd
   Martinez, Professor Tom Markland, Professor Vijay Pande.!

•  TAs: Martinez group members: Sofia Ismailov, Liguo Kong, Sara
   Kokkila, Aaron Sisto, Fang Liu, Brendan Mar.!

•  When: Monday, Wednesday, Friday 9am-11:50am (lecture
   9am-10am, lab work 10am-11:50am).!

•  Grade (letter students): two lab assignments + one presentation
   (credit students): presentation is optional.!
Mini-course schedule!
Mon, Feb 25! Course introduction,
             empirical potentials and
             minimizations 

             (Dr. Heather Kulik)!
Wed, Feb 27! Electronic structure basics   Fri, Mar 8!    Guest lecture: Markov
             (Dr. Heather Kulik)!                         state models (Prof. Vijay
                                                          Pande)!

Fri, Mar 1!   Classical molecular          Mon, Mar 11! Transition state theory and
              dynamics (Dr. Lee-Ping                    rare event techniques 

              Wang)!                                    (Dr. Heather Kulik)!
              !
Mon, Mar 4!   Ab initio molecular          Wed, Mar 13! Guest lecture: Free energy
              dynamics (Dr. Lee-Ping                    methods (Prof. Tom
              Wang) !                                   Markland)!

Wed, Mar 6!   Guest lecture: Excited       Fri, Mar 15!   Methods for bioinorganic
              states, mixed methods                       chemistry, presentations 

              (Prof. Todd Martinez)!                      (Dr. Heather Kulik)!
              Lab 1 due!                                  Lab 2 due!
                                                          !
Optional background texts!
•    F. Jensen “Introduction to Computational Chemistry” Wiley !
•    W. Koch and M. C. Holthausen “A Chemistʼs Guide to Density Functional
     Theory” Wiley-VCH!
•    A. Szabo and N. S. Ostlund, “Modern Quantum Chemistry: Introduction to
     Advanced Electronic Structure Theory” Dover!
!

•    C. J. Cramer “Essentials of Computational Chemistry: Theories and Models”
     Wiley!
•    M. P. Allen and Tildesley “Computer simulations of Liquids” Oxford Science
     Publishers!
•    T. Schlick “Molecular Modeling and Simulation” Springer!
•    D. A. McQuarrie and J. D. Simon “Physical Chemistry: A molecular
     approach” University Science Books!

•    D. Frenkel and B. Smit “Understanding Molecular Simulations: From
     Algorithms to Applications” Academic Press!
!

Specific literature will be provided along with each lecture.!
Why simulations?!
    Protein folding: how proteins fold and
    misfold (Prof. Vijay Pande)!




    Voelz, Bowman, Beauchamp, Pande. JACS (2010).!
Why simulations?!
Drug design: 2nd generation HIV protease inhibitor Kaletra!




See Cobb “Biomedical Computational Review” 2007 and references therein.!
Why simulations?!
Photochemistry for RNA bases: mechanisms for
alternative proton transfer between RNA bases.!




Golan et al. Nature Chem. (2012).!
Simulations beyond
biochemistry!
  Materials Genome Project: Identifying elements that
  substitute for each other, chemical trends…!




  Hautier, G… Ceder, G. Chemistry of Materials (2010).!
Choosing a computational
       model!

                                      Empirical models – functional form with parameters
                                      from experimental or other calculated data:!
                                          !Pair potentials!
                                          !Many body potentials!
                 More transferable!
More efficient!




                                      !                                                   Best tool for the
                                      Semi-empirical models – model Hamiltonians:!        job? Depends on
                                          !Tight binding!                                 the job!!
                                          !MNDO, AM1…!
                                      !
                                      Quantum mechanical models – approximations to the
                                      Schrödinger equation:!
                                          !Hartree-Fock!
                                          !Density functional theory!
                                          !Post-Hartree-Fock (Configuration interaction, MP2)!
Exercise: Choose a
computational journal article.!
•  Letter grade students: select a journal
   article that uses computation (at least 50% of
   the article) that interests you.!
•  Throughout the course, or consulting with the
   lecturers, build up an understanding of the
   material.!
•  Last class: present and explain the methods
   used in the article and the major findings.!
•  Need inspiration? See us for a list of
   suggested journal articles.!
Empirical model potentials!

         1      N ! !
E = E 0 + # V ( Ri ! R j )
         2 i, j"i
                             V(ΔR)!
•  Species are repulsive for
   small distances!
•  Attractive for longer distances!
•  Only need to calculate             ΔR!
   potentials for atoms within a
   certain distance.!
Lennard-Jones Potential!
           200

           150    Argon!               (! " $12 ! ! $6 +
                              VLJ = 4! *# & ' # & -
           100                         *" r % " r % -
                                       )               ,
            50
VLJ! (K)
E/kB




             0           σ!
            -50
                                            Ar parameters:!
           -100                             σ=3.345 Å!
             ε!                             ε/KB=125.7 K!            J. A. White,
           -150                                                      JCP (1999).!

                   2.0      4.0       6.0         8.0         10.0
                           rm!    r (Å)
Morse Potential!
 5
De!
            4     H2!
                                           H2 parameters:!
                                           De=4.75 eV!
            3
V(r) (eV)




                                           β=1.93 1/Å	

                                           re=0.741 Å!
            2


                                                  ! ! (r!re ) 2
            1
                   re!        V (r) = De(1! e                )          adapted from
                                                                        McQuarrie
                                                                        and Simon!
            0
            0.0         1.0         2.0          3.0              4.0
                                   r (Å)
Morse potential: CH4 stretch!




                            adapted from
                            Jensen!
Limitations of pair potentials!
Counts only bonds, not organization:!



!
                   =!



     Nbonds = 3!        Nbonds = 3!
Limitations of pair potentials!
Counts only bond length, no orientation or
angular effects (e.g. ethylene):!

                           Pair potentials:!
                           C-H, C-C bonds.!
                           !
θ	

                θ	

   No treatment: !
                           H-C-H angle, !
                           H-C-C-H dihedral.!
Limitations of pair potentials!
Preference for high number/high density of
bonds formed to lower total energy:!

!
!

!
Bond energy for blue atom on left is four times the right.!
In real systems: more bonds means lower energy/bond.!
Adding angular terms!

H2O Bending!             Harmonic
                         works well!
                         !
                         Note:
                         derivative
                         should be set
                         to zero at 180o!




                             adapted from
                             Jensen!
Adding torsional terms!
Ethane eclipsed!                      Ethane staggered!         Torsional potential is
                                                                steric, non-bonded
                                                                electrostatics.!
                                                                !
                                                                !
                                                                !
                                                                !
                                                                !
                                                                !
                                                                !
Periodicity needs
                    Energy




to be enforced,
e.g. ethane.!



                             0   60       120     180     240       300       360
                                           Dihedral (degrees)
AMBER!
Assisted Model Building with Energy Refinement:
AMBER is a force field and a software package. 

http://www.ambermd.org!

1)  AMBER Force field: ffXX (year) peptides and nucleic
    acids, some ions (Mg2+).!

2)  GAFF (Generalized Amber Force Field): generalized
    scheme for force field for any organic molecule based
    upon topology.!
3)  Parameter sets available on the web: 

    http://www.pharmacy.manchester.ac.uk/bryce/amber/!
The AMBER force field!

                                                               Vn
E=   " kb (l ! l0 )2 +   "        ka (! ! ! 0 )2 +      " 2 [1+ cos(n" ! "0 )]+
     bonds               angles                       torsions

             !(1)!       !        !   !(2)!       !       !     !     !       !(3)!
 1, 2, 3: Harmonic oscillator-like bonding, angular, torsional terms!

                (! $12    ! r $ + N'1 N q q
                                 6
                                                     N'1 N (
     N'1 N
                  r0ij                                           Cij Dij +
     . . !i, j *# r & ' 2 # r & - + . . 4"! r + . . * r12 ' r10 -
                *# ij &
                             0ij
                          # &-
                                              i j

     j=1 i= j+1 )" %      " ij % , j=1 i= j+1   0 ij j=1 i= j+1* ij
                                                               )     ij -,

               !     !       !(4)!      !     !       !       !(5)!       !    !      !   !(6)!
                     van der Waals            !       !electrostatic !         !hydrogen bonding!
Things that are missing…!

More advanced force fields:!
  –  Cross terms: e.g. bend affects stretch
     in a water molecule. !
                                              bend!
  –  Polarizability from point charges or
     multipoles: e.g. AMOEBA.!
  –  Bond breaking and formation: e.g.
     ReaxFF.!
  !
Not all advanced methods are
feasible for very large simulations. !
Generalized Amber FF!
Same functional form as AMBER but more general 

(http://ambermd.org/antechamber/gaff.html):!
!
GAFF parameters!
•  Bond constants, force constants, torsional
   dependence: based on assigned bonding
   topology (you or a code decides).!
•  Across large test set: MP2/6-31g*,
   MP4/6-31g* and Cambridge Structural
   Database training set.!
•  Charges for electrostatics from semi-
   empirical methods or HF/6-31g*. Can
   generate custom charges for each molecule.!
Optimizing on a PES!

N atoms, 3N-6 degree
potential energy
hypersurface. Simplify!!
!
For classical MD: biggest
bottleneck is counting all
the bonds, need neighbor
lists to limit cost of
summation.!
Minimizations/optimizations: finding our way to local or
global minima!
                               from H. B. Schlegel, Wayne State U.!
Features of a PES!




                 from H. B. Schlegel, Wayne State U.!
Energy minimizations!
Minimize:!   Force = !"(Energy)

Gradient on our PES in             # "f  "f &
terms of all coordinates      !f = % ,!,     (
(internal, cartesian):!
                                   $ "x1 "xn '
                        Any stationary point 

For   !f != ! 0
      ! !           !:! (a) local minimum, 

                        (b) global minimum, 

                                                 What we usually
                                                 want!!
                        (c) saddle point.!
                        !
Steepest descent!

Optimization direction:!   g = !"E
                                 !i g i
Update coordinates:! ri+1 = ri +
!                                 gi
Reduce λ near minimum.!

Pros: Fast when far from minimum,
local minimization guaranteed.!
!
Cons: slow descent for certain
PESs, can oscillate near minimum.!
From E. Eliav,

Tel Aviv U!
Conjugate gradient!

Initial direction:!   h 0 = g 0 = !"E
Update coordinates:!     ri+1 = ri + ! hi
Next steps:!     hi+1 = g i+1 + ! i+1hi
!
where:!                     (g ! g )g
                     ! i+1 = i+1 2i i+1
!                               gi
!
Pro: Using history, faster
convergence near minimum.!
From E. Eliav, 

Tel Aviv U!
The Hessian/Force matrix!

                                                   (3N-6)	
  
                                        "                            %
                                           !2 f     !2 f       !2 f '
       (3N-6)x(3N-6) matrix 
           $                   !
       with elements:!                  $ !x12     !x1!x2     !x1!xn '
                                        $                            '




                                                                         (3N-6)	
  
                                        $  !2 f     !2 f         2
                                                               ! f '
                       2
                      ! f                              2
                                                            !
        H ij ( f ) =          H ( f ) = $ !x2!x1    !x2       !x2!xn '
                     !xi!x j            $                            '
                                        $    "       "      #    "   '
                                        $ !2 f      !2 f       !2 f '
                                        $                   !      2 '
                                        $ !xn!x1
                                        #          !xn!x2      !xn ' &

Approximate PES around stationary point by harmonic potentials.!
	
  
The Hessian/Force matrix!
  Diagonalize Hessian 
              Eigenvalues:!          Eigenvectors:!
  (eigenvalue problem)!                                2    normal
               n                     ! k = m"          k    coordinates!
    !l (k )
     k j           = !H l
                    ij i
                        (k )
                                        Harmonic
              i=1                       frequencies!

                    minimum!             maximum!                   saddle point!




                      εk>0!                 εk<0!            εk>0, except one εj<0!
From E. Eliav, 
   ωk	
  all real!   ωk	
  all imaginary!   one imaginary ωj	
  on RC!
Tel Aviv U!
Minimizations… in practice!
•  Explicit Hessian methods accurate but
   too expensive for large molecules (9N2,
   27N3). Approximations, updating.

  !
•  In AMBER: SD,CG, BFGS, following
   low freq modes for struct. change.!
•  May use only CG (gradient history ~
   implicit treatment of Hessian)

   !
•  Combinatorial explosion: large
   molecules (eg.rotatable bonds), many
   possible conformers. Need better ways
   to seek out global minimum: genetic
   algorithms, Monte Carlo, etc.!
Follow-up reading!
•    Force fields for biological systems:!
      –  J. W. Ponder and D. A. Case, “Force fields for protein simulations” Adv. Prot. Chem.
         (2003).!
      –  A. D. Mackerell “Empirical force fields for biological macromolecules: Overview and
         issues” J. Comput. Chem. (2004).!
•    Non-biological force fields:!
      –  H. Balamane, T. Halicioglu, W. A. Tiller “Comparative study of silicon empirical
         interatomic potentials” Phys. Rev. B. (1992).!
      –  M. Finnis, Interatomic Forces in Condensed Matter, Oxford University Press (2003).!
      –  M. J. Buehler, A. C. T. van Duin, W. A. Goddard, III “Multiparadigm modeling of
         dynamical crack propagation in silicon using a reactive force field” Phys. Rev. Lett.
         (2006).!
•    Optimization for biological systems:!
      –  P. M. Pardalos, D. Shalloway, and G. Xue “Optimization methods for computing global
         minima of nonconvex potential energy functions” J. Global Opt. (1994).!
      –  I. Kolossvary and W. C. Guida “Low mode search. An efficient, automated
         computational method for conformational analysis: application to cyclic and acyclic
         alkanes and cyclic peptides.” JACS (1996).!
      –  B. Das, H. Meirovitch, and I. M. Navon “Performance of hybrid methods for large-scale
         unconstrained optimization as applied to models of proteins” J. Comput. Chem.
         (2003).!
      –  K. Zhu, M. R. Shirts, R. A. Friesner, and M. P. Jacobson “Multiscale optimization of a
         truncated Newton minimization algorithm and application to proteins and protein-ligand
         complexes.” JCTC (2007).!

More Related Content

What's hot

Schrodinger Equation of Hydrogen Atom
Schrodinger Equation of Hydrogen AtomSchrodinger Equation of Hydrogen Atom
Schrodinger Equation of Hydrogen AtomSaad Shaukat
 
Electron phonon renormalization of electronic band structure
Electron phonon renormalization of  electronic band structureElectron phonon renormalization of  electronic band structure
Electron phonon renormalization of electronic band structureElena Cannuccia
 
Introduction to the electron phonon renormalization of the electronic band st...
Introduction to the electron phonon renormalization of the electronic band st...Introduction to the electron phonon renormalization of the electronic band st...
Introduction to the electron phonon renormalization of the electronic band st...Elena Cannuccia
 
Hartree-Fock Review
Hartree-Fock Review Hartree-Fock Review
Hartree-Fock Review Inon Sharony
 
Introduction to the electron-phonon renormalization of electronic band struc...
Introduction to the electron-phonon  renormalization of electronic band struc...Introduction to the electron-phonon  renormalization of electronic band struc...
Introduction to the electron-phonon renormalization of electronic band struc...Elena Cannuccia
 
Particle in a Box problem Quantum Chemistry
Particle in a Box problem Quantum ChemistryParticle in a Box problem Quantum Chemistry
Particle in a Box problem Quantum ChemistryNeel Kamal Kalita
 
Ibm lasers
Ibm lasersIbm lasers
Ibm lasersKumar
 
Gnp ch103-lecture notes
Gnp ch103-lecture notesGnp ch103-lecture notes
Gnp ch103-lecture notesRohan Jain
 
Quantum theory of dispersion of light ppt
Quantum theory of dispersion of light pptQuantum theory of dispersion of light ppt
Quantum theory of dispersion of light ppttedoado
 
Chapter2 introduction to quantum mechanics
Chapter2 introduction to quantum mechanicsChapter2 introduction to quantum mechanics
Chapter2 introduction to quantum mechanicsK. M.
 

What's hot (19)

Hydrogen atom
Hydrogen atomHydrogen atom
Hydrogen atom
 
Hartree fock theory
Hartree fock theoryHartree fock theory
Hartree fock theory
 
Atom hidrogen
Atom hidrogenAtom hidrogen
Atom hidrogen
 
Schrodinger Equation of Hydrogen Atom
Schrodinger Equation of Hydrogen AtomSchrodinger Equation of Hydrogen Atom
Schrodinger Equation of Hydrogen Atom
 
THE HARTREE FOCK METHOD
THE HARTREE FOCK METHODTHE HARTREE FOCK METHOD
THE HARTREE FOCK METHOD
 
Electron phonon renormalization of electronic band structure
Electron phonon renormalization of  electronic band structureElectron phonon renormalization of  electronic band structure
Electron phonon renormalization of electronic band structure
 
Introduction to the electron phonon renormalization of the electronic band st...
Introduction to the electron phonon renormalization of the electronic band st...Introduction to the electron phonon renormalization of the electronic band st...
Introduction to the electron phonon renormalization of the electronic band st...
 
Hartree-Fock Review
Hartree-Fock Review Hartree-Fock Review
Hartree-Fock Review
 
Quantum mechanical spin
Quantum mechanical spinQuantum mechanical spin
Quantum mechanical spin
 
Introduction to the electron-phonon renormalization of electronic band struc...
Introduction to the electron-phonon  renormalization of electronic band struc...Introduction to the electron-phonon  renormalization of electronic band struc...
Introduction to the electron-phonon renormalization of electronic band struc...
 
Particle in a Box problem Quantum Chemistry
Particle in a Box problem Quantum ChemistryParticle in a Box problem Quantum Chemistry
Particle in a Box problem Quantum Chemistry
 
Part i
Part iPart i
Part i
 
Ibm lasers
Ibm lasersIbm lasers
Ibm lasers
 
Quantum Mechanics
Quantum MechanicsQuantum Mechanics
Quantum Mechanics
 
Gnp ch103-lecture notes
Gnp ch103-lecture notesGnp ch103-lecture notes
Gnp ch103-lecture notes
 
Wavemechanics
WavemechanicsWavemechanics
Wavemechanics
 
Quantum theory of dispersion of light ppt
Quantum theory of dispersion of light pptQuantum theory of dispersion of light ppt
Quantum theory of dispersion of light ppt
 
Lecture5
Lecture5Lecture5
Lecture5
 
Chapter2 introduction to quantum mechanics
Chapter2 introduction to quantum mechanicsChapter2 introduction to quantum mechanics
Chapter2 introduction to quantum mechanics
 

Similar to BIOS203 Lecture 1: Introduction to potentials and minimization

Intro-QM-Chem.ppt
Intro-QM-Chem.pptIntro-QM-Chem.ppt
Intro-QM-Chem.pptsami97008
 
Disordered Electronic Models
Disordered Electronic ModelsDisordered Electronic Models
Disordered Electronic ModelsAndy Zelinski
 
The Standard Model and the LHC in the Higgs Boson Era
The Standard Model and the LHC in the Higgs Boson EraThe Standard Model and the LHC in the Higgs Boson Era
The Standard Model and the LHC in the Higgs Boson Erajuanrojochacon
 
Strongly Interacting Atoms in Optical Lattices
Strongly Interacting Atoms in Optical LatticesStrongly Interacting Atoms in Optical Lattices
Strongly Interacting Atoms in Optical LatticesABDERRAHMANE REGGAD
 
Challenges and Advances in Large-scale DFT Calculations on GPUs using TeraChem
Challenges and Advances in Large-scale DFT Calculations on GPUs using TeraChemChallenges and Advances in Large-scale DFT Calculations on GPUs using TeraChem
Challenges and Advances in Large-scale DFT Calculations on GPUs using TeraChemCan Ozdoruk
 
Atomic structure - chemistry
Atomic structure - chemistryAtomic structure - chemistry
Atomic structure - chemistryArosek Padhi
 
Lecture 7 pseudogap
Lecture 7 pseudogapLecture 7 pseudogap
Lecture 7 pseudogapAllenHermann
 
Chm102 14 15_lecture 12
Chm102 14 15_lecture 12Chm102 14 15_lecture 12
Chm102 14 15_lecture 12Kartik Mittal
 
Discovery through precision: perturbative QCD at the dawn of the LHC Run II
Discovery through precision: perturbative QCD at the dawn of the LHC Run IIDiscovery through precision: perturbative QCD at the dawn of the LHC Run II
Discovery through precision: perturbative QCD at the dawn of the LHC Run IIjuanrojochacon
 
Continuous variable quantum entanglement and its applications
Continuous variable quantum entanglement and its applicationsContinuous variable quantum entanglement and its applications
Continuous variable quantum entanglement and its applicationswtyru1989
 
Lecture 1 medical Chemistry.pptxxfjxfjfjcf
Lecture 1   medical Chemistry.pptxxfjxfjfjcfLecture 1   medical Chemistry.pptxxfjxfjfjcf
Lecture 1 medical Chemistry.pptxxfjxfjfjcfSriRam071
 
Intro. to quantum chemistry
Intro. to quantum chemistryIntro. to quantum chemistry
Intro. to quantum chemistryRawat DA Greatt
 
The quantum mechanical model of the atom
The quantum mechanical model of the atomThe quantum mechanical model of the atom
The quantum mechanical model of the atomPearlie Joy Fajanil
 
Quantum-phenomena.ppt
Quantum-phenomena.pptQuantum-phenomena.ppt
Quantum-phenomena.pptPritamjit3
 
Chirality: from particles and nuclei to quantum materials. Дмитрий Харзеев.
Chirality: from particles and nuclei to quantum materials. Дмитрий Харзеев.Chirality: from particles and nuclei to quantum materials. Дмитрий Харзеев.
Chirality: from particles and nuclei to quantum materials. Дмитрий Харзеев.Alexander Dubynin
 

Similar to BIOS203 Lecture 1: Introduction to potentials and minimization (20)

Intro-QM-Chem.ppt
Intro-QM-Chem.pptIntro-QM-Chem.ppt
Intro-QM-Chem.ppt
 
Intro-QM-Chem.ppt
Intro-QM-Chem.pptIntro-QM-Chem.ppt
Intro-QM-Chem.ppt
 
Disordered Electronic Models
Disordered Electronic ModelsDisordered Electronic Models
Disordered Electronic Models
 
The Standard Model and the LHC in the Higgs Boson Era
The Standard Model and the LHC in the Higgs Boson EraThe Standard Model and the LHC in the Higgs Boson Era
The Standard Model and the LHC in the Higgs Boson Era
 
Strongly Interacting Atoms in Optical Lattices
Strongly Interacting Atoms in Optical LatticesStrongly Interacting Atoms in Optical Lattices
Strongly Interacting Atoms in Optical Lattices
 
Challenges and Advances in Large-scale DFT Calculations on GPUs using TeraChem
Challenges and Advances in Large-scale DFT Calculations on GPUs using TeraChemChallenges and Advances in Large-scale DFT Calculations on GPUs using TeraChem
Challenges and Advances in Large-scale DFT Calculations on GPUs using TeraChem
 
Atomic structure - chemistry
Atomic structure - chemistryAtomic structure - chemistry
Atomic structure - chemistry
 
Lecture 7 pseudogap
Lecture 7 pseudogapLecture 7 pseudogap
Lecture 7 pseudogap
 
Chm102 14 15_lecture 12
Chm102 14 15_lecture 12Chm102 14 15_lecture 12
Chm102 14 15_lecture 12
 
Discovery through precision: perturbative QCD at the dawn of the LHC Run II
Discovery through precision: perturbative QCD at the dawn of the LHC Run IIDiscovery through precision: perturbative QCD at the dawn of the LHC Run II
Discovery through precision: perturbative QCD at the dawn of the LHC Run II
 
Pot.ppt.pdf
Pot.ppt.pdfPot.ppt.pdf
Pot.ppt.pdf
 
Continuous variable quantum entanglement and its applications
Continuous variable quantum entanglement and its applicationsContinuous variable quantum entanglement and its applications
Continuous variable quantum entanglement and its applications
 
Burakh 040816
Burakh 040816Burakh 040816
Burakh 040816
 
Binary Black Holes & Tests of GR - Luis Lehner
Binary Black Holes & Tests of GR - Luis LehnerBinary Black Holes & Tests of GR - Luis Lehner
Binary Black Holes & Tests of GR - Luis Lehner
 
Lecture 1 medical Chemistry.pptxxfjxfjfjcf
Lecture 1   medical Chemistry.pptxxfjxfjfjcfLecture 1   medical Chemistry.pptxxfjxfjfjcf
Lecture 1 medical Chemistry.pptxxfjxfjfjcf
 
Intro. to quantum chemistry
Intro. to quantum chemistryIntro. to quantum chemistry
Intro. to quantum chemistry
 
The quantum mechanical model of the atom
The quantum mechanical model of the atomThe quantum mechanical model of the atom
The quantum mechanical model of the atom
 
Quantum-phenomena.ppt
Quantum-phenomena.pptQuantum-phenomena.ppt
Quantum-phenomena.ppt
 
Quantum-phenomena.ppt
Quantum-phenomena.pptQuantum-phenomena.ppt
Quantum-phenomena.ppt
 
Chirality: from particles and nuclei to quantum materials. Дмитрий Харзеев.
Chirality: from particles and nuclei to quantum materials. Дмитрий Харзеев.Chirality: from particles and nuclei to quantum materials. Дмитрий Харзеев.
Chirality: from particles and nuclei to quantum materials. Дмитрий Харзеев.
 

Recently uploaded

MARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized GroupMARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized GroupJonathanParaisoCruz
 
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfFraming an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfUjwalaBharambe
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Celine George
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxthorishapillay1
 
AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.arsicmarija21
 
Meghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentMeghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentInMediaRes1
 
Painted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaPainted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaVirag Sontakke
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxiammrhaywood
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17Celine George
 
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxRaymartEstabillo3
 
Final demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxFinal demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxAvyJaneVismanos
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatYousafMalik24
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
 
Pharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfPharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfMahmoud M. Sallam
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsanshu789521
 

Recently uploaded (20)

MARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized GroupMARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized Group
 
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdfFraming an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
Framing an Appropriate Research Question 6b9b26d93da94caf993c038d9efcdedb.pdf
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptx
 
OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...
 
AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.
 
Meghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentMeghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media Component
 
Painted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of IndiaPainted Grey Ware.pptx, PGW Culture of India
Painted Grey Ware.pptx, PGW Culture of India
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
 
9953330565 Low Rate Call Girls In Rohini Delhi NCR
9953330565 Low Rate Call Girls In Rohini  Delhi NCR9953330565 Low Rate Call Girls In Rohini  Delhi NCR
9953330565 Low Rate Call Girls In Rohini Delhi NCR
 
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
Model Call Girl in Tilak Nagar Delhi reach out to us at 🔝9953056974🔝
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17
 
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptxEPANDING THE CONTENT OF AN OUTLINE using notes.pptx
EPANDING THE CONTENT OF AN OUTLINE using notes.pptx
 
Final demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxFinal demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptx
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice great
 
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
 
Pharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfPharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdf
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha elections
 

BIOS203 Lecture 1: Introduction to potentials and minimization

  • 1. Introduction to simulations: empirical minimizations and potentials! Heather J Kulik! hkulik@stanford.edu! 2/25/13!
  • 2. Welcome to BIOS 203! •  Objective: to introduce students to the theory and application of a variety of computational simulations methods.! •  Instructors: Dr. Heather Kulik, Dr. Lee-Ping Wang, Professor Todd Martinez, Professor Tom Markland, Professor Vijay Pande.! •  TAs: Martinez group members: Sofia Ismailov, Liguo Kong, Sara Kokkila, Aaron Sisto, Fang Liu, Brendan Mar.! •  When: Monday, Wednesday, Friday 9am-11:50am (lecture 9am-10am, lab work 10am-11:50am).! •  Grade (letter students): two lab assignments + one presentation (credit students): presentation is optional.!
  • 3. Mini-course schedule! Mon, Feb 25! Course introduction, empirical potentials and minimizations 
 (Dr. Heather Kulik)! Wed, Feb 27! Electronic structure basics Fri, Mar 8! Guest lecture: Markov (Dr. Heather Kulik)! state models (Prof. Vijay Pande)! Fri, Mar 1! Classical molecular Mon, Mar 11! Transition state theory and dynamics (Dr. Lee-Ping rare event techniques 
 Wang)! (Dr. Heather Kulik)! ! Mon, Mar 4! Ab initio molecular Wed, Mar 13! Guest lecture: Free energy dynamics (Dr. Lee-Ping methods (Prof. Tom Wang) ! Markland)! Wed, Mar 6! Guest lecture: Excited Fri, Mar 15! Methods for bioinorganic states, mixed methods chemistry, presentations 
 (Prof. Todd Martinez)! (Dr. Heather Kulik)! Lab 1 due! Lab 2 due! !
  • 4. Optional background texts! •  F. Jensen “Introduction to Computational Chemistry” Wiley ! •  W. Koch and M. C. Holthausen “A Chemistʼs Guide to Density Functional Theory” Wiley-VCH! •  A. Szabo and N. S. Ostlund, “Modern Quantum Chemistry: Introduction to Advanced Electronic Structure Theory” Dover! ! •  C. J. Cramer “Essentials of Computational Chemistry: Theories and Models” Wiley! •  M. P. Allen and Tildesley “Computer simulations of Liquids” Oxford Science Publishers! •  T. Schlick “Molecular Modeling and Simulation” Springer! •  D. A. McQuarrie and J. D. Simon “Physical Chemistry: A molecular approach” University Science Books! •  D. Frenkel and B. Smit “Understanding Molecular Simulations: From Algorithms to Applications” Academic Press! ! Specific literature will be provided along with each lecture.!
  • 5. Why simulations?! Protein folding: how proteins fold and misfold (Prof. Vijay Pande)! Voelz, Bowman, Beauchamp, Pande. JACS (2010).!
  • 6. Why simulations?! Drug design: 2nd generation HIV protease inhibitor Kaletra! See Cobb “Biomedical Computational Review” 2007 and references therein.!
  • 7. Why simulations?! Photochemistry for RNA bases: mechanisms for alternative proton transfer between RNA bases.! Golan et al. Nature Chem. (2012).!
  • 8. Simulations beyond biochemistry! Materials Genome Project: Identifying elements that substitute for each other, chemical trends…! Hautier, G… Ceder, G. Chemistry of Materials (2010).!
  • 9. Choosing a computational model! Empirical models – functional form with parameters from experimental or other calculated data:! !Pair potentials! !Many body potentials! More transferable! More efficient! ! Best tool for the Semi-empirical models – model Hamiltonians:! job? Depends on !Tight binding! the job!! !MNDO, AM1…! ! Quantum mechanical models – approximations to the Schrödinger equation:! !Hartree-Fock! !Density functional theory! !Post-Hartree-Fock (Configuration interaction, MP2)!
  • 10. Exercise: Choose a computational journal article.! •  Letter grade students: select a journal article that uses computation (at least 50% of the article) that interests you.! •  Throughout the course, or consulting with the lecturers, build up an understanding of the material.! •  Last class: present and explain the methods used in the article and the major findings.! •  Need inspiration? See us for a list of suggested journal articles.!
  • 11. Empirical model potentials! 1 N ! ! E = E 0 + # V ( Ri ! R j ) 2 i, j"i V(ΔR)! •  Species are repulsive for small distances! •  Attractive for longer distances! •  Only need to calculate ΔR! potentials for atoms within a certain distance.!
  • 12. Lennard-Jones Potential! 200 150 Argon! (! " $12 ! ! $6 + VLJ = 4! *# & ' # & - 100 *" r % " r % - ) , 50 VLJ! (K) E/kB 0 σ! -50 Ar parameters:! -100 σ=3.345 Å! ε! ε/KB=125.7 K! J. A. White, -150 JCP (1999).! 2.0 4.0 6.0 8.0 10.0 rm! r (Å)
  • 13. Morse Potential! 5 De! 4 H2! H2 parameters:! De=4.75 eV! 3 V(r) (eV) β=1.93 1/Å re=0.741 Å! 2 ! ! (r!re ) 2 1 re! V (r) = De(1! e ) adapted from McQuarrie and Simon! 0 0.0 1.0 2.0 3.0 4.0 r (Å)
  • 14. Morse potential: CH4 stretch! adapted from Jensen!
  • 15. Limitations of pair potentials! Counts only bonds, not organization:! ! =! Nbonds = 3! Nbonds = 3!
  • 16. Limitations of pair potentials! Counts only bond length, no orientation or angular effects (e.g. ethylene):! Pair potentials:! C-H, C-C bonds.! ! θ θ No treatment: ! H-C-H angle, ! H-C-C-H dihedral.!
  • 17. Limitations of pair potentials! Preference for high number/high density of bonds formed to lower total energy:! ! ! ! Bond energy for blue atom on left is four times the right.! In real systems: more bonds means lower energy/bond.!
  • 18. Adding angular terms! H2O Bending! Harmonic works well! ! Note: derivative should be set to zero at 180o! adapted from Jensen!
  • 19. Adding torsional terms! Ethane eclipsed! Ethane staggered! Torsional potential is steric, non-bonded electrostatics.! ! ! ! ! ! ! ! Periodicity needs Energy to be enforced, e.g. ethane.! 0 60 120 180 240 300 360 Dihedral (degrees)
  • 20. AMBER! Assisted Model Building with Energy Refinement: AMBER is a force field and a software package. 
 http://www.ambermd.org! 1)  AMBER Force field: ffXX (year) peptides and nucleic acids, some ions (Mg2+).! 2)  GAFF (Generalized Amber Force Field): generalized scheme for force field for any organic molecule based upon topology.! 3)  Parameter sets available on the web: 
 http://www.pharmacy.manchester.ac.uk/bryce/amber/!
  • 21. The AMBER force field! Vn E= " kb (l ! l0 )2 + " ka (! ! ! 0 )2 + " 2 [1+ cos(n" ! "0 )]+ bonds angles torsions !(1)! ! ! !(2)! ! ! ! ! !(3)! 1, 2, 3: Harmonic oscillator-like bonding, angular, torsional terms! (! $12 ! r $ + N'1 N q q 6 N'1 N ( N'1 N r0ij Cij Dij + . . !i, j *# r & ' 2 # r & - + . . 4"! r + . . * r12 ' r10 - *# ij & 0ij # &- i j j=1 i= j+1 )" % " ij % , j=1 i= j+1 0 ij j=1 i= j+1* ij ) ij -, ! ! !(4)! ! ! ! !(5)! ! ! ! !(6)! van der Waals ! !electrostatic ! !hydrogen bonding!
  • 22. Things that are missing…! More advanced force fields:! –  Cross terms: e.g. bend affects stretch in a water molecule. ! bend! –  Polarizability from point charges or multipoles: e.g. AMOEBA.! –  Bond breaking and formation: e.g. ReaxFF.! ! Not all advanced methods are feasible for very large simulations. !
  • 23. Generalized Amber FF! Same functional form as AMBER but more general 
 (http://ambermd.org/antechamber/gaff.html):! !
  • 24. GAFF parameters! •  Bond constants, force constants, torsional dependence: based on assigned bonding topology (you or a code decides).! •  Across large test set: MP2/6-31g*, MP4/6-31g* and Cambridge Structural Database training set.! •  Charges for electrostatics from semi- empirical methods or HF/6-31g*. Can generate custom charges for each molecule.!
  • 25. Optimizing on a PES! N atoms, 3N-6 degree potential energy hypersurface. Simplify!! ! For classical MD: biggest bottleneck is counting all the bonds, need neighbor lists to limit cost of summation.! Minimizations/optimizations: finding our way to local or global minima! from H. B. Schlegel, Wayne State U.!
  • 26. Features of a PES! from H. B. Schlegel, Wayne State U.!
  • 27. Energy minimizations! Minimize:! Force = !"(Energy) Gradient on our PES in # "f "f & terms of all coordinates !f = % ,!, ( (internal, cartesian):! $ "x1 "xn ' Any stationary point 
 For !f != ! 0 ! ! !:! (a) local minimum, 
 (b) global minimum, 
 What we usually want!! (c) saddle point.! !
  • 28. Steepest descent! Optimization direction:! g = !"E !i g i Update coordinates:! ri+1 = ri + ! gi Reduce λ near minimum.! Pros: Fast when far from minimum, local minimization guaranteed.! ! Cons: slow descent for certain PESs, can oscillate near minimum.! From E. Eliav,
 Tel Aviv U!
  • 29. Conjugate gradient! Initial direction:! h 0 = g 0 = !"E Update coordinates:! ri+1 = ri + ! hi Next steps:! hi+1 = g i+1 + ! i+1hi ! where:! (g ! g )g ! i+1 = i+1 2i i+1 ! gi ! Pro: Using history, faster convergence near minimum.! From E. Eliav, 
 Tel Aviv U!
  • 30. The Hessian/Force matrix! (3N-6)   " % !2 f !2 f !2 f ' (3N-6)x(3N-6) matrix 
 $ ! with elements:! $ !x12 !x1!x2 !x1!xn ' $ ' (3N-6)   $ !2 f !2 f 2 ! f ' 2 ! f 2 ! H ij ( f ) = H ( f ) = $ !x2!x1 !x2 !x2!xn ' !xi!x j $ ' $ " " # " ' $ !2 f !2 f !2 f ' $ ! 2 ' $ !xn!x1 # !xn!x2 !xn ' & Approximate PES around stationary point by harmonic potentials.!  
  • 31. The Hessian/Force matrix! Diagonalize Hessian 
 Eigenvalues:! Eigenvectors:! (eigenvalue problem)! 2 normal n ! k = m" k coordinates! !l (k ) k j = !H l ij i (k ) Harmonic i=1 frequencies! minimum! maximum! saddle point! εk>0! εk<0! εk>0, except one εj<0! From E. Eliav, 
 ωk  all real! ωk  all imaginary! one imaginary ωj  on RC! Tel Aviv U!
  • 32. Minimizations… in practice! •  Explicit Hessian methods accurate but too expensive for large molecules (9N2, 27N3). Approximations, updating.
 ! •  In AMBER: SD,CG, BFGS, following low freq modes for struct. change.! •  May use only CG (gradient history ~ implicit treatment of Hessian)
 ! •  Combinatorial explosion: large molecules (eg.rotatable bonds), many possible conformers. Need better ways to seek out global minimum: genetic algorithms, Monte Carlo, etc.!
  • 33. Follow-up reading! •  Force fields for biological systems:! –  J. W. Ponder and D. A. Case, “Force fields for protein simulations” Adv. Prot. Chem. (2003).! –  A. D. Mackerell “Empirical force fields for biological macromolecules: Overview and issues” J. Comput. Chem. (2004).! •  Non-biological force fields:! –  H. Balamane, T. Halicioglu, W. A. Tiller “Comparative study of silicon empirical interatomic potentials” Phys. Rev. B. (1992).! –  M. Finnis, Interatomic Forces in Condensed Matter, Oxford University Press (2003).! –  M. J. Buehler, A. C. T. van Duin, W. A. Goddard, III “Multiparadigm modeling of dynamical crack propagation in silicon using a reactive force field” Phys. Rev. Lett. (2006).! •  Optimization for biological systems:! –  P. M. Pardalos, D. Shalloway, and G. Xue “Optimization methods for computing global minima of nonconvex potential energy functions” J. Global Opt. (1994).! –  I. Kolossvary and W. C. Guida “Low mode search. An efficient, automated computational method for conformational analysis: application to cyclic and acyclic alkanes and cyclic peptides.” JACS (1996).! –  B. Das, H. Meirovitch, and I. M. Navon “Performance of hybrid methods for large-scale unconstrained optimization as applied to models of proteins” J. Comput. Chem. (2003).! –  K. Zhu, M. R. Shirts, R. A. Friesner, and M. P. Jacobson “Multiscale optimization of a truncated Newton minimization algorithm and application to proteins and protein-ligand complexes.” JCTC (2007).!

Editor's Notes

  1. Only an energy and length scale. Simplistic description that works well for weakly interacting systems like noble gases. Commonly employed in molecular simulations for some materials.
  2. More parameters, good description of covalent bonds. We can fit these potentials to experimental properties, results from accurate simulations, phonons, etc.
  3. Hydrogen bonding adds 0.5 kcal/mol to hbond to supplement. 12-10 suggested by pauling. Values are derived from high order MP2(?) quantum chemistry fittings. Though it is called the force field, the force is really the derivative.