SlideShare a Scribd company logo
1 of 15
Parallel Recurrent Neural Network
Architectures for Feature-rich
Session-based Recommendations
Balázs Hidasi, Gravity R&D (@balazshidasi)
Massimo Quadrana, Politecnico di Milano (@mxqdr)
Alexandros Karatzoglou, Telefonica Research
(@alexk_z)
Domonkos Tikk, Gravity R&D (@domonkostikk)
Session-based recommendations
• Permanent (user) cold-start
 User identification
 Changing goal/intent
 Disjoint sessions
• Item-to-Session recommendations
 Recommend to previous events
• Next event prediction
GRU4Rec [Hidasi et. al. ICLR 2016]
• Gated Recurrent Unit
 𝑧𝑡 = 𝜎 𝑊 𝑧
𝑥𝑡 + 𝑈 𝑧
ℎ 𝑡−1
 𝑟𝑡 = 𝜎 𝑊 𝑟
𝑥𝑡 + 𝑈 𝑟
ℎ 𝑡−1
 ℎ 𝑡 = 𝜎 𝑊𝑥𝑡 + 𝑈(𝑟𝑡∘ ℎ 𝑡−1)
 ℎ 𝑡 = 1 − 𝑧𝑡 ℎ 𝑡−1 + 𝑧𝑡ℎ 𝑡
• Adapted to the recommendation problem
 Session-parallel mini-batches
 Ranking loss: TOP1=
1
𝑁 𝑆
𝑗=1
𝑁 𝑆
𝜎 𝑟𝑠,𝑖 − 𝑟𝑠,𝑗 + 𝜎 𝑟𝑠,𝑗
2
 Sampling the output
ℎℎ
𝑥𝑡
ℎ 𝑡
𝑧
𝑖1 𝑖5 𝑖8
𝑦1
1
𝑦2
1
𝑦3
1 𝑦4
1
𝑦5
1
𝑦6
1
𝑦7
1
𝑦8
1
𝑦1
3
𝑦2
3
𝑦3
3
𝑦4
3
𝑦5
3
𝑦6
3
𝑦7
3
𝑦8
3
𝑦1
2
𝑦2
2
𝑦3
2 𝑦4
2
𝑦5
2
𝑦6
2
𝑦7
2
𝑦8
2
1 0 0 0 0 0 0 0
0 0 0 0 0 0 0 1
0 0 0 0 1 0 0 0
𝑖1,1 𝑖1,2 𝑖1,3 𝑖1,4
𝑖2,1 𝑖2,2 𝑖2,3
𝑖3,1 𝑖3,2 𝑖3,3 𝑖3,4 𝑖3,5 𝑖3,6
𝑖4,1 𝑖4,2
𝑖5,1 𝑖5,2 𝑖5,3
Session1
Session2
Session3
Session4
Session5
𝑖1,1 𝑖1,2 𝑖1,3
𝑖2,1 𝑖2,2
𝑖3,1 𝑖3,2 𝑖3,3 𝑖3,4 𝑖3,5
𝑖4,1
𝑖5,1 𝑖5,2
Input
Desired
output
…
𝑖1,2 𝑖1,3 𝑖1,4
𝑖2,2 𝑖2,3
𝑖3,2 𝑖3,3 𝑖3,4 𝑖3,5 𝑖3,6
𝑖4,2
𝑖5,2 𝑖5,3
…
GRU layer
One-hot vector
Weighted output
Scores on items
f()
One-hot vector
ItemID (next)
ItemID
Item features & user decisions
• Clicking on recommendations
• Influencing factors
 Prior knowledge of the user
 The stuff they see
o Image (thumbnail, product image, etc)
o Text (title, short description, etc)
o Price
o Item properties
o ...
• Feature extraction from images and text
Naive solution 1: Train on the features
• Item features on the input
• Bad offline accuracy
• Recommendations make sense
 but somewhat general
Image feature vector
GRU layer
Network output
Scores on items
f()
ItemID
One-hot vector
ItemID (next)
Naive solution 2: Concat. session & feature info
• Concatenate one-hot
vector of the ID and the
feature vector of the item
• Recommendation
accuracy similar to the ID
only network
• ID input is initially stronger
signal on the next item
 Dominates the image input
 Network learns to focus on
weights of the ID
wID wimage
Image feature vector
GRU layer
One-hot vector
Weighted output
Scores on items
f()
One-hot vector
ItemID (next)
ItemID
Parallel RNN
• Separate RNNs for
each input type
 ID
 Image feature vector
 ...
• Subnets model the
sessions separately
• Concatenate hidden
layers
 Optional scaling /
weighting
• Output computed from
the concat. hidden
state
wID wimage
Image feature vector
GRU layer
Subnet output
GRU layer
One-hot vector
Subnet output
Weighted output
Scores on items
f()
ItemID
One-hot vector
ItemID (next)
Training
• Backpropagate through the network in one go
• Accuracy is slightly better than for the ID only
network
• Subnets learn similar aspects of the sessions
 Some of the model capacity is wasted
Alternative training methods
• Force the networks to learn different aspects
 Complement each other
• Inspired by ALS and ensemble learning
• Train one subnet at a time and fix the others
 Alternate between them
• Depending on the frequency of alternation
 Residual training (train fully)
 Alternating training (per epoch)
 Interleaving training (per minibatch)
Experiments on video thumbnails
• Online video site
 712,824 items
 Training: 17,419,964 sessions; 69,312,698 events
 Test: 216,725 sessions; 921,202 events
o Target score compared to only the 50K most popular items
• Feature extraction
 GoogLeNet (Caffe) pretrained on ImageNet dataset
 Features: values of the last avg. pooling layer
o Dense vector of 1024 values
o Length normalized to 1
Results on video thumbnails
• Low number of hidden
units
 MRR improvements
o +18.72% (vs item-kNN)
o +15.41% (vs ID only, 100)
o +14.40% (vs ID only, 200)
• High number of hidden
units
 500+500 for p-RNN
 1000 for others
 Diminishing return for
increasing the number of
epochs or the hidden units
 +5-7% in MRR
Method #Hidden
units
Recall@2
0
MRR@2
0
Item-kNN - 0.6263 0.3740
ID only 100 0.6831 0.3847
ID only 200 0.6963 0.3881
Feature only 100 0.5367 0.3065
Concat 100 0.6766 0.3850
P-RNN (naive) 100+100 0.6765 0.4014
P-RNN (res) 100+100 0.7028 0.4440
P-RNN (alt) 100+100 0.6874 0.4331
P-RNN (int) 100+100 0.7040 0.4361
Experiments on text
• Classified ad site
 339,055 items
 Train: 1,173,094 sessions; 9,011,321 events
 Test: 35,741 sessions; 254,857 events
o Target score compared with all items
 Multilanguage user generated titles and item descriptions
• Feature extraction
 Concatenated title and description
 Bi-grams with TF-IDF weighting
o Sparse vectors of 1,099,425 length; 5.44 avg. non-zeroes
• Experiments with high number of
hidden units
• +3.4% in recall
• +5.37% in MRR
Summary
• Incorporated image and text features into session-
based recommendations using RNNs
• Naive inclusion is not effective
• P-RNN architectures
• Training methods for P-RNNs
Future work
• Revisit feature extraction
• Try representations of the whole video
• Use multiple aspects for items
Thanks!
Q&A

More Related Content

What's hot

Machine Learning, Deep Learning and Data Analysis Introduction
Machine Learning, Deep Learning and Data Analysis IntroductionMachine Learning, Deep Learning and Data Analysis Introduction
Machine Learning, Deep Learning and Data Analysis IntroductionTe-Yen Liu
 
Context-aware preference modeling with factorization
Context-aware preference modeling with factorizationContext-aware preference modeling with factorization
Context-aware preference modeling with factorizationBalázs Hidasi
 
Foundations: Artificial Neural Networks
Foundations: Artificial Neural NetworksFoundations: Artificial Neural Networks
Foundations: Artificial Neural Networksananth
 
Neural network basic and introduction of Deep learning
Neural network basic and introduction of Deep learningNeural network basic and introduction of Deep learning
Neural network basic and introduction of Deep learningTapas Majumdar
 
Lessons learnt at building recommendation services at industry scale
Lessons learnt at building recommendation services at industry scaleLessons learnt at building recommendation services at industry scale
Lessons learnt at building recommendation services at industry scaleDomonkos Tikk
 
Artificial Intelligence, Machine Learning and Deep Learning
Artificial Intelligence, Machine Learning and Deep LearningArtificial Intelligence, Machine Learning and Deep Learning
Artificial Intelligence, Machine Learning and Deep LearningSujit Pal
 
An introduction to Machine Learning (and a little bit of Deep Learning)
An introduction to Machine Learning (and a little bit of Deep Learning)An introduction to Machine Learning (and a little bit of Deep Learning)
An introduction to Machine Learning (and a little bit of Deep Learning)Thomas da Silva Paula
 
Sara Hooker & Sean McPherson, Delta Analytics, at MLconf Seattle 2017
Sara Hooker & Sean McPherson, Delta Analytics, at MLconf Seattle 2017Sara Hooker & Sean McPherson, Delta Analytics, at MLconf Seattle 2017
Sara Hooker & Sean McPherson, Delta Analytics, at MLconf Seattle 2017MLconf
 
Deep Learning Models for Question Answering
Deep Learning Models for Question AnsweringDeep Learning Models for Question Answering
Deep Learning Models for Question AnsweringSujit Pal
 
Deep Learning with Python (PyData Seattle 2015)
Deep Learning with Python (PyData Seattle 2015)Deep Learning with Python (PyData Seattle 2015)
Deep Learning with Python (PyData Seattle 2015)Alexander Korbonits
 
Irina Rish, Researcher, IBM Watson, at MLconf NYC 2017
Irina Rish, Researcher, IBM Watson, at MLconf NYC 2017Irina Rish, Researcher, IBM Watson, at MLconf NYC 2017
Irina Rish, Researcher, IBM Watson, at MLconf NYC 2017MLconf
 
Artificial Intelligence Course: Linear models
Artificial Intelligence Course: Linear models Artificial Intelligence Course: Linear models
Artificial Intelligence Course: Linear models ananth
 
Deep learning and image analytics using Python by Dr Sanparit
Deep learning and image analytics using Python by Dr SanparitDeep learning and image analytics using Python by Dr Sanparit
Deep learning and image analytics using Python by Dr SanparitBAINIDA
 
Aaron Roth, Associate Professor, University of Pennsylvania, at MLconf NYC 2017
Aaron Roth, Associate Professor, University of Pennsylvania, at MLconf NYC 2017Aaron Roth, Associate Professor, University of Pennsylvania, at MLconf NYC 2017
Aaron Roth, Associate Professor, University of Pennsylvania, at MLconf NYC 2017MLconf
 
Transfer Learning and Fine Tuning for Cross Domain Image Classification with ...
Transfer Learning and Fine Tuning for Cross Domain Image Classification with ...Transfer Learning and Fine Tuning for Cross Domain Image Classification with ...
Transfer Learning and Fine Tuning for Cross Domain Image Classification with ...Sujit Pal
 
Machine Learning Essentials Demystified part1 | Big Data Demystified
Machine Learning Essentials Demystified part1 | Big Data DemystifiedMachine Learning Essentials Demystified part1 | Big Data Demystified
Machine Learning Essentials Demystified part1 | Big Data DemystifiedOmid Vahdaty
 
Hands-on Tutorial of Deep Learning
Hands-on Tutorial of Deep LearningHands-on Tutorial of Deep Learning
Hands-on Tutorial of Deep LearningChun-Ming Chang
 
Overview of TensorFlow For Natural Language Processing
Overview of TensorFlow For Natural Language ProcessingOverview of TensorFlow For Natural Language Processing
Overview of TensorFlow For Natural Language Processingananth
 
Ranking and Diversity in Recommendations - RecSys Stammtisch at SoundCloud, B...
Ranking and Diversity in Recommendations - RecSys Stammtisch at SoundCloud, B...Ranking and Diversity in Recommendations - RecSys Stammtisch at SoundCloud, B...
Ranking and Diversity in Recommendations - RecSys Stammtisch at SoundCloud, B...Alexandros Karatzoglou
 

What's hot (20)

Machine Learning, Deep Learning and Data Analysis Introduction
Machine Learning, Deep Learning and Data Analysis IntroductionMachine Learning, Deep Learning and Data Analysis Introduction
Machine Learning, Deep Learning and Data Analysis Introduction
 
Context-aware preference modeling with factorization
Context-aware preference modeling with factorizationContext-aware preference modeling with factorization
Context-aware preference modeling with factorization
 
Foundations: Artificial Neural Networks
Foundations: Artificial Neural NetworksFoundations: Artificial Neural Networks
Foundations: Artificial Neural Networks
 
Neural network basic and introduction of Deep learning
Neural network basic and introduction of Deep learningNeural network basic and introduction of Deep learning
Neural network basic and introduction of Deep learning
 
Lessons learnt at building recommendation services at industry scale
Lessons learnt at building recommendation services at industry scaleLessons learnt at building recommendation services at industry scale
Lessons learnt at building recommendation services at industry scale
 
Artificial Intelligence, Machine Learning and Deep Learning
Artificial Intelligence, Machine Learning and Deep LearningArtificial Intelligence, Machine Learning and Deep Learning
Artificial Intelligence, Machine Learning and Deep Learning
 
An introduction to Machine Learning (and a little bit of Deep Learning)
An introduction to Machine Learning (and a little bit of Deep Learning)An introduction to Machine Learning (and a little bit of Deep Learning)
An introduction to Machine Learning (and a little bit of Deep Learning)
 
Deeplearning in finance
Deeplearning in financeDeeplearning in finance
Deeplearning in finance
 
Sara Hooker & Sean McPherson, Delta Analytics, at MLconf Seattle 2017
Sara Hooker & Sean McPherson, Delta Analytics, at MLconf Seattle 2017Sara Hooker & Sean McPherson, Delta Analytics, at MLconf Seattle 2017
Sara Hooker & Sean McPherson, Delta Analytics, at MLconf Seattle 2017
 
Deep Learning Models for Question Answering
Deep Learning Models for Question AnsweringDeep Learning Models for Question Answering
Deep Learning Models for Question Answering
 
Deep Learning with Python (PyData Seattle 2015)
Deep Learning with Python (PyData Seattle 2015)Deep Learning with Python (PyData Seattle 2015)
Deep Learning with Python (PyData Seattle 2015)
 
Irina Rish, Researcher, IBM Watson, at MLconf NYC 2017
Irina Rish, Researcher, IBM Watson, at MLconf NYC 2017Irina Rish, Researcher, IBM Watson, at MLconf NYC 2017
Irina Rish, Researcher, IBM Watson, at MLconf NYC 2017
 
Artificial Intelligence Course: Linear models
Artificial Intelligence Course: Linear models Artificial Intelligence Course: Linear models
Artificial Intelligence Course: Linear models
 
Deep learning and image analytics using Python by Dr Sanparit
Deep learning and image analytics using Python by Dr SanparitDeep learning and image analytics using Python by Dr Sanparit
Deep learning and image analytics using Python by Dr Sanparit
 
Aaron Roth, Associate Professor, University of Pennsylvania, at MLconf NYC 2017
Aaron Roth, Associate Professor, University of Pennsylvania, at MLconf NYC 2017Aaron Roth, Associate Professor, University of Pennsylvania, at MLconf NYC 2017
Aaron Roth, Associate Professor, University of Pennsylvania, at MLconf NYC 2017
 
Transfer Learning and Fine Tuning for Cross Domain Image Classification with ...
Transfer Learning and Fine Tuning for Cross Domain Image Classification with ...Transfer Learning and Fine Tuning for Cross Domain Image Classification with ...
Transfer Learning and Fine Tuning for Cross Domain Image Classification with ...
 
Machine Learning Essentials Demystified part1 | Big Data Demystified
Machine Learning Essentials Demystified part1 | Big Data DemystifiedMachine Learning Essentials Demystified part1 | Big Data Demystified
Machine Learning Essentials Demystified part1 | Big Data Demystified
 
Hands-on Tutorial of Deep Learning
Hands-on Tutorial of Deep LearningHands-on Tutorial of Deep Learning
Hands-on Tutorial of Deep Learning
 
Overview of TensorFlow For Natural Language Processing
Overview of TensorFlow For Natural Language ProcessingOverview of TensorFlow For Natural Language Processing
Overview of TensorFlow For Natural Language Processing
 
Ranking and Diversity in Recommendations - RecSys Stammtisch at SoundCloud, B...
Ranking and Diversity in Recommendations - RecSys Stammtisch at SoundCloud, B...Ranking and Diversity in Recommendations - RecSys Stammtisch at SoundCloud, B...
Ranking and Diversity in Recommendations - RecSys Stammtisch at SoundCloud, B...
 

Viewers also liked

Deep Learning for Recommender Systems - Budapest RecSys Meetup
Deep Learning for Recommender Systems  - Budapest RecSys MeetupDeep Learning for Recommender Systems  - Budapest RecSys Meetup
Deep Learning for Recommender Systems - Budapest RecSys MeetupAlexandros Karatzoglou
 
XGBoost: the algorithm that wins every competition
XGBoost: the algorithm that wins every competitionXGBoost: the algorithm that wins every competition
XGBoost: the algorithm that wins every competitionJaroslaw Szymczak
 
Fast ALS-based matrix factorization for explicit and implicit feedback datasets
Fast ALS-based matrix factorization for explicit and implicit feedback datasetsFast ALS-based matrix factorization for explicit and implicit feedback datasets
Fast ALS-based matrix factorization for explicit and implicit feedback datasetsGravity - Rock Solid Recommendations
 
Initialization of matrix factorization (CaRR 2012 presentation)
Initialization of matrix factorization (CaRR 2012 presentation)Initialization of matrix factorization (CaRR 2012 presentation)
Initialization of matrix factorization (CaRR 2012 presentation)Balázs Hidasi
 
Context aware factorization methods for implicit feedback based recommendatio...
Context aware factorization methods for implicit feedback based recommendatio...Context aware factorization methods for implicit feedback based recommendatio...
Context aware factorization methods for implicit feedback based recommendatio...Balázs Hidasi
 
Plotcon 2016 Visualization Talk by Alexandra Johnson
Plotcon 2016 Visualization Talk  by Alexandra JohnsonPlotcon 2016 Visualization Talk  by Alexandra Johnson
Plotcon 2016 Visualization Talk by Alexandra JohnsonSigOpt
 
Causal inference in data science
Causal inference in data scienceCausal inference in data science
Causal inference in data scienceAmit Sharma
 
Data Eng Conf NY Nov 2016 Parquet Arrow
Data Eng Conf NY Nov 2016 Parquet ArrowData Eng Conf NY Nov 2016 Parquet Arrow
Data Eng Conf NY Nov 2016 Parquet ArrowJulien Le Dem
 
Reducing the dimensionality of data with neural networks
Reducing the dimensionality of data with neural networksReducing the dimensionality of data with neural networks
Reducing the dimensionality of data with neural networksHakky St
 
Kaggle Winning Solution Xgboost algorithm -- Let us learn from its author
Kaggle Winning Solution Xgboost algorithm -- Let us learn from its authorKaggle Winning Solution Xgboost algorithm -- Let us learn from its author
Kaggle Winning Solution Xgboost algorithm -- Let us learn from its authorVivian S. Zhang
 
Kdd 2014 Tutorial - the recommender problem revisited
Kdd 2014 Tutorial -  the recommender problem revisitedKdd 2014 Tutorial -  the recommender problem revisited
Kdd 2014 Tutorial - the recommender problem revisitedXavier Amatriain
 
Agile Data Science 2.0
Agile Data Science 2.0Agile Data Science 2.0
Agile Data Science 2.0Russell Jurney
 
General Tips for participating Kaggle Competitions
General Tips for participating Kaggle CompetitionsGeneral Tips for participating Kaggle Competitions
General Tips for participating Kaggle CompetitionsMark Peng
 
Learning to Rank for Recommender Systems - ACM RecSys 2013 tutorial
Learning to Rank for Recommender Systems -  ACM RecSys 2013 tutorialLearning to Rank for Recommender Systems -  ACM RecSys 2013 tutorial
Learning to Rank for Recommender Systems - ACM RecSys 2013 tutorialAlexandros Karatzoglou
 
Recsys 2014 Tutorial - The Recommender Problem Revisited
Recsys 2014 Tutorial - The Recommender Problem RevisitedRecsys 2014 Tutorial - The Recommender Problem Revisited
Recsys 2014 Tutorial - The Recommender Problem RevisitedXavier Amatriain
 
Recommender Systems (Machine Learning Summer School 2014 @ CMU)
Recommender Systems (Machine Learning Summer School 2014 @ CMU)Recommender Systems (Machine Learning Summer School 2014 @ CMU)
Recommender Systems (Machine Learning Summer School 2014 @ CMU)Xavier Amatriain
 
Visual Design with Data
Visual Design with DataVisual Design with Data
Visual Design with DataSeth Familian
 
TEDx Manchester: AI & The Future of Work
TEDx Manchester: AI & The Future of WorkTEDx Manchester: AI & The Future of Work
TEDx Manchester: AI & The Future of WorkVolker Hirsch
 

Viewers also liked (19)

Deep Learning for Recommender Systems - Budapest RecSys Meetup
Deep Learning for Recommender Systems  - Budapest RecSys MeetupDeep Learning for Recommender Systems  - Budapest RecSys Meetup
Deep Learning for Recommender Systems - Budapest RecSys Meetup
 
XGBoost: the algorithm that wins every competition
XGBoost: the algorithm that wins every competitionXGBoost: the algorithm that wins every competition
XGBoost: the algorithm that wins every competition
 
Fast ALS-based matrix factorization for explicit and implicit feedback datasets
Fast ALS-based matrix factorization for explicit and implicit feedback datasetsFast ALS-based matrix factorization for explicit and implicit feedback datasets
Fast ALS-based matrix factorization for explicit and implicit feedback datasets
 
Initialization of matrix factorization (CaRR 2012 presentation)
Initialization of matrix factorization (CaRR 2012 presentation)Initialization of matrix factorization (CaRR 2012 presentation)
Initialization of matrix factorization (CaRR 2012 presentation)
 
Context aware factorization methods for implicit feedback based recommendatio...
Context aware factorization methods for implicit feedback based recommendatio...Context aware factorization methods for implicit feedback based recommendatio...
Context aware factorization methods for implicit feedback based recommendatio...
 
Plotcon 2016 Visualization Talk by Alexandra Johnson
Plotcon 2016 Visualization Talk  by Alexandra JohnsonPlotcon 2016 Visualization Talk  by Alexandra Johnson
Plotcon 2016 Visualization Talk by Alexandra Johnson
 
Causal inference in data science
Causal inference in data scienceCausal inference in data science
Causal inference in data science
 
Data Eng Conf NY Nov 2016 Parquet Arrow
Data Eng Conf NY Nov 2016 Parquet ArrowData Eng Conf NY Nov 2016 Parquet Arrow
Data Eng Conf NY Nov 2016 Parquet Arrow
 
KDD2015論文読み会
KDD2015論文読み会KDD2015論文読み会
KDD2015論文読み会
 
Reducing the dimensionality of data with neural networks
Reducing the dimensionality of data with neural networksReducing the dimensionality of data with neural networks
Reducing the dimensionality of data with neural networks
 
Kaggle Winning Solution Xgboost algorithm -- Let us learn from its author
Kaggle Winning Solution Xgboost algorithm -- Let us learn from its authorKaggle Winning Solution Xgboost algorithm -- Let us learn from its author
Kaggle Winning Solution Xgboost algorithm -- Let us learn from its author
 
Kdd 2014 Tutorial - the recommender problem revisited
Kdd 2014 Tutorial -  the recommender problem revisitedKdd 2014 Tutorial -  the recommender problem revisited
Kdd 2014 Tutorial - the recommender problem revisited
 
Agile Data Science 2.0
Agile Data Science 2.0Agile Data Science 2.0
Agile Data Science 2.0
 
General Tips for participating Kaggle Competitions
General Tips for participating Kaggle CompetitionsGeneral Tips for participating Kaggle Competitions
General Tips for participating Kaggle Competitions
 
Learning to Rank for Recommender Systems - ACM RecSys 2013 tutorial
Learning to Rank for Recommender Systems -  ACM RecSys 2013 tutorialLearning to Rank for Recommender Systems -  ACM RecSys 2013 tutorial
Learning to Rank for Recommender Systems - ACM RecSys 2013 tutorial
 
Recsys 2014 Tutorial - The Recommender Problem Revisited
Recsys 2014 Tutorial - The Recommender Problem RevisitedRecsys 2014 Tutorial - The Recommender Problem Revisited
Recsys 2014 Tutorial - The Recommender Problem Revisited
 
Recommender Systems (Machine Learning Summer School 2014 @ CMU)
Recommender Systems (Machine Learning Summer School 2014 @ CMU)Recommender Systems (Machine Learning Summer School 2014 @ CMU)
Recommender Systems (Machine Learning Summer School 2014 @ CMU)
 
Visual Design with Data
Visual Design with DataVisual Design with Data
Visual Design with Data
 
TEDx Manchester: AI & The Future of Work
TEDx Manchester: AI & The Future of WorkTEDx Manchester: AI & The Future of Work
TEDx Manchester: AI & The Future of Work
 

Similar to Parallel RNN Architectures for Feature-rich Session Recommendations

(CMP305) Deep Learning on AWS Made EasyCmp305
(CMP305) Deep Learning on AWS Made EasyCmp305(CMP305) Deep Learning on AWS Made EasyCmp305
(CMP305) Deep Learning on AWS Made EasyCmp305Amazon Web Services
 
Online video object segmentation via convolutional trident network
Online video object segmentation via convolutional trident networkOnline video object segmentation via convolutional trident network
Online video object segmentation via convolutional trident networkNAVER Engineering
 
Learn to Build an App to Find Similar Images using Deep Learning- Piotr Teterwak
Learn to Build an App to Find Similar Images using Deep Learning- Piotr TeterwakLearn to Build an App to Find Similar Images using Deep Learning- Piotr Teterwak
Learn to Build an App to Find Similar Images using Deep Learning- Piotr TeterwakPyData
 
Deep learning in python by purshottam verma
Deep learning in python by purshottam vermaDeep learning in python by purshottam verma
Deep learning in python by purshottam vermaRohit malav
 
LiDAR-based Autonomous Driving III (by Deep Learning)
LiDAR-based Autonomous Driving III (by Deep Learning)LiDAR-based Autonomous Driving III (by Deep Learning)
LiDAR-based Autonomous Driving III (by Deep Learning)Yu Huang
 
[RSS2023] Local Object Crop Collision Network for Efficient Simulation
[RSS2023] Local Object Crop Collision Network for Efficient Simulation[RSS2023] Local Object Crop Collision Network for Efficient Simulation
[RSS2023] Local Object Crop Collision Network for Efficient SimulationDongwonSon1
 
Deep LearningフレームワークChainerと最近の技術動向
Deep LearningフレームワークChainerと最近の技術動向Deep LearningフレームワークChainerと最近の技術動向
Deep LearningフレームワークChainerと最近の技術動向Shunta Saito
 
Introduction to computer vision with Convoluted Neural Networks
Introduction to computer vision with Convoluted Neural NetworksIntroduction to computer vision with Convoluted Neural Networks
Introduction to computer vision with Convoluted Neural NetworksMarcinJedyk
 
“Understanding DNN-Based Object Detectors,” a Presentation from Au-Zone Techn...
“Understanding DNN-Based Object Detectors,” a Presentation from Au-Zone Techn...“Understanding DNN-Based Object Detectors,” a Presentation from Au-Zone Techn...
“Understanding DNN-Based Object Detectors,” a Presentation from Au-Zone Techn...Edge AI and Vision Alliance
 
Introduction to computer vision
Introduction to computer visionIntroduction to computer vision
Introduction to computer visionMarcin Jedyk
 
Using The New Flash Stage3D Web Technology To Build Your Own Next 3D Browser ...
Using The New Flash Stage3D Web Technology To Build Your Own Next 3D Browser ...Using The New Flash Stage3D Web Technology To Build Your Own Next 3D Browser ...
Using The New Flash Stage3D Web Technology To Build Your Own Next 3D Browser ...Daosheng Mu
 
Computer vision for transportation
Computer vision for transportationComputer vision for transportation
Computer vision for transportationWanjin Yu
 
Deep Learning in Computer Vision
Deep Learning in Computer VisionDeep Learning in Computer Vision
Deep Learning in Computer VisionSungjoon Choi
 
Cvpr 2018 papers review (efficient computing)
Cvpr 2018 papers review (efficient computing)Cvpr 2018 papers review (efficient computing)
Cvpr 2018 papers review (efficient computing)DonghyunKang12
 
Combining out - of - band monitoring with AI and big data for datacenter aut...
Combining out - of - band monitoring with AI and big data  for datacenter aut...Combining out - of - band monitoring with AI and big data  for datacenter aut...
Combining out - of - band monitoring with AI and big data for datacenter aut...Ganesan Narayanasamy
 
Continuous and Parallel LiDAR Point-cloud Clustering
Continuous and Parallel LiDAR Point-cloud ClusteringContinuous and Parallel LiDAR Point-cloud Clustering
Continuous and Parallel LiDAR Point-cloud ClusteringHannaneh Najdataei
 
PhD Thesis Proposal
PhD Thesis Proposal PhD Thesis Proposal
PhD Thesis Proposal Ziqiang Feng
 

Similar to Parallel RNN Architectures for Feature-rich Session Recommendations (20)

(CMP305) Deep Learning on AWS Made EasyCmp305
(CMP305) Deep Learning on AWS Made EasyCmp305(CMP305) Deep Learning on AWS Made EasyCmp305
(CMP305) Deep Learning on AWS Made EasyCmp305
 
Online video object segmentation via convolutional trident network
Online video object segmentation via convolutional trident networkOnline video object segmentation via convolutional trident network
Online video object segmentation via convolutional trident network
 
Learn to Build an App to Find Similar Images using Deep Learning- Piotr Teterwak
Learn to Build an App to Find Similar Images using Deep Learning- Piotr TeterwakLearn to Build an App to Find Similar Images using Deep Learning- Piotr Teterwak
Learn to Build an App to Find Similar Images using Deep Learning- Piotr Teterwak
 
Deep learning in python by purshottam verma
Deep learning in python by purshottam vermaDeep learning in python by purshottam verma
Deep learning in python by purshottam verma
 
pydataPointCloud.pptx
pydataPointCloud.pptxpydataPointCloud.pptx
pydataPointCloud.pptx
 
LiDAR-based Autonomous Driving III (by Deep Learning)
LiDAR-based Autonomous Driving III (by Deep Learning)LiDAR-based Autonomous Driving III (by Deep Learning)
LiDAR-based Autonomous Driving III (by Deep Learning)
 
[RSS2023] Local Object Crop Collision Network for Efficient Simulation
[RSS2023] Local Object Crop Collision Network for Efficient Simulation[RSS2023] Local Object Crop Collision Network for Efficient Simulation
[RSS2023] Local Object Crop Collision Network for Efficient Simulation
 
Deep LearningフレームワークChainerと最近の技術動向
Deep LearningフレームワークChainerと最近の技術動向Deep LearningフレームワークChainerと最近の技術動向
Deep LearningフレームワークChainerと最近の技術動向
 
Introduction to computer vision with Convoluted Neural Networks
Introduction to computer vision with Convoluted Neural NetworksIntroduction to computer vision with Convoluted Neural Networks
Introduction to computer vision with Convoluted Neural Networks
 
20220811 - computer vision
20220811 - computer vision20220811 - computer vision
20220811 - computer vision
 
“Understanding DNN-Based Object Detectors,” a Presentation from Au-Zone Techn...
“Understanding DNN-Based Object Detectors,” a Presentation from Au-Zone Techn...“Understanding DNN-Based Object Detectors,” a Presentation from Au-Zone Techn...
“Understanding DNN-Based Object Detectors,” a Presentation from Au-Zone Techn...
 
Introduction to computer vision
Introduction to computer visionIntroduction to computer vision
Introduction to computer vision
 
Using The New Flash Stage3D Web Technology To Build Your Own Next 3D Browser ...
Using The New Flash Stage3D Web Technology To Build Your Own Next 3D Browser ...Using The New Flash Stage3D Web Technology To Build Your Own Next 3D Browser ...
Using The New Flash Stage3D Web Technology To Build Your Own Next 3D Browser ...
 
object-detection.pptx
object-detection.pptxobject-detection.pptx
object-detection.pptx
 
Computer vision for transportation
Computer vision for transportationComputer vision for transportation
Computer vision for transportation
 
Deep Learning in Computer Vision
Deep Learning in Computer VisionDeep Learning in Computer Vision
Deep Learning in Computer Vision
 
Cvpr 2018 papers review (efficient computing)
Cvpr 2018 papers review (efficient computing)Cvpr 2018 papers review (efficient computing)
Cvpr 2018 papers review (efficient computing)
 
Combining out - of - band monitoring with AI and big data for datacenter aut...
Combining out - of - band monitoring with AI and big data  for datacenter aut...Combining out - of - band monitoring with AI and big data  for datacenter aut...
Combining out - of - band monitoring with AI and big data for datacenter aut...
 
Continuous and Parallel LiDAR Point-cloud Clustering
Continuous and Parallel LiDAR Point-cloud ClusteringContinuous and Parallel LiDAR Point-cloud Clustering
Continuous and Parallel LiDAR Point-cloud Clustering
 
PhD Thesis Proposal
PhD Thesis Proposal PhD Thesis Proposal
PhD Thesis Proposal
 

More from Balázs Hidasi

Egyedi termék kreatívok tömeges gyártása generatív AI segítségével
Egyedi termék kreatívok tömeges gyártása generatív AI segítségévelEgyedi termék kreatívok tömeges gyártása generatív AI segítségével
Egyedi termék kreatívok tömeges gyártása generatív AI segítségévelBalázs Hidasi
 
The Effect of Third Party Implementations on Reproducibility
The Effect of Third Party Implementations on ReproducibilityThe Effect of Third Party Implementations on Reproducibility
The Effect of Third Party Implementations on ReproducibilityBalázs Hidasi
 
Approximate modeling of continuous context in factorization algorithms (CaRR1...
Approximate modeling of continuous context in factorization algorithms (CaRR1...Approximate modeling of continuous context in factorization algorithms (CaRR1...
Approximate modeling of continuous context in factorization algorithms (CaRR1...Balázs Hidasi
 
Az implicit ajánlási probléma és néhány megoldása (BME TMIT szeminárium előad...
Az implicit ajánlási probléma és néhány megoldása (BME TMIT szeminárium előad...Az implicit ajánlási probléma és néhány megoldása (BME TMIT szeminárium előad...
Az implicit ajánlási probléma és néhány megoldása (BME TMIT szeminárium előad...Balázs Hidasi
 
Context-aware similarities within the factorization framework (CaRR 2013 pres...
Context-aware similarities within the factorization framework (CaRR 2013 pres...Context-aware similarities within the factorization framework (CaRR 2013 pres...
Context-aware similarities within the factorization framework (CaRR 2013 pres...Balázs Hidasi
 
iTALS: implicit tensor factorization for context-aware recommendations (ECML/...
iTALS: implicit tensor factorization for context-aware recommendations (ECML/...iTALS: implicit tensor factorization for context-aware recommendations (ECML/...
iTALS: implicit tensor factorization for context-aware recommendations (ECML/...Balázs Hidasi
 
ShiftTree: model alapú idősor-osztályozó (VK 2009 előadás)
ShiftTree: model alapú idősor-osztályozó (VK 2009 előadás)ShiftTree: model alapú idősor-osztályozó (VK 2009 előadás)
ShiftTree: model alapú idősor-osztályozó (VK 2009 előadás)Balázs Hidasi
 
ShiftTree: model alapú idősor-osztályozó (ML@BP előadás, 2012)
ShiftTree: model alapú idősor-osztályozó (ML@BP előadás, 2012)ShiftTree: model alapú idősor-osztályozó (ML@BP előadás, 2012)
ShiftTree: model alapú idősor-osztályozó (ML@BP előadás, 2012)Balázs Hidasi
 
ShiftTree: model based time series classifier (ECML/PKDD 2011 presentation)
ShiftTree: model based time series classifier (ECML/PKDD 2011 presentation)ShiftTree: model based time series classifier (ECML/PKDD 2011 presentation)
ShiftTree: model based time series classifier (ECML/PKDD 2011 presentation)Balázs Hidasi
 

More from Balázs Hidasi (9)

Egyedi termék kreatívok tömeges gyártása generatív AI segítségével
Egyedi termék kreatívok tömeges gyártása generatív AI segítségévelEgyedi termék kreatívok tömeges gyártása generatív AI segítségével
Egyedi termék kreatívok tömeges gyártása generatív AI segítségével
 
The Effect of Third Party Implementations on Reproducibility
The Effect of Third Party Implementations on ReproducibilityThe Effect of Third Party Implementations on Reproducibility
The Effect of Third Party Implementations on Reproducibility
 
Approximate modeling of continuous context in factorization algorithms (CaRR1...
Approximate modeling of continuous context in factorization algorithms (CaRR1...Approximate modeling of continuous context in factorization algorithms (CaRR1...
Approximate modeling of continuous context in factorization algorithms (CaRR1...
 
Az implicit ajánlási probléma és néhány megoldása (BME TMIT szeminárium előad...
Az implicit ajánlási probléma és néhány megoldása (BME TMIT szeminárium előad...Az implicit ajánlási probléma és néhány megoldása (BME TMIT szeminárium előad...
Az implicit ajánlási probléma és néhány megoldása (BME TMIT szeminárium előad...
 
Context-aware similarities within the factorization framework (CaRR 2013 pres...
Context-aware similarities within the factorization framework (CaRR 2013 pres...Context-aware similarities within the factorization framework (CaRR 2013 pres...
Context-aware similarities within the factorization framework (CaRR 2013 pres...
 
iTALS: implicit tensor factorization for context-aware recommendations (ECML/...
iTALS: implicit tensor factorization for context-aware recommendations (ECML/...iTALS: implicit tensor factorization for context-aware recommendations (ECML/...
iTALS: implicit tensor factorization for context-aware recommendations (ECML/...
 
ShiftTree: model alapú idősor-osztályozó (VK 2009 előadás)
ShiftTree: model alapú idősor-osztályozó (VK 2009 előadás)ShiftTree: model alapú idősor-osztályozó (VK 2009 előadás)
ShiftTree: model alapú idősor-osztályozó (VK 2009 előadás)
 
ShiftTree: model alapú idősor-osztályozó (ML@BP előadás, 2012)
ShiftTree: model alapú idősor-osztályozó (ML@BP előadás, 2012)ShiftTree: model alapú idősor-osztályozó (ML@BP előadás, 2012)
ShiftTree: model alapú idősor-osztályozó (ML@BP előadás, 2012)
 
ShiftTree: model based time series classifier (ECML/PKDD 2011 presentation)
ShiftTree: model based time series classifier (ECML/PKDD 2011 presentation)ShiftTree: model based time series classifier (ECML/PKDD 2011 presentation)
ShiftTree: model based time series classifier (ECML/PKDD 2011 presentation)
 

Recently uploaded

(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)riyaescorts54
 
The dark energy paradox leads to a new structure of spacetime.pptx
The dark energy paradox leads to a new structure of spacetime.pptxThe dark energy paradox leads to a new structure of spacetime.pptx
The dark energy paradox leads to a new structure of spacetime.pptxEran Akiva Sinbar
 
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxAnalytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxSwapnil Therkar
 
Evidences of Evolution General Biology 2
Evidences of Evolution General Biology 2Evidences of Evolution General Biology 2
Evidences of Evolution General Biology 2John Carlo Rollon
 
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.aasikanpl
 
Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Nistarini College, Purulia (W.B) India
 
Recombinant DNA technology( Transgenic plant and animal)
Recombinant DNA technology( Transgenic plant and animal)Recombinant DNA technology( Transgenic plant and animal)
Recombinant DNA technology( Transgenic plant and animal)DHURKADEVIBASKAR
 
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.aasikanpl
 
BREEDING FOR RESISTANCE TO BIOTIC STRESS.pptx
BREEDING FOR RESISTANCE TO BIOTIC STRESS.pptxBREEDING FOR RESISTANCE TO BIOTIC STRESS.pptx
BREEDING FOR RESISTANCE TO BIOTIC STRESS.pptxPABOLU TEJASREE
 
Twin's paradox experiment is a meassurement of the extra dimensions.pptx
Twin's paradox experiment is a meassurement of the extra dimensions.pptxTwin's paradox experiment is a meassurement of the extra dimensions.pptx
Twin's paradox experiment is a meassurement of the extra dimensions.pptxEran Akiva Sinbar
 
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfAnalytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfSwapnil Therkar
 
Environmental Biotechnology Topic:- Microbial Biosensor
Environmental Biotechnology Topic:- Microbial BiosensorEnvironmental Biotechnology Topic:- Microbial Biosensor
Environmental Biotechnology Topic:- Microbial Biosensorsonawaneprad
 
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptxLIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptxmalonesandreagweneth
 
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptxSTOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptxMurugaveni B
 
Transposable elements in prokaryotes.ppt
Transposable elements in prokaryotes.pptTransposable elements in prokaryotes.ppt
Transposable elements in prokaryotes.pptArshadWarsi13
 
Neurodevelopmental disorders according to the dsm 5 tr
Neurodevelopmental disorders according to the dsm 5 trNeurodevelopmental disorders according to the dsm 5 tr
Neurodevelopmental disorders according to the dsm 5 trssuser06f238
 
Call Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCR
Call Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCRCall Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCR
Call Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCRlizamodels9
 
GenBio2 - Lesson 1 - Introduction to Genetics.pptx
GenBio2 - Lesson 1 - Introduction to Genetics.pptxGenBio2 - Lesson 1 - Introduction to Genetics.pptx
GenBio2 - Lesson 1 - Introduction to Genetics.pptxBerniceCayabyab1
 

Recently uploaded (20)

(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
 
The dark energy paradox leads to a new structure of spacetime.pptx
The dark energy paradox leads to a new structure of spacetime.pptxThe dark energy paradox leads to a new structure of spacetime.pptx
The dark energy paradox leads to a new structure of spacetime.pptx
 
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxAnalytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
 
Evidences of Evolution General Biology 2
Evidences of Evolution General Biology 2Evidences of Evolution General Biology 2
Evidences of Evolution General Biology 2
 
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
 
Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...
 
Recombinant DNA technology( Transgenic plant and animal)
Recombinant DNA technology( Transgenic plant and animal)Recombinant DNA technology( Transgenic plant and animal)
Recombinant DNA technology( Transgenic plant and animal)
 
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
 
BREEDING FOR RESISTANCE TO BIOTIC STRESS.pptx
BREEDING FOR RESISTANCE TO BIOTIC STRESS.pptxBREEDING FOR RESISTANCE TO BIOTIC STRESS.pptx
BREEDING FOR RESISTANCE TO BIOTIC STRESS.pptx
 
Twin's paradox experiment is a meassurement of the extra dimensions.pptx
Twin's paradox experiment is a meassurement of the extra dimensions.pptxTwin's paradox experiment is a meassurement of the extra dimensions.pptx
Twin's paradox experiment is a meassurement of the extra dimensions.pptx
 
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfAnalytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
 
Environmental Biotechnology Topic:- Microbial Biosensor
Environmental Biotechnology Topic:- Microbial BiosensorEnvironmental Biotechnology Topic:- Microbial Biosensor
Environmental Biotechnology Topic:- Microbial Biosensor
 
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptxLIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
 
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptxSTOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
STOPPED FLOW METHOD & APPLICATION MURUGAVENI B.pptx
 
Transposable elements in prokaryotes.ppt
Transposable elements in prokaryotes.pptTransposable elements in prokaryotes.ppt
Transposable elements in prokaryotes.ppt
 
Engler and Prantl system of classification in plant taxonomy
Engler and Prantl system of classification in plant taxonomyEngler and Prantl system of classification in plant taxonomy
Engler and Prantl system of classification in plant taxonomy
 
Neurodevelopmental disorders according to the dsm 5 tr
Neurodevelopmental disorders according to the dsm 5 trNeurodevelopmental disorders according to the dsm 5 tr
Neurodevelopmental disorders according to the dsm 5 tr
 
Call Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCR
Call Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCRCall Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCR
Call Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCR
 
GenBio2 - Lesson 1 - Introduction to Genetics.pptx
GenBio2 - Lesson 1 - Introduction to Genetics.pptxGenBio2 - Lesson 1 - Introduction to Genetics.pptx
GenBio2 - Lesson 1 - Introduction to Genetics.pptx
 
Volatile Oils Pharmacognosy And Phytochemistry -I
Volatile Oils Pharmacognosy And Phytochemistry -IVolatile Oils Pharmacognosy And Phytochemistry -I
Volatile Oils Pharmacognosy And Phytochemistry -I
 

Parallel RNN Architectures for Feature-rich Session Recommendations

  • 1. Parallel Recurrent Neural Network Architectures for Feature-rich Session-based Recommendations Balázs Hidasi, Gravity R&D (@balazshidasi) Massimo Quadrana, Politecnico di Milano (@mxqdr) Alexandros Karatzoglou, Telefonica Research (@alexk_z) Domonkos Tikk, Gravity R&D (@domonkostikk)
  • 2. Session-based recommendations • Permanent (user) cold-start  User identification  Changing goal/intent  Disjoint sessions • Item-to-Session recommendations  Recommend to previous events • Next event prediction
  • 3. GRU4Rec [Hidasi et. al. ICLR 2016] • Gated Recurrent Unit  𝑧𝑡 = 𝜎 𝑊 𝑧 𝑥𝑡 + 𝑈 𝑧 ℎ 𝑡−1  𝑟𝑡 = 𝜎 𝑊 𝑟 𝑥𝑡 + 𝑈 𝑟 ℎ 𝑡−1  ℎ 𝑡 = 𝜎 𝑊𝑥𝑡 + 𝑈(𝑟𝑡∘ ℎ 𝑡−1)  ℎ 𝑡 = 1 − 𝑧𝑡 ℎ 𝑡−1 + 𝑧𝑡ℎ 𝑡 • Adapted to the recommendation problem  Session-parallel mini-batches  Ranking loss: TOP1= 1 𝑁 𝑆 𝑗=1 𝑁 𝑆 𝜎 𝑟𝑠,𝑖 − 𝑟𝑠,𝑗 + 𝜎 𝑟𝑠,𝑗 2  Sampling the output ℎℎ 𝑥𝑡 ℎ 𝑡 𝑧 𝑖1 𝑖5 𝑖8 𝑦1 1 𝑦2 1 𝑦3 1 𝑦4 1 𝑦5 1 𝑦6 1 𝑦7 1 𝑦8 1 𝑦1 3 𝑦2 3 𝑦3 3 𝑦4 3 𝑦5 3 𝑦6 3 𝑦7 3 𝑦8 3 𝑦1 2 𝑦2 2 𝑦3 2 𝑦4 2 𝑦5 2 𝑦6 2 𝑦7 2 𝑦8 2 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1 0 0 0 0 1 0 0 0 𝑖1,1 𝑖1,2 𝑖1,3 𝑖1,4 𝑖2,1 𝑖2,2 𝑖2,3 𝑖3,1 𝑖3,2 𝑖3,3 𝑖3,4 𝑖3,5 𝑖3,6 𝑖4,1 𝑖4,2 𝑖5,1 𝑖5,2 𝑖5,3 Session1 Session2 Session3 Session4 Session5 𝑖1,1 𝑖1,2 𝑖1,3 𝑖2,1 𝑖2,2 𝑖3,1 𝑖3,2 𝑖3,3 𝑖3,4 𝑖3,5 𝑖4,1 𝑖5,1 𝑖5,2 Input Desired output … 𝑖1,2 𝑖1,3 𝑖1,4 𝑖2,2 𝑖2,3 𝑖3,2 𝑖3,3 𝑖3,4 𝑖3,5 𝑖3,6 𝑖4,2 𝑖5,2 𝑖5,3 … GRU layer One-hot vector Weighted output Scores on items f() One-hot vector ItemID (next) ItemID
  • 4. Item features & user decisions • Clicking on recommendations • Influencing factors  Prior knowledge of the user  The stuff they see o Image (thumbnail, product image, etc) o Text (title, short description, etc) o Price o Item properties o ... • Feature extraction from images and text
  • 5. Naive solution 1: Train on the features • Item features on the input • Bad offline accuracy • Recommendations make sense  but somewhat general Image feature vector GRU layer Network output Scores on items f() ItemID One-hot vector ItemID (next)
  • 6. Naive solution 2: Concat. session & feature info • Concatenate one-hot vector of the ID and the feature vector of the item • Recommendation accuracy similar to the ID only network • ID input is initially stronger signal on the next item  Dominates the image input  Network learns to focus on weights of the ID wID wimage Image feature vector GRU layer One-hot vector Weighted output Scores on items f() One-hot vector ItemID (next) ItemID
  • 7. Parallel RNN • Separate RNNs for each input type  ID  Image feature vector  ... • Subnets model the sessions separately • Concatenate hidden layers  Optional scaling / weighting • Output computed from the concat. hidden state wID wimage Image feature vector GRU layer Subnet output GRU layer One-hot vector Subnet output Weighted output Scores on items f() ItemID One-hot vector ItemID (next)
  • 8. Training • Backpropagate through the network in one go • Accuracy is slightly better than for the ID only network • Subnets learn similar aspects of the sessions  Some of the model capacity is wasted
  • 9. Alternative training methods • Force the networks to learn different aspects  Complement each other • Inspired by ALS and ensemble learning • Train one subnet at a time and fix the others  Alternate between them • Depending on the frequency of alternation  Residual training (train fully)  Alternating training (per epoch)  Interleaving training (per minibatch)
  • 10. Experiments on video thumbnails • Online video site  712,824 items  Training: 17,419,964 sessions; 69,312,698 events  Test: 216,725 sessions; 921,202 events o Target score compared to only the 50K most popular items • Feature extraction  GoogLeNet (Caffe) pretrained on ImageNet dataset  Features: values of the last avg. pooling layer o Dense vector of 1024 values o Length normalized to 1
  • 11. Results on video thumbnails • Low number of hidden units  MRR improvements o +18.72% (vs item-kNN) o +15.41% (vs ID only, 100) o +14.40% (vs ID only, 200) • High number of hidden units  500+500 for p-RNN  1000 for others  Diminishing return for increasing the number of epochs or the hidden units  +5-7% in MRR Method #Hidden units Recall@2 0 MRR@2 0 Item-kNN - 0.6263 0.3740 ID only 100 0.6831 0.3847 ID only 200 0.6963 0.3881 Feature only 100 0.5367 0.3065 Concat 100 0.6766 0.3850 P-RNN (naive) 100+100 0.6765 0.4014 P-RNN (res) 100+100 0.7028 0.4440 P-RNN (alt) 100+100 0.6874 0.4331 P-RNN (int) 100+100 0.7040 0.4361
  • 12. Experiments on text • Classified ad site  339,055 items  Train: 1,173,094 sessions; 9,011,321 events  Test: 35,741 sessions; 254,857 events o Target score compared with all items  Multilanguage user generated titles and item descriptions • Feature extraction  Concatenated title and description  Bi-grams with TF-IDF weighting o Sparse vectors of 1,099,425 length; 5.44 avg. non-zeroes • Experiments with high number of hidden units • +3.4% in recall • +5.37% in MRR
  • 13. Summary • Incorporated image and text features into session- based recommendations using RNNs • Naive inclusion is not effective • P-RNN architectures • Training methods for P-RNNs
  • 14. Future work • Revisit feature extraction • Try representations of the whole video • Use multiple aspects for items