SlideShare a Scribd company logo
1 of 19
Chemical
thermodynamics
From this chapter 12 marks will come and 5 marks numerical sure
General introduction:
The branch of science which deals with the study of different form of
energy and the quantitative relationship between them is known as
thermodynamics.
When we confine our study to chemical changes and chemical
substances only, then that branch of thermodynamics is known as
chemical thermodynamics.
Some basic terms and concepts:
1. System: A system means that part of Universe which is under study.
For example: a certain amount of solid, liquid or gas contain in a
system.
2. Surrounding: The rest of the universe or environment around the
system is called surrounding.
So, the surrounding means all other things which can interact
with the system.
3. Boundary: Anything that separates the system from the
surrounding is called boundary.
Thus, universe = system + surrounding
Depending upon how a system interacts with the surrounding it is classified
into 3 categories.
1. Closed system: A closed system is one which can’t exchange matter with
surrounding. For example, a close container in a closed system, because
no matter can enter or escape from it. However, the closed system can
exchange heat or work with surrounding.
Figure…………..
2. Open system: An open system is one which can exchange both matter
and energy( heat or work) with the surrounding.
Hot water contained in an open beaker is an example of open system.
Figure……………….
3. Isolated system: An isolated system is one which can exchange neither
matter nor energy with the surrounding. If the boundary is closed and
insulated, no interaction is possible with the surrounding. Hence hot or cold
water contained in a thermos is an isolated system.
4. State of a system and state variable: The state of a system means the
condition of the system which is described in terms of certain measurable
properties such as temperature (T), pressure(P), volume(V), etc. of the
system. If any of these properties of the system changes, the system is said
to be in different state i.e. the state of the system changes. That is why these
properties of the system are called state variable.
The properties is said to occur when the state of the system changes. The
first and last state of the system are initial sate and final state respectively.
5. State function: A physical quantity is said to be state function if its value
depends only upon the state of the system and doesn’t depend upon the
path by which this state has been attained.
For example: potential energy, internal energy, enthalpy, free energy etc.
Explanation:
let us consider two points at the peak and a base of a hill. The climbers can
move from base to the peak of the hill through different path. Work done
depend upon the distance travelled by the climber (may be longer and a
shorter route). So, it is not a state function. However a climbers standing on
the peak of hill has a fixed value of PE, irrespective of the fact that whether
he reached by stairs or lift. Thus PE of the person is a state function
6. Thermodynamic properties:
i. Intensive properties: The properties of the system which do not
depend upon the amount of the substance present is called
intensive properties. For example: temperature, pressure, viscosity,
density, surface tension, etc.
The boiling point of water is 100oc at one atmosphere whatever
its mass.
ii. Extensive properties: The properties of the system which depend
upon the amount of substance present is called extensive
properties. For example, mass, volume, energy, work, entropy, etc.
let us consider a glass of water, if we double the mass of water,
the volume, no. of moles, internal energy etc. also get doubled so
they are extensive properties.
Types of thermodynamic process:
Isothermal and Adiabatic process:
A process is said to be isothermal, if the temperature of the system
remains constant during each stage of the process. Such type of
process may be achieved by placing the system in thermostat.
Here, dT = 0, keeping temperature constant.
A process is said to be adiabatic, if no heat enters or leaves the system
during any step of the process i.e. the system is completely insulated
from the surrounding.
Here, dQ= 0, keeping heat constant.
Isochoric and isobaric process:
A process is said to be isochoric, if the volume of the system remains
constant during each step of the process.
Here, dv = 0.
A process is said to be isobaric if the pressure of the system remains
constant during each step of the process.
Here, dp = 0
Exchange of energy between system and
surrounding:
a. As work: If the system and the surrounding are at two different pressure, then
the energy is exchange between the system and surrounding in the form of
work.
Suppose there is a gaseous system enclosed in a cylinder fitted with a piston. If the
pressure of the gas is higher than that of the surrounding, the gas will expand, push
the piston and does a work against the surrounding. Here energy is transformed
from the system to surrounding in the form of work. If the surrounding is at higher
pressure, the gas contracts and work is done on the system by the surrounding. In
this case energy is transferred from the surrounding to the system in the form of
work. In both the case of expansion and contraction, the mechanical work is done
by/on the system is given by
W= P∆𝑉
Work done by the system, W= -P∆𝑉
Work done on the system, W= +P∆𝑉
b. As heat: If the system and the surrounding are at two different
temperature, energy is transformed or exchanged between the system
and surrounding in the form of heat.
For example: When ice is kept at room temperature, flow of heat
energy takes place from the surrounding to the system (ice) unless both
of them will have same temperature. Similarly if hot water in a vessel is
kept at room temperature, flow of heat energy takes place from hot
water( system) to surrounding unless both of them will have the same
temperature.
Internal energy (E) :
The energy of the thermodynamic system is called internal energy. It
includes all the possible forms of energy of the system. The sum of different
forms of energy associated with the molecule is called internal energy.
Internal energy = Translational energy + rotational energy + vibrational
energy + electrical energy + nuclear energy + bonding energy……..
The internal energy of the system depends upon the state of the system but
not upon the path on which the system attains another state. So, internal
energy is a state function. Therefore, the absolute value internal energy
cannot be determined. However, the change in internal energy can be
calculated as:
ΔE = E2 – E1
In a chemical reaction,
ΔE = Eproduct – Ereactant
If Eproduct > Ereactant, heat is absorbed by the system and hence reaction is
endothermic.
If Eproduct < Ereactant, heat is released by the system and hence reaction is
exothermic.
Sign convention:
1. ∆E = -ve, then energy is evolved.
2. ∆E = +ve, then energy is absorbed
First law of thermodynamics:
It states that, “ Energy can be neither be created nor destroyed
although it may be converted from one form to another”
OR
The total amount of energy in the Universe remains constant although
it may undergo transformation from one form to another.
Mathematical formulation of first law of
thermodynamics:( relation between internal
energy, work and heat)
The internal energy of the system can be increased in 2 ways.
1. By supplying heat to the system
2. By doing work on the system
in board…………….
Sign convention:
Heat absorbed by the system: q is +ve
Heat evolved by the system: q is –ve
Work done on the system: W = +ve
Work done by the system: W = -ve
Chemical thermodynamics principles

More Related Content

What's hot

Chapter 1 some basic concepts of chemistry class 11 UPDATED PPT
Chapter 1 some basic concepts of chemistry class 11 UPDATED PPTChapter 1 some basic concepts of chemistry class 11 UPDATED PPT
Chapter 1 some basic concepts of chemistry class 11 UPDATED PPTritik
 
Physical chemistry presentation
Physical chemistry presentationPhysical chemistry presentation
Physical chemistry presentationGautam Yadav
 
Thermodynamics part2
Thermodynamics part2Thermodynamics part2
Thermodynamics part2SumatiHajela
 
Thermodynamics notes
Thermodynamics notesThermodynamics notes
Thermodynamics notessuresh gdvm
 
Solid state class 12 CBSE
Solid state class 12 CBSESolid state class 12 CBSE
Solid state class 12 CBSEritik
 
Equilibrium class 11 cbse NCERT
Equilibrium class 11  cbse NCERTEquilibrium class 11  cbse NCERT
Equilibrium class 11 cbse NCERTritik
 
Unit 4 chemical kinetics (Class XII)
Unit  4 chemical kinetics (Class XII)Unit  4 chemical kinetics (Class XII)
Unit 4 chemical kinetics (Class XII)Arunesh Gupta
 
BASIC THERMODYNAMICS
BASIC THERMODYNAMICSBASIC THERMODYNAMICS
BASIC THERMODYNAMICSnaphis ahamad
 
Lecture 1 the kinetic theory of gases
Lecture 1  the kinetic theory of gasesLecture 1  the kinetic theory of gases
Lecture 1 the kinetic theory of gasesUsman Shah
 
CHEMISTRY basic concepts of chemistry
CHEMISTRY  basic concepts of chemistryCHEMISTRY  basic concepts of chemistry
CHEMISTRY basic concepts of chemistryAJAL A J
 
Introduction to thermodynamics
Introduction to thermodynamicsIntroduction to thermodynamics
Introduction to thermodynamicsVeeramanikandanM1
 
Cordination compound
Cordination compoundCordination compound
Cordination compoundnysa tutorial
 
Chemical equilibrium
Chemical equilibriumChemical equilibrium
Chemical equilibriumArunesh Gupta
 
GRAVITATION CLASS 11TH
GRAVITATION CLASS 11TH GRAVITATION CLASS 11TH
GRAVITATION CLASS 11TH HIMANSHU .
 

What's hot (20)

Chapter 1 some basic concepts of chemistry class 11 UPDATED PPT
Chapter 1 some basic concepts of chemistry class 11 UPDATED PPTChapter 1 some basic concepts of chemistry class 11 UPDATED PPT
Chapter 1 some basic concepts of chemistry class 11 UPDATED PPT
 
Physical chemistry presentation
Physical chemistry presentationPhysical chemistry presentation
Physical chemistry presentation
 
Chemical equilibrium
Chemical equilibriumChemical equilibrium
Chemical equilibrium
 
Chemical kinetics
Chemical kineticsChemical kinetics
Chemical kinetics
 
Thermodynamics part2
Thermodynamics part2Thermodynamics part2
Thermodynamics part2
 
Thermodynamics notes
Thermodynamics notesThermodynamics notes
Thermodynamics notes
 
Solid state class 12 CBSE
Solid state class 12 CBSESolid state class 12 CBSE
Solid state class 12 CBSE
 
Equilibrium class 11 cbse NCERT
Equilibrium class 11  cbse NCERTEquilibrium class 11  cbse NCERT
Equilibrium class 11 cbse NCERT
 
Unit 4 chemical kinetics (Class XII)
Unit  4 chemical kinetics (Class XII)Unit  4 chemical kinetics (Class XII)
Unit 4 chemical kinetics (Class XII)
 
BASIC THERMODYNAMICS
BASIC THERMODYNAMICSBASIC THERMODYNAMICS
BASIC THERMODYNAMICS
 
Lecture 1 the kinetic theory of gases
Lecture 1  the kinetic theory of gasesLecture 1  the kinetic theory of gases
Lecture 1 the kinetic theory of gases
 
Valence Bond Theory
Valence Bond TheoryValence Bond Theory
Valence Bond Theory
 
Thermodynamics
ThermodynamicsThermodynamics
Thermodynamics
 
CHEMISTRY basic concepts of chemistry
CHEMISTRY  basic concepts of chemistryCHEMISTRY  basic concepts of chemistry
CHEMISTRY basic concepts of chemistry
 
Introduction to thermodynamics
Introduction to thermodynamicsIntroduction to thermodynamics
Introduction to thermodynamics
 
Cordination compound
Cordination compoundCordination compound
Cordination compound
 
Chemical equilibrium
Chemical equilibriumChemical equilibrium
Chemical equilibrium
 
Thermodynamics
ThermodynamicsThermodynamics
Thermodynamics
 
GRAVITATION CLASS 11TH
GRAVITATION CLASS 11TH GRAVITATION CLASS 11TH
GRAVITATION CLASS 11TH
 
Thermodynamics
ThermodynamicsThermodynamics
Thermodynamics
 

Similar to Chemical thermodynamics principles

Chemical Thermodynamic_Insert Watermark.pdf
Chemical Thermodynamic_Insert Watermark.pdfChemical Thermodynamic_Insert Watermark.pdf
Chemical Thermodynamic_Insert Watermark.pdfErwinMapalad
 
Diploma_I_Applied science(chemistry)U-V Thermodynamics
Diploma_I_Applied science(chemistry)U-V Thermodynamics Diploma_I_Applied science(chemistry)U-V Thermodynamics
Diploma_I_Applied science(chemistry)U-V Thermodynamics Rai University
 
chapter one: Introduction to Thermodynamics
chapter one: Introduction to Thermodynamicschapter one: Introduction to Thermodynamics
chapter one: Introduction to ThermodynamicsBektu Dida
 
Applied thermodynamics(lecture 1)
Applied thermodynamics(lecture 1)Applied thermodynamics(lecture 1)
Applied thermodynamics(lecture 1)TAUSIQUE SHEIKH
 
Thermodynamics ,types of system,formulae ,gibbs free energy .pptx
Thermodynamics ,types of system,formulae ,gibbs free energy .pptxThermodynamics ,types of system,formulae ,gibbs free energy .pptx
Thermodynamics ,types of system,formulae ,gibbs free energy .pptxuniversity
 
thermodynamicsclass11-191207153336.pdf
thermodynamicsclass11-191207153336.pdfthermodynamicsclass11-191207153336.pdf
thermodynamicsclass11-191207153336.pdfVAIBHAV378826
 
Thermodynamics class 11
Thermodynamics class 11Thermodynamics class 11
Thermodynamics class 11SawarniTiwari
 
Basic thermodynamics
Basic thermodynamicsBasic thermodynamics
Basic thermodynamicsSACHINNikam39
 
ME6301 ENGINEERING THERMODYNAMICS - LECTURE NOTES
ME6301 ENGINEERING THERMODYNAMICS - LECTURE NOTESME6301 ENGINEERING THERMODYNAMICS - LECTURE NOTES
ME6301 ENGINEERING THERMODYNAMICS - LECTURE NOTESBIBIN CHIDAMBARANATHAN
 
Unit 1 thermodynamics by varun pratap singh (2020-21 Session)
Unit 1 thermodynamics by varun pratap singh (2020-21 Session)Unit 1 thermodynamics by varun pratap singh (2020-21 Session)
Unit 1 thermodynamics by varun pratap singh (2020-21 Session)Varun Pratap Singh
 
ENGINEERING THERMODYNAMICS-UNIT 1
ENGINEERING THERMODYNAMICS-UNIT 1ENGINEERING THERMODYNAMICS-UNIT 1
ENGINEERING THERMODYNAMICS-UNIT 1prakash0712
 
Application of Thermodynamics
Application of ThermodynamicsApplication of Thermodynamics
Application of ThermodynamicsGOBINATHS18
 
Chapter 6 thermodynamics class 11 cbse
Chapter 6 thermodynamics class 11 cbseChapter 6 thermodynamics class 11 cbse
Chapter 6 thermodynamics class 11 cbseritik
 
Thermodynamics (basic terms).pdf for the learners
Thermodynamics (basic terms).pdf for the learnersThermodynamics (basic terms).pdf for the learners
Thermodynamics (basic terms).pdf for the learnersBharatKumarHumagai
 
Basic Mechanical Engineering Unit 4 Thermodynamics@by V.P.Singh
Basic Mechanical Engineering Unit 4 Thermodynamics@by V.P.SinghBasic Mechanical Engineering Unit 4 Thermodynamics@by V.P.Singh
Basic Mechanical Engineering Unit 4 Thermodynamics@by V.P.SinghVarun Pratap Singh
 
Thermodynamics Lecture
Thermodynamics LectureThermodynamics Lecture
Thermodynamics LectureBILAL ABDULLAH
 
MH-CET 2014 Thermodynamics and Thermochemistry
MH-CET 2014 Thermodynamics and Thermochemistry MH-CET 2014 Thermodynamics and Thermochemistry
MH-CET 2014 Thermodynamics and Thermochemistry Ednexa
 
Basic Definition of Thermodynamics and IC Engine
Basic Definition of Thermodynamics and IC Engine Basic Definition of Thermodynamics and IC Engine
Basic Definition of Thermodynamics and IC Engine Muhammad Ahsan Ghouri
 

Similar to Chemical thermodynamics principles (20)

Chemical Thermodynamic_Insert Watermark.pdf
Chemical Thermodynamic_Insert Watermark.pdfChemical Thermodynamic_Insert Watermark.pdf
Chemical Thermodynamic_Insert Watermark.pdf
 
Diploma_I_Applied science(chemistry)U-V Thermodynamics
Diploma_I_Applied science(chemistry)U-V Thermodynamics Diploma_I_Applied science(chemistry)U-V Thermodynamics
Diploma_I_Applied science(chemistry)U-V Thermodynamics
 
chapter one: Introduction to Thermodynamics
chapter one: Introduction to Thermodynamicschapter one: Introduction to Thermodynamics
chapter one: Introduction to Thermodynamics
 
Thermodynamics
ThermodynamicsThermodynamics
Thermodynamics
 
Applied thermodynamics(lecture 1)
Applied thermodynamics(lecture 1)Applied thermodynamics(lecture 1)
Applied thermodynamics(lecture 1)
 
Thermodynamics ,types of system,formulae ,gibbs free energy .pptx
Thermodynamics ,types of system,formulae ,gibbs free energy .pptxThermodynamics ,types of system,formulae ,gibbs free energy .pptx
Thermodynamics ,types of system,formulae ,gibbs free energy .pptx
 
thermodynamicsclass11-191207153336.pdf
thermodynamicsclass11-191207153336.pdfthermodynamicsclass11-191207153336.pdf
thermodynamicsclass11-191207153336.pdf
 
Thermodynamics class 11
Thermodynamics class 11Thermodynamics class 11
Thermodynamics class 11
 
Basic thermodynamics
Basic thermodynamicsBasic thermodynamics
Basic thermodynamics
 
ME6301 ENGINEERING THERMODYNAMICS - LECTURE NOTES
ME6301 ENGINEERING THERMODYNAMICS - LECTURE NOTESME6301 ENGINEERING THERMODYNAMICS - LECTURE NOTES
ME6301 ENGINEERING THERMODYNAMICS - LECTURE NOTES
 
ME2036- ENGINEERING THERMODYNAMICS BY Mr.P.SATHISH
ME2036- ENGINEERING THERMODYNAMICS BY Mr.P.SATHISHME2036- ENGINEERING THERMODYNAMICS BY Mr.P.SATHISH
ME2036- ENGINEERING THERMODYNAMICS BY Mr.P.SATHISH
 
Unit 1 thermodynamics by varun pratap singh (2020-21 Session)
Unit 1 thermodynamics by varun pratap singh (2020-21 Session)Unit 1 thermodynamics by varun pratap singh (2020-21 Session)
Unit 1 thermodynamics by varun pratap singh (2020-21 Session)
 
ENGINEERING THERMODYNAMICS-UNIT 1
ENGINEERING THERMODYNAMICS-UNIT 1ENGINEERING THERMODYNAMICS-UNIT 1
ENGINEERING THERMODYNAMICS-UNIT 1
 
Application of Thermodynamics
Application of ThermodynamicsApplication of Thermodynamics
Application of Thermodynamics
 
Chapter 6 thermodynamics class 11 cbse
Chapter 6 thermodynamics class 11 cbseChapter 6 thermodynamics class 11 cbse
Chapter 6 thermodynamics class 11 cbse
 
Thermodynamics (basic terms).pdf for the learners
Thermodynamics (basic terms).pdf for the learnersThermodynamics (basic terms).pdf for the learners
Thermodynamics (basic terms).pdf for the learners
 
Basic Mechanical Engineering Unit 4 Thermodynamics@by V.P.Singh
Basic Mechanical Engineering Unit 4 Thermodynamics@by V.P.SinghBasic Mechanical Engineering Unit 4 Thermodynamics@by V.P.Singh
Basic Mechanical Engineering Unit 4 Thermodynamics@by V.P.Singh
 
Thermodynamics Lecture
Thermodynamics LectureThermodynamics Lecture
Thermodynamics Lecture
 
MH-CET 2014 Thermodynamics and Thermochemistry
MH-CET 2014 Thermodynamics and Thermochemistry MH-CET 2014 Thermodynamics and Thermochemistry
MH-CET 2014 Thermodynamics and Thermochemistry
 
Basic Definition of Thermodynamics and IC Engine
Basic Definition of Thermodynamics and IC Engine Basic Definition of Thermodynamics and IC Engine
Basic Definition of Thermodynamics and IC Engine
 

More from Gandaki Boarding School,Lamachaur-16 Pokhara, Nepal

More from Gandaki Boarding School,Lamachaur-16 Pokhara, Nepal (20)

Sodium hydroxide
Sodium hydroxideSodium hydroxide
Sodium hydroxide
 
Iron
IronIron
Iron
 
Periodicity
PeriodicityPeriodicity
Periodicity
 
Thermodynamics ii
Thermodynamics iiThermodynamics ii
Thermodynamics ii
 
Thermodynamics ii
Thermodynamics iiThermodynamics ii
Thermodynamics ii
 
Naoh1
Naoh1Naoh1
Naoh1
 
As rate
As rateAs rate
As rate
 
Air pollution
Air pollutionAir pollution
Air pollution
 
Metals and metallurgy
Metals and metallurgyMetals and metallurgy
Metals and metallurgy
 
Metallurgy
MetallurgyMetallurgy
Metallurgy
 
Sodium
SodiumSodium
Sodium
 
Water
WaterWater
Water
 
Nitric acid
Nitric acidNitric acid
Nitric acid
 
Water
WaterWater
Water
 
Chemical kinetics
Chemical kineticsChemical kinetics
Chemical kinetics
 
Chemical equiilibrium
Chemical equiilibriumChemical equiilibrium
Chemical equiilibrium
 
Electrochemistry
ElectrochemistryElectrochemistry
Electrochemistry
 
Periodic table
Periodic tablePeriodic table
Periodic table
 
9701 y16 sm_2 (1)
9701 y16 sm_2 (1)9701 y16 sm_2 (1)
9701 y16 sm_2 (1)
 
9701 y16 sp_2 (1)
9701 y16 sp_2 (1)9701 y16 sp_2 (1)
9701 y16 sp_2 (1)
 

Recently uploaded

“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for BeginnersSabitha Banu
 
Capitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptxCapitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptxCapitolTechU
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Celine George
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...JhezDiaz1
 
CELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptxCELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptxJiesonDelaCerna
 
AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.arsicmarija21
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersSabitha Banu
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxmanuelaromero2013
 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfSumit Tiwari
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatYousafMalik24
 
Final demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxFinal demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxAvyJaneVismanos
 
Pharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfPharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfMahmoud M. Sallam
 
Roles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceRoles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceSamikshaHamane
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxOH TEIK BIN
 
MARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized GroupMARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized GroupJonathanParaisoCruz
 
Hierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementHierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementmkooblal
 
Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...jaredbarbolino94
 

Recently uploaded (20)

“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
“Oh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for Beginners
 
9953330565 Low Rate Call Girls In Rohini Delhi NCR
9953330565 Low Rate Call Girls In Rohini  Delhi NCR9953330565 Low Rate Call Girls In Rohini  Delhi NCR
9953330565 Low Rate Call Girls In Rohini Delhi NCR
 
Capitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptxCapitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptx
 
Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17Computed Fields and api Depends in the Odoo 17
Computed Fields and api Depends in the Odoo 17
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
 
CELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptxCELL CYCLE Division Science 8 quarter IV.pptx
CELL CYCLE Division Science 8 quarter IV.pptx
 
AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.AmericanHighSchoolsprezentacijaoskolama.
AmericanHighSchoolsprezentacijaoskolama.
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginners
 
How to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptxHow to Make a Pirate ship Primary Education.pptx
How to Make a Pirate ship Primary Education.pptx
 
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdfEnzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
Enzyme, Pharmaceutical Aids, Miscellaneous Last Part of Chapter no 5th.pdf
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice great
 
Final demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxFinal demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptx
 
Pharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfPharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdf
 
OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...
 
Roles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceRoles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in Pharmacovigilance
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptx
 
MARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized GroupMARGINALIZATION (Different learners in Marginalized Group
MARGINALIZATION (Different learners in Marginalized Group
 
Hierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of managementHierarchy of management that covers different levels of management
Hierarchy of management that covers different levels of management
 
Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...Historical philosophical, theoretical, and legal foundations of special and i...
Historical philosophical, theoretical, and legal foundations of special and i...
 

Chemical thermodynamics principles

  • 2. From this chapter 12 marks will come and 5 marks numerical sure
  • 3. General introduction: The branch of science which deals with the study of different form of energy and the quantitative relationship between them is known as thermodynamics. When we confine our study to chemical changes and chemical substances only, then that branch of thermodynamics is known as chemical thermodynamics.
  • 4. Some basic terms and concepts: 1. System: A system means that part of Universe which is under study. For example: a certain amount of solid, liquid or gas contain in a system. 2. Surrounding: The rest of the universe or environment around the system is called surrounding. So, the surrounding means all other things which can interact with the system. 3. Boundary: Anything that separates the system from the surrounding is called boundary. Thus, universe = system + surrounding
  • 5. Depending upon how a system interacts with the surrounding it is classified into 3 categories. 1. Closed system: A closed system is one which can’t exchange matter with surrounding. For example, a close container in a closed system, because no matter can enter or escape from it. However, the closed system can exchange heat or work with surrounding. Figure………….. 2. Open system: An open system is one which can exchange both matter and energy( heat or work) with the surrounding. Hot water contained in an open beaker is an example of open system. Figure……………….
  • 6. 3. Isolated system: An isolated system is one which can exchange neither matter nor energy with the surrounding. If the boundary is closed and insulated, no interaction is possible with the surrounding. Hence hot or cold water contained in a thermos is an isolated system. 4. State of a system and state variable: The state of a system means the condition of the system which is described in terms of certain measurable properties such as temperature (T), pressure(P), volume(V), etc. of the system. If any of these properties of the system changes, the system is said to be in different state i.e. the state of the system changes. That is why these properties of the system are called state variable. The properties is said to occur when the state of the system changes. The first and last state of the system are initial sate and final state respectively.
  • 7. 5. State function: A physical quantity is said to be state function if its value depends only upon the state of the system and doesn’t depend upon the path by which this state has been attained. For example: potential energy, internal energy, enthalpy, free energy etc. Explanation: let us consider two points at the peak and a base of a hill. The climbers can move from base to the peak of the hill through different path. Work done depend upon the distance travelled by the climber (may be longer and a shorter route). So, it is not a state function. However a climbers standing on the peak of hill has a fixed value of PE, irrespective of the fact that whether he reached by stairs or lift. Thus PE of the person is a state function
  • 8. 6. Thermodynamic properties: i. Intensive properties: The properties of the system which do not depend upon the amount of the substance present is called intensive properties. For example: temperature, pressure, viscosity, density, surface tension, etc. The boiling point of water is 100oc at one atmosphere whatever its mass. ii. Extensive properties: The properties of the system which depend upon the amount of substance present is called extensive properties. For example, mass, volume, energy, work, entropy, etc. let us consider a glass of water, if we double the mass of water, the volume, no. of moles, internal energy etc. also get doubled so they are extensive properties.
  • 9. Types of thermodynamic process: Isothermal and Adiabatic process: A process is said to be isothermal, if the temperature of the system remains constant during each stage of the process. Such type of process may be achieved by placing the system in thermostat. Here, dT = 0, keeping temperature constant. A process is said to be adiabatic, if no heat enters or leaves the system during any step of the process i.e. the system is completely insulated from the surrounding. Here, dQ= 0, keeping heat constant.
  • 10. Isochoric and isobaric process: A process is said to be isochoric, if the volume of the system remains constant during each step of the process. Here, dv = 0. A process is said to be isobaric if the pressure of the system remains constant during each step of the process. Here, dp = 0
  • 11. Exchange of energy between system and surrounding: a. As work: If the system and the surrounding are at two different pressure, then the energy is exchange between the system and surrounding in the form of work. Suppose there is a gaseous system enclosed in a cylinder fitted with a piston. If the pressure of the gas is higher than that of the surrounding, the gas will expand, push the piston and does a work against the surrounding. Here energy is transformed from the system to surrounding in the form of work. If the surrounding is at higher pressure, the gas contracts and work is done on the system by the surrounding. In this case energy is transferred from the surrounding to the system in the form of work. In both the case of expansion and contraction, the mechanical work is done by/on the system is given by W= P∆𝑉 Work done by the system, W= -P∆𝑉 Work done on the system, W= +P∆𝑉
  • 12. b. As heat: If the system and the surrounding are at two different temperature, energy is transformed or exchanged between the system and surrounding in the form of heat. For example: When ice is kept at room temperature, flow of heat energy takes place from the surrounding to the system (ice) unless both of them will have same temperature. Similarly if hot water in a vessel is kept at room temperature, flow of heat energy takes place from hot water( system) to surrounding unless both of them will have the same temperature.
  • 13. Internal energy (E) : The energy of the thermodynamic system is called internal energy. It includes all the possible forms of energy of the system. The sum of different forms of energy associated with the molecule is called internal energy. Internal energy = Translational energy + rotational energy + vibrational energy + electrical energy + nuclear energy + bonding energy…….. The internal energy of the system depends upon the state of the system but not upon the path on which the system attains another state. So, internal energy is a state function. Therefore, the absolute value internal energy cannot be determined. However, the change in internal energy can be calculated as: ΔE = E2 – E1
  • 14. In a chemical reaction, ΔE = Eproduct – Ereactant If Eproduct > Ereactant, heat is absorbed by the system and hence reaction is endothermic. If Eproduct < Ereactant, heat is released by the system and hence reaction is exothermic.
  • 15. Sign convention: 1. ∆E = -ve, then energy is evolved. 2. ∆E = +ve, then energy is absorbed
  • 16. First law of thermodynamics: It states that, “ Energy can be neither be created nor destroyed although it may be converted from one form to another” OR The total amount of energy in the Universe remains constant although it may undergo transformation from one form to another.
  • 17. Mathematical formulation of first law of thermodynamics:( relation between internal energy, work and heat) The internal energy of the system can be increased in 2 ways. 1. By supplying heat to the system 2. By doing work on the system in board…………….
  • 18. Sign convention: Heat absorbed by the system: q is +ve Heat evolved by the system: q is –ve Work done on the system: W = +ve Work done by the system: W = -ve