Introduction to the electron phonon renormalization of the electronic band structure
1. Elena Cannuccia
Institut Laue-Langevin, Grenoble (France)
Introduction to the electronIntroduction to the electron
phonon renormalization ofphonon renormalization of
electronic band structureelectronic band structure
2. The N particlesThe N particles
world:world:
ionsions andand electronelectronss
all togetherall together
Electron phonon renormalizationElectron phonon renormalization
of electronic band structureof electronic band structure
4. The separated worlds ofThe separated worlds of
phononsphonons and electronand electronss
Electrons live in the bands
generated by the ionic potential
Phonons are the quantized
ionic vibrations on the potential
generated by the electrons
6. Coupling electrons and phonons …Coupling electrons and phonons …
Superconductivity Joule's heating
Electron relaxation
(luminescence)
Polaronic transport
Coherent Phonons
Peierls instability
Raman Spectroscopy
etc......
7. EPC on the electronic structureEPC on the electronic structure
Kink in the band structure Mass Enhancement
Temperature dependence of
band gaps
A. Marini, PRL 101,106405 (2008)
8. Energy levels renormalizationEnergy levels renormalization
ThermalThermal
expansionexpansion
Electron-PhononElectron-Phonon
interactioninteraction
P.B. Allen and M. Cardona Phys. Rev. B 27 4760 (1983)
>>
Where does the coupling come from?
10. A perturbative approach:A perturbative approach:
Heine-Allen-Cardona 1/2Heine-Allen-Cardona 1/2
For a review see M. Cardona,
Solid State Commun. 133, 3 (2005).
H (x+u)=H (x) +
∂V scf
∂ x
u +
1
2
∂
2
V scf
∂ x2
u2
+...
Using
Perturbation TheoryPerturbation Theory,
we get the correction
to the energy
δ Ei=〈Ψi
(0)
∣ ∣Ψi
(0)
〉 + 〈Ψi
(0)
∣ ∣Ψi
(0)
〉 + 〈Ψi
(0)
∣ ∣Ψi
(1)
〉 +...
First order PT Second order PT
V scf (x+u)=V scf (x) +
∂V scf
∂ x
u +
1
2
∂
2
V scf
∂ x
2
u2
+....
11. A perturbative approach:A perturbative approach:
Heine-Allen-Cardona 2/2Heine-Allen-Cardona 2/2
Debye-Waller Fan
δ Ei(β) = [
1
2
〈
∂
2
V scf
∂ x2
〉 + ∑j
(Ei−Ej)
−1
〈
∂V scf
∂ x
∣j〉〈 j∣
∂V scf
∂ x
〉] 〈u
2
〉
Clear dependence on the
Temperature
B(w) = Bose function
δ En k (β)=∑q λ n'
[
∣gn n' k
qλ
∣
En k−En' k+q
−
Λnn' k
q λ
En k−En' k
](2B(ωq λ)+1)
Thermal average
Average on the
electronic
wavefunction
FINAL FORMULA
13. Electron-phonon coupling
from a MBPT perspective
ϵnk En k (T )+i Γn k (T )
Electron scatters with
1 phonon at a time
ElectronPhonon Self Energy
Temperature dependenceSpectral Functions
Enk
Γnk
14. Born–Oppenheimer approximationBorn–Oppenheimer approximation
a perturbative approacha perturbative approach
Electron phonon coupling at workElectron phonon coupling at work
beyond thebeyond the
Born–Oppenheimer approximationBorn–Oppenheimer approximation
16. Finite temperature electronicFinite temperature electronic
and opticaland optical
properties of zb-GaNproperties of zb-GaN
H. Kawai, K. Yamashita, E. Cannuccia, A. Marini
Phys. Rev. B. 89, 085202 (2014)
What we
can
do now!!!
BroadeningBroadening induced
by electron-phonon
scattering and
temperature
dependence
17. The gap of diamondThe gap of diamond
(1/2)(1/2)
F. Giustino, et al. PRL, 105, 265501 (2010)
E. Cannuccia, Phys. Rev. Lett. 107, 255501 (2011)
Logothedis et al. PRB 46, 4483 (1992)
Electronic Gap: 7.715 eV
Renormalization: ~400 meV
Classicalions
18. The gap of diamondThe gap of diamond
(2/2)(2/2)
Exp: Logothetidis et al.
PRB 46, 4483 (1992)
Quantum (PI)
MD calculations
Ramirez et al. PRB 73, 245202 (2006)
19. Isotopic EffectsIsotopic Effects
〈u2
〉=〈
h
4Mω
{2[e−hω/KT
−1]−1
+1}〉
At high T,
independent of M (classical effect)
At low T,
zero point vibrations (quantum)
〈u
2
〉∝KT
〈u
2
〉∝M
−1/2
The quantisticThe quantistic
zero-pointzero-point
motion effectmotion effect
Parks et al. PRB 49,14244 (1994) This renormalization should be taken
into account when state of the art
ab initio calculations of the gap are
compared
with experimental results.
Eg
M
M→∞Eg electronic
23. Dynamical effects in diamondDynamical effects in diamond
Logothedis et al. PRB 46, 4483 (1992)
E. Cannuccia, Phys. Rev. Lett. 107, 255501 (2011)
Signature ofSignature of
the dynamicalthe dynamical
effectseffects
24. Breakdown of the QP pictureBreakdown of the QP picture
E. Cannuccia and A. MariniE. Cannuccia and A. Marini
Europ. Phys. J. B.Europ. Phys. J. B. 8585, 320 (2012), 320 (2012)
25. What if LDA fails to describe
the electron-phonon coupling?
What if the electron-phonon
coupling causes degeneracy and
crossing of quasi-particle levels?
In the next talks......In the next talks......
28. S. Ponce, G. Antonius, P. Boulanger, E. Cannuccia,
et al. Comp. Mat. Science, 83, 341, (2014)
Implementation of large
formula: source of infinite
errors but ...
32. A. Eiguren and C. Ambrosch-Draxl, PRL 101 036402 (2008)
Quasi-particle Band Structure Induced by the
Electron-phonon interaction on a surface
Editor's Notes
H e' quella elettronica della DFT.
Fermiarmi al 2 ordine → expansione armonica significa assumere che le frquenze fononiche non dipendono dal volume del cristallo, quindi non sto tenendo conto di effetti anarmonici che sono legati all'expansione termica.
Cambio di base: cartesiane → fonone displacement
k-q
Cambio di base: cartesiane → fonone displacement
k-q
C, N, O
.. have no p-electrons in the core and the p valence electrons, as the atoms vibrate, can get much closer to the core than in cases where p-electrons
are present in the core: germanium, silicon, GaAs….
The dipendence of the gap at high temperatures is linear and then it deviates because of quantum effects. Classically the gap correction is equal to zero, than at T=0 the intersection yields the electronic gap.
Path integral molecular dynamics (PIMD) is a method of incorporating quantum mechanics into molecular dynamics simulations using Feynman path integrals. Such simulations are particularly useful for studying nuclear quantum effects in light atoms and molecules such as hydrogen, helium, neon and argon, as well as in quantum rotators such as methane and hydrogen bonded systems such as water. In PIMD, one uses the Born–Oppenheimer approximation to separate the wavefunction into a nuclear part and an electronic part. The nuclei are treated quantum mechanically by mapping each quantum nuclei onto a classical system of several fictitious particles connected by springs (harmonic potentials) and governed by an effective Hamiltonian