SlideShare a Scribd company logo
1 of 146
Linear Programming
UNIT – I
OPERATION RESEARCH
Dr. Loveleen Kumar Bhagi
Associate Professor
School of Mechanical Engineering
LPU
BIG M Method
Dr. L K Bhagi, School of Mechanical
Engineering, LPU
3
Dr. L K Bhagi, School of Mechanical
Engineering, LPU
4
5
Operation Research Models
LPP Big M Method
Simplex method Big M method
6
Zmin= 6X+8Y
X+Y β‰₯ 10
2X +3Y β‰₯ 25
X +5Y β‰₯ 35
X, Y β‰₯ 0
Add slack Surplus
variable to convert
constraint equation into
equality
Z = 6X+8Y+0S1 βˆ’ 0S2
βˆ’ 0S3
X+Yβˆ’S1 =10
2X +3Yβˆ’S2 = 25
X +5Y βˆ’ S3 = 35
X,Y, S1, S2, S3 β‰₯ 0
Operation Research Models
LPP Big M Method – Prob 7
7
Ibfs (Initial Basic Feasible Solution)
DV = 0
βˆ’S =10 ; βˆ’S2 = 25; βˆ’ S3 = 35 0r
S = βˆ’ 10 ; S2 = βˆ’ 25; S3 = βˆ’ 35 0r
Z = 6X+8Y+0S1 βˆ’ 0S2 βˆ’ 0S3
X+Yβˆ’S1 =10
2X +3Yβˆ’S2 = 25
X +5Y βˆ’ S3 = 35
X,Y, S1, S2, S3 β‰₯ 0
Operation Research Models
LPP Big M Method – Prob 7
8
Ibfs (Initial Basic Feasible Solution)
DV = 0 and Surplus = 0
0 =10 ; 0 = 25; 0 = 35
Z = 6X+8Y+0S1 βˆ’ 0S2 βˆ’ 0S3
X+Yβˆ’S1 =10
2X +3Yβˆ’S2 = 25
X +5Y βˆ’ S3 = 35
X,Y, S1, S2, S3 β‰₯ 0
Operation Research Models
LPP Big M Method – Prob 7
9
X+Y β‰₯ 10
2X +3Y β‰₯ 25
X +5Y β‰₯ 35
X, Y β‰₯ 0
Along with Surplus
variable add Artificial
Variable to convert
constraint equation into
equality
X+Yβˆ’S1 +A1 =10
2X +3Yβˆ’S2+A2 = 25
X +5Y βˆ’ S3 +A3 = 35
X,Y, S1, S2, S3, A1, A2, A3
β‰₯ 0
Operation Research Models
LPP Big M Method – Prob 7
Zmin =
6X+8Y+0S1+0S2+ 0S3+MA1+MA2+MA3
Zmin=
6X+8Y
10
Operation Research Models
LPP Big M Method – Prob 7
Zmin =
6X+8Y+0S1+0S2+ 0S3+MA1+MA2+MA3
Ibfs (Initial Basic Feasible Solution)
Put DV = 0 and Surplus variables = 0
A1=10 ;
A2= 25;
A3= 35
11
Operation Research Models
LPP Big M Method – Prob 7
Cj
6 8 0 0 0 M M M
ΞΈ
X Y S1 S2 S3 A1 A2 A3 RHS
(b)
M
M
M
A1
A2
A3
10
25
35
12
Operation Research Models
LPP Big M Method – Prob 7
Cj
6 8 0 0 0 M M M
ΞΈ
X Y S1 S2 S3 A1 A2 A3 RHS
(b)
M
M
M
A1
A2
A3
1
2
1
1
3
5
βˆ’1
0
0
0
βˆ’1
0
0
0
βˆ’1
1
0
0
0
1
0
0
0
1
10
25
35
13
Operation Research Models
LPP Big M Method – Prob 7
Cj
6 8 0 0 0 M M M
ΞΈ
X Y S1 S2 S3 A
1
A
2
A3 RHS
(b)
M
M
M
A1
A2
A3
1
2
1
1
3
5
βˆ’1
0
0
0
βˆ’1
0
0
0
βˆ’1
1
0
0
0
1
0
0
0
1
10
25
35
Zj
4
M
9
M
βˆ’M βˆ’M βˆ’M M M M
M+2M+M = 4M
Dr. L K Bhagi, School of Mechanical
Engineering, LPU
14
https://www.youtube.com/watch?v=tRNwz
Sr9IXg
IITM Srinivasan sir
15
Operation Research Models
LPP Big M Method – Prob 7
Cj
6 8 0 0 0 M M M
ΞΈ
X Y S1 S2 S3 A
1
A
2
A3 RHS
(b)
M
M
M
A1
A2
A3
1
2
1
1
3
5
βˆ’1
0
0
0
βˆ’1
0
0
0
βˆ’1
1
0
0
0
1
0
0
0
1
10
25
35
10
25/3
7
Zj 4M 9M βˆ’M βˆ’M βˆ’M M M M
Zjβˆ’ Cj 4Mβˆ’
6
9Mβˆ’
8
βˆ’M βˆ’M βˆ’M 0 0 0
Largest
positive
value Key Column:
decides incoming
Least
positive
Key
Row: decides
outgoing
variable
16
Operation Research Models
LPP Big M Method – Prob 7
Cj
6 8 0 0 0 M M M
ΞΈ
X Y S1 S2 S3 A
1
A
2
A3 RHS
(b)
M
M
M
A1
A2
A3
1
2
1
1
3
5
βˆ’1
0
0
0
βˆ’1
0
0
0
βˆ’1
1
0
0
0
1
0
0
0
1
10
25
35
10
25/3
7
Zj 4M 9M βˆ’M βˆ’M βˆ’M M M M
Zjβˆ’ Cj 4Mβˆ’
6
9Mβˆ’
8
βˆ’M βˆ’M βˆ’M 0 0 0
Key Column:
decides incoming
Least
positive
Key
Row: decides
outgoing
variable
Key
Element
Largest
positive
value
17
Operation Research Models
LPP Big M Method – Prob 7
Cj
6 8 0 0 0 M M M
ΞΈ
X Y S1 S2 S3 A
1
A
2
A3 RHS
(b)
M
M
M
A1
A2
A3
1
2
1
1
3
5
βˆ’1
0
0
0
βˆ’1
0
0
0
βˆ’1
1
0
0
0
1
0
0
0
1
10
25
35
10
25/3
7
Zj 4M 9M βˆ’M βˆ’M βˆ’M M M M
Zjβˆ’ Cj 4Mβˆ’
6
9Mβˆ’
8
βˆ’M βˆ’M βˆ’M 0 0 0
18
Operation Research Models
LPP Big M Method – Prob 7
Cj
6 8 0 0 0 M M M
ΞΈ
X Y S1 S2 S3 A
1
A
2
A3 RHS
(b)
M
M
M
A1
A2
A3
1
2
1
1
3
5
βˆ’1
0
0
0
βˆ’1
0
0
0
βˆ’1
1
0
0
0
1
0
0
0
1
10
25
35
10
25/3
7
Zj 4M 9M βˆ’M βˆ’M βˆ’M M M M
Zjβˆ’ Cj 4Mβˆ’
6
9Mβˆ’
8
βˆ’M βˆ’M βˆ’M 0 0 0
19
Operation Research Models
LPP Big M Method – Prob 7
Cj
6 8 0 0 0 M M
ΞΈ
X Y S1 S2 S3 A
1
A2 RHS
(b)
M
M
8
A1
A2
Y
1
2
1/5
1
3
1
βˆ’1
0
0
0
βˆ’1
0
0
0
βˆ’1/5
1
0
0
0
1
0
10
25
7
Zj
Zjβˆ’ Cj
Modifie
d key
row
20
Operation Research Models
LPP Big M Method – Prob 7
Cj
6 8 0 0 0 M M
ΞΈ
X Y S1 S2 S3 A
1
A2 RHS
(b)
M
M
8
A1
A2
Y
1
2
1/5
1
3
1
βˆ’1
0
0
0
βˆ’1
0
0
0
βˆ’1/5
1
0
0
0
1
0
10
25
7
Zj
Zjβˆ’ Cj
Modifie
d key
row
21
Operation Research Models
LPP Big M Method – Prob 7
Old
Row
βˆ’ KCE Γ— MKR = NR
1 βˆ’ 1 Γ— 1/5 = 4/5
1 βˆ’ 1 Γ— 1 = 0
βˆ’1 βˆ’ 1 Γ— 0 = βˆ’1
0 βˆ’ 1 Γ— 0 = 0
0 βˆ’ 1 Γ— βˆ’1/5 = 1/5
1 βˆ’ 1 Γ— 0 1
0 βˆ’ 1 Γ— 0 0
10 βˆ’ 1 Γ— 7 = 3
22
Operation Research Models
LPP Big M Method – Prob 7
Cj
6 8 0 0 0 M M
ΞΈ
X Y S1 S2 S3 A
1
A2 RHS
(b)
M
M
8
A1
A2
Y
4/5
2
1/5
0
3
1
βˆ’1
0
0
0
βˆ’1
0
1/5
0
βˆ’1/5
1
0
0
0
1
0
3
25
7
Zj
Zjβˆ’ Cj
MKR
NR
23
Operation Research Models
LPP Big M Method – Prob 7
Cj
6 8 0 0 0 M M
ΞΈ
X Y S1 S2 S3 A
1
A2 RHS
(b)
M
M
8
A1
A2
Y
4/5
2
1/5
0
3
1
βˆ’1
0
0
0
βˆ’1
0
1/5
0
βˆ’1/5
1
0
0
0
1
0
3
25
7
Zj
Zjβˆ’ Cj
MKR
NR
OR
24
Operation Research Models
LPP Big M Method – Prob 7
Old
Row
βˆ’ KCE Γ— MKR = NR
2 βˆ’ 3 Γ— 1/5 = 7/5
3 βˆ’ 3 Γ— 1 = 0
0 βˆ’ 3 Γ— 0 = 0
βˆ’1 βˆ’ 3 Γ— 0 = βˆ’1
0 βˆ’ 3 Γ— βˆ’1/5 = 3/5
0 βˆ’ 3 Γ— 0 0
1 βˆ’ 3 Γ— 0 1
25 βˆ’ 3 Γ— 7 = 4
25
Operation Research Models
LPP Big M Method – Prob 7
Cj
6 8 0 0 0 M M
ΞΈ
X Y S1 S2 S3 A
1
A2 RHS
(b)
M
M
8
A1
A2
Y
4/5
7/5
1/5
0
0
1
βˆ’1
0
0
0
βˆ’1
0
1/5
3/5
βˆ’1/5
1
0
0
0
1
0
3
4
7
Zj
Zjβˆ’ Cj
MKR
NR
NR
26
Operation Research Models
LPP Big M Method – Prob 7
Cj
6 8 0 0 0 M M
ΞΈ
X Y S1 S2 S3 A
1
A2 RHS
(b)
M
M
8
A1
A2
Y
4/5
7/5
1/5
0
0
1
βˆ’1
0
0
0
βˆ’1
0
1/5
3/5
βˆ’1/5
1
0
0
0
1
0
3
4
7
Zj 11𝑀
5
+
8
5
8 βˆ’M βˆ’M 4𝑀
5
βˆ’
8
5
M M
Zjβˆ’ Cj
27
Operation Research Models
LPP Big M Method – Prob 7
Cj
6 8 0 0 0 M M
ΞΈ
X Y S1 S2 S3 A
1
A2 RHS
(b)
M
M
8
A1
A2
Y
4/5
7/5
1/5
0
0
1
βˆ’1
0
0
0
βˆ’1
0
1/5
3/5
βˆ’1/5
1
0
0
0
1
0
3
4
7
Zj 11𝑀
5
+
8
5
8 βˆ’M βˆ’M 4𝑀
5
βˆ’
8
5
M M
Zjβˆ’ Cj 11𝑀
5
+
38
5
0 βˆ’M βˆ’M 4𝑀
5
βˆ’
8
5
0 0
28
Operation Research Models
LPP Big M Method – Prob 7
Cj
6 8 0 0 0 M M
ΞΈ
X Y S1 S2 S3 A
1
A2 RHS
(b)
M
M
8
A1
A2
Y
4/5
7/5
1/5
0
0
1
βˆ’1
0
0
0
βˆ’1
0
1/5
3/5
βˆ’1/5
1
0
0
0
1
0
3
4
7
Zj 11𝑀
5
+
8
5
8 βˆ’M βˆ’M 4𝑀
5
βˆ’
8
5
M M
Zjβˆ’ Cj 11𝑀
5
+
38
5
0 βˆ’M βˆ’M 4𝑀
5
βˆ’
8
5
0 0
Key Column:
decides incoming
Largest
positive
value
29
Operation Research Models
LPP Big M Method – Prob 7
Cj
6 8 0 0 0 M M
ΞΈ
X Y S1 S2 S3 A
1
A2 RHS
(b)
M
M
8
A1
A2
Y
4/5
7/5
1/5
0
0
1
βˆ’1
0
0
0
βˆ’1
0
1/5
3/5
βˆ’1/5
1
0
0
0
1
0
3
4
7
15/4
20/7
35
Zj 11𝑀
5
+
8
5
8 βˆ’M βˆ’M 4𝑀
5
βˆ’
8
5
M M
Zjβˆ’ Cj 11𝑀
5
+
38
5
0 βˆ’M βˆ’M 4𝑀
5
βˆ’
8
5
0 0
Key Column:
decides incoming
Least
positive
Key
Row: decides
outgoing
variable
Largest
positive
value
30
Operation Research Models
LPP Big M Method – Prob 7
Cj
6 8 0 0 0 M
ΞΈ
X Y S1 S2 S3 A
1
RHS
(b)
M
6
8
A1
X
Y
4/5
7/5
1/5
0
0
1
βˆ’1
0
0
0
βˆ’1
0
1/5
3/5
βˆ’1/5
1
0
0
3
4
7
15/4
20/7
35
Zj 11𝑀
5
+
8
5
8 βˆ’M βˆ’M 4𝑀
5
βˆ’
8
5
M
Zjβˆ’ Cj 11𝑀
5
+
38
5
0 βˆ’M βˆ’M 4𝑀
5
βˆ’
8
5
0 0
31
Operation Research Models
LPP Big M Method – Prob 7
Cj
6 8 0 0 0 M
ΞΈ
X Y S1 S2 S3 A
1
RHS
(b)
M
6
8
A1
X
Y
4/5
7/5
1/5
0
0
1
βˆ’1
0
0
0
βˆ’1
0
1/5
3/5
βˆ’1/5
1
0
0
3
4
7
Zj
Zjβˆ’ Cj
32
Operation Research Models
LPP Big M Method – Prob 7
Cj
6 8 0 0 0 M
ΞΈ
X Y S1 S2 S3 A
1
RHS
(b)
M
6
8
A1
X
Y
4/5
1
1/5
0
0
1
βˆ’1
0
0
0
βˆ’5/7
0
1/5
3/7
βˆ’1/5
1
0
0
3
20/7
7
Zj
Zjβˆ’ Cj
MKR
33
Operation Research Models
LPP Big M Method – Prob 7
Cj
6 8 0 0 0 M
ΞΈ
X Y S1 S2 S3 A
1
RHS
(b)
M
6
8
A1
X
Y
4/5
1
1/5
0
0
1
βˆ’1
0
0
0
βˆ’5/7
0
1/5
3/7
βˆ’1/5
1
0
0
3
20/7
7
Zj
Zjβˆ’ Cj
MKR
34
Operation Research Models
LPP Big M Method – Prob 7
Old
Row
βˆ’ KCE Γ— MKR = NR
4/5 βˆ’ 4/5 Γ— 1 = 0
0 βˆ’ 4/5 Γ— 0 = 0
βˆ’1 βˆ’ 4/5 Γ— 0 = βˆ’1
0 βˆ’ 4/5 Γ— βˆ’5/7 = 4/7
1/5 βˆ’ 4/5 Γ— 3/7 = βˆ’1/7
1 βˆ’ 4/5 Γ— 0 = 1
3 βˆ’ 4/5 Γ— 20/7 = 5/7
35
Operation Research Models
LPP Big M Method – Prob 7
Cj
6 8 0 0 0 M
ΞΈ
X Y S1 S2 S3 A
1
RHS
(b)
M
6
8
A
1
X
Y
0
1
1/5
0
0
1
βˆ’1
0
0
4/7
βˆ’5/7
0
βˆ’1/7
3/7
βˆ’1/5
1
0
0
5/7
20/7
7
Zj
Zj
βˆ’ Cj
MKR
NR
36
Operation Research Models
LPP Big M Method – Prob 7
Old
Row
βˆ’ KCE Γ— MKR = NR
1/5 βˆ’ 1/5 Γ— 1 = 0
1 βˆ’ 1/5 Γ— 0 = 1
0 βˆ’ 1/5 Γ— 0 = 0
0 βˆ’ 1/5 Γ— βˆ’5/7 = 1/7
βˆ’1/5 βˆ’ 1/5 Γ— 3/7 = βˆ’2/7
0 βˆ’ 1/5 Γ— 0 = 0
7 βˆ’ 1/5 Γ— 20/7 = 45/7
37
Operation Research Models
LPP Big M Method – Prob 7
Cj
6 8 0 0 0 M
ΞΈ
X Y S1 S2 S3 A1 RHS
(b)
M
6
8
A1
X
Y
0
1
0
0
0
1
βˆ’1
0
0
4/7
βˆ’5/7
1/7
βˆ’1/7
3/7
βˆ’2/7
1
0
0
5/7
20/7
45/7
Zj
Zjβˆ’ Cj
MKR
NR
NR
38
Operation Research Models
LPP Big M Method – Prob 7
Cj
6 8 0 0 0 M
ΞΈ
X Y S1 S2 S3 A1 RHS
(b)
M
6
8
A1
X
Y
0
1
0
0
0
1
βˆ’1
0
0
4/7
βˆ’5/7
1/7
βˆ’1/7
3/7
βˆ’2/7
1
0
0
5/7
20/7
45/7
Zj 6 8 βˆ’M
4𝑀
7
βˆ’
22
7
βˆ’
𝑀
7
+
2
7
M
Zjβˆ’ Cj
MKR
NR
NR
39
Operation Research Models
LPP Big M Method – Prob 7
Cj
6 8 0 0 0 M
ΞΈ
X Y S1 S2 S3 A1 RHS
(b)
M
6
8
A1
X
Y
0
1
0
0
0
1
βˆ’1
0
0
4/7
βˆ’5/7
1/7
βˆ’1/7
3/7
βˆ’2/7
1
0
0
5/7
20/7
45/7
Zj
6 8 βˆ’M
4𝑀
7
βˆ’
22
7
βˆ’
𝑀
7
+
2
7
M
Zjβˆ’ Cj
0 0 βˆ’M 4𝑀
7
βˆ’
22
7
βˆ’
𝑀
7
+
2
7
0
Key Column: decides
incoming variable
Largest
positive
value
40
Operation Research Models
LPP Big M Method – Prob 7
Cj
6 8 0 0 0 M
ΞΈ
X Y S1 S2 S3 A1 RHS
(b)
M
6
8
A1
X
Y
0
1
0
0
0
1
βˆ’
1
0
0
4/7
βˆ’5/7
1/7
βˆ’1/7
3/7
βˆ’2/7
1
0
0
5/7
20/7
45/7
5/4
βˆ’4
45
Zj
6 8 βˆ’M
4𝑀
7
βˆ’
22
7
βˆ’
𝑀
7
+
2
7
M
Zjβˆ’ Cj
0 0 βˆ’M 4𝑀
7
βˆ’
22
7
βˆ’
𝑀
7
+
2
7
0
Key Column:
decides incoming
Largest
positive
value
Least
positive
Key
Row: decides
outgoing
variable
Key
Element
41
Operation Research Models
LPP Big M Method – Prob 7
Cj
6 8 0 0 0
ΞΈ
X Y S1 S2 S3 RHS
(b)
0
6
8
S2
X
Y
0
1
0
0
0
1
βˆ’
1
0
0
4/7
βˆ’5/7
1/7
βˆ’1/7
3/7
βˆ’2/7
5/7
20/7
45/7
Zj
Zjβˆ’ Cj
42
Operation Research Models
LPP Big M Method – Prob 7
Cj
6 8 0 0 0
ΞΈ
X Y S1 S2 S3 RHS
(b)
0
6
8
S2
X
Y
0
1
0
0
0
1
βˆ’
1
0
0
4/7
βˆ’5/7
1/7
βˆ’1/7
3/7
βˆ’2/7
5/7
20/7
45/7
Zj
Zjβˆ’ Cj
43
Operation Research Models
LPP Big M Method – Prob 7
Cj
6 8 0 0 0
ΞΈ
X Y S1 S2 S3 RHS
(b)
0
6
8
S2
X
Y
0
1
0
0
0
1
βˆ’7/4
0
0
1
βˆ’5/7
1/7
βˆ’1/4
3/7
βˆ’2/7
5/4
20/7
45/7
Zj
Zjβˆ’ Cj
MKR
44
Operation Research Models
LPP Big M Method – Prob 7
Cj
6 8 0 0 0
ΞΈ
X Y S1 S2 S3 RHS
(b)
0
6
8
S2
X
Y
0
1
0
0
0
1
βˆ’7/4
0
0
1
βˆ’5/7
1/7
βˆ’1/4
3/7
βˆ’2/7
5/4
20/7
45/7
Zj
Zjβˆ’ Cj
MKR
OR
45
Operation Research Models
LPP Big M Method – Prob 7
Old
Row
βˆ’ KCE Γ— MKR = NR
1 βˆ’ βˆ’5/7 Γ— 0 = 1
0 βˆ’ βˆ’5/7 Γ— 0 = 0
0 βˆ’ βˆ’5/7 Γ— βˆ’7/4 = βˆ’5/4
βˆ’5/7 βˆ’ βˆ’5/7 Γ— 1 = 0
3/7 βˆ’ βˆ’5/7 Γ— βˆ’1/4 = 17/28
20/7 βˆ’ βˆ’5/7 Γ— 5/4 15/4
46
Operation Research Models
LPP Big M Method – Prob 7
Cj
6 8 0 0 0
ΞΈ
X Y S1 S2 S3 RHS
(b)
0
6
8
S2
X
Y
0
1
0
0
0
1
βˆ’7/4
βˆ’5/4
0
1
0
βˆ’1/4
17/28
βˆ’2/7
5/4
15/4
45/7
Zj
Zjβˆ’ Cj
MKR
NR
47
Operation Research Models
LPP Big M Method – Prob 7
Cj
6 8 0 0 0
ΞΈ
X Y S1 S2 S3 RHS
(b)
0
6
8
S2
X
Y
0
1
0
0
0
1
βˆ’7/4
βˆ’5/4
0
1
0
1/7
βˆ’1/4
17/28
βˆ’2/7
5/4
15/4
45/7
Zj
Zjβˆ’ Cj
MKR
NR
OR
48
Operation Research Models
LPP Big M Method – Prob 7
Old
Row
βˆ’ KCE Γ— MKR = NR
0 βˆ’ 1/7 Γ— 0 = 0
1 βˆ’ 1/7 Γ— 0 = 1
0 βˆ’ 1/7 Γ— βˆ’7/4 = 1/4
1/7 βˆ’ 1/7 Γ— 1 = 0
βˆ’2/7 βˆ’ 1/7 Γ— βˆ’1/4 = βˆ’1/4
45/7 βˆ’ 1/7 Γ— 5/4 = 25/4
49
Operation Research Models
LPP Big M Method – Prob 7
Cj
6 8 0 0 0
ΞΈ
X Y S1 S2 S3 RHS
(b)
0
6
8
S2
X
Y
0
1
0
0
0
1
βˆ’7/4
βˆ’5/4
1/4
1
0
0
βˆ’1/4
17/28
βˆ’1/4
5/4
15/4
25/4
Zj 6 8 βˆ’22/4 0 23/19
Zjβˆ’ Cj
0 0 βˆ’22/4 0 23/19
MKR
NR
NR
50
π‘π‘šπ‘–π‘›=4π‘₯1+π‘₯2
3π‘₯1+4π‘₯2 β‰₯ 20
βˆ’π‘₯1βˆ’ 5π‘₯2 ≀ βˆ’15
π‘₯1, π‘₯2 β‰₯ 0
Operation Research Models
LPP Big M Method – Prob 8
51
π‘π‘šπ‘–π‘›=4π‘₯1+π‘₯2
3π‘₯1+4π‘₯2 β‰₯ 20
βˆ’π‘₯1βˆ’ 5π‘₯2 ≀ βˆ’15
π‘₯1, π‘₯2 β‰₯ 0
Operation Research Models
LPP Big M Method – Prob 8
βˆ’π‘₯1βˆ’ 5π‘₯2 + 𝑆2 = βˆ’15
3π‘₯1+4π‘₯2 βˆ’ 𝑆1 = 20
Add slack Surplus variable to convert
constraint equation into equality
Add slack Surplus variable to convert
constraint equation into equality
52
π‘π‘šπ‘–π‘›=4π‘₯1+π‘₯2
3π‘₯1+4π‘₯2 β‰₯ 20
βˆ’π‘₯1βˆ’ 5π‘₯2 ≀ βˆ’15
π‘₯1, π‘₯2 β‰₯ 0
Operation Research Models
LPP Big M Method – Prob 8
βˆ’π‘₯1βˆ’ 5π‘₯2 + 𝑆2 = βˆ’15
3π‘₯1+4π‘₯2 βˆ’ 𝑆1 = 20
Add slack Surplus variable to convert
constraint equation into equality
Add slack Surplus variable to convert
constraint equation into equality
Ibfs (Initial Basic Feasible Solution)
DV and Surplus variables = 0
0 = 20
𝑆2 = βˆ’15
53
π‘π‘šπ‘–π‘›=4π‘₯1+π‘₯2
3π‘₯1+4π‘₯2 β‰₯ 20
π‘₯1+ 5π‘₯2 β‰₯ 15
π‘₯1, π‘₯2 β‰₯ 0
Operation Research Models
LPP Big M Method – Prob 8
54
π‘π‘šπ‘–π‘›=4π‘₯1+π‘₯2
3π‘₯1+4π‘₯2 β‰₯ 20
π‘₯1+ 5π‘₯2 β‰₯ 15
π‘₯1, π‘₯2 β‰₯ 0
Operation Research Models
LPP Big M Method – Prob 8
π‘₯1+ 5π‘₯2 βˆ’ 𝑆2 = βˆ’15
3π‘₯1+4π‘₯2 βˆ’ 𝑆1 = 20
Add slack Surplus variable to convert
constraint equation into equality
55
π‘π‘šπ‘–π‘›=4π‘₯1+π‘₯2
3π‘₯1+4π‘₯2 β‰₯ 20
π‘₯1+ 5π‘₯2 β‰₯ 15
π‘₯1, π‘₯2 β‰₯ 0
Operation Research Models
LPP Big M Method – Prob 8
π‘₯1+ 5π‘₯2 βˆ’ 𝑆2 = 15
3π‘₯1+4π‘₯2 βˆ’ 𝑆1 = 20
Add slack Surplus variable to convert
constraint equation into equality
Ibfs (Initial Basic Feasible Solution)
DV and Surplus variables = 0
0 = 20
0 = 15
π‘π‘šπ‘–π‘›=4π‘₯1+π‘₯2 + 0𝑆1 + 0𝑆2
56
π’π’Žπ’Šπ’=4π’™πŸ+π’™πŸ
3π‘₯1+4π‘₯2 β‰₯ 20
π‘₯1+ 5π‘₯2 β‰₯ 15
π‘₯1, π‘₯2 β‰₯ 0
Operation Research Models
LPP Big M Method – Prob 8
Add slack Surplus variable to convert
constraint equation into equality
Ibfs (Initial Basic Feasible Solution)
DV and Surplus variables = 0
0 = 20 β‡’ π‘Žπ‘‘π‘‘ π΄π‘Ÿπ‘‘π‘–π‘“π‘–π‘π‘–π‘Žπ‘™ π‘£π‘Žπ‘Ÿπ‘–π‘Žπ‘π‘™π‘’ 𝐴1
0 = 15 β‡’ π‘Žπ‘‘π‘‘ π΄π‘Ÿπ‘‘π‘–π‘“π‘–π‘π‘–π‘Žπ‘™ π‘£π‘Žπ‘Ÿπ‘–π‘Žπ‘π‘™π‘’ 𝐴2
π‘π‘šπ‘–π‘›=4π‘₯1+π‘₯2 + 0𝑆1 + 0𝑆2
3π‘₯1+4π‘₯2 βˆ’ 𝑆1 + A1 = 20
π‘₯1+ 5π‘₯2 βˆ’ 𝑆2+A2 = 15
57
π’π’Žπ’Šπ’=4π’™πŸ+π’™πŸ
3π‘₯1+4π‘₯2 β‰₯ 20
π‘₯1+ 5π‘₯2 β‰₯ 15
π‘₯1, π‘₯2 β‰₯ 0
Operation Research Models
LPP Big M Method – Prob 8
Add slack Surplus variable to convert
constraint equation into equality
π‘π‘šπ‘–π‘›=4π‘₯1+π‘₯2 + 0𝑆1 + 0𝑆2
3π‘₯1+4π‘₯2 βˆ’ 𝑆1 + A1 = 20
π‘₯1+ 5π‘₯2 βˆ’ 𝑆2+A2 = 15
Ibfs (Initial Basic Feasible Solution)
DV and Surplus variables = 0
𝐴1 = 20
𝐴2 = 15
58
π’π’Žπ’Šπ’=4π’™πŸ+π’™πŸ
3π‘₯1+4π‘₯2 β‰₯ 20
π‘₯1+ 5π‘₯2 β‰₯ 15
π‘₯1, π‘₯2 β‰₯ 0
Operation Research Models
LPP Big M Method – Prob 8
Add slack Surplus variable to convert
constraint equation into equality
Sign of A1 & A2 𝑖𝑠 + or βˆ’
𝑣𝑒 𝑖𝑛 π‘œπ‘π‘—π‘’π‘π‘‘π‘–π‘£π‘’ π‘“π‘’π‘›π‘π‘‘π‘–π‘œπ‘›
𝑑𝑒𝑝𝑒𝑛𝑑𝑠 π‘’π‘π‘œπ‘› π‘‘β„Žπ‘’ π‘π‘Ÿπ‘œπ‘π‘™π‘’π‘š
𝑖. 𝑒. π‘π‘šπ‘–π‘› π‘œπ‘Ÿ π‘π‘šπ‘Žπ‘₯
π‘π‘šπ‘–π‘›=4π‘₯1+π‘₯2 + 0𝑆1 + 0𝑆2
3π‘₯1+4π‘₯2 βˆ’ 𝑆1 + A1 = 20
π‘₯1+ 5π‘₯2 βˆ’ 𝑆2+A2 = 15
Ibfs (Initial Basic Feasible Solution)
DV and Surplus variables = 0
𝐴1 = 20
𝐴2 = 15
59
π’π’Žπ’Šπ’=4π’™πŸ+π’™πŸ
3π‘₯1+4π‘₯2 β‰₯ 20
π‘₯1+ 5π‘₯2 β‰₯ 15
π‘₯1, π‘₯2 β‰₯ 0
Operation Research Models
LPP Big M Method – Prob 8
π‘₯1+ 5π‘₯2 βˆ’ 𝑆2+A2 = 15
3π‘₯1+4π‘₯2 βˆ’ 𝑆1 + A1 = 20
Add slack Surplus variable to convert
constraint equation into equality
Sign of A1 & A2 𝑖𝑠 + or βˆ’
𝑣𝑒 𝑖𝑛 π‘œπ‘π‘—π‘’π‘π‘‘π‘–π‘£π‘’ π‘“π‘’π‘›π‘π‘‘π‘–π‘œπ‘›
𝑑𝑒𝑝𝑒𝑛𝑑𝑠 π‘’π‘π‘œπ‘› π‘‘β„Žπ‘’ π‘π‘Ÿπ‘œπ‘π‘™π‘’π‘š
𝑖. 𝑒. π‘π‘šπ‘–π‘› π‘œπ‘Ÿ π‘π‘šπ‘Žπ‘₯
π‘π‘šπ‘–π‘› β‡’ MA1+MA2
π‘π‘šπ‘Žπ‘₯ β‡’ βˆ’MA1βˆ’MA2
60
π’π’Žπ’Šπ’=4π’™πŸ+π’™πŸ
3π‘₯1+4π‘₯2 β‰₯ 20
π‘₯1+ 5π‘₯2 β‰₯ 15
π‘₯1, π‘₯2 β‰₯ 0
Operation Research Models
LPP Big M Method – Prob 8
π‘₯1+ 5π‘₯2 βˆ’ 𝑆2+A2 = 15
3π‘₯1+4π‘₯2 βˆ’ 𝑆1 + A1 = 20
Add slack Surplus variable to convert
constraint equation into equality
Sign of A1 & A2 𝑖𝑠 + or βˆ’
𝑣𝑒 𝑖𝑛 π‘œπ‘π‘—π‘’π‘π‘‘π‘–π‘£π‘’ π‘“π‘’π‘›π‘π‘‘π‘–π‘œπ‘›
𝑑𝑒𝑝𝑒𝑛𝑑𝑠 π‘’π‘π‘œπ‘› π‘‘β„Žπ‘’ π‘π‘Ÿπ‘œπ‘π‘™π‘’π‘š
𝑖. 𝑒. π‘π‘šπ‘–π‘› π‘œπ‘Ÿ π‘π‘šπ‘Žπ‘₯
π‘π‘šπ‘–π‘›=4π‘₯1+π‘₯2 + 0𝑆1 + 0𝑆2
+ MA1+MA2
Ibfs (Initial Basic Feasible Solution)
DV and Surplus variables = 0
𝐴1 = 20
𝐴2 = 15
61
Operation Research Models
LPP Big M Method – Prob 8
Cj
4 1 0 0 M M
ΞΈ
π‘₯1 π‘₯2 S1 S2 A
1
A
2
RHS
(b)
M
M
A1
A2
20
15
Zj
62
Operation Research Models
LPP Big M Method – Prob 8
Cj
4 1 0 0 M M
ΞΈ
π‘₯1 π‘₯2 S1 S2 A
1
A
2
RHS
(b)
M
M
A1
A2
3
1
4
5
βˆ’1
0
0
βˆ’1
1
0
0
1
20
15
Zj
63
Operation Research Models
LPP Big M Method – Prob 8
Cj
4 1 0 0 M M
ΞΈ
π‘₯1 π‘₯2 S1 S2 A
1
A
2
RHS
(b)
M
M
A1
A2
3
1
4
5
βˆ’1
0
0
βˆ’1
1
0
0
1
20
15
Zj
4
M
9
M
βˆ’M βˆ’M M M
64
Operation Research Models
LPP Big M Method – Prob 8
Cj
4 1 0 0 M M
ΞΈ
π‘₯1 π‘₯2 S1 S2 A
1
A
2
RHS
(b)
M
M
A1
A2
3
1
4
5
βˆ’1
0
0
βˆ’1
1
0
0
1
20
15
5
3
Zj
4M 9M βˆ’M βˆ’M M M
Zjβˆ’Cj 4Mβˆ’4 9Mβˆ’1 βˆ’M βˆ’M 0 0
Max
positive
value
Key Column:
decides incoming
Least
positive
Key
Row: decides
outgoing
variable
Key
Element
65
Operation Research Models
LPP Big M Method – Prob 8
Cj
4 1 0 0 M
ΞΈ
π‘₯1 π‘₯2 S1 S2 A
1
RHS
(b)
M
1
A1
π‘₯2
3
1
4
5
βˆ’1
0
0
βˆ’1
1
0
0
15
Zj
Zjβˆ’Cj
66
Operation Research Models
LPP Big M Method – Prob 8
Cj
4 1 0 0 M
ΞΈ
π‘₯1 π‘₯2 S1 S2 A
1
RHS
(b)
M
1
A1
π‘₯2
3
1/5
4
1
βˆ’1
0
0
βˆ’1/5
1
0
20
15/5=3
Zj
Zjβˆ’Cj
Old Row
MKR
67
Operation Research Models
LPP Big M Method – Prob 8
Old
Row
βˆ’ KCE Γ— MKR = NR
3 βˆ’ 4 Γ— 1/5 = 11/5
4 βˆ’ 4 Γ— 1 = 0
βˆ’1 βˆ’ 4 Γ— 0 = βˆ’1
0 βˆ’ 4 Γ— βˆ’1/5 = 4/5
1 βˆ’ 4 Γ— 0 = 1
20 βˆ’ 4 Γ— 3 = 8
68
Operation Research Models
LPP Big M Method – Prob 8
Cj
4 1 0 0 M
ΞΈ
π‘₯1 π‘₯2 S1 S2 A
1
RHS
(b)
M
1
A1
π‘₯2
11/5
1/5
0
1
βˆ’1
0
4/5
βˆ’1/5
1
0
8
3
Zj
Zjβˆ’Cj
New
Row
MKR
69
Operation Research Models
LPP Big M Method – Prob 8
Cj
4 1 0 0 M
ΞΈ
π‘₯1 π‘₯2 S1 S2 A
1
RHS
(b)
M
1
A1
π‘₯2
11/5
1/5
0
1
βˆ’1
0
4/5
βˆ’1/5
1
0
8
3
Zj
11𝑀
5
+
1
5
1 βˆ’M 4𝑀
5
βˆ’
1
5
M
Zjβˆ’Cj
70
Operation Research Models
LPP Big M Method – Prob 8
Cj
4 1 0 0 M
ΞΈ
π‘₯1 π‘₯2 S1 S2 A
1
RHS
(b)
M
1
A1
π‘₯2
11/5
1/5
0
1
βˆ’1
0
4/5
βˆ’1/5
1
0
8
3
Zj
11𝑀
5
+
1
5
1 βˆ’M 4𝑀
5
βˆ’
1
5
M
Zjβˆ’Cj
11𝑀 + 1 βˆ’ 20
5
0 βˆ’M 4𝑀 βˆ’ 1
5
0
71
Operation Research Models
LPP Big M Method – Prob 8
Cj
4 1 0 0 M
ΞΈ
π‘₯1 π‘₯2 S1 S2 A
1
RHS
(b)
M
1
A1
π‘₯2
11/5
1/5
0
1
βˆ’1
0
4/5
βˆ’1/5
1
0
8
3
Zj
11𝑀
5
+
1
5
1 βˆ’M 4𝑀
5
βˆ’
1
5
M
Zjβˆ’Cj
11𝑀 βˆ’ 19
5
0 βˆ’M 4𝑀 βˆ’ 1
5
0
72
Operation Research Models
LPP Big M Method – Prob 8
Cj
4 1 0 0 M
ΞΈ
π‘₯1 π‘₯2 S1 S2 A
1
RHS
(b)
M
1
A
1
π‘₯2
11/5
1/5
0
1
βˆ’1
0
4/5
βˆ’1/5
1
0
8
3
Zj
11𝑀
5
+
1
5
1 βˆ’M 4𝑀
5
βˆ’
1
5
M
Zjβˆ’Cj
11𝑀 βˆ’ 19
5
0 βˆ’M 4𝑀 βˆ’ 1
5
0
Max
positive
value Key Column:
decides incoming
73
Operation Research Models
LPP Big M Method – Prob 8
Cj
4 1 0 0 M
ΞΈ
π‘₯1 π‘₯2 S1 S2 A
1
RHS
(b)
M
1
A
1
π‘₯2
11/5
1/5
0
1
βˆ’1
0
4/5
βˆ’1/5
1
0
8
3
40/11
15
Zj
11𝑀
5
+
1
5
1 βˆ’M 4𝑀
5
βˆ’
1
5
M
Zjβˆ’Cj
11𝑀 βˆ’ 19
5
0 βˆ’M 4𝑀 βˆ’ 1
5
0
Max
positive
value Key Column:
decides incoming
Least
positive
Key
Row: decides
outgoing
variable
Key
Element
74
Operation Research Models
LPP Big M Method – Prob 8
Cj
4 1 0 0
ΞΈ
π‘₯1 π‘₯2 S1 S2 RHS
(b)
4
1
π‘₯1
π‘₯2
11/5
1/5
0
1
βˆ’1
0
4/5
βˆ’1/5
8
3
40/11
15
Zj
Zjβˆ’Cj
75
Operation Research Models
LPP Big M Method – Prob 8
Cj
4 1 0 0
ΞΈ
π‘₯1 π‘₯2 S1 S2 RHS
(b)
4
1
π‘₯1
π‘₯2
1
1/5
0
1
βˆ’5/11
0
4/11
βˆ’1/5
40/11
3
15
Zj
Zjβˆ’Cj
MKR
76
Operation Research Models
LPP Big M Method – Prob 8
Cj
4 1 0 0
ΞΈ
π‘₯1 π‘₯2 S1 S2 RHS
(b)
4
1
π‘₯1
π‘₯2
1
1/5
0
1
βˆ’5/11
0
4/11
βˆ’1/5
40/11
3
15
Zj
Zjβˆ’Cj
Old Row
MKR
77
Operation Research Models
LPP Big M Method – Prob 8
Old Row βˆ’ KCE Γ— MKR = NR
1/5 βˆ’ 1/5 Γ— 1 = 0
1 βˆ’ 1/5 Γ— 0 = 1
0 βˆ’ 1/5 Γ— βˆ’5/11 = 1/11
βˆ’1/5 βˆ’ 1/5 Γ— 4/11 = βˆ’15/55 = βˆ’3/11
3 βˆ’ 1/5 Γ— 40/11 = 125/55 = 25/11
78
Operation Research Models
LPP Big M Method – Prob 8
Cj
4 1 0 0
ΞΈ
π‘₯1 π‘₯2 S1 S2 RHS
(b)
4
1
π‘₯1
π‘₯2
1
0
0
1
βˆ’5/11
1/11
4/11
βˆ’3/11
40/11
25/11
15
Zj
Zjβˆ’Cj
New
Row
MKR
79
Operation Research Models
LPP Big M Method – Prob 8
Cj
4 1 0 0
ΞΈ
π‘₯1 π‘₯2 S1 S2 RHS
(b)
4
1
π‘₯1
π‘₯2
1
0
0
1
βˆ’5/11
1/11
4/11
βˆ’3/11
40/11
25/11
15
Zj
4 1 βˆ’19/11 13/11
Zjβˆ’Cj 0 0 βˆ’19/11 13/11
Max
positive
value Key Column:
decides incoming
variable
80
Operation Research Models
LPP Big M Method – Prob 8
Cj
4 1 0 0
ΞΈ
π‘₯1 π‘₯2 S1 S2 RHS
(b)
4
1
π‘₯1
π‘₯2
1
0
0
1
βˆ’5/11
1/11
4/11
βˆ’3/11
40/11
25/11
10
βˆ’
Zj
4 1 βˆ’19/11 13/11
Zjβˆ’Cj 0 0 βˆ’19/11 13/11
Max
positive
value Key Column:
decides incoming
variable
Least
positive
Key
Row: decides
outgoing
variable
Key
Element
81
Operation Research Models
LPP Big M Method – Prob 8
Cj
4 1 0 0
ΞΈ
π‘₯1 π‘₯2 S1 S2 RHS
(b)
0
1
S2
π‘₯2
1
0
0
1
βˆ’5/11
1/11
4/11
βˆ’3/11
40/11
25/11
Zj
Zjβˆ’Cj
82
Operation Research Models
LPP Big M Method – Prob 8
Cj
4 1 0 0
ΞΈ
π‘₯1 π‘₯2 S1 S2 RHS
(b)
0
1
S2
π‘₯2
11/4
0
0
1
βˆ’5/4
1/11
1
βˆ’3/11
10
25/11
Zj
Zjβˆ’Cj
MKR
83
Operation Research Models
LPP Big M Method – Prob 8
Cj
4 1 0 0
ΞΈ
π‘₯1 π‘₯2 S1 S2 RHS
(b)
0
1
S2
π‘₯2
11/4
0
0
1
βˆ’5/4
1/11
1
βˆ’3/11
10
25/11
Zj
Zjβˆ’Cj
MKR
Old
Row
84
Operation Research Models
LPP Big M Method – Prob 8
Old Row βˆ’ KCE Γ— MKR = NR
0 βˆ’ βˆ’3/11 Γ— 11/4 = 3/4
1 βˆ’ βˆ’3/11 Γ— 0 = 1
1/11 βˆ’ βˆ’3/11 Γ— βˆ’5/4 = 1
11
βˆ’
3
11
Γ—
5
4
=
1
11
βˆ’
15
44
= βˆ’
11
44
=βˆ’
1
4
βˆ’3/11 βˆ’ βˆ’3/11 Γ— 1 = 0
25/11 βˆ’ βˆ’3/11 Γ— 10 25
11
+
30
11
=
55
11
= 5
85
Operation Research Models
LPP Big M Method – Prob 8
Cj
4 1 0 0
ΞΈ
π‘₯1 π‘₯2 S1 S2 RHS
(b)
0
1
S2
π‘₯2
11/4
3/4
0
1
βˆ’5/4
βˆ’1/4
1
0
10
5
Zj
Zjβˆ’Cj
MKR
New
Row
86
Operation Research Models
LPP Big M Method – Prob 8
Cj
4 1 0 0
ΞΈ
π‘₯1 π‘₯2 S1 S2 RHS
(b)
0
1
S2
π‘₯2
11/4
3/4
0
1
βˆ’5/4
βˆ’1/4
1
0
10
5
Zj
3/4 1 βˆ’1/4 0
Zjβˆ’Cj
87
Operation Research Models
LPP Big M Method – Prob 8
Cj
4 1 0 0
ΞΈ
π‘₯1 π‘₯2 S1 S2 RHS
(b)
0
1
S2
π‘₯2
11/4
3/4
0
1
βˆ’5/4
βˆ’1/4
1
0
10
5
Zj
3/4 1 βˆ’1/4 0 5
Zjβˆ’Cj βˆ’13/4 0 βˆ’1/4 0
So, the optimal Solution we get without
π‘₯1
The optimal Solution
π‘₯1 = 0; π‘₯2 = 5 π‘Žπ‘›π‘‘ π‘π‘šπ‘–π‘›= 4π‘₯1+π‘₯2= 4Γ—0 + 5 = 5
88
π‘π‘šπ‘Žπ‘₯ = π‘₯1+5π‘₯2
3π‘₯1+ 4π‘₯2 ≀ 6
π‘₯1+3π‘₯2 β‰₯ 2
π‘₯1, π‘₯2 β‰₯ 0
Operation Research Models
LPP Big M Method – Prob 9
89
Operation Research Models
LPP Big M Method – Prob 9
π‘₯1+ 3π‘₯2 βˆ’ 𝑆2 + 𝐴1 = 2
π‘₯1, π‘₯2, 𝑆1 , 𝑆2 , 𝐴1 β‰₯ 0
3π‘₯1+4π‘₯2 + 𝑆1 = 6
Add slack and Surplus variable to
convert constraint equation into equality
π‘π‘šπ‘Žπ‘₯ = π‘₯1+5π‘₯2
3π‘₯1+ 4π‘₯2 ≀ 6
π‘₯1+3π‘₯2 β‰₯ 2
π‘₯1, π‘₯2 β‰₯ 0
90
Operation Research Models
LPP Big M Method – Prob 9
Ibfs (Initial Basic Feasible Solution)
DV and Surplus variables = 0
𝑆1 = 6
𝐴1 = 2
π‘π‘šπ‘Žπ‘₯= π‘₯1+ 5π‘₯2 + 0𝑆1 + 0𝑆2 βˆ’ MA1
91
Operation Research Models
LPP Big M Method – Prob 9
Cj
1 5 0 0 βˆ’M
ΞΈ
π‘₯1 π‘₯2 S1 S2 A1 RHS (b)
0
βˆ’M
S1
A1
6
2
Zj
π‘π‘šπ‘Žπ‘₯= π‘₯1+ 5π‘₯2 + 0𝑆1 + 0𝑆2 βˆ’ MA1
92
Operation Research Models
LPP Big M Method – Prob 9
Cj
1 5 0 0 βˆ’M
ΞΈ
π‘₯1 π‘₯2 S1 S2 A1 RHS (b)
0
βˆ’M
S1
A1
3
1
4
3
1
0
0
βˆ’1
0
1
6
2
Zj
π‘π‘šπ‘Žπ‘₯= π‘₯1+ 5π‘₯2 + 0𝑆1 + 0𝑆2 βˆ’ MA1
93
Operation Research Models
LPP Big M Method – Prob 9
Cj
1 5 0 0 βˆ’M
ΞΈ
π‘₯1 π‘₯2 S1 S2 A1 RHS (b)
0
βˆ’M
S1
A1
3
1
4
3
1
0
0
βˆ’1
0
1
6
2
Zj
βˆ’M βˆ’3M 0 M βˆ’M
π‘π‘šπ‘Žπ‘₯= π‘₯1+ 5π‘₯2 + 0𝑆1 + 0𝑆2 βˆ’ MA1
94
Operation Research Models
LPP Big M Method – Prob 9
Cj
1 5 0 0 βˆ’M
ΞΈ
π‘₯1 π‘₯2 S1 S2 A1 RHS (b)
0
βˆ’M
S1
A1
3
1
4
3
1
0
0
βˆ’1
0
1
6
2
Zj
βˆ’M βˆ’3M 0 M βˆ’M
Cj βˆ’ Zj
1+M 5+3M 0 βˆ’M 0
π‘π‘šπ‘Žπ‘₯= π‘₯1+ 5π‘₯2 + 0𝑆1 + 0𝑆2 βˆ’ MA1
95
Operation Research Models
LPP Big M Method – Prob 9
Cj
1 5 0 0 βˆ’M
ΞΈ
π‘₯1 π‘₯2 S1 S2 A1 RHS (b)
0
βˆ’M
S1
A1
3
1
4
3
1
0
0
βˆ’1
0
1
6
2
Zj
βˆ’M βˆ’3M 0 M βˆ’M
Cj βˆ’ Zj
1+M 5+3M 0 βˆ’M 0
Max
positive
value
Key Column:
decides incoming
variable
96
Operation Research Models
LPP Big M Method – Prob 9
Cj
1 5 0 0 βˆ’M
ΞΈ =
𝒃
𝒂
π‘₯1 π‘₯2 S1 S2 A1 RHS
(b)
0
βˆ’M
S1
A1
3
1
4
3
1
0
0
βˆ’1
0
1
6
2
6/4 = 3/2
2/3
Zj
βˆ’M βˆ’3M 0 M βˆ’M
Cj βˆ’ Zj
1+M 5+3M 0 βˆ’M 0
Max
positive
value
Key Column:
decides incoming
Least
positive
Key
Row: decides
outgoing
variable
Key
Element
Least
positive
Key
Row: decides
outgoing
variable
Key
Element
97
Operation Research Models
LPP Big M Method – Prob 9
Cj
1 5 0 0
ΞΈ =
𝒃
𝒂
π‘₯1 π’™πŸ S1 S2 RHS
(b)
0
5
S1
π’™πŸ
3
1
4
3
1
0
0
βˆ’1
6
2
Zj
Cj βˆ’ Zj
98
Operation Research Models
LPP Big M Method – Prob 9
Cj
1 5 0 0
ΞΈ =
𝒃
𝒂
π‘₯1 π’™πŸ S1 S2 RHS
(b)
0
5
S1
π’™πŸ
3
1/3
4
1
1
0
0
βˆ’1/3
6
2/3
Zj
Cj βˆ’ Zj
MKR
99
Operation Research Models
LPP Big M Method – Prob 9
Cj
1 5 0 0
ΞΈ =
𝒃
𝒂
π‘₯1 π’™πŸ S1 S2 RHS
(b)
0
5
S1
π’™πŸ
3
1/3
4
1
1
0
0
βˆ’1/3
6
2/3
Zj
Cj βˆ’ Zj
MKR
OR
100
Operation Research Models
LPP Big M Method – Prob 9
Old
Row
βˆ’ KCE Γ— MKR = NR
3 βˆ’ 4 Γ— 1/3 = 5/3
4 βˆ’ 4 Γ— 1 = 0
1 βˆ’ 4 Γ— 0 = 1
0 βˆ’ 4 Γ— βˆ’1/3 = 4/3
6 βˆ’ 4 Γ— 2/3 = 10/3
101
Operation Research Models
LPP Big M Method – Prob 9
Cj
1 5 0 0
ΞΈ =
𝒃
𝒂
π‘₯1 π’™πŸ S1 S2 RHS
(b)
0
5
S1
π’™πŸ
5/3
1/3
0
1
1
0
4/3
βˆ’1/3
10/3
2/3
Zj
5/3 5 0 βˆ’5/3
Cj βˆ’ Zj
βˆ’2/3 0 0 5/3
MKR
NR
Max
positive
value Key Column:
decides incoming
variable
102
Operation Research Models
LPP Big M Method – Prob 9
Cj
1 5 0 0
ΞΈ =
𝒃
𝒂
π‘₯1 π’™πŸ S1 S2 RHS
(b)
0
5
S1
π’™πŸ
5/3
1/3
0
1
1
0
4/3
βˆ’1/3
10/3
2/3
5/2
βˆ’
Zj
5/3 5 0 βˆ’5/3
Cj βˆ’ Zj
βˆ’2/3 0 0 5/3
Max
positive
value Key Column:
decides incoming
variable
Least
positive
Key
Row: decides
outgoing
variable
Key
Element
103
Operation Research Models
LPP Big M Method – Prob 9
Cj
1 5 0 0
ΞΈ =
𝒃
𝒂
π‘₯1 π’™πŸ S1 S2 RHS
(b)
0
5
S2
π’™πŸ
5/3
1/3
0
1
1
0
4/3
βˆ’1/3
10/3
2/3
5/2
βˆ’
Zj
5/3 5 0 βˆ’5/3
Cj βˆ’ Zj
βˆ’2/3 0 0 5/3
104
Operation Research Models
LPP Big M Method – Prob 9
Cj
1 5 0 0
ΞΈ =
𝒃
𝒂
π‘₯1 π’™πŸ S1 S2 RHS
(b)
0
5
S2
π’™πŸ
5/3
1/3
0
1
1
0
4/3
βˆ’1/3
10/3
2/3
5/2
βˆ’
Zj
5/3 5 0 βˆ’5/3
Cj βˆ’ Zj
βˆ’2/3 0 0 5/3
105
Operation Research Models
LPP Big M Method – Prob 9
Cj
1 5 0 0
ΞΈ =
𝒃
𝒂
π‘₯1 π’™πŸ S1 S2 RHS
(b)
0
5
S2
π’™πŸ
5/3
1/3
0
1
1
0
4/3
βˆ’1/3
10/3
2/3
Zj
Cj βˆ’ Zj
106
Operation Research Models
LPP Big M Method – Prob 9
Cj
1 5 0 0
ΞΈ =
𝒃
𝒂
π‘₯1 π’™πŸ S1 S2 RHS
(b)
0
5
S2
π’™πŸ
5/4
1/3
0
1
3/4
0
1
βˆ’1/3
5/2
2/3
Zj
Cj βˆ’ Zj
MKR
107
Operation Research Models
LPP Big M Method – Prob 9
Cj
1 5 0 0
ΞΈ =
𝒃
𝒂
π‘₯1 π’™πŸ S1 S2 RHS
(b)
0
5
S2
π’™πŸ
5/4
1/3
0
1
3/4
0
1
βˆ’1/3
5/2
2/3
Zj
Cj βˆ’ Zj
MKR
OR
108
Operation Research Models
LPP Big M Method – Prob 9
Old
Row
βˆ’ KCE Γ— MKR = NR
1/3 βˆ’ βˆ’1/3 Γ— 5/4 = 3/4
1 βˆ’ βˆ’1/3 Γ— 0 = 1
0 βˆ’ βˆ’1/3 Γ— 3/4 = 1/4
βˆ’1/3 βˆ’ βˆ’1/3 Γ— 1 = 0
2/3 βˆ’ βˆ’1/3 Γ— 5/2 = 3/2
2
3
+
1
3
Γ—
5
2
=
2
3
+
5
6
=
4 + 5
6
=
9
6
=
3
2
109
Operation Research Models
LPP Big M Method – Prob 9
Cj
1 5 0 0
ΞΈ =
𝒃
𝒂
π‘₯1 π’™πŸ S1 S2 RHS
(b)
0
5
S2
π’™πŸ
5/4
3/4
0
1
3/4
1/4
1
0
5/2
3/2
Zj
Cj βˆ’ Zj
MKR
NR
110
Operation Research Models
LPP Big M Method – Prob 9
Cj
1 5 0 0
ΞΈ =
𝒃
𝒂
π‘₯1 π’™πŸ S1 S2 RHS
(b)
0
5
S2
π’™πŸ
5/4
3/4
0
1
3/4
1/4
1
0
5/2
3/2
Zj
15/4 5 5/4 0
Cj βˆ’ Zj
βˆ’11/4 0 βˆ’5/4 0
MKR
NR
So, the optimal Solution we get without
π‘₯1
The optimal Solution
π‘₯1 = 0; π‘₯2 =
3
2
and π‘π‘šπ‘Žπ‘₯ = π‘₯1 + 5π‘₯2 = 0 +
15
2
, π‘π‘šπ‘Žπ‘₯ =
15
2
Dr. L K Bhagi, School of Mechanical
Engineering, LPU
111
Dr. L K Bhagi, School of Mechanical
Engineering, LPU
112
Dr. L K Bhagi, School of Mechanical
Engineering, LPU
113
Dr. L K Bhagi, School of Mechanical
Engineering, LPU
114
Dr. L K Bhagi, School of Mechanical
Engineering, LPU
115
There is no region that satisfies both the
constraints.
This LP is infeasible
Refer: Slide no. 97
Two Phase Method
117
Operation Research Models
LPP Two Phase Method
LPP using Graphical
Method
LPP using iteration Method
≀
inequality
= and β‰₯
inequality
Simplex
Method
Big M
Method
Two Phase
Method
118
Operation Research Models
LPP Two Phase Method
In Two Phase Method, the whole procedure of solving a linear
programming problem (LPP) involving artificial variables is
divided into two phases.
In phase I, we form a new objective function (Auxiliary
function) by assigning zero to all variable (slack and surplus
variables) and +1 or βˆ’1 to each of the artificial variables
π‘π‘šπ‘–π‘› or π‘π‘šπ‘Žπ‘₯ . Then we try to eliminate the artificial variables
from the basis. The solution at the end of phase I serves as a
basic feasible solution for phase II.
In phase II, Auxiliary function is replaced by the original
objective function and the usual simplex algorithm is used to
find an optimal solution.
119
π‘π‘šπ‘–π‘› = π‘₯1+π‘₯2
2π‘₯1+ π‘₯2 β‰₯ 4
π‘₯1+7π‘₯2 β‰₯ 7
π‘₯1, π‘₯2 β‰₯ 0
Operation Research Models
LPP Two Phase Method – Prob 10
120
Operation Research Models
LPP Two Phase Method – Prob 10
π‘₯1+ 7π‘₯2 βˆ’ 𝑆2 + 𝐴2 = 7
π‘₯1, π‘₯2, 𝑆1 , 𝑆2 , 𝐴1 , 𝐴2 β‰₯ 0
2π‘₯1+π‘₯2 βˆ’ 𝑆1 + 𝐴1 = 4
Add Surplus variable and artificial
variable to convert constraint equation
into equality
π‘π‘šπ‘–π‘› = π‘₯1+π‘₯2
2π‘₯1+ π‘₯2 β‰₯ 4
π‘₯1+7π‘₯2 β‰₯ 7
π‘₯1, π‘₯2 β‰₯ 0
Ibfs (Initial Basic Feasible Solution)
DV and Surplus variables = 0
𝐴1 = 4
𝐴2 = 7
π‘π‘šπ‘–π‘›= 0 Γ— π‘₯1+ 0 Γ— π‘₯2 + 0 Γ— 𝑆1 + 0 Γ— 𝑆2 + 1 Γ— A1 + 1 Γ— A2
Create Auxiliary
function
121
Operation Research Models
LPP Two Phase Method – Prob 10
Cj
0 0 0 0 1 1
ΞΈ
π‘₯1 π‘₯2 S1 S2 A1 A2 RHS (b)
1
1
A1
A2
4
7
Zj
π‘π‘šπ‘–π‘›= 0 Γ— π‘₯1+ 0 Γ— π‘₯2 + 0 Γ— 𝑆1 + 0 Γ— 𝑆2 + 1 Γ— A1 + 1 Γ— A2
122
Operation Research Models
LPP Two Phase Method – Prob 10
Cj
0 0 0 0 1 1
ΞΈ
π‘₯1 π‘₯2 S1 S2 A1 A2 RHS (b)
1
1
A1
A2
2
1
1
7
βˆ’1
0
0
βˆ’1
1
0
0
1
4
7
Zj
π‘π‘šπ‘–π‘›= 0 Γ— π‘₯1+ 0 Γ— π‘₯2 + 0 Γ— 𝑆1 + 0 Γ— 𝑆2 + 1 Γ— A1 + 1 Γ— A2
123
Operation Research Models
LPP Two Phase Method – Prob 10
Cj
0 0 0 0 1 1
ΞΈ
π‘₯1 π‘₯2 S1 S2 A1 A2 RHS (b)
1
1
A1
A2
2
1
1
7
βˆ’1
0
0
βˆ’1
1
0
0
1
4
7
Zj
3 8 βˆ’1 βˆ’1 1 1
124
Operation Research Models
LPP Two Phase Method – Prob 10
Cj
0 0 0 0 1 1
ΞΈ
π‘₯1 π‘₯2 S1 S2 A1 A2 RHS (b)
1
1
A1
A2
2
1
1
7
βˆ’1
0
0
βˆ’1
1
0
0
1
4
7
Zj
3 8 βˆ’1 βˆ’1 1 1
Zjβˆ’Cj
3 8 βˆ’1 βˆ’1 0 0
Max
positive
value Key Column:
decides incoming
125
Operation Research Models
LPP Two Phase Method – Prob 10
Cj
0 0 0 0 1 1
ΞΈ=
𝒃
𝒂
π‘₯1 π‘₯2 S1 S2 A1 A2 RHS (b)
1
1
A1
A2
2
1
1
7
βˆ’1
0
0
βˆ’1
1
0
0
1
4
7
4
1
Zj
3 8 βˆ’1 βˆ’1 1 1
Zjβˆ’Cj
3 8 βˆ’1 βˆ’1 0 0
Max
positive
value Key Column:
decides incoming
Least
positive
Key
Row: decides
outgoing
variable
Key
Element
126
Operation Research Models
LPP Two Phase Method – Prob 10
Cj
0 0 0 0 1
ΞΈ=
𝒃
𝒂
π‘₯1 π‘₯2 S1 S2 A1 RHS (b)
1
0
A1
x2
2
1/7
1
1
βˆ’1
0
0
βˆ’1/7
1
0 1
Zj
Zjβˆ’Cj
127
Operation Research Models
LPP Two Phase Method – Prob 10
Cj
0 0 0 0 1
ΞΈ=
𝒃
𝒂
π‘₯1 π‘₯2 S1 S2 A1 RHS (b)
1
0
A1
x2
2
1/7
1
1
βˆ’1
0
0
βˆ’1/7
1
0
4
1
Zj
Zjβˆ’Cj
MKR
OR
128
Operation Research Models
LPP Big M Method – Prob 10
Old
Row
βˆ’ KCE Γ— MKR = NR
2 βˆ’ 1 Γ— 1/7 = 13/7
1 βˆ’ 1 Γ— 1 = 0
βˆ’1 βˆ’ 1 Γ— 0 = βˆ’1
0 βˆ’ 1 Γ— βˆ’1/7 = 1/7
1 βˆ’ 1 Γ— 0 = 1
4 βˆ’ 1 Γ— 1 = 3
129
Operation Research Models
LPP Two Phase Method – Prob 10
Cj
0 0 0 0 1
ΞΈ=
𝒃
𝒂
π‘₯1 π‘₯2 S1 S2 A1 RHS (b)
1
0
A1
x2
13/7
1/7
0
1
βˆ’1
0
1/7
βˆ’1/7
1
0
3
1
Zj
Zjβˆ’Cj
MKR
NR
130
Operation Research Models
LPP Two Phase Method – Prob 10
Cj
0 0 0 0 1
ΞΈ=
𝒃
𝒂
π‘₯1 π‘₯2 S1 S2 A1 RHS (b)
1
0
A1
x2
13/7
1/7
0
1
βˆ’1
0
1/7
βˆ’1/7
1
0
3
1
Zj
13/7 0 βˆ’1 1/7 1
Zjβˆ’Cj
13/7 0 βˆ’1 1/7 0
Max
positive
value Key Column:
decides incoming
131
Operation Research Models
LPP Two Phase Method – Prob 10
Cj
0 0 0 0 1
ΞΈ=
𝒃
𝒂
π‘₯1 π‘₯2 S1 S2 A1 RHS (b)
1
0
A1
x2
13/7
1/7
0
1
βˆ’1
0
1/7
βˆ’1/7
1
0
3
1
21/13
7
Zj
13/7 0 βˆ’1 1/7 1
Zjβˆ’Cj
13/7 0 βˆ’1 1/7 0
Max
positive
value Key Column:
decides incoming
132
Operation Research Models
LPP Two Phase Method – Prob 10
Cj
0 0 0 0 1
ΞΈ=
𝒃
𝒂
π‘₯1 π‘₯2 S1 S2 A1 RHS (b)
1
0
A1
x2
13/7
1/7
0
1
βˆ’1
0
1/7
βˆ’1/7
1
0
3
1
21/13
7
Zj
13/7 0 βˆ’1 1/7 1
Zjβˆ’Cj
13/7 0 βˆ’1 1/7 0
Max
positive
value Key Column:
decides incoming
Least
positive
Key
Element
133
Operation Research Models
LPP Two Phase Method – Prob 10
Cj
0 0 0 0
ΞΈ=
𝒃
𝒂
π’™πŸ π‘₯2 S1 S2 RHS (b)
0
0
π’™πŸ
π‘₯2
13/7
1/7
0
1
βˆ’1
0
1/7
βˆ’1/7
3
1
21/13
7
Zj
13/7 0 βˆ’1 1/7
Zjβˆ’Cj
13/7 0 βˆ’1 1/7
134
Operation Research Models
LPP Two Phase Method – Prob 10
Cj
0 0 0 0
ΞΈ=
𝒃
𝒂
π’™πŸ π‘₯2 S1 S2 RHS (b)
0
0
π’™πŸ
π‘₯2
1
1/7
0
1
βˆ’7/13
0
1/13
βˆ’1/7
21/13
1
7
Zj
Zjβˆ’Cj
MKR
135
Operation Research Models
LPP Two Phase Method – Prob 10
Cj
0 0 0 0
ΞΈ=
𝒃
𝒂
π’™πŸ π‘₯2 S1 S2 RHS (b)
0
0
π’™πŸ
π‘₯2
1
1/7
0
1
βˆ’7/13
0
1/13
βˆ’1/7
21/13
1
7
Zj
Zjβˆ’Cj
MKR
OR
136
Operation Research Models
LPP Two Phase Method – Prob 10
Cj
0 0 0 0
ΞΈ=
𝒃
𝒂
π’™πŸ π‘₯2 S1 S2 RHS (b)
1
1
π’™πŸ
π‘₯2
1
0
0
1
βˆ’7/13
1/13
1/13
βˆ’2/13
21/13
70/91
7
Zj
0 0 0 0
Zjβˆ’Cj
0 0 0 0
MKR
NR
137
Operation Research Models
LPP Two Phase Method – Prob 10
Cj
1 1 0 0
ΞΈ=
𝒃
𝒂
π’™πŸ π‘₯2 S1 S2 RHS (b)
1
1
π’™πŸ
π‘₯2
1
0
0
1
βˆ’7/13
1/13
1/13
βˆ’2/13
21/13
70/91
7
Zj
1 1 βˆ’6/13 βˆ’1/13
Zjβˆ’Cj
0 0 βˆ’6/13 βˆ’1/13
MKR
NR
The optimal Solution
π‘₯1 =
21
13
; π‘₯2 =
70
90
=
10
13
and π‘π‘šπ‘–π‘› =
21
13
+
10
13
=
31
13
138
Operation Research Models
LPP Two Phase Method – Prob 10
Cj
1 1 0 0
ΞΈ=
𝒃
𝒂
π’™πŸ π‘₯2 S1 S2 RHS (b)
1
1
π’™πŸ
π‘₯2
1
0
0
1
βˆ’7/13
1/13
1/13
βˆ’2/13
21/13
70/91
7
Zj
1 1 βˆ’6/13 βˆ’1/13
Zjβˆ’Cj
0 0 βˆ’6/13 βˆ’1/13
MKR
NR
The optimal Solution
π‘₯1 =
21
13
; π‘₯2 =
70
90
=
10
13
and π‘π‘šπ‘–π‘› =
21
13
+
10
13
=
31
13
MCQ
Dr. L K Bhagi, School of Mechanical
Engineering, LPU
140
The objective function and constraints are functions of two types of variables,
_______________ variables and ____________ variables.
A. Positive and negative
B. Controllable and uncontrollable.
C. Strong and weak
D. None of the above
Dr. L K Bhagi, School of Mechanical
Engineering, LPU
141
In graphical representation the bounded region is known as _________ region.
A. Solution
B. basic solution
C. feasible solution
D. optimal
Dr. L K Bhagi, School of Mechanical
Engineering, LPU
142
The optimal value of the objective function for the following L.P.P.
Max z = 4X1 + 3X2
subject to
X1 + X2 ≀ 50
X1 + 2X2 ≀ 80
2X1 + X2 β‰₯ 20
X1, X2 β‰₯ 0
is
(a) 200
(b) 330
(c) 420
(d) 500
Dr. L K Bhagi, School of Mechanical
Engineering, LPU
143
To formulate a problem for solution by the Simplex method, we must add artificial
variable to
(a) only equality constraints
(b) only LHS is greater than equal to RHS constraints
(c) both (a) and (b)
(d) None of the above
Dr. L K Bhagi, School of Mechanical
Engineering, LPU
144
In graphical method of LPP, If at all there is a feasible solution (feasible area of polygon)
exists then, the feasible area region has an important property known as ____________in
geometry
a) convexity Property
b) Convex polygon
c) Both of the above
d) None of the above
Dr. L K Bhagi, School of Mechanical
Engineering, LPU
145
Dr. L K Bhagi, School of Mechanical
Engineering, LPU
146
https://www.aplustopper.com/section-
formula/

More Related Content

What's hot

2. lp iterative methods
2. lp   iterative methods2. lp   iterative methods
2. lp iterative methodsHakeem-Ur- Rehman
Β 
New approach for wolfe’s modified simplex method to solve quadratic programmi...
New approach for wolfe’s modified simplex method to solve quadratic programmi...New approach for wolfe’s modified simplex method to solve quadratic programmi...
New approach for wolfe’s modified simplex method to solve quadratic programmi...eSAT Journals
Β 
4-The Simplex Method.ppt
4-The Simplex Method.ppt4-The Simplex Method.ppt
4-The Simplex Method.pptMayurkumarpatil1
Β 
Special Cases in Simplex Method
Special Cases in Simplex MethodSpecial Cases in Simplex Method
Special Cases in Simplex MethodDivyansh Verma
Β 
Two Phase Method- Linear Programming
Two Phase Method- Linear ProgrammingTwo Phase Method- Linear Programming
Two Phase Method- Linear ProgrammingManas Lad
Β 
Simplex method concept,
Simplex method concept,Simplex method concept,
Simplex method concept,Dronak Sahu
Β 
Simplex Method
Simplex MethodSimplex Method
Simplex MethodSachin MK
Β 
Gomory's cutting plane method
Gomory's cutting plane methodGomory's cutting plane method
Gomory's cutting plane methodRajesh Piryani
Β 
Duality
DualityDuality
DualitySachin MK
Β 
Dual simplexmethod
Dual simplexmethodDual simplexmethod
Dual simplexmethodJoseph Konnully
Β 
Solving linear programming model by simplex method
Solving linear programming model by simplex methodSolving linear programming model by simplex method
Solving linear programming model by simplex methodRoshan Kumar Patel
Β 
Concept of Duality
Concept of DualityConcept of Duality
Concept of DualitySubhamSatpathy2
Β 
Chapter 4 Simplex Method ppt
Chapter 4  Simplex Method pptChapter 4  Simplex Method ppt
Chapter 4 Simplex Method pptDereje Tigabu
Β 
Sensitivity analysis linear programming copy
Sensitivity analysis linear programming   copySensitivity analysis linear programming   copy
Sensitivity analysis linear programming copyKiran Jadhav
Β 
Linear programming using the simplex method
Linear programming using the simplex methodLinear programming using the simplex method
Linear programming using the simplex methodShivek Khurana
Β 

What's hot (20)

2. lp iterative methods
2. lp   iterative methods2. lp   iterative methods
2. lp iterative methods
Β 
New approach for wolfe’s modified simplex method to solve quadratic programmi...
New approach for wolfe’s modified simplex method to solve quadratic programmi...New approach for wolfe’s modified simplex method to solve quadratic programmi...
New approach for wolfe’s modified simplex method to solve quadratic programmi...
Β 
simplex method
simplex methodsimplex method
simplex method
Β 
Big m method
Big   m methodBig   m method
Big m method
Β 
4-The Simplex Method.ppt
4-The Simplex Method.ppt4-The Simplex Method.ppt
4-The Simplex Method.ppt
Β 
Special Cases in Simplex Method
Special Cases in Simplex MethodSpecial Cases in Simplex Method
Special Cases in Simplex Method
Β 
Simplex algorithm
Simplex algorithmSimplex algorithm
Simplex algorithm
Β 
Two Phase Method- Linear Programming
Two Phase Method- Linear ProgrammingTwo Phase Method- Linear Programming
Two Phase Method- Linear Programming
Β 
Simplex method concept,
Simplex method concept,Simplex method concept,
Simplex method concept,
Β 
Simplex Method
Simplex MethodSimplex Method
Simplex Method
Β 
Gomory's cutting plane method
Gomory's cutting plane methodGomory's cutting plane method
Gomory's cutting plane method
Β 
Duality
DualityDuality
Duality
Β 
Dual simplexmethod
Dual simplexmethodDual simplexmethod
Dual simplexmethod
Β 
Operations Research - The Dual Simplex Method
Operations Research - The Dual Simplex MethodOperations Research - The Dual Simplex Method
Operations Research - The Dual Simplex Method
Β 
Solving linear programming model by simplex method
Solving linear programming model by simplex methodSolving linear programming model by simplex method
Solving linear programming model by simplex method
Β 
LINEAR PROGRAMMING
LINEAR PROGRAMMINGLINEAR PROGRAMMING
LINEAR PROGRAMMING
Β 
Concept of Duality
Concept of DualityConcept of Duality
Concept of Duality
Β 
Chapter 4 Simplex Method ppt
Chapter 4  Simplex Method pptChapter 4  Simplex Method ppt
Chapter 4 Simplex Method ppt
Β 
Sensitivity analysis linear programming copy
Sensitivity analysis linear programming   copySensitivity analysis linear programming   copy
Sensitivity analysis linear programming copy
Β 
Linear programming using the simplex method
Linear programming using the simplex methodLinear programming using the simplex method
Linear programming using the simplex method
Β 

Similar to Operation research unit 1: LPP Big M and Two Phase method

Chapter 6 indices
Chapter 6 indicesChapter 6 indices
Chapter 6 indicesJasimah Puari
Β 
Linear models
Linear modelsLinear models
Linear modelsFAO
Β 
12. Linear models
12. Linear models12. Linear models
12. Linear modelsExternalEvents
Β 
Column Liquid Chromatography
Column Liquid Chromatography Column Liquid Chromatography
Column Liquid Chromatography Saurabh Singh
Β 
Application of recursive perturbation approach for multimodal optimization
Application of recursive perturbation approach for multimodal optimizationApplication of recursive perturbation approach for multimodal optimization
Application of recursive perturbation approach for multimodal optimizationPranamesh Chakraborty
Β 
Computational tools for drug discovery
Computational tools for drug discoveryComputational tools for drug discovery
Computational tools for drug discoveryEszter SzabΓ³
Β 
Adaptive Constraint Handling and Success History Differential Evolution for C...
Adaptive Constraint Handling and Success History Differential Evolution for C...Adaptive Constraint Handling and Success History Differential Evolution for C...
Adaptive Constraint Handling and Success History Differential Evolution for C...University of Maribor
Β 
Intelligent Control Systems for Humanoid Robot: Master Thesis_Owen Chih-Hsuan...
Intelligent Control Systems for Humanoid Robot: Master Thesis_Owen Chih-Hsuan...Intelligent Control Systems for Humanoid Robot: Master Thesis_Owen Chih-Hsuan...
Intelligent Control Systems for Humanoid Robot: Master Thesis_Owen Chih-Hsuan...Owen (Chih-Hsuan) Chen
Β 

Similar to Operation research unit 1: LPP Big M and Two Phase method (10)

Chapter 6 indices
Chapter 6 indicesChapter 6 indices
Chapter 6 indices
Β 
Linear models
Linear modelsLinear models
Linear models
Β 
12. Linear models
12. Linear models12. Linear models
12. Linear models
Β 
MSE Part1-Chapter3
MSE Part1-Chapter3MSE Part1-Chapter3
MSE Part1-Chapter3
Β 
Column Liquid Chromatography
Column Liquid Chromatography Column Liquid Chromatography
Column Liquid Chromatography
Β 
Application of recursive perturbation approach for multimodal optimization
Application of recursive perturbation approach for multimodal optimizationApplication of recursive perturbation approach for multimodal optimization
Application of recursive perturbation approach for multimodal optimization
Β 
Computational tools for drug discovery
Computational tools for drug discoveryComputational tools for drug discovery
Computational tools for drug discovery
Β 
Central tedancy & correlation project - 2
Central tedancy & correlation project - 2Central tedancy & correlation project - 2
Central tedancy & correlation project - 2
Β 
Adaptive Constraint Handling and Success History Differential Evolution for C...
Adaptive Constraint Handling and Success History Differential Evolution for C...Adaptive Constraint Handling and Success History Differential Evolution for C...
Adaptive Constraint Handling and Success History Differential Evolution for C...
Β 
Intelligent Control Systems for Humanoid Robot: Master Thesis_Owen Chih-Hsuan...
Intelligent Control Systems for Humanoid Robot: Master Thesis_Owen Chih-Hsuan...Intelligent Control Systems for Humanoid Robot: Master Thesis_Owen Chih-Hsuan...
Intelligent Control Systems for Humanoid Robot: Master Thesis_Owen Chih-Hsuan...
Β 

More from Dr. L K Bhagi

Rolling Contact Bearings
Rolling Contact BearingsRolling Contact Bearings
Rolling Contact BearingsDr. L K Bhagi
Β 
Operation research unit 3 Transportation problem
Operation research unit 3 Transportation problemOperation research unit 3 Transportation problem
Operation research unit 3 Transportation problemDr. L K Bhagi
Β 
Operation research unit 2 Duality and methods
Operation research unit 2 Duality and methodsOperation research unit 2 Duality and methods
Operation research unit 2 Duality and methodsDr. L K Bhagi
Β 
Operation research unit1 introduction and lpp graphical and simplex method
Operation research unit1 introduction and lpp graphical and simplex methodOperation research unit1 introduction and lpp graphical and simplex method
Operation research unit1 introduction and lpp graphical and simplex methodDr. L K Bhagi
Β 
MEC395 Measurement System Analysis (MSA)
MEC395 Measurement System Analysis (MSA)MEC395 Measurement System Analysis (MSA)
MEC395 Measurement System Analysis (MSA)Dr. L K Bhagi
Β 
Unit 4 sheet metal operations part 1
Unit 4 sheet metal operations part 1Unit 4 sheet metal operations part 1
Unit 4 sheet metal operations part 1Dr. L K Bhagi
Β 
Eco-industrial park and cleaner production
Eco-industrial park and cleaner productionEco-industrial park and cleaner production
Eco-industrial park and cleaner productionDr. L K Bhagi
Β 
Unit 4 bevel gears
Unit 4 bevel gearsUnit 4 bevel gears
Unit 4 bevel gearsDr. L K Bhagi
Β 
Unit 4 helical gear
Unit 4 helical gearUnit 4 helical gear
Unit 4 helical gearDr. L K Bhagi
Β 
Metal casting process part 2
Metal casting process part 2Metal casting process part 2
Metal casting process part 2Dr. L K Bhagi
Β 
Metal casting process part 1
Metal casting process part 1Metal casting process part 1
Metal casting process part 1Dr. L K Bhagi
Β 
Design of Flat belt, V belt and chain drives
Design of Flat belt, V belt and chain drivesDesign of Flat belt, V belt and chain drives
Design of Flat belt, V belt and chain drivesDr. L K Bhagi
Β 
Springs - DESIGN OF MACHINE ELEMENTS-II
Springs - DESIGN OF MACHINE ELEMENTS-IISprings - DESIGN OF MACHINE ELEMENTS-II
Springs - DESIGN OF MACHINE ELEMENTS-IIDr. L K Bhagi
Β 
General introduction to manufacturing processes
General introduction to manufacturing processesGeneral introduction to manufacturing processes
General introduction to manufacturing processesDr. L K Bhagi
Β 
sheet metal operations part 2
sheet metal operations part 2sheet metal operations part 2
sheet metal operations part 2Dr. L K Bhagi
Β 
Sheet metal operations part 1
Sheet metal operations part 1Sheet metal operations part 1
Sheet metal operations part 1Dr. L K Bhagi
Β 
Plastic processing
Plastic processing Plastic processing
Plastic processing Dr. L K Bhagi
Β 

More from Dr. L K Bhagi (18)

Rolling Contact Bearings
Rolling Contact BearingsRolling Contact Bearings
Rolling Contact Bearings
Β 
Operation research unit 3 Transportation problem
Operation research unit 3 Transportation problemOperation research unit 3 Transportation problem
Operation research unit 3 Transportation problem
Β 
Operation research unit 2 Duality and methods
Operation research unit 2 Duality and methodsOperation research unit 2 Duality and methods
Operation research unit 2 Duality and methods
Β 
Operation research unit1 introduction and lpp graphical and simplex method
Operation research unit1 introduction and lpp graphical and simplex methodOperation research unit1 introduction and lpp graphical and simplex method
Operation research unit1 introduction and lpp graphical and simplex method
Β 
MEC395 Measurement System Analysis (MSA)
MEC395 Measurement System Analysis (MSA)MEC395 Measurement System Analysis (MSA)
MEC395 Measurement System Analysis (MSA)
Β 
Unit 4 sheet metal operations part 1
Unit 4 sheet metal operations part 1Unit 4 sheet metal operations part 1
Unit 4 sheet metal operations part 1
Β 
Eco-industrial park and cleaner production
Eco-industrial park and cleaner productionEco-industrial park and cleaner production
Eco-industrial park and cleaner production
Β 
Gears mcq
Gears mcqGears mcq
Gears mcq
Β 
Unit 4 bevel gears
Unit 4 bevel gearsUnit 4 bevel gears
Unit 4 bevel gears
Β 
Unit 4 helical gear
Unit 4 helical gearUnit 4 helical gear
Unit 4 helical gear
Β 
Metal casting process part 2
Metal casting process part 2Metal casting process part 2
Metal casting process part 2
Β 
Metal casting process part 1
Metal casting process part 1Metal casting process part 1
Metal casting process part 1
Β 
Design of Flat belt, V belt and chain drives
Design of Flat belt, V belt and chain drivesDesign of Flat belt, V belt and chain drives
Design of Flat belt, V belt and chain drives
Β 
Springs - DESIGN OF MACHINE ELEMENTS-II
Springs - DESIGN OF MACHINE ELEMENTS-IISprings - DESIGN OF MACHINE ELEMENTS-II
Springs - DESIGN OF MACHINE ELEMENTS-II
Β 
General introduction to manufacturing processes
General introduction to manufacturing processesGeneral introduction to manufacturing processes
General introduction to manufacturing processes
Β 
sheet metal operations part 2
sheet metal operations part 2sheet metal operations part 2
sheet metal operations part 2
Β 
Sheet metal operations part 1
Sheet metal operations part 1Sheet metal operations part 1
Sheet metal operations part 1
Β 
Plastic processing
Plastic processing Plastic processing
Plastic processing
Β 

Recently uploaded

A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
Β 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactdawncurless
Β 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxheathfieldcps1
Β 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfchloefrazer622
Β 
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991RKavithamani
Β 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxGaneshChakor2
Β 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
Β 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
Β 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAssociation for Project Management
Β 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Celine George
Β 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
Β 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
Β 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxiammrhaywood
Β 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
Β 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeThiyagu K
Β 
β€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
β€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...β€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
β€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...Marc Dusseiller Dusjagr
Β 

Recently uploaded (20)

A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
Β 
Accessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impactAccessible design: Minimum effort, maximum impact
Accessible design: Minimum effort, maximum impact
Β 
The basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptxThe basics of sentences session 2pptx copy.pptx
The basics of sentences session 2pptx copy.pptx
Β 
Arihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdfArihant handbook biology for class 11 .pdf
Arihant handbook biology for class 11 .pdf
Β 
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Β 
CARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptxCARE OF CHILD IN INCUBATOR..........pptx
CARE OF CHILD IN INCUBATOR..........pptx
Β 
Model Call Girl in Bikash Puri Delhi reach out to us at πŸ”9953056974πŸ”
Model Call Girl in Bikash Puri  Delhi reach out to us at πŸ”9953056974πŸ”Model Call Girl in Bikash Puri  Delhi reach out to us at πŸ”9953056974πŸ”
Model Call Girl in Bikash Puri Delhi reach out to us at πŸ”9953056974πŸ”
Β 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Β 
Model Call Girl in Tilak Nagar Delhi reach out to us at πŸ”9953056974πŸ”
Model Call Girl in Tilak Nagar Delhi reach out to us at πŸ”9953056974πŸ”Model Call Girl in Tilak Nagar Delhi reach out to us at πŸ”9953056974πŸ”
Model Call Girl in Tilak Nagar Delhi reach out to us at πŸ”9953056974πŸ”
Β 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
Β 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
Β 
APM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across SectorsAPM Welcome, APM North West Network Conference, Synergies Across Sectors
APM Welcome, APM North West Network Conference, Synergies Across Sectors
Β 
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Incoming and Outgoing Shipments in 1 STEP Using Odoo 17
Β 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
Β 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Β 
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptxSOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
SOCIAL AND HISTORICAL CONTEXT - LFTVD.pptx
Β 
CΓ³digo Creativo y Arte de Software | Unidad 1
CΓ³digo Creativo y Arte de Software | Unidad 1CΓ³digo Creativo y Arte de Software | Unidad 1
CΓ³digo Creativo y Arte de Software | Unidad 1
Β 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
Β 
Measures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and ModeMeasures of Central Tendency: Mean, Median and Mode
Measures of Central Tendency: Mean, Median and Mode
Β 
β€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
β€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...β€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
β€œOh GOSH! Reflecting on Hackteria's Collaborative Practices in a Global Do-It...
Β 

Operation research unit 1: LPP Big M and Two Phase method

  • 1. Linear Programming UNIT – I OPERATION RESEARCH Dr. Loveleen Kumar Bhagi Associate Professor School of Mechanical Engineering LPU
  • 3. Dr. L K Bhagi, School of Mechanical Engineering, LPU 3
  • 4. Dr. L K Bhagi, School of Mechanical Engineering, LPU 4
  • 5. 5 Operation Research Models LPP Big M Method Simplex method Big M method
  • 6. 6 Zmin= 6X+8Y X+Y β‰₯ 10 2X +3Y β‰₯ 25 X +5Y β‰₯ 35 X, Y β‰₯ 0 Add slack Surplus variable to convert constraint equation into equality Z = 6X+8Y+0S1 βˆ’ 0S2 βˆ’ 0S3 X+Yβˆ’S1 =10 2X +3Yβˆ’S2 = 25 X +5Y βˆ’ S3 = 35 X,Y, S1, S2, S3 β‰₯ 0 Operation Research Models LPP Big M Method – Prob 7
  • 7. 7 Ibfs (Initial Basic Feasible Solution) DV = 0 βˆ’S =10 ; βˆ’S2 = 25; βˆ’ S3 = 35 0r S = βˆ’ 10 ; S2 = βˆ’ 25; S3 = βˆ’ 35 0r Z = 6X+8Y+0S1 βˆ’ 0S2 βˆ’ 0S3 X+Yβˆ’S1 =10 2X +3Yβˆ’S2 = 25 X +5Y βˆ’ S3 = 35 X,Y, S1, S2, S3 β‰₯ 0 Operation Research Models LPP Big M Method – Prob 7
  • 8. 8 Ibfs (Initial Basic Feasible Solution) DV = 0 and Surplus = 0 0 =10 ; 0 = 25; 0 = 35 Z = 6X+8Y+0S1 βˆ’ 0S2 βˆ’ 0S3 X+Yβˆ’S1 =10 2X +3Yβˆ’S2 = 25 X +5Y βˆ’ S3 = 35 X,Y, S1, S2, S3 β‰₯ 0 Operation Research Models LPP Big M Method – Prob 7
  • 9. 9 X+Y β‰₯ 10 2X +3Y β‰₯ 25 X +5Y β‰₯ 35 X, Y β‰₯ 0 Along with Surplus variable add Artificial Variable to convert constraint equation into equality X+Yβˆ’S1 +A1 =10 2X +3Yβˆ’S2+A2 = 25 X +5Y βˆ’ S3 +A3 = 35 X,Y, S1, S2, S3, A1, A2, A3 β‰₯ 0 Operation Research Models LPP Big M Method – Prob 7 Zmin = 6X+8Y+0S1+0S2+ 0S3+MA1+MA2+MA3 Zmin= 6X+8Y
  • 10. 10 Operation Research Models LPP Big M Method – Prob 7 Zmin = 6X+8Y+0S1+0S2+ 0S3+MA1+MA2+MA3 Ibfs (Initial Basic Feasible Solution) Put DV = 0 and Surplus variables = 0 A1=10 ; A2= 25; A3= 35
  • 11. 11 Operation Research Models LPP Big M Method – Prob 7 Cj 6 8 0 0 0 M M M ΞΈ X Y S1 S2 S3 A1 A2 A3 RHS (b) M M M A1 A2 A3 10 25 35
  • 12. 12 Operation Research Models LPP Big M Method – Prob 7 Cj 6 8 0 0 0 M M M ΞΈ X Y S1 S2 S3 A1 A2 A3 RHS (b) M M M A1 A2 A3 1 2 1 1 3 5 βˆ’1 0 0 0 βˆ’1 0 0 0 βˆ’1 1 0 0 0 1 0 0 0 1 10 25 35
  • 13. 13 Operation Research Models LPP Big M Method – Prob 7 Cj 6 8 0 0 0 M M M ΞΈ X Y S1 S2 S3 A 1 A 2 A3 RHS (b) M M M A1 A2 A3 1 2 1 1 3 5 βˆ’1 0 0 0 βˆ’1 0 0 0 βˆ’1 1 0 0 0 1 0 0 0 1 10 25 35 Zj 4 M 9 M βˆ’M βˆ’M βˆ’M M M M M+2M+M = 4M
  • 14. Dr. L K Bhagi, School of Mechanical Engineering, LPU 14 https://www.youtube.com/watch?v=tRNwz Sr9IXg IITM Srinivasan sir
  • 15. 15 Operation Research Models LPP Big M Method – Prob 7 Cj 6 8 0 0 0 M M M ΞΈ X Y S1 S2 S3 A 1 A 2 A3 RHS (b) M M M A1 A2 A3 1 2 1 1 3 5 βˆ’1 0 0 0 βˆ’1 0 0 0 βˆ’1 1 0 0 0 1 0 0 0 1 10 25 35 10 25/3 7 Zj 4M 9M βˆ’M βˆ’M βˆ’M M M M Zjβˆ’ Cj 4Mβˆ’ 6 9Mβˆ’ 8 βˆ’M βˆ’M βˆ’M 0 0 0 Largest positive value Key Column: decides incoming Least positive Key Row: decides outgoing variable
  • 16. 16 Operation Research Models LPP Big M Method – Prob 7 Cj 6 8 0 0 0 M M M ΞΈ X Y S1 S2 S3 A 1 A 2 A3 RHS (b) M M M A1 A2 A3 1 2 1 1 3 5 βˆ’1 0 0 0 βˆ’1 0 0 0 βˆ’1 1 0 0 0 1 0 0 0 1 10 25 35 10 25/3 7 Zj 4M 9M βˆ’M βˆ’M βˆ’M M M M Zjβˆ’ Cj 4Mβˆ’ 6 9Mβˆ’ 8 βˆ’M βˆ’M βˆ’M 0 0 0 Key Column: decides incoming Least positive Key Row: decides outgoing variable Key Element Largest positive value
  • 17. 17 Operation Research Models LPP Big M Method – Prob 7 Cj 6 8 0 0 0 M M M ΞΈ X Y S1 S2 S3 A 1 A 2 A3 RHS (b) M M M A1 A2 A3 1 2 1 1 3 5 βˆ’1 0 0 0 βˆ’1 0 0 0 βˆ’1 1 0 0 0 1 0 0 0 1 10 25 35 10 25/3 7 Zj 4M 9M βˆ’M βˆ’M βˆ’M M M M Zjβˆ’ Cj 4Mβˆ’ 6 9Mβˆ’ 8 βˆ’M βˆ’M βˆ’M 0 0 0
  • 18. 18 Operation Research Models LPP Big M Method – Prob 7 Cj 6 8 0 0 0 M M M ΞΈ X Y S1 S2 S3 A 1 A 2 A3 RHS (b) M M M A1 A2 A3 1 2 1 1 3 5 βˆ’1 0 0 0 βˆ’1 0 0 0 βˆ’1 1 0 0 0 1 0 0 0 1 10 25 35 10 25/3 7 Zj 4M 9M βˆ’M βˆ’M βˆ’M M M M Zjβˆ’ Cj 4Mβˆ’ 6 9Mβˆ’ 8 βˆ’M βˆ’M βˆ’M 0 0 0
  • 19. 19 Operation Research Models LPP Big M Method – Prob 7 Cj 6 8 0 0 0 M M ΞΈ X Y S1 S2 S3 A 1 A2 RHS (b) M M 8 A1 A2 Y 1 2 1/5 1 3 1 βˆ’1 0 0 0 βˆ’1 0 0 0 βˆ’1/5 1 0 0 0 1 0 10 25 7 Zj Zjβˆ’ Cj Modifie d key row
  • 20. 20 Operation Research Models LPP Big M Method – Prob 7 Cj 6 8 0 0 0 M M ΞΈ X Y S1 S2 S3 A 1 A2 RHS (b) M M 8 A1 A2 Y 1 2 1/5 1 3 1 βˆ’1 0 0 0 βˆ’1 0 0 0 βˆ’1/5 1 0 0 0 1 0 10 25 7 Zj Zjβˆ’ Cj Modifie d key row
  • 21. 21 Operation Research Models LPP Big M Method – Prob 7 Old Row βˆ’ KCE Γ— MKR = NR 1 βˆ’ 1 Γ— 1/5 = 4/5 1 βˆ’ 1 Γ— 1 = 0 βˆ’1 βˆ’ 1 Γ— 0 = βˆ’1 0 βˆ’ 1 Γ— 0 = 0 0 βˆ’ 1 Γ— βˆ’1/5 = 1/5 1 βˆ’ 1 Γ— 0 1 0 βˆ’ 1 Γ— 0 0 10 βˆ’ 1 Γ— 7 = 3
  • 22. 22 Operation Research Models LPP Big M Method – Prob 7 Cj 6 8 0 0 0 M M ΞΈ X Y S1 S2 S3 A 1 A2 RHS (b) M M 8 A1 A2 Y 4/5 2 1/5 0 3 1 βˆ’1 0 0 0 βˆ’1 0 1/5 0 βˆ’1/5 1 0 0 0 1 0 3 25 7 Zj Zjβˆ’ Cj MKR NR
  • 23. 23 Operation Research Models LPP Big M Method – Prob 7 Cj 6 8 0 0 0 M M ΞΈ X Y S1 S2 S3 A 1 A2 RHS (b) M M 8 A1 A2 Y 4/5 2 1/5 0 3 1 βˆ’1 0 0 0 βˆ’1 0 1/5 0 βˆ’1/5 1 0 0 0 1 0 3 25 7 Zj Zjβˆ’ Cj MKR NR OR
  • 24. 24 Operation Research Models LPP Big M Method – Prob 7 Old Row βˆ’ KCE Γ— MKR = NR 2 βˆ’ 3 Γ— 1/5 = 7/5 3 βˆ’ 3 Γ— 1 = 0 0 βˆ’ 3 Γ— 0 = 0 βˆ’1 βˆ’ 3 Γ— 0 = βˆ’1 0 βˆ’ 3 Γ— βˆ’1/5 = 3/5 0 βˆ’ 3 Γ— 0 0 1 βˆ’ 3 Γ— 0 1 25 βˆ’ 3 Γ— 7 = 4
  • 25. 25 Operation Research Models LPP Big M Method – Prob 7 Cj 6 8 0 0 0 M M ΞΈ X Y S1 S2 S3 A 1 A2 RHS (b) M M 8 A1 A2 Y 4/5 7/5 1/5 0 0 1 βˆ’1 0 0 0 βˆ’1 0 1/5 3/5 βˆ’1/5 1 0 0 0 1 0 3 4 7 Zj Zjβˆ’ Cj MKR NR NR
  • 26. 26 Operation Research Models LPP Big M Method – Prob 7 Cj 6 8 0 0 0 M M ΞΈ X Y S1 S2 S3 A 1 A2 RHS (b) M M 8 A1 A2 Y 4/5 7/5 1/5 0 0 1 βˆ’1 0 0 0 βˆ’1 0 1/5 3/5 βˆ’1/5 1 0 0 0 1 0 3 4 7 Zj 11𝑀 5 + 8 5 8 βˆ’M βˆ’M 4𝑀 5 βˆ’ 8 5 M M Zjβˆ’ Cj
  • 27. 27 Operation Research Models LPP Big M Method – Prob 7 Cj 6 8 0 0 0 M M ΞΈ X Y S1 S2 S3 A 1 A2 RHS (b) M M 8 A1 A2 Y 4/5 7/5 1/5 0 0 1 βˆ’1 0 0 0 βˆ’1 0 1/5 3/5 βˆ’1/5 1 0 0 0 1 0 3 4 7 Zj 11𝑀 5 + 8 5 8 βˆ’M βˆ’M 4𝑀 5 βˆ’ 8 5 M M Zjβˆ’ Cj 11𝑀 5 + 38 5 0 βˆ’M βˆ’M 4𝑀 5 βˆ’ 8 5 0 0
  • 28. 28 Operation Research Models LPP Big M Method – Prob 7 Cj 6 8 0 0 0 M M ΞΈ X Y S1 S2 S3 A 1 A2 RHS (b) M M 8 A1 A2 Y 4/5 7/5 1/5 0 0 1 βˆ’1 0 0 0 βˆ’1 0 1/5 3/5 βˆ’1/5 1 0 0 0 1 0 3 4 7 Zj 11𝑀 5 + 8 5 8 βˆ’M βˆ’M 4𝑀 5 βˆ’ 8 5 M M Zjβˆ’ Cj 11𝑀 5 + 38 5 0 βˆ’M βˆ’M 4𝑀 5 βˆ’ 8 5 0 0 Key Column: decides incoming Largest positive value
  • 29. 29 Operation Research Models LPP Big M Method – Prob 7 Cj 6 8 0 0 0 M M ΞΈ X Y S1 S2 S3 A 1 A2 RHS (b) M M 8 A1 A2 Y 4/5 7/5 1/5 0 0 1 βˆ’1 0 0 0 βˆ’1 0 1/5 3/5 βˆ’1/5 1 0 0 0 1 0 3 4 7 15/4 20/7 35 Zj 11𝑀 5 + 8 5 8 βˆ’M βˆ’M 4𝑀 5 βˆ’ 8 5 M M Zjβˆ’ Cj 11𝑀 5 + 38 5 0 βˆ’M βˆ’M 4𝑀 5 βˆ’ 8 5 0 0 Key Column: decides incoming Least positive Key Row: decides outgoing variable Largest positive value
  • 30. 30 Operation Research Models LPP Big M Method – Prob 7 Cj 6 8 0 0 0 M ΞΈ X Y S1 S2 S3 A 1 RHS (b) M 6 8 A1 X Y 4/5 7/5 1/5 0 0 1 βˆ’1 0 0 0 βˆ’1 0 1/5 3/5 βˆ’1/5 1 0 0 3 4 7 15/4 20/7 35 Zj 11𝑀 5 + 8 5 8 βˆ’M βˆ’M 4𝑀 5 βˆ’ 8 5 M Zjβˆ’ Cj 11𝑀 5 + 38 5 0 βˆ’M βˆ’M 4𝑀 5 βˆ’ 8 5 0 0
  • 31. 31 Operation Research Models LPP Big M Method – Prob 7 Cj 6 8 0 0 0 M ΞΈ X Y S1 S2 S3 A 1 RHS (b) M 6 8 A1 X Y 4/5 7/5 1/5 0 0 1 βˆ’1 0 0 0 βˆ’1 0 1/5 3/5 βˆ’1/5 1 0 0 3 4 7 Zj Zjβˆ’ Cj
  • 32. 32 Operation Research Models LPP Big M Method – Prob 7 Cj 6 8 0 0 0 M ΞΈ X Y S1 S2 S3 A 1 RHS (b) M 6 8 A1 X Y 4/5 1 1/5 0 0 1 βˆ’1 0 0 0 βˆ’5/7 0 1/5 3/7 βˆ’1/5 1 0 0 3 20/7 7 Zj Zjβˆ’ Cj MKR
  • 33. 33 Operation Research Models LPP Big M Method – Prob 7 Cj 6 8 0 0 0 M ΞΈ X Y S1 S2 S3 A 1 RHS (b) M 6 8 A1 X Y 4/5 1 1/5 0 0 1 βˆ’1 0 0 0 βˆ’5/7 0 1/5 3/7 βˆ’1/5 1 0 0 3 20/7 7 Zj Zjβˆ’ Cj MKR
  • 34. 34 Operation Research Models LPP Big M Method – Prob 7 Old Row βˆ’ KCE Γ— MKR = NR 4/5 βˆ’ 4/5 Γ— 1 = 0 0 βˆ’ 4/5 Γ— 0 = 0 βˆ’1 βˆ’ 4/5 Γ— 0 = βˆ’1 0 βˆ’ 4/5 Γ— βˆ’5/7 = 4/7 1/5 βˆ’ 4/5 Γ— 3/7 = βˆ’1/7 1 βˆ’ 4/5 Γ— 0 = 1 3 βˆ’ 4/5 Γ— 20/7 = 5/7
  • 35. 35 Operation Research Models LPP Big M Method – Prob 7 Cj 6 8 0 0 0 M ΞΈ X Y S1 S2 S3 A 1 RHS (b) M 6 8 A 1 X Y 0 1 1/5 0 0 1 βˆ’1 0 0 4/7 βˆ’5/7 0 βˆ’1/7 3/7 βˆ’1/5 1 0 0 5/7 20/7 7 Zj Zj βˆ’ Cj MKR NR
  • 36. 36 Operation Research Models LPP Big M Method – Prob 7 Old Row βˆ’ KCE Γ— MKR = NR 1/5 βˆ’ 1/5 Γ— 1 = 0 1 βˆ’ 1/5 Γ— 0 = 1 0 βˆ’ 1/5 Γ— 0 = 0 0 βˆ’ 1/5 Γ— βˆ’5/7 = 1/7 βˆ’1/5 βˆ’ 1/5 Γ— 3/7 = βˆ’2/7 0 βˆ’ 1/5 Γ— 0 = 0 7 βˆ’ 1/5 Γ— 20/7 = 45/7
  • 37. 37 Operation Research Models LPP Big M Method – Prob 7 Cj 6 8 0 0 0 M ΞΈ X Y S1 S2 S3 A1 RHS (b) M 6 8 A1 X Y 0 1 0 0 0 1 βˆ’1 0 0 4/7 βˆ’5/7 1/7 βˆ’1/7 3/7 βˆ’2/7 1 0 0 5/7 20/7 45/7 Zj Zjβˆ’ Cj MKR NR NR
  • 38. 38 Operation Research Models LPP Big M Method – Prob 7 Cj 6 8 0 0 0 M ΞΈ X Y S1 S2 S3 A1 RHS (b) M 6 8 A1 X Y 0 1 0 0 0 1 βˆ’1 0 0 4/7 βˆ’5/7 1/7 βˆ’1/7 3/7 βˆ’2/7 1 0 0 5/7 20/7 45/7 Zj 6 8 βˆ’M 4𝑀 7 βˆ’ 22 7 βˆ’ 𝑀 7 + 2 7 M Zjβˆ’ Cj MKR NR NR
  • 39. 39 Operation Research Models LPP Big M Method – Prob 7 Cj 6 8 0 0 0 M ΞΈ X Y S1 S2 S3 A1 RHS (b) M 6 8 A1 X Y 0 1 0 0 0 1 βˆ’1 0 0 4/7 βˆ’5/7 1/7 βˆ’1/7 3/7 βˆ’2/7 1 0 0 5/7 20/7 45/7 Zj 6 8 βˆ’M 4𝑀 7 βˆ’ 22 7 βˆ’ 𝑀 7 + 2 7 M Zjβˆ’ Cj 0 0 βˆ’M 4𝑀 7 βˆ’ 22 7 βˆ’ 𝑀 7 + 2 7 0 Key Column: decides incoming variable Largest positive value
  • 40. 40 Operation Research Models LPP Big M Method – Prob 7 Cj 6 8 0 0 0 M ΞΈ X Y S1 S2 S3 A1 RHS (b) M 6 8 A1 X Y 0 1 0 0 0 1 βˆ’ 1 0 0 4/7 βˆ’5/7 1/7 βˆ’1/7 3/7 βˆ’2/7 1 0 0 5/7 20/7 45/7 5/4 βˆ’4 45 Zj 6 8 βˆ’M 4𝑀 7 βˆ’ 22 7 βˆ’ 𝑀 7 + 2 7 M Zjβˆ’ Cj 0 0 βˆ’M 4𝑀 7 βˆ’ 22 7 βˆ’ 𝑀 7 + 2 7 0 Key Column: decides incoming Largest positive value Least positive Key Row: decides outgoing variable Key Element
  • 41. 41 Operation Research Models LPP Big M Method – Prob 7 Cj 6 8 0 0 0 ΞΈ X Y S1 S2 S3 RHS (b) 0 6 8 S2 X Y 0 1 0 0 0 1 βˆ’ 1 0 0 4/7 βˆ’5/7 1/7 βˆ’1/7 3/7 βˆ’2/7 5/7 20/7 45/7 Zj Zjβˆ’ Cj
  • 42. 42 Operation Research Models LPP Big M Method – Prob 7 Cj 6 8 0 0 0 ΞΈ X Y S1 S2 S3 RHS (b) 0 6 8 S2 X Y 0 1 0 0 0 1 βˆ’ 1 0 0 4/7 βˆ’5/7 1/7 βˆ’1/7 3/7 βˆ’2/7 5/7 20/7 45/7 Zj Zjβˆ’ Cj
  • 43. 43 Operation Research Models LPP Big M Method – Prob 7 Cj 6 8 0 0 0 ΞΈ X Y S1 S2 S3 RHS (b) 0 6 8 S2 X Y 0 1 0 0 0 1 βˆ’7/4 0 0 1 βˆ’5/7 1/7 βˆ’1/4 3/7 βˆ’2/7 5/4 20/7 45/7 Zj Zjβˆ’ Cj MKR
  • 44. 44 Operation Research Models LPP Big M Method – Prob 7 Cj 6 8 0 0 0 ΞΈ X Y S1 S2 S3 RHS (b) 0 6 8 S2 X Y 0 1 0 0 0 1 βˆ’7/4 0 0 1 βˆ’5/7 1/7 βˆ’1/4 3/7 βˆ’2/7 5/4 20/7 45/7 Zj Zjβˆ’ Cj MKR OR
  • 45. 45 Operation Research Models LPP Big M Method – Prob 7 Old Row βˆ’ KCE Γ— MKR = NR 1 βˆ’ βˆ’5/7 Γ— 0 = 1 0 βˆ’ βˆ’5/7 Γ— 0 = 0 0 βˆ’ βˆ’5/7 Γ— βˆ’7/4 = βˆ’5/4 βˆ’5/7 βˆ’ βˆ’5/7 Γ— 1 = 0 3/7 βˆ’ βˆ’5/7 Γ— βˆ’1/4 = 17/28 20/7 βˆ’ βˆ’5/7 Γ— 5/4 15/4
  • 46. 46 Operation Research Models LPP Big M Method – Prob 7 Cj 6 8 0 0 0 ΞΈ X Y S1 S2 S3 RHS (b) 0 6 8 S2 X Y 0 1 0 0 0 1 βˆ’7/4 βˆ’5/4 0 1 0 βˆ’1/4 17/28 βˆ’2/7 5/4 15/4 45/7 Zj Zjβˆ’ Cj MKR NR
  • 47. 47 Operation Research Models LPP Big M Method – Prob 7 Cj 6 8 0 0 0 ΞΈ X Y S1 S2 S3 RHS (b) 0 6 8 S2 X Y 0 1 0 0 0 1 βˆ’7/4 βˆ’5/4 0 1 0 1/7 βˆ’1/4 17/28 βˆ’2/7 5/4 15/4 45/7 Zj Zjβˆ’ Cj MKR NR OR
  • 48. 48 Operation Research Models LPP Big M Method – Prob 7 Old Row βˆ’ KCE Γ— MKR = NR 0 βˆ’ 1/7 Γ— 0 = 0 1 βˆ’ 1/7 Γ— 0 = 1 0 βˆ’ 1/7 Γ— βˆ’7/4 = 1/4 1/7 βˆ’ 1/7 Γ— 1 = 0 βˆ’2/7 βˆ’ 1/7 Γ— βˆ’1/4 = βˆ’1/4 45/7 βˆ’ 1/7 Γ— 5/4 = 25/4
  • 49. 49 Operation Research Models LPP Big M Method – Prob 7 Cj 6 8 0 0 0 ΞΈ X Y S1 S2 S3 RHS (b) 0 6 8 S2 X Y 0 1 0 0 0 1 βˆ’7/4 βˆ’5/4 1/4 1 0 0 βˆ’1/4 17/28 βˆ’1/4 5/4 15/4 25/4 Zj 6 8 βˆ’22/4 0 23/19 Zjβˆ’ Cj 0 0 βˆ’22/4 0 23/19 MKR NR NR
  • 50. 50 π‘π‘šπ‘–π‘›=4π‘₯1+π‘₯2 3π‘₯1+4π‘₯2 β‰₯ 20 βˆ’π‘₯1βˆ’ 5π‘₯2 ≀ βˆ’15 π‘₯1, π‘₯2 β‰₯ 0 Operation Research Models LPP Big M Method – Prob 8
  • 51. 51 π‘π‘šπ‘–π‘›=4π‘₯1+π‘₯2 3π‘₯1+4π‘₯2 β‰₯ 20 βˆ’π‘₯1βˆ’ 5π‘₯2 ≀ βˆ’15 π‘₯1, π‘₯2 β‰₯ 0 Operation Research Models LPP Big M Method – Prob 8 βˆ’π‘₯1βˆ’ 5π‘₯2 + 𝑆2 = βˆ’15 3π‘₯1+4π‘₯2 βˆ’ 𝑆1 = 20 Add slack Surplus variable to convert constraint equation into equality Add slack Surplus variable to convert constraint equation into equality
  • 52. 52 π‘π‘šπ‘–π‘›=4π‘₯1+π‘₯2 3π‘₯1+4π‘₯2 β‰₯ 20 βˆ’π‘₯1βˆ’ 5π‘₯2 ≀ βˆ’15 π‘₯1, π‘₯2 β‰₯ 0 Operation Research Models LPP Big M Method – Prob 8 βˆ’π‘₯1βˆ’ 5π‘₯2 + 𝑆2 = βˆ’15 3π‘₯1+4π‘₯2 βˆ’ 𝑆1 = 20 Add slack Surplus variable to convert constraint equation into equality Add slack Surplus variable to convert constraint equation into equality Ibfs (Initial Basic Feasible Solution) DV and Surplus variables = 0 0 = 20 𝑆2 = βˆ’15
  • 53. 53 π‘π‘šπ‘–π‘›=4π‘₯1+π‘₯2 3π‘₯1+4π‘₯2 β‰₯ 20 π‘₯1+ 5π‘₯2 β‰₯ 15 π‘₯1, π‘₯2 β‰₯ 0 Operation Research Models LPP Big M Method – Prob 8
  • 54. 54 π‘π‘šπ‘–π‘›=4π‘₯1+π‘₯2 3π‘₯1+4π‘₯2 β‰₯ 20 π‘₯1+ 5π‘₯2 β‰₯ 15 π‘₯1, π‘₯2 β‰₯ 0 Operation Research Models LPP Big M Method – Prob 8 π‘₯1+ 5π‘₯2 βˆ’ 𝑆2 = βˆ’15 3π‘₯1+4π‘₯2 βˆ’ 𝑆1 = 20 Add slack Surplus variable to convert constraint equation into equality
  • 55. 55 π‘π‘šπ‘–π‘›=4π‘₯1+π‘₯2 3π‘₯1+4π‘₯2 β‰₯ 20 π‘₯1+ 5π‘₯2 β‰₯ 15 π‘₯1, π‘₯2 β‰₯ 0 Operation Research Models LPP Big M Method – Prob 8 π‘₯1+ 5π‘₯2 βˆ’ 𝑆2 = 15 3π‘₯1+4π‘₯2 βˆ’ 𝑆1 = 20 Add slack Surplus variable to convert constraint equation into equality Ibfs (Initial Basic Feasible Solution) DV and Surplus variables = 0 0 = 20 0 = 15 π‘π‘šπ‘–π‘›=4π‘₯1+π‘₯2 + 0𝑆1 + 0𝑆2
  • 56. 56 π’π’Žπ’Šπ’=4π’™πŸ+π’™πŸ 3π‘₯1+4π‘₯2 β‰₯ 20 π‘₯1+ 5π‘₯2 β‰₯ 15 π‘₯1, π‘₯2 β‰₯ 0 Operation Research Models LPP Big M Method – Prob 8 Add slack Surplus variable to convert constraint equation into equality Ibfs (Initial Basic Feasible Solution) DV and Surplus variables = 0 0 = 20 β‡’ π‘Žπ‘‘π‘‘ π΄π‘Ÿπ‘‘π‘–π‘“π‘–π‘π‘–π‘Žπ‘™ π‘£π‘Žπ‘Ÿπ‘–π‘Žπ‘π‘™π‘’ 𝐴1 0 = 15 β‡’ π‘Žπ‘‘π‘‘ π΄π‘Ÿπ‘‘π‘–π‘“π‘–π‘π‘–π‘Žπ‘™ π‘£π‘Žπ‘Ÿπ‘–π‘Žπ‘π‘™π‘’ 𝐴2 π‘π‘šπ‘–π‘›=4π‘₯1+π‘₯2 + 0𝑆1 + 0𝑆2 3π‘₯1+4π‘₯2 βˆ’ 𝑆1 + A1 = 20 π‘₯1+ 5π‘₯2 βˆ’ 𝑆2+A2 = 15
  • 57. 57 π’π’Žπ’Šπ’=4π’™πŸ+π’™πŸ 3π‘₯1+4π‘₯2 β‰₯ 20 π‘₯1+ 5π‘₯2 β‰₯ 15 π‘₯1, π‘₯2 β‰₯ 0 Operation Research Models LPP Big M Method – Prob 8 Add slack Surplus variable to convert constraint equation into equality π‘π‘šπ‘–π‘›=4π‘₯1+π‘₯2 + 0𝑆1 + 0𝑆2 3π‘₯1+4π‘₯2 βˆ’ 𝑆1 + A1 = 20 π‘₯1+ 5π‘₯2 βˆ’ 𝑆2+A2 = 15 Ibfs (Initial Basic Feasible Solution) DV and Surplus variables = 0 𝐴1 = 20 𝐴2 = 15
  • 58. 58 π’π’Žπ’Šπ’=4π’™πŸ+π’™πŸ 3π‘₯1+4π‘₯2 β‰₯ 20 π‘₯1+ 5π‘₯2 β‰₯ 15 π‘₯1, π‘₯2 β‰₯ 0 Operation Research Models LPP Big M Method – Prob 8 Add slack Surplus variable to convert constraint equation into equality Sign of A1 & A2 𝑖𝑠 + or βˆ’ 𝑣𝑒 𝑖𝑛 π‘œπ‘π‘—π‘’π‘π‘‘π‘–π‘£π‘’ π‘“π‘’π‘›π‘π‘‘π‘–π‘œπ‘› 𝑑𝑒𝑝𝑒𝑛𝑑𝑠 π‘’π‘π‘œπ‘› π‘‘β„Žπ‘’ π‘π‘Ÿπ‘œπ‘π‘™π‘’π‘š 𝑖. 𝑒. π‘π‘šπ‘–π‘› π‘œπ‘Ÿ π‘π‘šπ‘Žπ‘₯ π‘π‘šπ‘–π‘›=4π‘₯1+π‘₯2 + 0𝑆1 + 0𝑆2 3π‘₯1+4π‘₯2 βˆ’ 𝑆1 + A1 = 20 π‘₯1+ 5π‘₯2 βˆ’ 𝑆2+A2 = 15 Ibfs (Initial Basic Feasible Solution) DV and Surplus variables = 0 𝐴1 = 20 𝐴2 = 15
  • 59. 59 π’π’Žπ’Šπ’=4π’™πŸ+π’™πŸ 3π‘₯1+4π‘₯2 β‰₯ 20 π‘₯1+ 5π‘₯2 β‰₯ 15 π‘₯1, π‘₯2 β‰₯ 0 Operation Research Models LPP Big M Method – Prob 8 π‘₯1+ 5π‘₯2 βˆ’ 𝑆2+A2 = 15 3π‘₯1+4π‘₯2 βˆ’ 𝑆1 + A1 = 20 Add slack Surplus variable to convert constraint equation into equality Sign of A1 & A2 𝑖𝑠 + or βˆ’ 𝑣𝑒 𝑖𝑛 π‘œπ‘π‘—π‘’π‘π‘‘π‘–π‘£π‘’ π‘“π‘’π‘›π‘π‘‘π‘–π‘œπ‘› 𝑑𝑒𝑝𝑒𝑛𝑑𝑠 π‘’π‘π‘œπ‘› π‘‘β„Žπ‘’ π‘π‘Ÿπ‘œπ‘π‘™π‘’π‘š 𝑖. 𝑒. π‘π‘šπ‘–π‘› π‘œπ‘Ÿ π‘π‘šπ‘Žπ‘₯ π‘π‘šπ‘–π‘› β‡’ MA1+MA2 π‘π‘šπ‘Žπ‘₯ β‡’ βˆ’MA1βˆ’MA2
  • 60. 60 π’π’Žπ’Šπ’=4π’™πŸ+π’™πŸ 3π‘₯1+4π‘₯2 β‰₯ 20 π‘₯1+ 5π‘₯2 β‰₯ 15 π‘₯1, π‘₯2 β‰₯ 0 Operation Research Models LPP Big M Method – Prob 8 π‘₯1+ 5π‘₯2 βˆ’ 𝑆2+A2 = 15 3π‘₯1+4π‘₯2 βˆ’ 𝑆1 + A1 = 20 Add slack Surplus variable to convert constraint equation into equality Sign of A1 & A2 𝑖𝑠 + or βˆ’ 𝑣𝑒 𝑖𝑛 π‘œπ‘π‘—π‘’π‘π‘‘π‘–π‘£π‘’ π‘“π‘’π‘›π‘π‘‘π‘–π‘œπ‘› 𝑑𝑒𝑝𝑒𝑛𝑑𝑠 π‘’π‘π‘œπ‘› π‘‘β„Žπ‘’ π‘π‘Ÿπ‘œπ‘π‘™π‘’π‘š 𝑖. 𝑒. π‘π‘šπ‘–π‘› π‘œπ‘Ÿ π‘π‘šπ‘Žπ‘₯ π‘π‘šπ‘–π‘›=4π‘₯1+π‘₯2 + 0𝑆1 + 0𝑆2 + MA1+MA2 Ibfs (Initial Basic Feasible Solution) DV and Surplus variables = 0 𝐴1 = 20 𝐴2 = 15
  • 61. 61 Operation Research Models LPP Big M Method – Prob 8 Cj 4 1 0 0 M M ΞΈ π‘₯1 π‘₯2 S1 S2 A 1 A 2 RHS (b) M M A1 A2 20 15 Zj
  • 62. 62 Operation Research Models LPP Big M Method – Prob 8 Cj 4 1 0 0 M M ΞΈ π‘₯1 π‘₯2 S1 S2 A 1 A 2 RHS (b) M M A1 A2 3 1 4 5 βˆ’1 0 0 βˆ’1 1 0 0 1 20 15 Zj
  • 63. 63 Operation Research Models LPP Big M Method – Prob 8 Cj 4 1 0 0 M M ΞΈ π‘₯1 π‘₯2 S1 S2 A 1 A 2 RHS (b) M M A1 A2 3 1 4 5 βˆ’1 0 0 βˆ’1 1 0 0 1 20 15 Zj 4 M 9 M βˆ’M βˆ’M M M
  • 64. 64 Operation Research Models LPP Big M Method – Prob 8 Cj 4 1 0 0 M M ΞΈ π‘₯1 π‘₯2 S1 S2 A 1 A 2 RHS (b) M M A1 A2 3 1 4 5 βˆ’1 0 0 βˆ’1 1 0 0 1 20 15 5 3 Zj 4M 9M βˆ’M βˆ’M M M Zjβˆ’Cj 4Mβˆ’4 9Mβˆ’1 βˆ’M βˆ’M 0 0 Max positive value Key Column: decides incoming Least positive Key Row: decides outgoing variable Key Element
  • 65. 65 Operation Research Models LPP Big M Method – Prob 8 Cj 4 1 0 0 M ΞΈ π‘₯1 π‘₯2 S1 S2 A 1 RHS (b) M 1 A1 π‘₯2 3 1 4 5 βˆ’1 0 0 βˆ’1 1 0 0 15 Zj Zjβˆ’Cj
  • 66. 66 Operation Research Models LPP Big M Method – Prob 8 Cj 4 1 0 0 M ΞΈ π‘₯1 π‘₯2 S1 S2 A 1 RHS (b) M 1 A1 π‘₯2 3 1/5 4 1 βˆ’1 0 0 βˆ’1/5 1 0 20 15/5=3 Zj Zjβˆ’Cj Old Row MKR
  • 67. 67 Operation Research Models LPP Big M Method – Prob 8 Old Row βˆ’ KCE Γ— MKR = NR 3 βˆ’ 4 Γ— 1/5 = 11/5 4 βˆ’ 4 Γ— 1 = 0 βˆ’1 βˆ’ 4 Γ— 0 = βˆ’1 0 βˆ’ 4 Γ— βˆ’1/5 = 4/5 1 βˆ’ 4 Γ— 0 = 1 20 βˆ’ 4 Γ— 3 = 8
  • 68. 68 Operation Research Models LPP Big M Method – Prob 8 Cj 4 1 0 0 M ΞΈ π‘₯1 π‘₯2 S1 S2 A 1 RHS (b) M 1 A1 π‘₯2 11/5 1/5 0 1 βˆ’1 0 4/5 βˆ’1/5 1 0 8 3 Zj Zjβˆ’Cj New Row MKR
  • 69. 69 Operation Research Models LPP Big M Method – Prob 8 Cj 4 1 0 0 M ΞΈ π‘₯1 π‘₯2 S1 S2 A 1 RHS (b) M 1 A1 π‘₯2 11/5 1/5 0 1 βˆ’1 0 4/5 βˆ’1/5 1 0 8 3 Zj 11𝑀 5 + 1 5 1 βˆ’M 4𝑀 5 βˆ’ 1 5 M Zjβˆ’Cj
  • 70. 70 Operation Research Models LPP Big M Method – Prob 8 Cj 4 1 0 0 M ΞΈ π‘₯1 π‘₯2 S1 S2 A 1 RHS (b) M 1 A1 π‘₯2 11/5 1/5 0 1 βˆ’1 0 4/5 βˆ’1/5 1 0 8 3 Zj 11𝑀 5 + 1 5 1 βˆ’M 4𝑀 5 βˆ’ 1 5 M Zjβˆ’Cj 11𝑀 + 1 βˆ’ 20 5 0 βˆ’M 4𝑀 βˆ’ 1 5 0
  • 71. 71 Operation Research Models LPP Big M Method – Prob 8 Cj 4 1 0 0 M ΞΈ π‘₯1 π‘₯2 S1 S2 A 1 RHS (b) M 1 A1 π‘₯2 11/5 1/5 0 1 βˆ’1 0 4/5 βˆ’1/5 1 0 8 3 Zj 11𝑀 5 + 1 5 1 βˆ’M 4𝑀 5 βˆ’ 1 5 M Zjβˆ’Cj 11𝑀 βˆ’ 19 5 0 βˆ’M 4𝑀 βˆ’ 1 5 0
  • 72. 72 Operation Research Models LPP Big M Method – Prob 8 Cj 4 1 0 0 M ΞΈ π‘₯1 π‘₯2 S1 S2 A 1 RHS (b) M 1 A 1 π‘₯2 11/5 1/5 0 1 βˆ’1 0 4/5 βˆ’1/5 1 0 8 3 Zj 11𝑀 5 + 1 5 1 βˆ’M 4𝑀 5 βˆ’ 1 5 M Zjβˆ’Cj 11𝑀 βˆ’ 19 5 0 βˆ’M 4𝑀 βˆ’ 1 5 0 Max positive value Key Column: decides incoming
  • 73. 73 Operation Research Models LPP Big M Method – Prob 8 Cj 4 1 0 0 M ΞΈ π‘₯1 π‘₯2 S1 S2 A 1 RHS (b) M 1 A 1 π‘₯2 11/5 1/5 0 1 βˆ’1 0 4/5 βˆ’1/5 1 0 8 3 40/11 15 Zj 11𝑀 5 + 1 5 1 βˆ’M 4𝑀 5 βˆ’ 1 5 M Zjβˆ’Cj 11𝑀 βˆ’ 19 5 0 βˆ’M 4𝑀 βˆ’ 1 5 0 Max positive value Key Column: decides incoming Least positive Key Row: decides outgoing variable Key Element
  • 74. 74 Operation Research Models LPP Big M Method – Prob 8 Cj 4 1 0 0 ΞΈ π‘₯1 π‘₯2 S1 S2 RHS (b) 4 1 π‘₯1 π‘₯2 11/5 1/5 0 1 βˆ’1 0 4/5 βˆ’1/5 8 3 40/11 15 Zj Zjβˆ’Cj
  • 75. 75 Operation Research Models LPP Big M Method – Prob 8 Cj 4 1 0 0 ΞΈ π‘₯1 π‘₯2 S1 S2 RHS (b) 4 1 π‘₯1 π‘₯2 1 1/5 0 1 βˆ’5/11 0 4/11 βˆ’1/5 40/11 3 15 Zj Zjβˆ’Cj MKR
  • 76. 76 Operation Research Models LPP Big M Method – Prob 8 Cj 4 1 0 0 ΞΈ π‘₯1 π‘₯2 S1 S2 RHS (b) 4 1 π‘₯1 π‘₯2 1 1/5 0 1 βˆ’5/11 0 4/11 βˆ’1/5 40/11 3 15 Zj Zjβˆ’Cj Old Row MKR
  • 77. 77 Operation Research Models LPP Big M Method – Prob 8 Old Row βˆ’ KCE Γ— MKR = NR 1/5 βˆ’ 1/5 Γ— 1 = 0 1 βˆ’ 1/5 Γ— 0 = 1 0 βˆ’ 1/5 Γ— βˆ’5/11 = 1/11 βˆ’1/5 βˆ’ 1/5 Γ— 4/11 = βˆ’15/55 = βˆ’3/11 3 βˆ’ 1/5 Γ— 40/11 = 125/55 = 25/11
  • 78. 78 Operation Research Models LPP Big M Method – Prob 8 Cj 4 1 0 0 ΞΈ π‘₯1 π‘₯2 S1 S2 RHS (b) 4 1 π‘₯1 π‘₯2 1 0 0 1 βˆ’5/11 1/11 4/11 βˆ’3/11 40/11 25/11 15 Zj Zjβˆ’Cj New Row MKR
  • 79. 79 Operation Research Models LPP Big M Method – Prob 8 Cj 4 1 0 0 ΞΈ π‘₯1 π‘₯2 S1 S2 RHS (b) 4 1 π‘₯1 π‘₯2 1 0 0 1 βˆ’5/11 1/11 4/11 βˆ’3/11 40/11 25/11 15 Zj 4 1 βˆ’19/11 13/11 Zjβˆ’Cj 0 0 βˆ’19/11 13/11 Max positive value Key Column: decides incoming variable
  • 80. 80 Operation Research Models LPP Big M Method – Prob 8 Cj 4 1 0 0 ΞΈ π‘₯1 π‘₯2 S1 S2 RHS (b) 4 1 π‘₯1 π‘₯2 1 0 0 1 βˆ’5/11 1/11 4/11 βˆ’3/11 40/11 25/11 10 βˆ’ Zj 4 1 βˆ’19/11 13/11 Zjβˆ’Cj 0 0 βˆ’19/11 13/11 Max positive value Key Column: decides incoming variable Least positive Key Row: decides outgoing variable Key Element
  • 81. 81 Operation Research Models LPP Big M Method – Prob 8 Cj 4 1 0 0 ΞΈ π‘₯1 π‘₯2 S1 S2 RHS (b) 0 1 S2 π‘₯2 1 0 0 1 βˆ’5/11 1/11 4/11 βˆ’3/11 40/11 25/11 Zj Zjβˆ’Cj
  • 82. 82 Operation Research Models LPP Big M Method – Prob 8 Cj 4 1 0 0 ΞΈ π‘₯1 π‘₯2 S1 S2 RHS (b) 0 1 S2 π‘₯2 11/4 0 0 1 βˆ’5/4 1/11 1 βˆ’3/11 10 25/11 Zj Zjβˆ’Cj MKR
  • 83. 83 Operation Research Models LPP Big M Method – Prob 8 Cj 4 1 0 0 ΞΈ π‘₯1 π‘₯2 S1 S2 RHS (b) 0 1 S2 π‘₯2 11/4 0 0 1 βˆ’5/4 1/11 1 βˆ’3/11 10 25/11 Zj Zjβˆ’Cj MKR Old Row
  • 84. 84 Operation Research Models LPP Big M Method – Prob 8 Old Row βˆ’ KCE Γ— MKR = NR 0 βˆ’ βˆ’3/11 Γ— 11/4 = 3/4 1 βˆ’ βˆ’3/11 Γ— 0 = 1 1/11 βˆ’ βˆ’3/11 Γ— βˆ’5/4 = 1 11 βˆ’ 3 11 Γ— 5 4 = 1 11 βˆ’ 15 44 = βˆ’ 11 44 =βˆ’ 1 4 βˆ’3/11 βˆ’ βˆ’3/11 Γ— 1 = 0 25/11 βˆ’ βˆ’3/11 Γ— 10 25 11 + 30 11 = 55 11 = 5
  • 85. 85 Operation Research Models LPP Big M Method – Prob 8 Cj 4 1 0 0 ΞΈ π‘₯1 π‘₯2 S1 S2 RHS (b) 0 1 S2 π‘₯2 11/4 3/4 0 1 βˆ’5/4 βˆ’1/4 1 0 10 5 Zj Zjβˆ’Cj MKR New Row
  • 86. 86 Operation Research Models LPP Big M Method – Prob 8 Cj 4 1 0 0 ΞΈ π‘₯1 π‘₯2 S1 S2 RHS (b) 0 1 S2 π‘₯2 11/4 3/4 0 1 βˆ’5/4 βˆ’1/4 1 0 10 5 Zj 3/4 1 βˆ’1/4 0 Zjβˆ’Cj
  • 87. 87 Operation Research Models LPP Big M Method – Prob 8 Cj 4 1 0 0 ΞΈ π‘₯1 π‘₯2 S1 S2 RHS (b) 0 1 S2 π‘₯2 11/4 3/4 0 1 βˆ’5/4 βˆ’1/4 1 0 10 5 Zj 3/4 1 βˆ’1/4 0 5 Zjβˆ’Cj βˆ’13/4 0 βˆ’1/4 0 So, the optimal Solution we get without π‘₯1 The optimal Solution π‘₯1 = 0; π‘₯2 = 5 π‘Žπ‘›π‘‘ π‘π‘šπ‘–π‘›= 4π‘₯1+π‘₯2= 4Γ—0 + 5 = 5
  • 88. 88 π‘π‘šπ‘Žπ‘₯ = π‘₯1+5π‘₯2 3π‘₯1+ 4π‘₯2 ≀ 6 π‘₯1+3π‘₯2 β‰₯ 2 π‘₯1, π‘₯2 β‰₯ 0 Operation Research Models LPP Big M Method – Prob 9
  • 89. 89 Operation Research Models LPP Big M Method – Prob 9 π‘₯1+ 3π‘₯2 βˆ’ 𝑆2 + 𝐴1 = 2 π‘₯1, π‘₯2, 𝑆1 , 𝑆2 , 𝐴1 β‰₯ 0 3π‘₯1+4π‘₯2 + 𝑆1 = 6 Add slack and Surplus variable to convert constraint equation into equality π‘π‘šπ‘Žπ‘₯ = π‘₯1+5π‘₯2 3π‘₯1+ 4π‘₯2 ≀ 6 π‘₯1+3π‘₯2 β‰₯ 2 π‘₯1, π‘₯2 β‰₯ 0
  • 90. 90 Operation Research Models LPP Big M Method – Prob 9 Ibfs (Initial Basic Feasible Solution) DV and Surplus variables = 0 𝑆1 = 6 𝐴1 = 2 π‘π‘šπ‘Žπ‘₯= π‘₯1+ 5π‘₯2 + 0𝑆1 + 0𝑆2 βˆ’ MA1
  • 91. 91 Operation Research Models LPP Big M Method – Prob 9 Cj 1 5 0 0 βˆ’M ΞΈ π‘₯1 π‘₯2 S1 S2 A1 RHS (b) 0 βˆ’M S1 A1 6 2 Zj π‘π‘šπ‘Žπ‘₯= π‘₯1+ 5π‘₯2 + 0𝑆1 + 0𝑆2 βˆ’ MA1
  • 92. 92 Operation Research Models LPP Big M Method – Prob 9 Cj 1 5 0 0 βˆ’M ΞΈ π‘₯1 π‘₯2 S1 S2 A1 RHS (b) 0 βˆ’M S1 A1 3 1 4 3 1 0 0 βˆ’1 0 1 6 2 Zj π‘π‘šπ‘Žπ‘₯= π‘₯1+ 5π‘₯2 + 0𝑆1 + 0𝑆2 βˆ’ MA1
  • 93. 93 Operation Research Models LPP Big M Method – Prob 9 Cj 1 5 0 0 βˆ’M ΞΈ π‘₯1 π‘₯2 S1 S2 A1 RHS (b) 0 βˆ’M S1 A1 3 1 4 3 1 0 0 βˆ’1 0 1 6 2 Zj βˆ’M βˆ’3M 0 M βˆ’M π‘π‘šπ‘Žπ‘₯= π‘₯1+ 5π‘₯2 + 0𝑆1 + 0𝑆2 βˆ’ MA1
  • 94. 94 Operation Research Models LPP Big M Method – Prob 9 Cj 1 5 0 0 βˆ’M ΞΈ π‘₯1 π‘₯2 S1 S2 A1 RHS (b) 0 βˆ’M S1 A1 3 1 4 3 1 0 0 βˆ’1 0 1 6 2 Zj βˆ’M βˆ’3M 0 M βˆ’M Cj βˆ’ Zj 1+M 5+3M 0 βˆ’M 0 π‘π‘šπ‘Žπ‘₯= π‘₯1+ 5π‘₯2 + 0𝑆1 + 0𝑆2 βˆ’ MA1
  • 95. 95 Operation Research Models LPP Big M Method – Prob 9 Cj 1 5 0 0 βˆ’M ΞΈ π‘₯1 π‘₯2 S1 S2 A1 RHS (b) 0 βˆ’M S1 A1 3 1 4 3 1 0 0 βˆ’1 0 1 6 2 Zj βˆ’M βˆ’3M 0 M βˆ’M Cj βˆ’ Zj 1+M 5+3M 0 βˆ’M 0 Max positive value Key Column: decides incoming variable
  • 96. 96 Operation Research Models LPP Big M Method – Prob 9 Cj 1 5 0 0 βˆ’M ΞΈ = 𝒃 𝒂 π‘₯1 π‘₯2 S1 S2 A1 RHS (b) 0 βˆ’M S1 A1 3 1 4 3 1 0 0 βˆ’1 0 1 6 2 6/4 = 3/2 2/3 Zj βˆ’M βˆ’3M 0 M βˆ’M Cj βˆ’ Zj 1+M 5+3M 0 βˆ’M 0 Max positive value Key Column: decides incoming Least positive Key Row: decides outgoing variable Key Element Least positive Key Row: decides outgoing variable Key Element
  • 97. 97 Operation Research Models LPP Big M Method – Prob 9 Cj 1 5 0 0 ΞΈ = 𝒃 𝒂 π‘₯1 π’™πŸ S1 S2 RHS (b) 0 5 S1 π’™πŸ 3 1 4 3 1 0 0 βˆ’1 6 2 Zj Cj βˆ’ Zj
  • 98. 98 Operation Research Models LPP Big M Method – Prob 9 Cj 1 5 0 0 ΞΈ = 𝒃 𝒂 π‘₯1 π’™πŸ S1 S2 RHS (b) 0 5 S1 π’™πŸ 3 1/3 4 1 1 0 0 βˆ’1/3 6 2/3 Zj Cj βˆ’ Zj MKR
  • 99. 99 Operation Research Models LPP Big M Method – Prob 9 Cj 1 5 0 0 ΞΈ = 𝒃 𝒂 π‘₯1 π’™πŸ S1 S2 RHS (b) 0 5 S1 π’™πŸ 3 1/3 4 1 1 0 0 βˆ’1/3 6 2/3 Zj Cj βˆ’ Zj MKR OR
  • 100. 100 Operation Research Models LPP Big M Method – Prob 9 Old Row βˆ’ KCE Γ— MKR = NR 3 βˆ’ 4 Γ— 1/3 = 5/3 4 βˆ’ 4 Γ— 1 = 0 1 βˆ’ 4 Γ— 0 = 1 0 βˆ’ 4 Γ— βˆ’1/3 = 4/3 6 βˆ’ 4 Γ— 2/3 = 10/3
  • 101. 101 Operation Research Models LPP Big M Method – Prob 9 Cj 1 5 0 0 ΞΈ = 𝒃 𝒂 π‘₯1 π’™πŸ S1 S2 RHS (b) 0 5 S1 π’™πŸ 5/3 1/3 0 1 1 0 4/3 βˆ’1/3 10/3 2/3 Zj 5/3 5 0 βˆ’5/3 Cj βˆ’ Zj βˆ’2/3 0 0 5/3 MKR NR Max positive value Key Column: decides incoming variable
  • 102. 102 Operation Research Models LPP Big M Method – Prob 9 Cj 1 5 0 0 ΞΈ = 𝒃 𝒂 π‘₯1 π’™πŸ S1 S2 RHS (b) 0 5 S1 π’™πŸ 5/3 1/3 0 1 1 0 4/3 βˆ’1/3 10/3 2/3 5/2 βˆ’ Zj 5/3 5 0 βˆ’5/3 Cj βˆ’ Zj βˆ’2/3 0 0 5/3 Max positive value Key Column: decides incoming variable Least positive Key Row: decides outgoing variable Key Element
  • 103. 103 Operation Research Models LPP Big M Method – Prob 9 Cj 1 5 0 0 ΞΈ = 𝒃 𝒂 π‘₯1 π’™πŸ S1 S2 RHS (b) 0 5 S2 π’™πŸ 5/3 1/3 0 1 1 0 4/3 βˆ’1/3 10/3 2/3 5/2 βˆ’ Zj 5/3 5 0 βˆ’5/3 Cj βˆ’ Zj βˆ’2/3 0 0 5/3
  • 104. 104 Operation Research Models LPP Big M Method – Prob 9 Cj 1 5 0 0 ΞΈ = 𝒃 𝒂 π‘₯1 π’™πŸ S1 S2 RHS (b) 0 5 S2 π’™πŸ 5/3 1/3 0 1 1 0 4/3 βˆ’1/3 10/3 2/3 5/2 βˆ’ Zj 5/3 5 0 βˆ’5/3 Cj βˆ’ Zj βˆ’2/3 0 0 5/3
  • 105. 105 Operation Research Models LPP Big M Method – Prob 9 Cj 1 5 0 0 ΞΈ = 𝒃 𝒂 π‘₯1 π’™πŸ S1 S2 RHS (b) 0 5 S2 π’™πŸ 5/3 1/3 0 1 1 0 4/3 βˆ’1/3 10/3 2/3 Zj Cj βˆ’ Zj
  • 106. 106 Operation Research Models LPP Big M Method – Prob 9 Cj 1 5 0 0 ΞΈ = 𝒃 𝒂 π‘₯1 π’™πŸ S1 S2 RHS (b) 0 5 S2 π’™πŸ 5/4 1/3 0 1 3/4 0 1 βˆ’1/3 5/2 2/3 Zj Cj βˆ’ Zj MKR
  • 107. 107 Operation Research Models LPP Big M Method – Prob 9 Cj 1 5 0 0 ΞΈ = 𝒃 𝒂 π‘₯1 π’™πŸ S1 S2 RHS (b) 0 5 S2 π’™πŸ 5/4 1/3 0 1 3/4 0 1 βˆ’1/3 5/2 2/3 Zj Cj βˆ’ Zj MKR OR
  • 108. 108 Operation Research Models LPP Big M Method – Prob 9 Old Row βˆ’ KCE Γ— MKR = NR 1/3 βˆ’ βˆ’1/3 Γ— 5/4 = 3/4 1 βˆ’ βˆ’1/3 Γ— 0 = 1 0 βˆ’ βˆ’1/3 Γ— 3/4 = 1/4 βˆ’1/3 βˆ’ βˆ’1/3 Γ— 1 = 0 2/3 βˆ’ βˆ’1/3 Γ— 5/2 = 3/2 2 3 + 1 3 Γ— 5 2 = 2 3 + 5 6 = 4 + 5 6 = 9 6 = 3 2
  • 109. 109 Operation Research Models LPP Big M Method – Prob 9 Cj 1 5 0 0 ΞΈ = 𝒃 𝒂 π‘₯1 π’™πŸ S1 S2 RHS (b) 0 5 S2 π’™πŸ 5/4 3/4 0 1 3/4 1/4 1 0 5/2 3/2 Zj Cj βˆ’ Zj MKR NR
  • 110. 110 Operation Research Models LPP Big M Method – Prob 9 Cj 1 5 0 0 ΞΈ = 𝒃 𝒂 π‘₯1 π’™πŸ S1 S2 RHS (b) 0 5 S2 π’™πŸ 5/4 3/4 0 1 3/4 1/4 1 0 5/2 3/2 Zj 15/4 5 5/4 0 Cj βˆ’ Zj βˆ’11/4 0 βˆ’5/4 0 MKR NR So, the optimal Solution we get without π‘₯1 The optimal Solution π‘₯1 = 0; π‘₯2 = 3 2 and π‘π‘šπ‘Žπ‘₯ = π‘₯1 + 5π‘₯2 = 0 + 15 2 , π‘π‘šπ‘Žπ‘₯ = 15 2
  • 111. Dr. L K Bhagi, School of Mechanical Engineering, LPU 111
  • 112. Dr. L K Bhagi, School of Mechanical Engineering, LPU 112
  • 113. Dr. L K Bhagi, School of Mechanical Engineering, LPU 113
  • 114. Dr. L K Bhagi, School of Mechanical Engineering, LPU 114
  • 115. Dr. L K Bhagi, School of Mechanical Engineering, LPU 115 There is no region that satisfies both the constraints. This LP is infeasible Refer: Slide no. 97
  • 117. 117 Operation Research Models LPP Two Phase Method LPP using Graphical Method LPP using iteration Method ≀ inequality = and β‰₯ inequality Simplex Method Big M Method Two Phase Method
  • 118. 118 Operation Research Models LPP Two Phase Method In Two Phase Method, the whole procedure of solving a linear programming problem (LPP) involving artificial variables is divided into two phases. In phase I, we form a new objective function (Auxiliary function) by assigning zero to all variable (slack and surplus variables) and +1 or βˆ’1 to each of the artificial variables π‘π‘šπ‘–π‘› or π‘π‘šπ‘Žπ‘₯ . Then we try to eliminate the artificial variables from the basis. The solution at the end of phase I serves as a basic feasible solution for phase II. In phase II, Auxiliary function is replaced by the original objective function and the usual simplex algorithm is used to find an optimal solution.
  • 119. 119 π‘π‘šπ‘–π‘› = π‘₯1+π‘₯2 2π‘₯1+ π‘₯2 β‰₯ 4 π‘₯1+7π‘₯2 β‰₯ 7 π‘₯1, π‘₯2 β‰₯ 0 Operation Research Models LPP Two Phase Method – Prob 10
  • 120. 120 Operation Research Models LPP Two Phase Method – Prob 10 π‘₯1+ 7π‘₯2 βˆ’ 𝑆2 + 𝐴2 = 7 π‘₯1, π‘₯2, 𝑆1 , 𝑆2 , 𝐴1 , 𝐴2 β‰₯ 0 2π‘₯1+π‘₯2 βˆ’ 𝑆1 + 𝐴1 = 4 Add Surplus variable and artificial variable to convert constraint equation into equality π‘π‘šπ‘–π‘› = π‘₯1+π‘₯2 2π‘₯1+ π‘₯2 β‰₯ 4 π‘₯1+7π‘₯2 β‰₯ 7 π‘₯1, π‘₯2 β‰₯ 0 Ibfs (Initial Basic Feasible Solution) DV and Surplus variables = 0 𝐴1 = 4 𝐴2 = 7 π‘π‘šπ‘–π‘›= 0 Γ— π‘₯1+ 0 Γ— π‘₯2 + 0 Γ— 𝑆1 + 0 Γ— 𝑆2 + 1 Γ— A1 + 1 Γ— A2 Create Auxiliary function
  • 121. 121 Operation Research Models LPP Two Phase Method – Prob 10 Cj 0 0 0 0 1 1 ΞΈ π‘₯1 π‘₯2 S1 S2 A1 A2 RHS (b) 1 1 A1 A2 4 7 Zj π‘π‘šπ‘–π‘›= 0 Γ— π‘₯1+ 0 Γ— π‘₯2 + 0 Γ— 𝑆1 + 0 Γ— 𝑆2 + 1 Γ— A1 + 1 Γ— A2
  • 122. 122 Operation Research Models LPP Two Phase Method – Prob 10 Cj 0 0 0 0 1 1 ΞΈ π‘₯1 π‘₯2 S1 S2 A1 A2 RHS (b) 1 1 A1 A2 2 1 1 7 βˆ’1 0 0 βˆ’1 1 0 0 1 4 7 Zj π‘π‘šπ‘–π‘›= 0 Γ— π‘₯1+ 0 Γ— π‘₯2 + 0 Γ— 𝑆1 + 0 Γ— 𝑆2 + 1 Γ— A1 + 1 Γ— A2
  • 123. 123 Operation Research Models LPP Two Phase Method – Prob 10 Cj 0 0 0 0 1 1 ΞΈ π‘₯1 π‘₯2 S1 S2 A1 A2 RHS (b) 1 1 A1 A2 2 1 1 7 βˆ’1 0 0 βˆ’1 1 0 0 1 4 7 Zj 3 8 βˆ’1 βˆ’1 1 1
  • 124. 124 Operation Research Models LPP Two Phase Method – Prob 10 Cj 0 0 0 0 1 1 ΞΈ π‘₯1 π‘₯2 S1 S2 A1 A2 RHS (b) 1 1 A1 A2 2 1 1 7 βˆ’1 0 0 βˆ’1 1 0 0 1 4 7 Zj 3 8 βˆ’1 βˆ’1 1 1 Zjβˆ’Cj 3 8 βˆ’1 βˆ’1 0 0 Max positive value Key Column: decides incoming
  • 125. 125 Operation Research Models LPP Two Phase Method – Prob 10 Cj 0 0 0 0 1 1 ΞΈ= 𝒃 𝒂 π‘₯1 π‘₯2 S1 S2 A1 A2 RHS (b) 1 1 A1 A2 2 1 1 7 βˆ’1 0 0 βˆ’1 1 0 0 1 4 7 4 1 Zj 3 8 βˆ’1 βˆ’1 1 1 Zjβˆ’Cj 3 8 βˆ’1 βˆ’1 0 0 Max positive value Key Column: decides incoming Least positive Key Row: decides outgoing variable Key Element
  • 126. 126 Operation Research Models LPP Two Phase Method – Prob 10 Cj 0 0 0 0 1 ΞΈ= 𝒃 𝒂 π‘₯1 π‘₯2 S1 S2 A1 RHS (b) 1 0 A1 x2 2 1/7 1 1 βˆ’1 0 0 βˆ’1/7 1 0 1 Zj Zjβˆ’Cj
  • 127. 127 Operation Research Models LPP Two Phase Method – Prob 10 Cj 0 0 0 0 1 ΞΈ= 𝒃 𝒂 π‘₯1 π‘₯2 S1 S2 A1 RHS (b) 1 0 A1 x2 2 1/7 1 1 βˆ’1 0 0 βˆ’1/7 1 0 4 1 Zj Zjβˆ’Cj MKR OR
  • 128. 128 Operation Research Models LPP Big M Method – Prob 10 Old Row βˆ’ KCE Γ— MKR = NR 2 βˆ’ 1 Γ— 1/7 = 13/7 1 βˆ’ 1 Γ— 1 = 0 βˆ’1 βˆ’ 1 Γ— 0 = βˆ’1 0 βˆ’ 1 Γ— βˆ’1/7 = 1/7 1 βˆ’ 1 Γ— 0 = 1 4 βˆ’ 1 Γ— 1 = 3
  • 129. 129 Operation Research Models LPP Two Phase Method – Prob 10 Cj 0 0 0 0 1 ΞΈ= 𝒃 𝒂 π‘₯1 π‘₯2 S1 S2 A1 RHS (b) 1 0 A1 x2 13/7 1/7 0 1 βˆ’1 0 1/7 βˆ’1/7 1 0 3 1 Zj Zjβˆ’Cj MKR NR
  • 130. 130 Operation Research Models LPP Two Phase Method – Prob 10 Cj 0 0 0 0 1 ΞΈ= 𝒃 𝒂 π‘₯1 π‘₯2 S1 S2 A1 RHS (b) 1 0 A1 x2 13/7 1/7 0 1 βˆ’1 0 1/7 βˆ’1/7 1 0 3 1 Zj 13/7 0 βˆ’1 1/7 1 Zjβˆ’Cj 13/7 0 βˆ’1 1/7 0 Max positive value Key Column: decides incoming
  • 131. 131 Operation Research Models LPP Two Phase Method – Prob 10 Cj 0 0 0 0 1 ΞΈ= 𝒃 𝒂 π‘₯1 π‘₯2 S1 S2 A1 RHS (b) 1 0 A1 x2 13/7 1/7 0 1 βˆ’1 0 1/7 βˆ’1/7 1 0 3 1 21/13 7 Zj 13/7 0 βˆ’1 1/7 1 Zjβˆ’Cj 13/7 0 βˆ’1 1/7 0 Max positive value Key Column: decides incoming
  • 132. 132 Operation Research Models LPP Two Phase Method – Prob 10 Cj 0 0 0 0 1 ΞΈ= 𝒃 𝒂 π‘₯1 π‘₯2 S1 S2 A1 RHS (b) 1 0 A1 x2 13/7 1/7 0 1 βˆ’1 0 1/7 βˆ’1/7 1 0 3 1 21/13 7 Zj 13/7 0 βˆ’1 1/7 1 Zjβˆ’Cj 13/7 0 βˆ’1 1/7 0 Max positive value Key Column: decides incoming Least positive Key Element
  • 133. 133 Operation Research Models LPP Two Phase Method – Prob 10 Cj 0 0 0 0 ΞΈ= 𝒃 𝒂 π’™πŸ π‘₯2 S1 S2 RHS (b) 0 0 π’™πŸ π‘₯2 13/7 1/7 0 1 βˆ’1 0 1/7 βˆ’1/7 3 1 21/13 7 Zj 13/7 0 βˆ’1 1/7 Zjβˆ’Cj 13/7 0 βˆ’1 1/7
  • 134. 134 Operation Research Models LPP Two Phase Method – Prob 10 Cj 0 0 0 0 ΞΈ= 𝒃 𝒂 π’™πŸ π‘₯2 S1 S2 RHS (b) 0 0 π’™πŸ π‘₯2 1 1/7 0 1 βˆ’7/13 0 1/13 βˆ’1/7 21/13 1 7 Zj Zjβˆ’Cj MKR
  • 135. 135 Operation Research Models LPP Two Phase Method – Prob 10 Cj 0 0 0 0 ΞΈ= 𝒃 𝒂 π’™πŸ π‘₯2 S1 S2 RHS (b) 0 0 π’™πŸ π‘₯2 1 1/7 0 1 βˆ’7/13 0 1/13 βˆ’1/7 21/13 1 7 Zj Zjβˆ’Cj MKR OR
  • 136. 136 Operation Research Models LPP Two Phase Method – Prob 10 Cj 0 0 0 0 ΞΈ= 𝒃 𝒂 π’™πŸ π‘₯2 S1 S2 RHS (b) 1 1 π’™πŸ π‘₯2 1 0 0 1 βˆ’7/13 1/13 1/13 βˆ’2/13 21/13 70/91 7 Zj 0 0 0 0 Zjβˆ’Cj 0 0 0 0 MKR NR
  • 137. 137 Operation Research Models LPP Two Phase Method – Prob 10 Cj 1 1 0 0 ΞΈ= 𝒃 𝒂 π’™πŸ π‘₯2 S1 S2 RHS (b) 1 1 π’™πŸ π‘₯2 1 0 0 1 βˆ’7/13 1/13 1/13 βˆ’2/13 21/13 70/91 7 Zj 1 1 βˆ’6/13 βˆ’1/13 Zjβˆ’Cj 0 0 βˆ’6/13 βˆ’1/13 MKR NR The optimal Solution π‘₯1 = 21 13 ; π‘₯2 = 70 90 = 10 13 and π‘π‘šπ‘–π‘› = 21 13 + 10 13 = 31 13
  • 138. 138 Operation Research Models LPP Two Phase Method – Prob 10 Cj 1 1 0 0 ΞΈ= 𝒃 𝒂 π’™πŸ π‘₯2 S1 S2 RHS (b) 1 1 π’™πŸ π‘₯2 1 0 0 1 βˆ’7/13 1/13 1/13 βˆ’2/13 21/13 70/91 7 Zj 1 1 βˆ’6/13 βˆ’1/13 Zjβˆ’Cj 0 0 βˆ’6/13 βˆ’1/13 MKR NR The optimal Solution π‘₯1 = 21 13 ; π‘₯2 = 70 90 = 10 13 and π‘π‘šπ‘–π‘› = 21 13 + 10 13 = 31 13
  • 139. MCQ
  • 140. Dr. L K Bhagi, School of Mechanical Engineering, LPU 140 The objective function and constraints are functions of two types of variables, _______________ variables and ____________ variables. A. Positive and negative B. Controllable and uncontrollable. C. Strong and weak D. None of the above
  • 141. Dr. L K Bhagi, School of Mechanical Engineering, LPU 141 In graphical representation the bounded region is known as _________ region. A. Solution B. basic solution C. feasible solution D. optimal
  • 142. Dr. L K Bhagi, School of Mechanical Engineering, LPU 142 The optimal value of the objective function for the following L.P.P. Max z = 4X1 + 3X2 subject to X1 + X2 ≀ 50 X1 + 2X2 ≀ 80 2X1 + X2 β‰₯ 20 X1, X2 β‰₯ 0 is (a) 200 (b) 330 (c) 420 (d) 500
  • 143. Dr. L K Bhagi, School of Mechanical Engineering, LPU 143 To formulate a problem for solution by the Simplex method, we must add artificial variable to (a) only equality constraints (b) only LHS is greater than equal to RHS constraints (c) both (a) and (b) (d) None of the above
  • 144. Dr. L K Bhagi, School of Mechanical Engineering, LPU 144 In graphical method of LPP, If at all there is a feasible solution (feasible area of polygon) exists then, the feasible area region has an important property known as ____________in geometry a) convexity Property b) Convex polygon c) Both of the above d) None of the above
  • 145. Dr. L K Bhagi, School of Mechanical Engineering, LPU 145
  • 146. Dr. L K Bhagi, School of Mechanical Engineering, LPU 146 https://www.aplustopper.com/section- formula/