SlideShare a Scribd company logo
1 of 59
Download to read offline
Building Full Stack Data Analytics Applications with Kafka and Spark
Agile Data Science 2.0
http://www.slideshare.net/rjurney/agile-data-science-20
or
http://bit.ly/agile_data_slides
Agile Data Science 2.0
Russell Jurney
2
Data Engineer
Data Scientist
Visualization Software Engineer
85%
85%
85%
Writer
85%
Teacher
50%
Russell Jurney is a veteran data
scientist and thought leader. He
coined the term Agile Data Science in
the book of that name from O’Reilly
in 2012, which outlines the first agile
development methodology for data
science. Russell has constructed
numerous full-stack analytics
products over the past ten years and
now works with clients helping them
extract value from their data assets.
Russell Jurney
Skill
Principal Consultant at Data Syndrome
Russell Jurney
Data Syndrome, LLC
Email : russell.jurney@gmail.com
Web : datasyndrome.com
Principal Consultant
Building Full-Stack Data Analytics Applications with Spark
http://bit.ly/agile_data_science
Agile Data Science 2.0
Agile Data Science 2.0 4
Realtime Predictive
Analytics
Rapidly learn to build entire predictive systems driven by
Kafka, PySpark, Speak Streaming, Spark MLlib and with a web
front-end using Python/Flask and JQuery.
Available for purchase at http://datasyndrome.com/video
Lorem Ipsum dolor siamet suame this placeholder for text can simply
random text. It has roots in a piece of classical. variazioni deiwords which
whichhtly. ven on your zuniga merida della is not denis.
Product Consulting
We build analytics products and systems
consisting of big data viz, predictions,
recommendations, reports and search.
Corporate Training
We offer training courses for data
scientists and engineers and data
science teams,
Video Training
We offer video training courses that rapidly
acclimate you with a technology and
technique.
Agile Data Science 2.0 6
What makes data science “agile data science”?
Theory
Agile Data Science 2.0 7
Yes. Building applications is a fundamental skill for today’s data scientist.
Data Products or Data Science?
Agile Data Science 2.0 8
Data Products
or
Data Science?
Agile Data Science 2.0 9
If someone else has to start over and rebuild it, it ain’t agile.
Big Data or Data Science?
Agile Data Science 2.0 10
Goal of
Methodology
The goal of agile data science in <140 characters: to
document and guide exploratory data analysis to
discover and follow the critical path to a compelling
product.
Agile Data Science 2.0 11
In analytics, the end-goal moves or is complex in nature, so we model as a
network of tasks rather than as a strictly linear process.
Critical Path
Agile Data Science 2.0
Agile Data Science Manifesto
12
Seven Principles for Agile Data Science
Discover and pursue the critical path to a killer product
Iterate, iterate, iterate: tables, charts, reports, predictions1.
Integrate the tyrannical opinion of data in product management4.
Get Meta. Describe the process, not just the end-state7.
Ship intermediate output. Even failed experiments have output2.
Climb up and down the data-value pyramid as we work5.
Prototype experiments over implementing tasks3.
6.
Agile Data Science 2.0 13
People will pay more for the things towards the top, but you need the things
on the bottom to have the things above. They are foundational. See:
Maslow’s Theory of Needs.
Data Value Pyramid
Agile Data Science 2.0 14
Things we use to build the apps
Tools
Agile Data Science 2.0
Agile Data Science 2.0 Stack
15
Apache Spark Apache Kafka MongoDB
Batch and Realtime
Realtime Queue Document Store
Flask
Simple Web App
Example of a high productivity stack for “big” data applications
ElasticSearch
Search
Agile Data Science 2.0
Flow of Data Processing
16
Tools and processes in collecting, refining, publishing and decorating data
{“hello”: “world”}
Data Syndrome: Agile Data Science 2.0
Apache Spark Ecosystem
17
HDFS, Amazon S3, Spark, Spark SQL, Spark MLlib, Spark Streaming
/
Agile Data Science 2.0 18
SQL or dataflow programming?
Programming Models
Agile Data Science 2.0 19
Describing what you want and letting the planner figure out how
SQL
SELECT associations2.object_id,
associations2.term_id, associations2.cat_ID,
associations2.term_taxonomy_id

FROM (SELECT objects_tags.object_id,
objects_tags.term_id, wp_cb_tags2cats.cat_ID,
categories.term_taxonomy_id

FROM (SELECT
wp_term_relationships.object_id,
wp_term_taxonomy.term_id,
wp_term_taxonomy.term_taxonomy_id

FROM wp_term_relationships

LEFT JOIN wp_term_taxonomy ON
wp_term_relationships.term_taxonomy_id =
wp_term_taxonomy.term_taxonomy_id

ORDER BY object_id ASC, term_id ASC) 

AS objects_tags

LEFT JOIN wp_cb_tags2cats ON
objects_tags.term_id = wp_cb_tags2cats.tag_ID

LEFT JOIN (SELECT
wp_term_relationships.object_id,
wp_term_taxonomy.term_id as cat_ID,
wp_term_taxonomy.term_taxonomy_id

FROM wp_term_relationships

LEFT JOIN wp_term_taxonomy ON
wp_term_relationships.term_taxonomy_id =
wp_term_taxonomy.term_taxonomy_id

WHERE wp_term_taxonomy.taxonomy =
'category'

GROUP BY object_id, cat_ID,
term_taxonomy_id

ORDER BY object_id, cat_ID,
term_taxonomy_id) 

AS categories on wp_cb_tags2cats.cat_ID
= categories.term_id

WHERE objects_tags.term_id =
wp_cb_tags2cats.tag_ID

GROUP BY object_id, term_id, cat_ID,
term_taxonomy_id

ORDER BY object_id ASC, term_id ASC, cat_ID
ASC) 

AS associations2

LEFT JOIN categories ON associations2.object_id
= categories.object_id

WHERE associations2.cat_ID <> categories.cat_ID

GROUP BY object_id, term_id, cat_ID,
term_taxonomy_id

ORDER BY object_id, term_id, cat_ID,
term_taxonomy_id
Agile Data Science 2.0 20
Flowing data through operations to effect change
Dataflow Programming
Agile Data Science 2.0 21
The best of both worlds!
SQL AND
Dataflow
Programming
# Flights that were late arriving...

late_arrivals =
on_time_dataframe.filter(on_time_dataframe.ArrD
elayMinutes > 0)

total_late_arrivals = late_arrivals.count()



# Flights that left late but made up time to
arrive on time...

on_time_heros = on_time_dataframe.filter(

(on_time_dataframe.DepDelayMinutes > 0)

&

(on_time_dataframe.ArrDelayMinutes <= 0)

)

total_on_time_heros = on_time_heros.count()



# Get the percentage of flights that are late,
rounded to 1 decimal place

pct_late = round((total_late_arrivals /
(total_flights * 1.0)) * 100, 1)



print("Total flights:
{:,}".format(total_flights))

print("Late departures:
{:,}".format(total_late_departures))

print("Late arrivals:
{:,}".format(total_late_arrivals))

print("Recoveries:
{:,}".format(total_on_time_heros))

print("Percentage Late: {}%".format(pct_late))



# Why are flights late? Lets look at some
delayed flights and the delay causes

late_flights = spark.sql("""

SELECT

ArrDelayMinutes,

WeatherDelay,

CarrierDelay,

NASDelay,

SecurityDelay,

LateAircraftDelay

FROM

on_time_performance

WHERE

WeatherDelay IS NOT NULL

OR

CarrierDelay IS NOT NULL

OR

NASDelay IS NOT NULL

OR

SecurityDelay IS NOT NULL

OR

LateAircraftDelay IS NOT NULL

ORDER BY

FlightDate

""")

late_flights.sample(False, 0.01).show()
# Calculate the percentage contribution to delay for each source

total_delays = spark.sql("""

SELECT

ROUND(SUM(WeatherDelay)/SUM(ArrDelayMinutes) * 100, 1) AS
pct_weather_delay,

ROUND(SUM(CarrierDelay)/SUM(ArrDelayMinutes) * 100, 1) AS
pct_carrier_delay,

ROUND(SUM(NASDelay)/SUM(ArrDelayMinutes) * 100, 1) AS pct_nas_delay,

ROUND(SUM(SecurityDelay)/SUM(ArrDelayMinutes) * 100, 1) AS
pct_security_delay,

ROUND(SUM(LateAircraftDelay)/SUM(ArrDelayMinutes) * 100, 1) AS
pct_late_aircraft_delay

FROM on_time_performance

""")

total_delays.show()



# Generate a histogram of the weather and carrier delays

weather_delay_histogram = on_time_dataframe

.select("WeatherDelay")

.rdd

.flatMap(lambda x: x)

.histogram(10)



print("{}n{}".format(weather_delay_histogram[0],
weather_delay_histogram[1]))



# Eyeball the first to define our buckets

weather_delay_histogram = on_time_dataframe

.select("WeatherDelay")

.rdd

.flatMap(lambda x: x)

.histogram([1, 15, 30, 60, 120, 240, 480, 720, 24*60.0])

print(weather_delay_histogram)
# Transform the data into something easily consumed by d3

record = {'key': 1, 'data': []}

for label, count in zip(weather_delay_histogram[0],
weather_delay_histogram[1]):

record['data'].append(

{

'label': label,

'count': count

}

)



# Save to Mongo directly, since this is a Tuple not a dataframe or RDD

from pymongo import MongoClient

client = MongoClient()

client.relato.weather_delay_histogram.insert_one(record)
Agile Data Science 2.0 22
FAA on-time performance data
Data
Data Syndrome: Agile Data Science 2.0
Collect and Serialize Events in JSON
I never regret using JSON
23
Data Syndrome: Agile Data Science 2.0
FAA On-Time Performance Records
95% of commercial flights
24http://www.transtats.bts.gov/Fields.asp?table_id=236
Data Syndrome: Agile Data Science 2.0
FAA On-Time Performance Records
95% of commercial flights
25
"Year","Quarter","Month","DayofMonth","DayOfWeek","FlightDate","UniqueCarrier","AirlineID","Carrier","TailNum","FlightNum",
"OriginAirportID","OriginAirportSeqID","OriginCityMarketID","Origin","OriginCityName","OriginState","OriginStateFips",
"OriginStateName","OriginWac","DestAirportID","DestAirportSeqID","DestCityMarketID","Dest","DestCityName","DestState",
"DestStateFips","DestStateName","DestWac","CRSDepTime","DepTime","DepDelay","DepDelayMinutes","DepDel15","DepartureDelayGroups",
"DepTimeBlk","TaxiOut","WheelsOff","WheelsOn","TaxiIn","CRSArrTime","ArrTime","ArrDelay","ArrDelayMinutes","ArrDel15",
"ArrivalDelayGroups","ArrTimeBlk","Cancelled","CancellationCode","Diverted","CRSElapsedTime","ActualElapsedTime","AirTime",
"Flights","Distance","DistanceGroup","CarrierDelay","WeatherDelay","NASDelay","SecurityDelay","LateAircraftDelay",
"FirstDepTime","TotalAddGTime","LongestAddGTime","DivAirportLandings","DivReachedDest","DivActualElapsedTime","DivArrDelay",
"DivDistance","Div1Airport","Div1AirportID","Div1AirportSeqID","Div1WheelsOn","Div1TotalGTime","Div1LongestGTime",
"Div1WheelsOff","Div1TailNum","Div2Airport","Div2AirportID","Div2AirportSeqID","Div2WheelsOn","Div2TotalGTime",
"Div2LongestGTime","Div2WheelsOff","Div2TailNum","Div3Airport","Div3AirportID","Div3AirportSeqID","Div3WheelsOn",
"Div3TotalGTime","Div3LongestGTime","Div3WheelsOff","Div3TailNum","Div4Airport","Div4AirportID","Div4AirportSeqID",
"Div4WheelsOn","Div4TotalGTime","Div4LongestGTime","Div4WheelsOff","Div4TailNum","Div5Airport","Div5AirportID",
"Div5AirportSeqID","Div5WheelsOn","Div5TotalGTime","Div5LongestGTime","Div5WheelsOff","Div5TailNum"
Data Syndrome: Agile Data Science 2.0
openflights.org Database
Airports, Airlines, Routes
26
Data Syndrome: Agile Data Science 2.0
Scraping the FAA Registry
Airplane Data by Tail Number
27
Data Syndrome: Agile Data Science 2.0
Wikipedia Airlines Entries
Descriptions of Airlines
28
Data Syndrome: Agile Data Science 2.0
National Centers for Environmental Information
Historical Weather Observations
29
Agile Data Science 2.0 30
Working our way up the data value pyramid
Climbing the Stack
Agile Data Science 2.0 31
Starting by “plumbing” the system from end to end
Plumbing
Data Syndrome: Agile Data Science 2.0
Publishing Flight Records
Plumbing our master records through to the web
32
Data Syndrome: Agile Data Science 2.0
Publishing Flight Records to MongoDB
Plumbing our master records through to the web
33
import pymongo

import pymongo_spark

# Important: activate pymongo_spark.

pymongo_spark.activate()

# Load the parquet file
on_time_dataframe = spark.read.parquet('data/on_time_performance.parquet')

# Convert to RDD of dicts and save to MongoDB

as_dict = on_time_dataframe.rdd.map(lambda row: row.asDict())
as_dict.saveToMongoDB(‘mongodb://localhost:27017/agile_data_science.on_time_performance')
Data Syndrome: Agile Data Science 2.0
Publishing Flight Records to ElasticSearch
Plumbing our master records through to the web
34
# Load the parquet file

on_time_dataframe = spark.read.parquet('data/on_time_performance.parquet')



# Save the DataFrame to Elasticsearch

on_time_dataframe.write.format("org.elasticsearch.spark.sql")

.option("es.resource","agile_data_science/on_time_performance")

.option("es.batch.size.entries","100")

.mode("overwrite")

.save()
Data Syndrome: Agile Data Science 2.0
Putting Records on the Web
Plumbing our master records through to the web
35
from flask import Flask, render_template, request

from pymongo import MongoClient

from bson import json_util



# Set up Flask and Mongo

app = Flask(__name__)

client = MongoClient()



# Controller: Fetch an email and display it

@app.route("/on_time_performance")

def on_time_performance():



carrier = request.args.get('Carrier')

flight_date = request.args.get('FlightDate')

flight_num = request.args.get('FlightNum')



flight = client.agile_data_science.on_time_performance.find_one({

'Carrier': carrier,

'FlightDate': flight_date,

'FlightNum': int(flight_num)

})



return json_util.dumps(flight)



if __name__ == "__main__":

app.run(debug=True)
Data Syndrome: Agile Data Science 2.0
Putting Records on the Web
Plumbing our master records through to the web
36
Data Syndrome: Agile Data Science 2.0
Putting Records on the Web
Plumbing our master records through to the web
37
Agile Data Science 2.0 38
Getting to know your data
Tables and Charts
Data Syndrome: Agile Data Science 2.0
Tables in PySpark
Back end development in PySpark
39
# Load the parquet file

on_time_dataframe = spark.read.parquet('data/on_time_performance.parquet')



# Use SQL to look at the total flights by month across 2015

on_time_dataframe.registerTempTable("on_time_dataframe")

total_flights_by_month = spark.sql(

"""SELECT Month, Year, COUNT(*) AS total_flights

FROM on_time_dataframe

GROUP BY Year, Month

ORDER BY Year, Month"""

)



# This map/asDict trick makes the rows print a little prettier. It is optional.

flights_chart_data = total_flights_by_month.map(lambda row: row.asDict())

flights_chart_data.collect()



# Save chart to MongoDB

import pymongo_spark

pymongo_spark.activate()

flights_chart_data.saveToMongoDB(

'mongodb://localhost:27017/agile_data_science.flights_by_month'

)
Data Syndrome: Agile Data Science 2.0
Tables in Flask and Jinja2
Front end development in Flask: controller and template
40
# Controller: Fetch a flight table

@app.route("/total_flights")

def total_flights():

total_flights = client.agile_data_science.flights_by_month.find({}, 

sort = [

('Year', 1),

('Month', 1)

])

return render_template('total_flights.html', total_flights=total_flights)
{% extends "layout.html" %}

{% block body %}

<div>

<p class="lead">Total Flights by Month</p>

<table class="table table-condensed table-striped" style="width: 200px;">

<thead>

<th>Month</th>

<th>Total Flights</th>

</thead>

<tbody>

{% for month in total_flights %}

<tr>

<td>{{month.Month}}</td>

<td>{{month.total_flights}}</td>

</tr>

{% endfor %}

</tbody>

</table>

</div>

{% endblock %}
Data Syndrome: Agile Data Science 2.0
Tables
Visualizing data
41
Data Syndrome: Agile Data Science 2.0
Charts in Flask and d3.js
Visualizing data with JSON and d3.js
42
# Serve the chart's data via an asynchronous request (formerly known as 'AJAX')

@app.route("/total_flights.json")

def total_flights_json():

total_flights = client.agile_data_science.flights_by_month.find({}, 

sort = [

('Year', 1),

('Month', 1)

])

return json_util.dumps(total_flights, ensure_ascii=False)
var width = 960,

height = 350;



var y = d3.scale.linear()

.range([height, 0]);

// We define the domain once we get our data in d3.json, below



var chart = d3.select(".chart")

.attr("width", width)

.attr("height", height);



d3.json("/total_flights.json", function(data) {



var defaultColor = 'steelblue';

var modeColor = '#4CA9F5';



var maxY = d3.max(data, function(d) { return d.total_flights; });

y.domain([0, maxY]);



var varColor = function(d, i) {

if(d['total_flights'] == maxY) { return modeColor; }

else { return defaultColor; }

}

var barWidth = width / data.length;

var bar = chart.selectAll("g")

.data(data)

.enter()

.append("g")

.attr("transform", function(d, i) { return "translate(" + i * barWidth + ",0)"; });



bar.append("rect")

.attr("y", function(d) { return y(d.total_flights); })

.attr("height", function(d) { return height - y(d.total_flights); })

.attr("width", barWidth - 1)

.style("fill", varColor);



bar.append("text")

.attr("x", barWidth / 2)

.attr("y", function(d) { return y(d.total_flights) + 3; })

.attr("dy", ".75em")

.text(function(d) { return d.total_flights; });

});
Data Syndrome: Agile Data Science 2.0
Charts
Visualizing data
43
Agile Data Science 2.0 44
Exploring your data through interaction
Reports
Data Syndrome: Agile Data Science 2.0
Creating Interactive Ontologies from Semi-Structured Data
Extracting and visualizing entities
45
Data Syndrome: Agile Data Science 2.0
Home Page
Extracting and decorating entities
46
Data Syndrome: Agile Data Science 2.0
Airline Entity
Extracting and decorating entities
47
Data Syndrome: Agile Data Science 2.0
Summarizing Airlines 1.0
Describing entities in aggregate
48
Data Syndrome: Agile Data Science 2.0
Summarizing Airlines 2.0
Describing entities in aggregate
49
Data Syndrome: Agile Data Science 2.0
Summarizing Airlines 3.0
Describing entities in aggregate
50
Data Syndrome: Agile Data Science 2.0
Summarizing Airlines 4.0
Describing entities in aggregate
51
Agile Data Science 2.0 52
Predicting the future for fun and profit
Predictions
Data Syndrome: Agile Data Science 2.0
Back End Design
Deep Storage and Spark vs Kafka and Spark Streaming
53
/
Batch Realtime
Historical Data
Train Model Apply Model
Realtime Data
Data Syndrome: Agile Data Science 2.0 54
jQuery in the web client submits a form to create the prediction request, and
then polls another url every few seconds until the prediction is ready. The
request generates a Kafka event, which a Spark Streaming worker processes
by applying the model we trained in batch. Having done so, it inserts a record
for the prediction in MongoDB, where the Flask app sends it to the web client
the next time it polls the server
Front End Design
/flights/delays/predict/classify_realtime/
Data Syndrome: Agile Data Science 2.0
String Vectorization
From properties of items to vector format
55
Data Syndrome: Agile Data Science 2.0 56
scikit-learn was 166. Spark MLlib is very powerful!
190 Line Model
# !/usr/bin/env python



import sys, os, re



# Pass date and base path to main() from airflow

def main(base_path):



# Default to "."

try: base_path

except NameError: base_path = "."

if not base_path:

base_path = "."



APP_NAME = "train_spark_mllib_model.py"



# If there is no SparkSession, create the environment

try:

sc and spark

except NameError as e:

import findspark

findspark.init()

import pyspark

import pyspark.sql



sc = pyspark.SparkContext()

spark = pyspark.sql.SparkSession(sc).builder.appName(APP_NAME).getOrCreate()



#

# {

# "ArrDelay":5.0,"CRSArrTime":"2015-12-31T03:20:00.000-08:00","CRSDepTime":"2015-12-31T03:05:00.000-08:00",

# "Carrier":"WN","DayOfMonth":31,"DayOfWeek":4,"DayOfYear":365,"DepDelay":14.0,"Dest":"SAN","Distance":368.0,

# "FlightDate":"2015-12-30T16:00:00.000-08:00","FlightNum":"6109","Origin":"TUS"

# }

#

from pyspark.sql.types import StringType, IntegerType, FloatType, DoubleType, DateType, TimestampType

from pyspark.sql.types import StructType, StructField

from pyspark.sql.functions import udf



schema = StructType([

StructField("ArrDelay", DoubleType(), True), # "ArrDelay":5.0

StructField("CRSArrTime", TimestampType(), True), # "CRSArrTime":"2015-12-31T03:20:00.000-08:00"

StructField("CRSDepTime", TimestampType(), True), # "CRSDepTime":"2015-12-31T03:05:00.000-08:00"

StructField("Carrier", StringType(), True), # "Carrier":"WN"

StructField("DayOfMonth", IntegerType(), True), # "DayOfMonth":31

StructField("DayOfWeek", IntegerType(), True), # "DayOfWeek":4

StructField("DayOfYear", IntegerType(), True), # "DayOfYear":365

StructField("DepDelay", DoubleType(), True), # "DepDelay":14.0

StructField("Dest", StringType(), True), # "Dest":"SAN"

StructField("Distance", DoubleType(), True), # "Distance":368.0

StructField("FlightDate", DateType(), True), # "FlightDate":"2015-12-30T16:00:00.000-08:00"

StructField("FlightNum", StringType(), True), # "FlightNum":"6109"

StructField("Origin", StringType(), True), # "Origin":"TUS"

])



input_path = "{}/data/simple_flight_delay_features.jsonl.bz2".format(

base_path

)

features = spark.read.json(input_path, schema=schema)

features.first()



#

# Check for nulls in features before using Spark ML

#

null_counts = [(column, features.where(features[column].isNull()).count()) for column in features.columns]

cols_with_nulls = filter(lambda x: x[1] > 0, null_counts)

print(list(cols_with_nulls))



#

# Add a Route variable to replace FlightNum

#

from pyspark.sql.functions import lit, concat

features_with_route = features.withColumn(

'Route',

concat(

features.Origin,

lit('-'),

features.Dest

)

)

features_with_route.show(6)



#

# Use pysmark.ml.feature.Bucketizer to bucketize ArrDelay into on-time, slightly late, very late (0, 1, 2)

#

from pyspark.ml.feature import Bucketizer



# Setup the Bucketizer

splits = [-float("inf"), -15.0, 0, 30.0, float("inf")]

arrival_bucketizer = Bucketizer(

splits=splits,

inputCol="ArrDelay",

outputCol="ArrDelayBucket"

)



# Save the bucketizer

arrival_bucketizer_path = "{}/models/arrival_bucketizer_2.0.bin".format(base_path)

arrival_bucketizer.write().overwrite().save(arrival_bucketizer_path)



# Apply the bucketizer

ml_bucketized_features = arrival_bucketizer.transform(features_with_route)

ml_bucketized_features.select("ArrDelay", "ArrDelayBucket").show()



#

# Extract features tools in with pyspark.ml.feature

#

from pyspark.ml.feature import StringIndexer, VectorAssembler



# Turn category fields into indexes

for column in ["Carrier", "Origin", "Dest", "Route"]:

string_indexer = StringIndexer(

inputCol=column,

outputCol=column + "_index"

)



string_indexer_model = string_indexer.fit(ml_bucketized_features)

ml_bucketized_features = string_indexer_model.transform(ml_bucketized_features)



# Drop the original column

ml_bucketized_features = ml_bucketized_features.drop(column)



# Save the pipeline model

string_indexer_output_path = "{}/models/string_indexer_model_{}.bin".format(

base_path,

column

)

string_indexer_model.write().overwrite().save(string_indexer_output_path)



# Combine continuous, numeric fields with indexes of nominal ones

# ...into one feature vector

numeric_columns = [

"DepDelay", "Distance",

"DayOfMonth", "DayOfWeek",

"DayOfYear"]

index_columns = ["Carrier_index", "Origin_index",

"Dest_index", "Route_index"]

vector_assembler = VectorAssembler(

inputCols=numeric_columns + index_columns,

outputCol="Features_vec"

)

final_vectorized_features = vector_assembler.transform(ml_bucketized_features)



# Save the numeric vector assembler

vector_assembler_path = "{}/models/numeric_vector_assembler.bin".format(base_path)

vector_assembler.write().overwrite().save(vector_assembler_path)



# Drop the index columns

for column in index_columns:

final_vectorized_features = final_vectorized_features.drop(column)



# Inspect the finalized features

final_vectorized_features.show()



# Instantiate and fit random forest classifier on all the data

from pyspark.ml.classification import RandomForestClassifier

rfc = RandomForestClassifier(

featuresCol="Features_vec",

labelCol="ArrDelayBucket",

predictionCol="Prediction",

maxBins=4657,

maxMemoryInMB=1024

)

model = rfc.fit(final_vectorized_features)



# Save the new model over the old one

model_output_path = "{}/models/spark_random_forest_classifier.flight_delays.5.0.bin".format(

base_path

)

model.write().overwrite().save(model_output_path)



# Evaluate model using test data

predictions = model.transform(final_vectorized_features)



from pyspark.ml.evaluation import MulticlassClassificationEvaluator

evaluator = MulticlassClassificationEvaluator(

predictionCol="Prediction",

labelCol="ArrDelayBucket",

metricName="accuracy"

)

accuracy = evaluator.evaluate(predictions)

print("Accuracy = {}".format(accuracy))



# Check the distribution of predictions

predictions.groupBy("Prediction").count().show()



# Check a sample

predictions.sample(False, 0.001, 18).orderBy("CRSDepTime").show(6)



if __name__ == "__main__":

main(sys.argv[1])

Data Syndrome: Agile Data Science 2.0
Experiment Setup
Necessary to improve model
57
Data Syndrome: Agile Data Science 2.0 58
155 additional lines to setup an experiment
and add improvements
345 L.O.C.
# !/usr/bin/env python



import sys, os, re

import json

import datetime, iso8601

from tabulate import tabulate



# Pass date and base path to main() from airflow

def main(base_path):

APP_NAME = "train_spark_mllib_model.py"



# If there is no SparkSession, create the environment

try:

sc and spark

except NameError as e:

import findspark

findspark.init()

import pyspark

import pyspark.sql



sc = pyspark.SparkContext()

spark = pyspark.sql.SparkSession(sc).builder.appName(APP_NAME).getOrCreate()



#

# {

# "ArrDelay":5.0,"CRSArrTime":"2015-12-31T03:20:00.000-08:00","CRSDepTime":"2015-12-31T03:05:00.000-08:00",

# "Carrier":"WN","DayOfMonth":31,"DayOfWeek":4,"DayOfYear":365,"DepDelay":14.0,"Dest":"SAN","Distance":368.0,

# "FlightDate":"2015-12-30T16:00:00.000-08:00","FlightNum":"6109","Origin":"TUS"

# }

#

from pyspark.sql.types import StringType, IntegerType, FloatType, DoubleType, DateType, TimestampType

from pyspark.sql.types import StructType, StructField

from pyspark.sql.functions import udf



schema = StructType([

StructField("ArrDelay", DoubleType(), True), # "ArrDelay":5.0

StructField("CRSArrTime", TimestampType(), True), # "CRSArrTime":"2015-12-31T03:20:00.000-08:00"

StructField("CRSDepTime", TimestampType(), True), # "CRSDepTime":"2015-12-31T03:05:00.000-08:00"

StructField("Carrier", StringType(), True), # "Carrier":"WN"

StructField("DayOfMonth", IntegerType(), True), # "DayOfMonth":31

StructField("DayOfWeek", IntegerType(), True), # "DayOfWeek":4

StructField("DayOfYear", IntegerType(), True), # "DayOfYear":365

StructField("DepDelay", DoubleType(), True), # "DepDelay":14.0

StructField("Dest", StringType(), True), # "Dest":"SAN"

StructField("Distance", DoubleType(), True), # "Distance":368.0

StructField("FlightDate", DateType(), True), # "FlightDate":"2015-12-30T16:00:00.000-08:00"

StructField("FlightNum", StringType(), True), # "FlightNum":"6109"

StructField("Origin", StringType(), True), # "Origin":"TUS"

])



input_path = "{}/data/simple_flight_delay_features.json".format(

base_path

)

features = spark.read.json(input_path, schema=schema)

features.first()



#

# Add a Route variable to replace FlightNum

#

from pyspark.sql.functions import lit, concat

features_with_route = features.withColumn(

'Route',

concat(

features.Origin,

lit('-'),

features.Dest

)

)

features_with_route.show(6)



#

# Add the hour of day of scheduled arrival/departure

#

from pyspark.sql.functions import hour

features_with_hour = features_with_route.withColumn(

"CRSDepHourOfDay",

hour(features.CRSDepTime)

)

features_with_hour = features_with_hour.withColumn(

"CRSArrHourOfDay",

hour(features.CRSArrTime)

)

features_with_hour.select("CRSDepTime", "CRSDepHourOfDay", "CRSArrTime", "CRSArrHourOfDay").show()



#

# Use pysmark.ml.feature.Bucketizer to bucketize ArrDelay into on-time, slightly late, very late (0, 1, 2)

#

from pyspark.ml.feature import Bucketizer



# Setup the Bucketizer

splits = [-float("inf"), -15.0, 0, 30.0, float("inf")]

arrival_bucketizer = Bucketizer(

splits=splits,

inputCol="ArrDelay",

outputCol="ArrDelayBucket"

)



# Save the model

arrival_bucketizer_path = "{}/models/arrival_bucketizer_2.0.bin".format(base_path)

arrival_bucketizer.write().overwrite().save(arrival_bucketizer_path)



# Apply the model

ml_bucketized_features = arrival_bucketizer.transform(features_with_hour)

ml_bucketized_features.select("ArrDelay", "ArrDelayBucket").show()



#

# Extract features tools in with pyspark.ml.feature

#

from pyspark.ml.feature import StringIndexer, VectorAssembler



# Turn category fields into indexes

for column in ["Carrier", "Origin", "Dest", "Route"]:

string_indexer = StringIndexer(

inputCol=column,

outputCol=column + "_index"

)



string_indexer_model = string_indexer.fit(ml_bucketized_features)

ml_bucketized_features = string_indexer_model.transform(ml_bucketized_features)

# Save the pipeline model

string_indexer_output_path = "{}/models/string_indexer_model_3.0.{}.bin".format(

base_path,

column

)

string_indexer_model.write().overwrite().save(string_indexer_output_path)



# Combine continuous, numeric fields with indexes of nominal ones

# ...into one feature vector

numeric_columns = [

"DepDelay", "Distance",

"DayOfMonth", "DayOfWeek",

"DayOfYear", "CRSDepHourOfDay",

"CRSArrHourOfDay"]

index_columns = ["Carrier_index", "Origin_index",

"Dest_index", "Route_index"]

vector_assembler = VectorAssembler(

inputCols=numeric_columns + index_columns,

outputCol="Features_vec"

)

final_vectorized_features = vector_assembler.transform(ml_bucketized_features)



# Save the numeric vector assembler

vector_assembler_path = "{}/models/numeric_vector_assembler_3.0.bin".format(base_path)

vector_assembler.write().overwrite().save(vector_assembler_path)



# Drop the index columns

for column in index_columns:

final_vectorized_features = final_vectorized_features.drop(column)



# Inspect the finalized features

final_vectorized_features.show()



#

# Cross validate, train and evaluate classifier: loop 5 times for 4 metrics

#



from collections import defaultdict

scores = defaultdict(list)

feature_importances = defaultdict(list)

metric_names = ["accuracy", "weightedPrecision", "weightedRecall", "f1"]

split_count = 3



for i in range(1, split_count + 1):

print("nRun {} out of {} of test/train splits in cross validation...".format(

i,

split_count,

)

)



# Test/train split

training_data, test_data = final_vectorized_features.randomSplit([0.8, 0.2])



# Instantiate and fit random forest classifier on all the data

from pyspark.ml.classification import RandomForestClassifier

rfc = RandomForestClassifier(

featuresCol="Features_vec",

labelCol="ArrDelayBucket",

predictionCol="Prediction",

maxBins=4657,

)

model = rfc.fit(training_data)



# Save the new model over the old one

model_output_path = "{}/models/spark_random_forest_classifier.flight_delays.baseline.bin".format(

base_path

)

model.write().overwrite().save(model_output_path)



# Evaluate model using test data

predictions = model.transform(test_data)



# Evaluate this split's results for each metric

from pyspark.ml.evaluation import MulticlassClassificationEvaluator

for metric_name in metric_names:

evaluator = MulticlassClassificationEvaluator(

labelCol="ArrDelayBucket",

predictionCol="Prediction",

metricName=metric_name

)

score = evaluator.evaluate(predictions)



scores[metric_name].append(score)

print("{} = {}".format(metric_name, score))



#

# Collect feature importances

#

feature_names = vector_assembler.getInputCols()

feature_importance_list = model.featureImportances

for feature_name, feature_importance in zip(feature_names, feature_importance_list):

feature_importances[feature_name].append(feature_importance)



#

# Evaluate average and STD of each metric and print a table

#

import numpy as np

score_averages = defaultdict(float)



# Compute the table data

average_stds = [] # ha

for metric_name in metric_names:

metric_scores = scores[metric_name]



average_accuracy = sum(metric_scores) / len(metric_scores)

score_averages[metric_name] = average_accuracy



std_accuracy = np.std(metric_scores)



average_stds.append((metric_name, average_accuracy, std_accuracy))



# Print the table

print("nExperiment Log")

print("--------------")

print(tabulate(average_stds, headers=["Metric", "Average", "STD"]))



#

# Persist the score to a sccore log that exists between runs

#

import pickle
# Load the score log or initialize an empty one

try:

score_log_filename = "{}/models/score_log.pickle".format(base_path)

score_log = pickle.load(open(score_log_filename, "rb"))

if not isinstance(score_log, list):

score_log = []

except IOError:

score_log = []



# Compute the existing score log entry

score_log_entry = {metric_name: score_averages[metric_name] for metric_name in metric_names}



# Compute and display the change in score for each metric

try:

last_log = score_log[-1]

except (IndexError, TypeError, AttributeError):

last_log = score_log_entry



experiment_report = []

for metric_name in metric_names:

run_delta = score_log_entry[metric_name] - last_log[metric_name]

experiment_report.append((metric_name, run_delta))



print("nExperiment Report")

print("-----------------")

print(tabulate(experiment_report, headers=["Metric", "Score"]))



# Append the existing average scores to the log

score_log.append(score_log_entry)



# Persist the log for next run

pickle.dump(score_log, open(score_log_filename, "wb"))



#

# Analyze and report feature importance changes

#



# Compute averages for each feature

feature_importance_entry = defaultdict(float)

for feature_name, value_list in feature_importances.items():

average_importance = sum(value_list) / len(value_list)

feature_importance_entry[feature_name] = average_importance



# Sort the feature importances in descending order and print

import operator

sorted_feature_importances = sorted(

feature_importance_entry.items(),

key=operator.itemgetter(1),

reverse=True

)



print("nFeature Importances")

print("-------------------")

print(tabulate(sorted_feature_importances, headers=['Name', 'Importance']))



#

# Compare this run's feature importances with the previous run's

#



# Load the feature importance log or initialize an empty one

try:

feature_log_filename = "{}/models/feature_log.pickle".format(base_path)

feature_log = pickle.load(open(feature_log_filename, "rb"))

if not isinstance(feature_log, list):

feature_log = []

except IOError:

feature_log = []



# Compute and display the change in score for each feature

try:

last_feature_log = feature_log[-1]

except (IndexError, TypeError, AttributeError):

last_feature_log = defaultdict(float)

for feature_name, importance in feature_importance_entry.items():

last_feature_log[feature_name] = importance



# Compute the deltas

feature_deltas = {}

for feature_name in feature_importances.keys():

run_delta = feature_importance_entry[feature_name] - last_feature_log[feature_name]

feature_deltas[feature_name] = run_delta



# Sort feature deltas, biggest change first

import operator

sorted_feature_deltas = sorted(

feature_deltas.items(),

key=operator.itemgetter(1),

reverse=True

)



# Display sorted feature deltas

print("nFeature Importance Delta Report")

print("-------------------------------")

print(tabulate(sorted_feature_deltas, headers=["Feature", "Delta"]))



# Append the existing average deltas to the log

feature_log.append(feature_importance_entry)



# Persist the log for next run

pickle.dump(feature_log, open(feature_log_filename, "wb"))



if __name__ == "__main__":

main(sys.argv[1])

Data Syndrome Russell Jurney
Principal Consultant
Email : rjurney@datasyndrome.com
Web : datasyndrome.com
Data Syndrome, LLC

More Related Content

What's hot

Fortune Teller API - Doing Data Science with Apache Spark
Fortune Teller API - Doing Data Science with Apache SparkFortune Teller API - Doing Data Science with Apache Spark
Fortune Teller API - Doing Data Science with Apache SparkBas Geerdink
 
Agile Data Science
Agile Data ScienceAgile Data Science
Agile Data ScienceDhiana Deva
 
Agile data science
Agile data scienceAgile data science
Agile data scienceJoel Horwitz
 
Leveraging Open Source Automated Data Science Tools
Leveraging Open Source Automated Data Science ToolsLeveraging Open Source Automated Data Science Tools
Leveraging Open Source Automated Data Science ToolsDomino Data Lab
 
Agile Data Science by Russell Jurney_ The Hive_Janruary 29 2014
Agile Data Science by Russell Jurney_ The Hive_Janruary 29 2014Agile Data Science by Russell Jurney_ The Hive_Janruary 29 2014
Agile Data Science by Russell Jurney_ The Hive_Janruary 29 2014The Hive
 
Increasing the Impact of Visualization Research
Increasing the Impact of Visualization ResearchIncreasing the Impact of Visualization Research
Increasing the Impact of Visualization ResearchKrist Wongsuphasawat
 
Leveraging NLP and Deep Learning for Document Recommendations in the Cloud
Leveraging NLP and Deep Learning for Document Recommendations in the CloudLeveraging NLP and Deep Learning for Document Recommendations in the Cloud
Leveraging NLP and Deep Learning for Document Recommendations in the CloudDatabricks
 
Seeing at the Speed of Thought: Empowering Others Through Data Exploration
Seeing at the Speed of Thought: Empowering Others Through Data ExplorationSeeing at the Speed of Thought: Empowering Others Through Data Exploration
Seeing at the Speed of Thought: Empowering Others Through Data ExplorationGreg Goltsov
 
#rstats lessons for #measure
#rstats lessons for #measure#rstats lessons for #measure
#rstats lessons for #measureMark Edmondson
 
Data Science Training | Data Science Tutorial | Data Science Certification | ...
Data Science Training | Data Science Tutorial | Data Science Certification | ...Data Science Training | Data Science Tutorial | Data Science Certification | ...
Data Science Training | Data Science Tutorial | Data Science Certification | ...Edureka!
 
Data Science in Future Tense
Data Science in Future TenseData Science in Future Tense
Data Science in Future TensePaco Nathan
 
Python for Data Science with Anaconda
Python for Data Science with AnacondaPython for Data Science with Anaconda
Python for Data Science with AnacondaTravis Oliphant
 
Doing your first Kaggle (Python for Big Data sets)
Doing your first Kaggle (Python for Big Data sets)Doing your first Kaggle (Python for Big Data sets)
Doing your first Kaggle (Python for Big Data sets)Domino Data Lab
 
Putting the Magic in Data Science
Putting the Magic in Data SciencePutting the Magic in Data Science
Putting the Magic in Data ScienceSean Taylor
 
Ilkay Altintas: Kepler
Ilkay Altintas: KeplerIlkay Altintas: Kepler
Ilkay Altintas: KeplerDavid LeBauer
 
Data Science 101
Data Science 101Data Science 101
Data Science 101odsc
 
Bridging Big Data and Data Science Using Scalable Workflows
Bridging Big Data and Data Science Using Scalable WorkflowsBridging Big Data and Data Science Using Scalable Workflows
Bridging Big Data and Data Science Using Scalable WorkflowsIlkay Altintas, Ph.D.
 

What's hot (17)

Fortune Teller API - Doing Data Science with Apache Spark
Fortune Teller API - Doing Data Science with Apache SparkFortune Teller API - Doing Data Science with Apache Spark
Fortune Teller API - Doing Data Science with Apache Spark
 
Agile Data Science
Agile Data ScienceAgile Data Science
Agile Data Science
 
Agile data science
Agile data scienceAgile data science
Agile data science
 
Leveraging Open Source Automated Data Science Tools
Leveraging Open Source Automated Data Science ToolsLeveraging Open Source Automated Data Science Tools
Leveraging Open Source Automated Data Science Tools
 
Agile Data Science by Russell Jurney_ The Hive_Janruary 29 2014
Agile Data Science by Russell Jurney_ The Hive_Janruary 29 2014Agile Data Science by Russell Jurney_ The Hive_Janruary 29 2014
Agile Data Science by Russell Jurney_ The Hive_Janruary 29 2014
 
Increasing the Impact of Visualization Research
Increasing the Impact of Visualization ResearchIncreasing the Impact of Visualization Research
Increasing the Impact of Visualization Research
 
Leveraging NLP and Deep Learning for Document Recommendations in the Cloud
Leveraging NLP and Deep Learning for Document Recommendations in the CloudLeveraging NLP and Deep Learning for Document Recommendations in the Cloud
Leveraging NLP and Deep Learning for Document Recommendations in the Cloud
 
Seeing at the Speed of Thought: Empowering Others Through Data Exploration
Seeing at the Speed of Thought: Empowering Others Through Data ExplorationSeeing at the Speed of Thought: Empowering Others Through Data Exploration
Seeing at the Speed of Thought: Empowering Others Through Data Exploration
 
#rstats lessons for #measure
#rstats lessons for #measure#rstats lessons for #measure
#rstats lessons for #measure
 
Data Science Training | Data Science Tutorial | Data Science Certification | ...
Data Science Training | Data Science Tutorial | Data Science Certification | ...Data Science Training | Data Science Tutorial | Data Science Certification | ...
Data Science Training | Data Science Tutorial | Data Science Certification | ...
 
Data Science in Future Tense
Data Science in Future TenseData Science in Future Tense
Data Science in Future Tense
 
Python for Data Science with Anaconda
Python for Data Science with AnacondaPython for Data Science with Anaconda
Python for Data Science with Anaconda
 
Doing your first Kaggle (Python for Big Data sets)
Doing your first Kaggle (Python for Big Data sets)Doing your first Kaggle (Python for Big Data sets)
Doing your first Kaggle (Python for Big Data sets)
 
Putting the Magic in Data Science
Putting the Magic in Data SciencePutting the Magic in Data Science
Putting the Magic in Data Science
 
Ilkay Altintas: Kepler
Ilkay Altintas: KeplerIlkay Altintas: Kepler
Ilkay Altintas: Kepler
 
Data Science 101
Data Science 101Data Science 101
Data Science 101
 
Bridging Big Data and Data Science Using Scalable Workflows
Bridging Big Data and Data Science Using Scalable WorkflowsBridging Big Data and Data Science Using Scalable Workflows
Bridging Big Data and Data Science Using Scalable Workflows
 

Similar to Agile Data Science 2.0

Agile Data Science 2.0
Agile Data Science 2.0Agile Data Science 2.0
Agile Data Science 2.0Russell Jurney
 
Introduction to PySpark
Introduction to PySparkIntroduction to PySpark
Introduction to PySparkRussell Jurney
 
Predictive Analytics with Airflow and PySpark
Predictive Analytics with Airflow and PySparkPredictive Analytics with Airflow and PySpark
Predictive Analytics with Airflow and PySparkRussell Jurney
 
Best Practices for Building and Deploying Data Pipelines in Apache Spark
Best Practices for Building and Deploying Data Pipelines in Apache SparkBest Practices for Building and Deploying Data Pipelines in Apache Spark
Best Practices for Building and Deploying Data Pipelines in Apache SparkDatabricks
 
BigData_Krishna Kumar Sharma
BigData_Krishna Kumar SharmaBigData_Krishna Kumar Sharma
BigData_Krishna Kumar SharmaKrishna Kumar Sharma
 
OLAP on the Cloud with Azure Databricks and Azure Synapse
OLAP on the Cloud with Azure Databricks and Azure SynapseOLAP on the Cloud with Azure Databricks and Azure Synapse
OLAP on the Cloud with Azure Databricks and Azure SynapseAtScale
 
Intershop Commerce Management with Microsoft SQL Server
Intershop Commerce Management with Microsoft SQL ServerIntershop Commerce Management with Microsoft SQL Server
Intershop Commerce Management with Microsoft SQL ServerMauro Boffardi
 
Spark streaming , Spark SQL
Spark streaming , Spark SQLSpark streaming , Spark SQL
Spark streaming , Spark SQLYousun Jeong
 
Ultra Fast Deep Learning in Hybrid Cloud Using Intel Analytics Zoo & Alluxio
Ultra Fast Deep Learning in Hybrid Cloud Using Intel Analytics Zoo & AlluxioUltra Fast Deep Learning in Hybrid Cloud Using Intel Analytics Zoo & Alluxio
Ultra Fast Deep Learning in Hybrid Cloud Using Intel Analytics Zoo & AlluxioAlluxio, Inc.
 
Ben ford intro
Ben ford introBen ford intro
Ben ford introPuppet
 
Telemetry doesn't have to be scary; Ben Ford
Telemetry doesn't have to be scary; Ben FordTelemetry doesn't have to be scary; Ben Ford
Telemetry doesn't have to be scary; Ben FordPuppet
 
Be a database professional
Be a database professionalBe a database professional
Be a database professionalSayed Ahmed
 
Be a database professional
Be a database professionalBe a database professional
Be a database professionalSayed Ahmed
 
Data modeling star schema
Data modeling star schemaData modeling star schema
Data modeling star schemaSayed Ahmed
 
Data Seeding via Parameterized API Requests
Data Seeding via Parameterized API RequestsData Seeding via Parameterized API Requests
Data Seeding via Parameterized API RequestsRapidValue
 
"Lessons learned using Apache Spark for self-service data prep in SaaS world"
"Lessons learned using Apache Spark for self-service data prep in SaaS world""Lessons learned using Apache Spark for self-service data prep in SaaS world"
"Lessons learned using Apache Spark for self-service data prep in SaaS world"Pavel Hardak
 
Lessons Learned Using Apache Spark for Self-Service Data Prep in SaaS World
Lessons Learned Using Apache Spark for Self-Service Data Prep in SaaS WorldLessons Learned Using Apache Spark for Self-Service Data Prep in SaaS World
Lessons Learned Using Apache Spark for Self-Service Data Prep in SaaS WorldDatabricks
 
Scale By The Bay | 2020 | Gimel
Scale By The Bay | 2020 | GimelScale By The Bay | 2020 | Gimel
Scale By The Bay | 2020 | GimelDeepak Chandramouli
 
Ashish_Maheshwari_Data_Analyst
Ashish_Maheshwari_Data_AnalystAshish_Maheshwari_Data_Analyst
Ashish_Maheshwari_Data_AnalystAshish Maheshwari
 

Similar to Agile Data Science 2.0 (20)

Agile Data Science 2.0
Agile Data Science 2.0Agile Data Science 2.0
Agile Data Science 2.0
 
Introduction to PySpark
Introduction to PySparkIntroduction to PySpark
Introduction to PySpark
 
Predictive Analytics with Airflow and PySpark
Predictive Analytics with Airflow and PySparkPredictive Analytics with Airflow and PySpark
Predictive Analytics with Airflow and PySpark
 
Best Practices for Building and Deploying Data Pipelines in Apache Spark
Best Practices for Building and Deploying Data Pipelines in Apache SparkBest Practices for Building and Deploying Data Pipelines in Apache Spark
Best Practices for Building and Deploying Data Pipelines in Apache Spark
 
BigData_Krishna Kumar Sharma
BigData_Krishna Kumar SharmaBigData_Krishna Kumar Sharma
BigData_Krishna Kumar Sharma
 
User 2013-oracle-big-data-analytics-1971985
User 2013-oracle-big-data-analytics-1971985User 2013-oracle-big-data-analytics-1971985
User 2013-oracle-big-data-analytics-1971985
 
OLAP on the Cloud with Azure Databricks and Azure Synapse
OLAP on the Cloud with Azure Databricks and Azure SynapseOLAP on the Cloud with Azure Databricks and Azure Synapse
OLAP on the Cloud with Azure Databricks and Azure Synapse
 
Intershop Commerce Management with Microsoft SQL Server
Intershop Commerce Management with Microsoft SQL ServerIntershop Commerce Management with Microsoft SQL Server
Intershop Commerce Management with Microsoft SQL Server
 
Spark streaming , Spark SQL
Spark streaming , Spark SQLSpark streaming , Spark SQL
Spark streaming , Spark SQL
 
Ultra Fast Deep Learning in Hybrid Cloud Using Intel Analytics Zoo & Alluxio
Ultra Fast Deep Learning in Hybrid Cloud Using Intel Analytics Zoo & AlluxioUltra Fast Deep Learning in Hybrid Cloud Using Intel Analytics Zoo & Alluxio
Ultra Fast Deep Learning in Hybrid Cloud Using Intel Analytics Zoo & Alluxio
 
Ben ford intro
Ben ford introBen ford intro
Ben ford intro
 
Telemetry doesn't have to be scary; Ben Ford
Telemetry doesn't have to be scary; Ben FordTelemetry doesn't have to be scary; Ben Ford
Telemetry doesn't have to be scary; Ben Ford
 
Be a database professional
Be a database professionalBe a database professional
Be a database professional
 
Be a database professional
Be a database professionalBe a database professional
Be a database professional
 
Data modeling star schema
Data modeling star schemaData modeling star schema
Data modeling star schema
 
Data Seeding via Parameterized API Requests
Data Seeding via Parameterized API RequestsData Seeding via Parameterized API Requests
Data Seeding via Parameterized API Requests
 
"Lessons learned using Apache Spark for self-service data prep in SaaS world"
"Lessons learned using Apache Spark for self-service data prep in SaaS world""Lessons learned using Apache Spark for self-service data prep in SaaS world"
"Lessons learned using Apache Spark for self-service data prep in SaaS world"
 
Lessons Learned Using Apache Spark for Self-Service Data Prep in SaaS World
Lessons Learned Using Apache Spark for Self-Service Data Prep in SaaS WorldLessons Learned Using Apache Spark for Self-Service Data Prep in SaaS World
Lessons Learned Using Apache Spark for Self-Service Data Prep in SaaS World
 
Scale By The Bay | 2020 | Gimel
Scale By The Bay | 2020 | GimelScale By The Bay | 2020 | Gimel
Scale By The Bay | 2020 | Gimel
 
Ashish_Maheshwari_Data_Analyst
Ashish_Maheshwari_Data_AnalystAshish_Maheshwari_Data_Analyst
Ashish_Maheshwari_Data_Analyst
 

More from Russell Jurney

Networks All Around Us: Extracting networks from your problem domain
Networks All Around Us: Extracting networks from your problem domainNetworks All Around Us: Extracting networks from your problem domain
Networks All Around Us: Extracting networks from your problem domainRussell Jurney
 
Networks All Around Us: Extracting networks from your problem domain
Networks All Around Us: Extracting networks from your problem domainNetworks All Around Us: Extracting networks from your problem domain
Networks All Around Us: Extracting networks from your problem domainRussell Jurney
 
Agile Data Science: Building Hadoop Analytics Applications
Agile Data Science: Building Hadoop Analytics ApplicationsAgile Data Science: Building Hadoop Analytics Applications
Agile Data Science: Building Hadoop Analytics ApplicationsRussell Jurney
 
Agile Data Science: Hadoop Analytics Applications
Agile Data Science: Hadoop Analytics ApplicationsAgile Data Science: Hadoop Analytics Applications
Agile Data Science: Hadoop Analytics ApplicationsRussell Jurney
 
Agile analytics applications on hadoop
Agile analytics applications on hadoopAgile analytics applications on hadoop
Agile analytics applications on hadoopRussell Jurney
 
Azkaban and Pig at LinkedIn
Azkaban and Pig at LinkedInAzkaban and Pig at LinkedIn
Azkaban and Pig at LinkedInRussell Jurney
 

More from Russell Jurney (6)

Networks All Around Us: Extracting networks from your problem domain
Networks All Around Us: Extracting networks from your problem domainNetworks All Around Us: Extracting networks from your problem domain
Networks All Around Us: Extracting networks from your problem domain
 
Networks All Around Us: Extracting networks from your problem domain
Networks All Around Us: Extracting networks from your problem domainNetworks All Around Us: Extracting networks from your problem domain
Networks All Around Us: Extracting networks from your problem domain
 
Agile Data Science: Building Hadoop Analytics Applications
Agile Data Science: Building Hadoop Analytics ApplicationsAgile Data Science: Building Hadoop Analytics Applications
Agile Data Science: Building Hadoop Analytics Applications
 
Agile Data Science: Hadoop Analytics Applications
Agile Data Science: Hadoop Analytics ApplicationsAgile Data Science: Hadoop Analytics Applications
Agile Data Science: Hadoop Analytics Applications
 
Agile analytics applications on hadoop
Agile analytics applications on hadoopAgile analytics applications on hadoop
Agile analytics applications on hadoop
 
Azkaban and Pig at LinkedIn
Azkaban and Pig at LinkedInAzkaban and Pig at LinkedIn
Azkaban and Pig at LinkedIn
 

Recently uploaded

chapter--4-software-project-planning.ppt
chapter--4-software-project-planning.pptchapter--4-software-project-planning.ppt
chapter--4-software-project-planning.pptkotipi9215
 
EY_Graph Database Powered Sustainability
EY_Graph Database Powered SustainabilityEY_Graph Database Powered Sustainability
EY_Graph Database Powered SustainabilityNeo4j
 
Russian Call Girls in Karol Bagh Aasnvi ➡️ 8264348440 💋📞 Independent Escort S...
Russian Call Girls in Karol Bagh Aasnvi ➡️ 8264348440 💋📞 Independent Escort S...Russian Call Girls in Karol Bagh Aasnvi ➡️ 8264348440 💋📞 Independent Escort S...
Russian Call Girls in Karol Bagh Aasnvi ➡️ 8264348440 💋📞 Independent Escort S...soniya singh
 
Adobe Marketo Engage Deep Dives: Using Webhooks to Transfer Data
Adobe Marketo Engage Deep Dives: Using Webhooks to Transfer DataAdobe Marketo Engage Deep Dives: Using Webhooks to Transfer Data
Adobe Marketo Engage Deep Dives: Using Webhooks to Transfer DataBradBedford3
 
Unit 1.1 Excite Part 1, class 9, cbse...
Unit 1.1 Excite Part 1, class 9, cbse...Unit 1.1 Excite Part 1, class 9, cbse...
Unit 1.1 Excite Part 1, class 9, cbse...aditisharan08
 
DNT_Corporate presentation know about us
DNT_Corporate presentation know about usDNT_Corporate presentation know about us
DNT_Corporate presentation know about usDynamic Netsoft
 
Short Story: Unveiling the Reasoning Abilities of Large Language Models by Ke...
Short Story: Unveiling the Reasoning Abilities of Large Language Models by Ke...Short Story: Unveiling the Reasoning Abilities of Large Language Models by Ke...
Short Story: Unveiling the Reasoning Abilities of Large Language Models by Ke...kellynguyen01
 
Salesforce Certified Field Service Consultant
Salesforce Certified Field Service ConsultantSalesforce Certified Field Service Consultant
Salesforce Certified Field Service ConsultantAxelRicardoTrocheRiq
 
Asset Management Software - Infographic
Asset Management Software - InfographicAsset Management Software - Infographic
Asset Management Software - InfographicHr365.us smith
 
Optimizing AI for immediate response in Smart CCTV
Optimizing AI for immediate response in Smart CCTVOptimizing AI for immediate response in Smart CCTV
Optimizing AI for immediate response in Smart CCTVshikhaohhpro
 
HR Software Buyers Guide in 2024 - HRSoftware.com
HR Software Buyers Guide in 2024 - HRSoftware.comHR Software Buyers Guide in 2024 - HRSoftware.com
HR Software Buyers Guide in 2024 - HRSoftware.comFatema Valibhai
 
5 Signs You Need a Fashion PLM Software.pdf
5 Signs You Need a Fashion PLM Software.pdf5 Signs You Need a Fashion PLM Software.pdf
5 Signs You Need a Fashion PLM Software.pdfWave PLM
 
Project Based Learning (A.I).pptx detail explanation
Project Based Learning (A.I).pptx detail explanationProject Based Learning (A.I).pptx detail explanation
Project Based Learning (A.I).pptx detail explanationkaushalgiri8080
 
The Real-World Challenges of Medical Device Cybersecurity- Mitigating Vulnera...
The Real-World Challenges of Medical Device Cybersecurity- Mitigating Vulnera...The Real-World Challenges of Medical Device Cybersecurity- Mitigating Vulnera...
The Real-World Challenges of Medical Device Cybersecurity- Mitigating Vulnera...ICS
 
Der Spagat zwischen BIAS und FAIRNESS (2024)
Der Spagat zwischen BIAS und FAIRNESS (2024)Der Spagat zwischen BIAS und FAIRNESS (2024)
Der Spagat zwischen BIAS und FAIRNESS (2024)OPEN KNOWLEDGE GmbH
 
BATTLEFIELD ORM: TIPS, TACTICS AND STRATEGIES FOR CONQUERING YOUR DATABASE
BATTLEFIELD ORM: TIPS, TACTICS AND STRATEGIES FOR CONQUERING YOUR DATABASEBATTLEFIELD ORM: TIPS, TACTICS AND STRATEGIES FOR CONQUERING YOUR DATABASE
BATTLEFIELD ORM: TIPS, TACTICS AND STRATEGIES FOR CONQUERING YOUR DATABASEOrtus Solutions, Corp
 
Alluxio Monthly Webinar | Cloud-Native Model Training on Distributed Data
Alluxio Monthly Webinar | Cloud-Native Model Training on Distributed DataAlluxio Monthly Webinar | Cloud-Native Model Training on Distributed Data
Alluxio Monthly Webinar | Cloud-Native Model Training on Distributed DataAlluxio, Inc.
 
Steps To Getting Up And Running Quickly With MyTimeClock Employee Scheduling ...
Steps To Getting Up And Running Quickly With MyTimeClock Employee Scheduling ...Steps To Getting Up And Running Quickly With MyTimeClock Employee Scheduling ...
Steps To Getting Up And Running Quickly With MyTimeClock Employee Scheduling ...MyIntelliSource, Inc.
 
KnowAPIs-UnknownPerf-jaxMainz-2024 (1).pptx
KnowAPIs-UnknownPerf-jaxMainz-2024 (1).pptxKnowAPIs-UnknownPerf-jaxMainz-2024 (1).pptx
KnowAPIs-UnknownPerf-jaxMainz-2024 (1).pptxTier1 app
 
Call Girls in Naraina Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Naraina Delhi 💯Call Us 🔝8264348440🔝Call Girls in Naraina Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Naraina Delhi 💯Call Us 🔝8264348440🔝soniya singh
 

Recently uploaded (20)

chapter--4-software-project-planning.ppt
chapter--4-software-project-planning.pptchapter--4-software-project-planning.ppt
chapter--4-software-project-planning.ppt
 
EY_Graph Database Powered Sustainability
EY_Graph Database Powered SustainabilityEY_Graph Database Powered Sustainability
EY_Graph Database Powered Sustainability
 
Russian Call Girls in Karol Bagh Aasnvi ➡️ 8264348440 💋📞 Independent Escort S...
Russian Call Girls in Karol Bagh Aasnvi ➡️ 8264348440 💋📞 Independent Escort S...Russian Call Girls in Karol Bagh Aasnvi ➡️ 8264348440 💋📞 Independent Escort S...
Russian Call Girls in Karol Bagh Aasnvi ➡️ 8264348440 💋📞 Independent Escort S...
 
Adobe Marketo Engage Deep Dives: Using Webhooks to Transfer Data
Adobe Marketo Engage Deep Dives: Using Webhooks to Transfer DataAdobe Marketo Engage Deep Dives: Using Webhooks to Transfer Data
Adobe Marketo Engage Deep Dives: Using Webhooks to Transfer Data
 
Unit 1.1 Excite Part 1, class 9, cbse...
Unit 1.1 Excite Part 1, class 9, cbse...Unit 1.1 Excite Part 1, class 9, cbse...
Unit 1.1 Excite Part 1, class 9, cbse...
 
DNT_Corporate presentation know about us
DNT_Corporate presentation know about usDNT_Corporate presentation know about us
DNT_Corporate presentation know about us
 
Short Story: Unveiling the Reasoning Abilities of Large Language Models by Ke...
Short Story: Unveiling the Reasoning Abilities of Large Language Models by Ke...Short Story: Unveiling the Reasoning Abilities of Large Language Models by Ke...
Short Story: Unveiling the Reasoning Abilities of Large Language Models by Ke...
 
Salesforce Certified Field Service Consultant
Salesforce Certified Field Service ConsultantSalesforce Certified Field Service Consultant
Salesforce Certified Field Service Consultant
 
Asset Management Software - Infographic
Asset Management Software - InfographicAsset Management Software - Infographic
Asset Management Software - Infographic
 
Optimizing AI for immediate response in Smart CCTV
Optimizing AI for immediate response in Smart CCTVOptimizing AI for immediate response in Smart CCTV
Optimizing AI for immediate response in Smart CCTV
 
HR Software Buyers Guide in 2024 - HRSoftware.com
HR Software Buyers Guide in 2024 - HRSoftware.comHR Software Buyers Guide in 2024 - HRSoftware.com
HR Software Buyers Guide in 2024 - HRSoftware.com
 
5 Signs You Need a Fashion PLM Software.pdf
5 Signs You Need a Fashion PLM Software.pdf5 Signs You Need a Fashion PLM Software.pdf
5 Signs You Need a Fashion PLM Software.pdf
 
Project Based Learning (A.I).pptx detail explanation
Project Based Learning (A.I).pptx detail explanationProject Based Learning (A.I).pptx detail explanation
Project Based Learning (A.I).pptx detail explanation
 
The Real-World Challenges of Medical Device Cybersecurity- Mitigating Vulnera...
The Real-World Challenges of Medical Device Cybersecurity- Mitigating Vulnera...The Real-World Challenges of Medical Device Cybersecurity- Mitigating Vulnera...
The Real-World Challenges of Medical Device Cybersecurity- Mitigating Vulnera...
 
Der Spagat zwischen BIAS und FAIRNESS (2024)
Der Spagat zwischen BIAS und FAIRNESS (2024)Der Spagat zwischen BIAS und FAIRNESS (2024)
Der Spagat zwischen BIAS und FAIRNESS (2024)
 
BATTLEFIELD ORM: TIPS, TACTICS AND STRATEGIES FOR CONQUERING YOUR DATABASE
BATTLEFIELD ORM: TIPS, TACTICS AND STRATEGIES FOR CONQUERING YOUR DATABASEBATTLEFIELD ORM: TIPS, TACTICS AND STRATEGIES FOR CONQUERING YOUR DATABASE
BATTLEFIELD ORM: TIPS, TACTICS AND STRATEGIES FOR CONQUERING YOUR DATABASE
 
Alluxio Monthly Webinar | Cloud-Native Model Training on Distributed Data
Alluxio Monthly Webinar | Cloud-Native Model Training on Distributed DataAlluxio Monthly Webinar | Cloud-Native Model Training on Distributed Data
Alluxio Monthly Webinar | Cloud-Native Model Training on Distributed Data
 
Steps To Getting Up And Running Quickly With MyTimeClock Employee Scheduling ...
Steps To Getting Up And Running Quickly With MyTimeClock Employee Scheduling ...Steps To Getting Up And Running Quickly With MyTimeClock Employee Scheduling ...
Steps To Getting Up And Running Quickly With MyTimeClock Employee Scheduling ...
 
KnowAPIs-UnknownPerf-jaxMainz-2024 (1).pptx
KnowAPIs-UnknownPerf-jaxMainz-2024 (1).pptxKnowAPIs-UnknownPerf-jaxMainz-2024 (1).pptx
KnowAPIs-UnknownPerf-jaxMainz-2024 (1).pptx
 
Call Girls in Naraina Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Naraina Delhi 💯Call Us 🔝8264348440🔝Call Girls in Naraina Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Naraina Delhi 💯Call Us 🔝8264348440🔝
 

Agile Data Science 2.0

  • 1. Building Full Stack Data Analytics Applications with Kafka and Spark Agile Data Science 2.0 http://www.slideshare.net/rjurney/agile-data-science-20 or http://bit.ly/agile_data_slides
  • 2. Agile Data Science 2.0 Russell Jurney 2 Data Engineer Data Scientist Visualization Software Engineer 85% 85% 85% Writer 85% Teacher 50% Russell Jurney is a veteran data scientist and thought leader. He coined the term Agile Data Science in the book of that name from O’Reilly in 2012, which outlines the first agile development methodology for data science. Russell has constructed numerous full-stack analytics products over the past ten years and now works with clients helping them extract value from their data assets. Russell Jurney Skill Principal Consultant at Data Syndrome Russell Jurney Data Syndrome, LLC Email : russell.jurney@gmail.com Web : datasyndrome.com Principal Consultant
  • 3. Building Full-Stack Data Analytics Applications with Spark http://bit.ly/agile_data_science Agile Data Science 2.0
  • 4. Agile Data Science 2.0 4 Realtime Predictive Analytics Rapidly learn to build entire predictive systems driven by Kafka, PySpark, Speak Streaming, Spark MLlib and with a web front-end using Python/Flask and JQuery. Available for purchase at http://datasyndrome.com/video
  • 5. Lorem Ipsum dolor siamet suame this placeholder for text can simply random text. It has roots in a piece of classical. variazioni deiwords which whichhtly. ven on your zuniga merida della is not denis. Product Consulting We build analytics products and systems consisting of big data viz, predictions, recommendations, reports and search. Corporate Training We offer training courses for data scientists and engineers and data science teams, Video Training We offer video training courses that rapidly acclimate you with a technology and technique.
  • 6. Agile Data Science 2.0 6 What makes data science “agile data science”? Theory
  • 7. Agile Data Science 2.0 7 Yes. Building applications is a fundamental skill for today’s data scientist. Data Products or Data Science?
  • 8. Agile Data Science 2.0 8 Data Products or Data Science?
  • 9. Agile Data Science 2.0 9 If someone else has to start over and rebuild it, it ain’t agile. Big Data or Data Science?
  • 10. Agile Data Science 2.0 10 Goal of Methodology The goal of agile data science in <140 characters: to document and guide exploratory data analysis to discover and follow the critical path to a compelling product.
  • 11. Agile Data Science 2.0 11 In analytics, the end-goal moves or is complex in nature, so we model as a network of tasks rather than as a strictly linear process. Critical Path
  • 12. Agile Data Science 2.0 Agile Data Science Manifesto 12 Seven Principles for Agile Data Science Discover and pursue the critical path to a killer product Iterate, iterate, iterate: tables, charts, reports, predictions1. Integrate the tyrannical opinion of data in product management4. Get Meta. Describe the process, not just the end-state7. Ship intermediate output. Even failed experiments have output2. Climb up and down the data-value pyramid as we work5. Prototype experiments over implementing tasks3. 6.
  • 13. Agile Data Science 2.0 13 People will pay more for the things towards the top, but you need the things on the bottom to have the things above. They are foundational. See: Maslow’s Theory of Needs. Data Value Pyramid
  • 14. Agile Data Science 2.0 14 Things we use to build the apps Tools
  • 15. Agile Data Science 2.0 Agile Data Science 2.0 Stack 15 Apache Spark Apache Kafka MongoDB Batch and Realtime Realtime Queue Document Store Flask Simple Web App Example of a high productivity stack for “big” data applications ElasticSearch Search
  • 16. Agile Data Science 2.0 Flow of Data Processing 16 Tools and processes in collecting, refining, publishing and decorating data {“hello”: “world”}
  • 17. Data Syndrome: Agile Data Science 2.0 Apache Spark Ecosystem 17 HDFS, Amazon S3, Spark, Spark SQL, Spark MLlib, Spark Streaming /
  • 18. Agile Data Science 2.0 18 SQL or dataflow programming? Programming Models
  • 19. Agile Data Science 2.0 19 Describing what you want and letting the planner figure out how SQL SELECT associations2.object_id, associations2.term_id, associations2.cat_ID, associations2.term_taxonomy_id
 FROM (SELECT objects_tags.object_id, objects_tags.term_id, wp_cb_tags2cats.cat_ID, categories.term_taxonomy_id
 FROM (SELECT wp_term_relationships.object_id, wp_term_taxonomy.term_id, wp_term_taxonomy.term_taxonomy_id
 FROM wp_term_relationships
 LEFT JOIN wp_term_taxonomy ON wp_term_relationships.term_taxonomy_id = wp_term_taxonomy.term_taxonomy_id
 ORDER BY object_id ASC, term_id ASC) 
 AS objects_tags
 LEFT JOIN wp_cb_tags2cats ON objects_tags.term_id = wp_cb_tags2cats.tag_ID
 LEFT JOIN (SELECT wp_term_relationships.object_id, wp_term_taxonomy.term_id as cat_ID, wp_term_taxonomy.term_taxonomy_id
 FROM wp_term_relationships
 LEFT JOIN wp_term_taxonomy ON wp_term_relationships.term_taxonomy_id = wp_term_taxonomy.term_taxonomy_id
 WHERE wp_term_taxonomy.taxonomy = 'category'
 GROUP BY object_id, cat_ID, term_taxonomy_id
 ORDER BY object_id, cat_ID, term_taxonomy_id) 
 AS categories on wp_cb_tags2cats.cat_ID = categories.term_id
 WHERE objects_tags.term_id = wp_cb_tags2cats.tag_ID
 GROUP BY object_id, term_id, cat_ID, term_taxonomy_id
 ORDER BY object_id ASC, term_id ASC, cat_ID ASC) 
 AS associations2
 LEFT JOIN categories ON associations2.object_id = categories.object_id
 WHERE associations2.cat_ID <> categories.cat_ID
 GROUP BY object_id, term_id, cat_ID, term_taxonomy_id
 ORDER BY object_id, term_id, cat_ID, term_taxonomy_id
  • 20. Agile Data Science 2.0 20 Flowing data through operations to effect change Dataflow Programming
  • 21. Agile Data Science 2.0 21 The best of both worlds! SQL AND Dataflow Programming # Flights that were late arriving...
 late_arrivals = on_time_dataframe.filter(on_time_dataframe.ArrD elayMinutes > 0)
 total_late_arrivals = late_arrivals.count()
 
 # Flights that left late but made up time to arrive on time...
 on_time_heros = on_time_dataframe.filter(
 (on_time_dataframe.DepDelayMinutes > 0)
 &
 (on_time_dataframe.ArrDelayMinutes <= 0)
 )
 total_on_time_heros = on_time_heros.count()
 
 # Get the percentage of flights that are late, rounded to 1 decimal place
 pct_late = round((total_late_arrivals / (total_flights * 1.0)) * 100, 1)
 
 print("Total flights: {:,}".format(total_flights))
 print("Late departures: {:,}".format(total_late_departures))
 print("Late arrivals: {:,}".format(total_late_arrivals))
 print("Recoveries: {:,}".format(total_on_time_heros))
 print("Percentage Late: {}%".format(pct_late))
 
 # Why are flights late? Lets look at some delayed flights and the delay causes
 late_flights = spark.sql("""
 SELECT
 ArrDelayMinutes,
 WeatherDelay,
 CarrierDelay,
 NASDelay,
 SecurityDelay,
 LateAircraftDelay
 FROM
 on_time_performance
 WHERE
 WeatherDelay IS NOT NULL
 OR
 CarrierDelay IS NOT NULL
 OR
 NASDelay IS NOT NULL
 OR
 SecurityDelay IS NOT NULL
 OR
 LateAircraftDelay IS NOT NULL
 ORDER BY
 FlightDate
 """)
 late_flights.sample(False, 0.01).show() # Calculate the percentage contribution to delay for each source
 total_delays = spark.sql("""
 SELECT
 ROUND(SUM(WeatherDelay)/SUM(ArrDelayMinutes) * 100, 1) AS pct_weather_delay,
 ROUND(SUM(CarrierDelay)/SUM(ArrDelayMinutes) * 100, 1) AS pct_carrier_delay,
 ROUND(SUM(NASDelay)/SUM(ArrDelayMinutes) * 100, 1) AS pct_nas_delay,
 ROUND(SUM(SecurityDelay)/SUM(ArrDelayMinutes) * 100, 1) AS pct_security_delay,
 ROUND(SUM(LateAircraftDelay)/SUM(ArrDelayMinutes) * 100, 1) AS pct_late_aircraft_delay
 FROM on_time_performance
 """)
 total_delays.show()
 
 # Generate a histogram of the weather and carrier delays
 weather_delay_histogram = on_time_dataframe
 .select("WeatherDelay")
 .rdd
 .flatMap(lambda x: x)
 .histogram(10)
 
 print("{}n{}".format(weather_delay_histogram[0], weather_delay_histogram[1]))
 
 # Eyeball the first to define our buckets
 weather_delay_histogram = on_time_dataframe
 .select("WeatherDelay")
 .rdd
 .flatMap(lambda x: x)
 .histogram([1, 15, 30, 60, 120, 240, 480, 720, 24*60.0])
 print(weather_delay_histogram) # Transform the data into something easily consumed by d3
 record = {'key': 1, 'data': []}
 for label, count in zip(weather_delay_histogram[0], weather_delay_histogram[1]):
 record['data'].append(
 {
 'label': label,
 'count': count
 }
 )
 
 # Save to Mongo directly, since this is a Tuple not a dataframe or RDD
 from pymongo import MongoClient
 client = MongoClient()
 client.relato.weather_delay_histogram.insert_one(record)
  • 22. Agile Data Science 2.0 22 FAA on-time performance data Data
  • 23. Data Syndrome: Agile Data Science 2.0 Collect and Serialize Events in JSON I never regret using JSON 23
  • 24. Data Syndrome: Agile Data Science 2.0 FAA On-Time Performance Records 95% of commercial flights 24http://www.transtats.bts.gov/Fields.asp?table_id=236
  • 25. Data Syndrome: Agile Data Science 2.0 FAA On-Time Performance Records 95% of commercial flights 25 "Year","Quarter","Month","DayofMonth","DayOfWeek","FlightDate","UniqueCarrier","AirlineID","Carrier","TailNum","FlightNum", "OriginAirportID","OriginAirportSeqID","OriginCityMarketID","Origin","OriginCityName","OriginState","OriginStateFips", "OriginStateName","OriginWac","DestAirportID","DestAirportSeqID","DestCityMarketID","Dest","DestCityName","DestState", "DestStateFips","DestStateName","DestWac","CRSDepTime","DepTime","DepDelay","DepDelayMinutes","DepDel15","DepartureDelayGroups", "DepTimeBlk","TaxiOut","WheelsOff","WheelsOn","TaxiIn","CRSArrTime","ArrTime","ArrDelay","ArrDelayMinutes","ArrDel15", "ArrivalDelayGroups","ArrTimeBlk","Cancelled","CancellationCode","Diverted","CRSElapsedTime","ActualElapsedTime","AirTime", "Flights","Distance","DistanceGroup","CarrierDelay","WeatherDelay","NASDelay","SecurityDelay","LateAircraftDelay", "FirstDepTime","TotalAddGTime","LongestAddGTime","DivAirportLandings","DivReachedDest","DivActualElapsedTime","DivArrDelay", "DivDistance","Div1Airport","Div1AirportID","Div1AirportSeqID","Div1WheelsOn","Div1TotalGTime","Div1LongestGTime", "Div1WheelsOff","Div1TailNum","Div2Airport","Div2AirportID","Div2AirportSeqID","Div2WheelsOn","Div2TotalGTime", "Div2LongestGTime","Div2WheelsOff","Div2TailNum","Div3Airport","Div3AirportID","Div3AirportSeqID","Div3WheelsOn", "Div3TotalGTime","Div3LongestGTime","Div3WheelsOff","Div3TailNum","Div4Airport","Div4AirportID","Div4AirportSeqID", "Div4WheelsOn","Div4TotalGTime","Div4LongestGTime","Div4WheelsOff","Div4TailNum","Div5Airport","Div5AirportID", "Div5AirportSeqID","Div5WheelsOn","Div5TotalGTime","Div5LongestGTime","Div5WheelsOff","Div5TailNum"
  • 26. Data Syndrome: Agile Data Science 2.0 openflights.org Database Airports, Airlines, Routes 26
  • 27. Data Syndrome: Agile Data Science 2.0 Scraping the FAA Registry Airplane Data by Tail Number 27
  • 28. Data Syndrome: Agile Data Science 2.0 Wikipedia Airlines Entries Descriptions of Airlines 28
  • 29. Data Syndrome: Agile Data Science 2.0 National Centers for Environmental Information Historical Weather Observations 29
  • 30. Agile Data Science 2.0 30 Working our way up the data value pyramid Climbing the Stack
  • 31. Agile Data Science 2.0 31 Starting by “plumbing” the system from end to end Plumbing
  • 32. Data Syndrome: Agile Data Science 2.0 Publishing Flight Records Plumbing our master records through to the web 32
  • 33. Data Syndrome: Agile Data Science 2.0 Publishing Flight Records to MongoDB Plumbing our master records through to the web 33 import pymongo
 import pymongo_spark
 # Important: activate pymongo_spark.
 pymongo_spark.activate()
 # Load the parquet file on_time_dataframe = spark.read.parquet('data/on_time_performance.parquet')
 # Convert to RDD of dicts and save to MongoDB
 as_dict = on_time_dataframe.rdd.map(lambda row: row.asDict()) as_dict.saveToMongoDB(‘mongodb://localhost:27017/agile_data_science.on_time_performance')
  • 34. Data Syndrome: Agile Data Science 2.0 Publishing Flight Records to ElasticSearch Plumbing our master records through to the web 34 # Load the parquet file
 on_time_dataframe = spark.read.parquet('data/on_time_performance.parquet')
 
 # Save the DataFrame to Elasticsearch
 on_time_dataframe.write.format("org.elasticsearch.spark.sql")
 .option("es.resource","agile_data_science/on_time_performance")
 .option("es.batch.size.entries","100")
 .mode("overwrite")
 .save()
  • 35. Data Syndrome: Agile Data Science 2.0 Putting Records on the Web Plumbing our master records through to the web 35 from flask import Flask, render_template, request
 from pymongo import MongoClient
 from bson import json_util
 
 # Set up Flask and Mongo
 app = Flask(__name__)
 client = MongoClient()
 
 # Controller: Fetch an email and display it
 @app.route("/on_time_performance")
 def on_time_performance():
 
 carrier = request.args.get('Carrier')
 flight_date = request.args.get('FlightDate')
 flight_num = request.args.get('FlightNum')
 
 flight = client.agile_data_science.on_time_performance.find_one({
 'Carrier': carrier,
 'FlightDate': flight_date,
 'FlightNum': int(flight_num)
 })
 
 return json_util.dumps(flight)
 
 if __name__ == "__main__":
 app.run(debug=True)
  • 36. Data Syndrome: Agile Data Science 2.0 Putting Records on the Web Plumbing our master records through to the web 36
  • 37. Data Syndrome: Agile Data Science 2.0 Putting Records on the Web Plumbing our master records through to the web 37
  • 38. Agile Data Science 2.0 38 Getting to know your data Tables and Charts
  • 39. Data Syndrome: Agile Data Science 2.0 Tables in PySpark Back end development in PySpark 39 # Load the parquet file
 on_time_dataframe = spark.read.parquet('data/on_time_performance.parquet')
 
 # Use SQL to look at the total flights by month across 2015
 on_time_dataframe.registerTempTable("on_time_dataframe")
 total_flights_by_month = spark.sql(
 """SELECT Month, Year, COUNT(*) AS total_flights
 FROM on_time_dataframe
 GROUP BY Year, Month
 ORDER BY Year, Month"""
 )
 
 # This map/asDict trick makes the rows print a little prettier. It is optional.
 flights_chart_data = total_flights_by_month.map(lambda row: row.asDict())
 flights_chart_data.collect()
 
 # Save chart to MongoDB
 import pymongo_spark
 pymongo_spark.activate()
 flights_chart_data.saveToMongoDB(
 'mongodb://localhost:27017/agile_data_science.flights_by_month'
 )
  • 40. Data Syndrome: Agile Data Science 2.0 Tables in Flask and Jinja2 Front end development in Flask: controller and template 40 # Controller: Fetch a flight table
 @app.route("/total_flights")
 def total_flights():
 total_flights = client.agile_data_science.flights_by_month.find({}, 
 sort = [
 ('Year', 1),
 ('Month', 1)
 ])
 return render_template('total_flights.html', total_flights=total_flights) {% extends "layout.html" %}
 {% block body %}
 <div>
 <p class="lead">Total Flights by Month</p>
 <table class="table table-condensed table-striped" style="width: 200px;">
 <thead>
 <th>Month</th>
 <th>Total Flights</th>
 </thead>
 <tbody>
 {% for month in total_flights %}
 <tr>
 <td>{{month.Month}}</td>
 <td>{{month.total_flights}}</td>
 </tr>
 {% endfor %}
 </tbody>
 </table>
 </div>
 {% endblock %}
  • 41. Data Syndrome: Agile Data Science 2.0 Tables Visualizing data 41
  • 42. Data Syndrome: Agile Data Science 2.0 Charts in Flask and d3.js Visualizing data with JSON and d3.js 42 # Serve the chart's data via an asynchronous request (formerly known as 'AJAX')
 @app.route("/total_flights.json")
 def total_flights_json():
 total_flights = client.agile_data_science.flights_by_month.find({}, 
 sort = [
 ('Year', 1),
 ('Month', 1)
 ])
 return json_util.dumps(total_flights, ensure_ascii=False) var width = 960,
 height = 350;
 
 var y = d3.scale.linear()
 .range([height, 0]);
 // We define the domain once we get our data in d3.json, below
 
 var chart = d3.select(".chart")
 .attr("width", width)
 .attr("height", height);
 
 d3.json("/total_flights.json", function(data) {
 
 var defaultColor = 'steelblue';
 var modeColor = '#4CA9F5';
 
 var maxY = d3.max(data, function(d) { return d.total_flights; });
 y.domain([0, maxY]);
 
 var varColor = function(d, i) {
 if(d['total_flights'] == maxY) { return modeColor; }
 else { return defaultColor; }
 }
 var barWidth = width / data.length;
 var bar = chart.selectAll("g")
 .data(data)
 .enter()
 .append("g")
 .attr("transform", function(d, i) { return "translate(" + i * barWidth + ",0)"; });
 
 bar.append("rect")
 .attr("y", function(d) { return y(d.total_flights); })
 .attr("height", function(d) { return height - y(d.total_flights); })
 .attr("width", barWidth - 1)
 .style("fill", varColor);
 
 bar.append("text")
 .attr("x", barWidth / 2)
 .attr("y", function(d) { return y(d.total_flights) + 3; })
 .attr("dy", ".75em")
 .text(function(d) { return d.total_flights; });
 });
  • 43. Data Syndrome: Agile Data Science 2.0 Charts Visualizing data 43
  • 44. Agile Data Science 2.0 44 Exploring your data through interaction Reports
  • 45. Data Syndrome: Agile Data Science 2.0 Creating Interactive Ontologies from Semi-Structured Data Extracting and visualizing entities 45
  • 46. Data Syndrome: Agile Data Science 2.0 Home Page Extracting and decorating entities 46
  • 47. Data Syndrome: Agile Data Science 2.0 Airline Entity Extracting and decorating entities 47
  • 48. Data Syndrome: Agile Data Science 2.0 Summarizing Airlines 1.0 Describing entities in aggregate 48
  • 49. Data Syndrome: Agile Data Science 2.0 Summarizing Airlines 2.0 Describing entities in aggregate 49
  • 50. Data Syndrome: Agile Data Science 2.0 Summarizing Airlines 3.0 Describing entities in aggregate 50
  • 51. Data Syndrome: Agile Data Science 2.0 Summarizing Airlines 4.0 Describing entities in aggregate 51
  • 52. Agile Data Science 2.0 52 Predicting the future for fun and profit Predictions
  • 53. Data Syndrome: Agile Data Science 2.0 Back End Design Deep Storage and Spark vs Kafka and Spark Streaming 53 / Batch Realtime Historical Data Train Model Apply Model Realtime Data
  • 54. Data Syndrome: Agile Data Science 2.0 54 jQuery in the web client submits a form to create the prediction request, and then polls another url every few seconds until the prediction is ready. The request generates a Kafka event, which a Spark Streaming worker processes by applying the model we trained in batch. Having done so, it inserts a record for the prediction in MongoDB, where the Flask app sends it to the web client the next time it polls the server Front End Design /flights/delays/predict/classify_realtime/
  • 55. Data Syndrome: Agile Data Science 2.0 String Vectorization From properties of items to vector format 55
  • 56. Data Syndrome: Agile Data Science 2.0 56 scikit-learn was 166. Spark MLlib is very powerful! 190 Line Model # !/usr/bin/env python
 
 import sys, os, re
 
 # Pass date and base path to main() from airflow
 def main(base_path):
 
 # Default to "."
 try: base_path
 except NameError: base_path = "."
 if not base_path:
 base_path = "."
 
 APP_NAME = "train_spark_mllib_model.py"
 
 # If there is no SparkSession, create the environment
 try:
 sc and spark
 except NameError as e:
 import findspark
 findspark.init()
 import pyspark
 import pyspark.sql
 
 sc = pyspark.SparkContext()
 spark = pyspark.sql.SparkSession(sc).builder.appName(APP_NAME).getOrCreate()
 
 #
 # {
 # "ArrDelay":5.0,"CRSArrTime":"2015-12-31T03:20:00.000-08:00","CRSDepTime":"2015-12-31T03:05:00.000-08:00",
 # "Carrier":"WN","DayOfMonth":31,"DayOfWeek":4,"DayOfYear":365,"DepDelay":14.0,"Dest":"SAN","Distance":368.0,
 # "FlightDate":"2015-12-30T16:00:00.000-08:00","FlightNum":"6109","Origin":"TUS"
 # }
 #
 from pyspark.sql.types import StringType, IntegerType, FloatType, DoubleType, DateType, TimestampType
 from pyspark.sql.types import StructType, StructField
 from pyspark.sql.functions import udf
 
 schema = StructType([
 StructField("ArrDelay", DoubleType(), True), # "ArrDelay":5.0
 StructField("CRSArrTime", TimestampType(), True), # "CRSArrTime":"2015-12-31T03:20:00.000-08:00"
 StructField("CRSDepTime", TimestampType(), True), # "CRSDepTime":"2015-12-31T03:05:00.000-08:00"
 StructField("Carrier", StringType(), True), # "Carrier":"WN"
 StructField("DayOfMonth", IntegerType(), True), # "DayOfMonth":31
 StructField("DayOfWeek", IntegerType(), True), # "DayOfWeek":4
 StructField("DayOfYear", IntegerType(), True), # "DayOfYear":365
 StructField("DepDelay", DoubleType(), True), # "DepDelay":14.0
 StructField("Dest", StringType(), True), # "Dest":"SAN"
 StructField("Distance", DoubleType(), True), # "Distance":368.0
 StructField("FlightDate", DateType(), True), # "FlightDate":"2015-12-30T16:00:00.000-08:00"
 StructField("FlightNum", StringType(), True), # "FlightNum":"6109"
 StructField("Origin", StringType(), True), # "Origin":"TUS"
 ])
 
 input_path = "{}/data/simple_flight_delay_features.jsonl.bz2".format(
 base_path
 )
 features = spark.read.json(input_path, schema=schema)
 features.first()
 
 #
 # Check for nulls in features before using Spark ML
 #
 null_counts = [(column, features.where(features[column].isNull()).count()) for column in features.columns]
 cols_with_nulls = filter(lambda x: x[1] > 0, null_counts)
 print(list(cols_with_nulls))
 
 #
 # Add a Route variable to replace FlightNum
 #
 from pyspark.sql.functions import lit, concat
 features_with_route = features.withColumn(
 'Route',
 concat(
 features.Origin,
 lit('-'),
 features.Dest
 )
 )
 features_with_route.show(6)
 
 #
 # Use pysmark.ml.feature.Bucketizer to bucketize ArrDelay into on-time, slightly late, very late (0, 1, 2)
 #
 from pyspark.ml.feature import Bucketizer
 
 # Setup the Bucketizer
 splits = [-float("inf"), -15.0, 0, 30.0, float("inf")]
 arrival_bucketizer = Bucketizer(
 splits=splits,
 inputCol="ArrDelay",
 outputCol="ArrDelayBucket"
 )
 
 # Save the bucketizer
 arrival_bucketizer_path = "{}/models/arrival_bucketizer_2.0.bin".format(base_path)
 arrival_bucketizer.write().overwrite().save(arrival_bucketizer_path)
 
 # Apply the bucketizer
 ml_bucketized_features = arrival_bucketizer.transform(features_with_route)
 ml_bucketized_features.select("ArrDelay", "ArrDelayBucket").show()
 
 #
 # Extract features tools in with pyspark.ml.feature
 #
 from pyspark.ml.feature import StringIndexer, VectorAssembler
 
 # Turn category fields into indexes
 for column in ["Carrier", "Origin", "Dest", "Route"]:
 string_indexer = StringIndexer(
 inputCol=column,
 outputCol=column + "_index"
 )
 
 string_indexer_model = string_indexer.fit(ml_bucketized_features)
 ml_bucketized_features = string_indexer_model.transform(ml_bucketized_features)
 
 # Drop the original column
 ml_bucketized_features = ml_bucketized_features.drop(column)
 
 # Save the pipeline model
 string_indexer_output_path = "{}/models/string_indexer_model_{}.bin".format(
 base_path,
 column
 )
 string_indexer_model.write().overwrite().save(string_indexer_output_path)
 
 # Combine continuous, numeric fields with indexes of nominal ones
 # ...into one feature vector
 numeric_columns = [
 "DepDelay", "Distance",
 "DayOfMonth", "DayOfWeek",
 "DayOfYear"]
 index_columns = ["Carrier_index", "Origin_index",
 "Dest_index", "Route_index"]
 vector_assembler = VectorAssembler(
 inputCols=numeric_columns + index_columns,
 outputCol="Features_vec"
 )
 final_vectorized_features = vector_assembler.transform(ml_bucketized_features)
 
 # Save the numeric vector assembler
 vector_assembler_path = "{}/models/numeric_vector_assembler.bin".format(base_path)
 vector_assembler.write().overwrite().save(vector_assembler_path)
 
 # Drop the index columns
 for column in index_columns:
 final_vectorized_features = final_vectorized_features.drop(column)
 
 # Inspect the finalized features
 final_vectorized_features.show()
 
 # Instantiate and fit random forest classifier on all the data
 from pyspark.ml.classification import RandomForestClassifier
 rfc = RandomForestClassifier(
 featuresCol="Features_vec",
 labelCol="ArrDelayBucket",
 predictionCol="Prediction",
 maxBins=4657,
 maxMemoryInMB=1024
 )
 model = rfc.fit(final_vectorized_features)
 
 # Save the new model over the old one
 model_output_path = "{}/models/spark_random_forest_classifier.flight_delays.5.0.bin".format(
 base_path
 )
 model.write().overwrite().save(model_output_path)
 
 # Evaluate model using test data
 predictions = model.transform(final_vectorized_features)
 
 from pyspark.ml.evaluation import MulticlassClassificationEvaluator
 evaluator = MulticlassClassificationEvaluator(
 predictionCol="Prediction",
 labelCol="ArrDelayBucket",
 metricName="accuracy"
 )
 accuracy = evaluator.evaluate(predictions)
 print("Accuracy = {}".format(accuracy))
 
 # Check the distribution of predictions
 predictions.groupBy("Prediction").count().show()
 
 # Check a sample
 predictions.sample(False, 0.001, 18).orderBy("CRSDepTime").show(6)
 
 if __name__ == "__main__":
 main(sys.argv[1])

  • 57. Data Syndrome: Agile Data Science 2.0 Experiment Setup Necessary to improve model 57
  • 58. Data Syndrome: Agile Data Science 2.0 58 155 additional lines to setup an experiment and add improvements 345 L.O.C. # !/usr/bin/env python
 
 import sys, os, re
 import json
 import datetime, iso8601
 from tabulate import tabulate
 
 # Pass date and base path to main() from airflow
 def main(base_path):
 APP_NAME = "train_spark_mllib_model.py"
 
 # If there is no SparkSession, create the environment
 try:
 sc and spark
 except NameError as e:
 import findspark
 findspark.init()
 import pyspark
 import pyspark.sql
 
 sc = pyspark.SparkContext()
 spark = pyspark.sql.SparkSession(sc).builder.appName(APP_NAME).getOrCreate()
 
 #
 # {
 # "ArrDelay":5.0,"CRSArrTime":"2015-12-31T03:20:00.000-08:00","CRSDepTime":"2015-12-31T03:05:00.000-08:00",
 # "Carrier":"WN","DayOfMonth":31,"DayOfWeek":4,"DayOfYear":365,"DepDelay":14.0,"Dest":"SAN","Distance":368.0,
 # "FlightDate":"2015-12-30T16:00:00.000-08:00","FlightNum":"6109","Origin":"TUS"
 # }
 #
 from pyspark.sql.types import StringType, IntegerType, FloatType, DoubleType, DateType, TimestampType
 from pyspark.sql.types import StructType, StructField
 from pyspark.sql.functions import udf
 
 schema = StructType([
 StructField("ArrDelay", DoubleType(), True), # "ArrDelay":5.0
 StructField("CRSArrTime", TimestampType(), True), # "CRSArrTime":"2015-12-31T03:20:00.000-08:00"
 StructField("CRSDepTime", TimestampType(), True), # "CRSDepTime":"2015-12-31T03:05:00.000-08:00"
 StructField("Carrier", StringType(), True), # "Carrier":"WN"
 StructField("DayOfMonth", IntegerType(), True), # "DayOfMonth":31
 StructField("DayOfWeek", IntegerType(), True), # "DayOfWeek":4
 StructField("DayOfYear", IntegerType(), True), # "DayOfYear":365
 StructField("DepDelay", DoubleType(), True), # "DepDelay":14.0
 StructField("Dest", StringType(), True), # "Dest":"SAN"
 StructField("Distance", DoubleType(), True), # "Distance":368.0
 StructField("FlightDate", DateType(), True), # "FlightDate":"2015-12-30T16:00:00.000-08:00"
 StructField("FlightNum", StringType(), True), # "FlightNum":"6109"
 StructField("Origin", StringType(), True), # "Origin":"TUS"
 ])
 
 input_path = "{}/data/simple_flight_delay_features.json".format(
 base_path
 )
 features = spark.read.json(input_path, schema=schema)
 features.first()
 
 #
 # Add a Route variable to replace FlightNum
 #
 from pyspark.sql.functions import lit, concat
 features_with_route = features.withColumn(
 'Route',
 concat(
 features.Origin,
 lit('-'),
 features.Dest
 )
 )
 features_with_route.show(6)
 
 #
 # Add the hour of day of scheduled arrival/departure
 #
 from pyspark.sql.functions import hour
 features_with_hour = features_with_route.withColumn(
 "CRSDepHourOfDay",
 hour(features.CRSDepTime)
 )
 features_with_hour = features_with_hour.withColumn(
 "CRSArrHourOfDay",
 hour(features.CRSArrTime)
 )
 features_with_hour.select("CRSDepTime", "CRSDepHourOfDay", "CRSArrTime", "CRSArrHourOfDay").show()
 
 #
 # Use pysmark.ml.feature.Bucketizer to bucketize ArrDelay into on-time, slightly late, very late (0, 1, 2)
 #
 from pyspark.ml.feature import Bucketizer
 
 # Setup the Bucketizer
 splits = [-float("inf"), -15.0, 0, 30.0, float("inf")]
 arrival_bucketizer = Bucketizer(
 splits=splits,
 inputCol="ArrDelay",
 outputCol="ArrDelayBucket"
 )
 
 # Save the model
 arrival_bucketizer_path = "{}/models/arrival_bucketizer_2.0.bin".format(base_path)
 arrival_bucketizer.write().overwrite().save(arrival_bucketizer_path)
 
 # Apply the model
 ml_bucketized_features = arrival_bucketizer.transform(features_with_hour)
 ml_bucketized_features.select("ArrDelay", "ArrDelayBucket").show()
 
 #
 # Extract features tools in with pyspark.ml.feature
 #
 from pyspark.ml.feature import StringIndexer, VectorAssembler
 
 # Turn category fields into indexes
 for column in ["Carrier", "Origin", "Dest", "Route"]:
 string_indexer = StringIndexer(
 inputCol=column,
 outputCol=column + "_index"
 )
 
 string_indexer_model = string_indexer.fit(ml_bucketized_features)
 ml_bucketized_features = string_indexer_model.transform(ml_bucketized_features)
 # Save the pipeline model
 string_indexer_output_path = "{}/models/string_indexer_model_3.0.{}.bin".format(
 base_path,
 column
 )
 string_indexer_model.write().overwrite().save(string_indexer_output_path)
 
 # Combine continuous, numeric fields with indexes of nominal ones
 # ...into one feature vector
 numeric_columns = [
 "DepDelay", "Distance",
 "DayOfMonth", "DayOfWeek",
 "DayOfYear", "CRSDepHourOfDay",
 "CRSArrHourOfDay"]
 index_columns = ["Carrier_index", "Origin_index",
 "Dest_index", "Route_index"]
 vector_assembler = VectorAssembler(
 inputCols=numeric_columns + index_columns,
 outputCol="Features_vec"
 )
 final_vectorized_features = vector_assembler.transform(ml_bucketized_features)
 
 # Save the numeric vector assembler
 vector_assembler_path = "{}/models/numeric_vector_assembler_3.0.bin".format(base_path)
 vector_assembler.write().overwrite().save(vector_assembler_path)
 
 # Drop the index columns
 for column in index_columns:
 final_vectorized_features = final_vectorized_features.drop(column)
 
 # Inspect the finalized features
 final_vectorized_features.show()
 
 #
 # Cross validate, train and evaluate classifier: loop 5 times for 4 metrics
 #
 
 from collections import defaultdict
 scores = defaultdict(list)
 feature_importances = defaultdict(list)
 metric_names = ["accuracy", "weightedPrecision", "weightedRecall", "f1"]
 split_count = 3
 
 for i in range(1, split_count + 1):
 print("nRun {} out of {} of test/train splits in cross validation...".format(
 i,
 split_count,
 )
 )
 
 # Test/train split
 training_data, test_data = final_vectorized_features.randomSplit([0.8, 0.2])
 
 # Instantiate and fit random forest classifier on all the data
 from pyspark.ml.classification import RandomForestClassifier
 rfc = RandomForestClassifier(
 featuresCol="Features_vec",
 labelCol="ArrDelayBucket",
 predictionCol="Prediction",
 maxBins=4657,
 )
 model = rfc.fit(training_data)
 
 # Save the new model over the old one
 model_output_path = "{}/models/spark_random_forest_classifier.flight_delays.baseline.bin".format(
 base_path
 )
 model.write().overwrite().save(model_output_path)
 
 # Evaluate model using test data
 predictions = model.transform(test_data)
 
 # Evaluate this split's results for each metric
 from pyspark.ml.evaluation import MulticlassClassificationEvaluator
 for metric_name in metric_names:
 evaluator = MulticlassClassificationEvaluator(
 labelCol="ArrDelayBucket",
 predictionCol="Prediction",
 metricName=metric_name
 )
 score = evaluator.evaluate(predictions)
 
 scores[metric_name].append(score)
 print("{} = {}".format(metric_name, score))
 
 #
 # Collect feature importances
 #
 feature_names = vector_assembler.getInputCols()
 feature_importance_list = model.featureImportances
 for feature_name, feature_importance in zip(feature_names, feature_importance_list):
 feature_importances[feature_name].append(feature_importance)
 
 #
 # Evaluate average and STD of each metric and print a table
 #
 import numpy as np
 score_averages = defaultdict(float)
 
 # Compute the table data
 average_stds = [] # ha
 for metric_name in metric_names:
 metric_scores = scores[metric_name]
 
 average_accuracy = sum(metric_scores) / len(metric_scores)
 score_averages[metric_name] = average_accuracy
 
 std_accuracy = np.std(metric_scores)
 
 average_stds.append((metric_name, average_accuracy, std_accuracy))
 
 # Print the table
 print("nExperiment Log")
 print("--------------")
 print(tabulate(average_stds, headers=["Metric", "Average", "STD"]))
 
 #
 # Persist the score to a sccore log that exists between runs
 #
 import pickle # Load the score log or initialize an empty one
 try:
 score_log_filename = "{}/models/score_log.pickle".format(base_path)
 score_log = pickle.load(open(score_log_filename, "rb"))
 if not isinstance(score_log, list):
 score_log = []
 except IOError:
 score_log = []
 
 # Compute the existing score log entry
 score_log_entry = {metric_name: score_averages[metric_name] for metric_name in metric_names}
 
 # Compute and display the change in score for each metric
 try:
 last_log = score_log[-1]
 except (IndexError, TypeError, AttributeError):
 last_log = score_log_entry
 
 experiment_report = []
 for metric_name in metric_names:
 run_delta = score_log_entry[metric_name] - last_log[metric_name]
 experiment_report.append((metric_name, run_delta))
 
 print("nExperiment Report")
 print("-----------------")
 print(tabulate(experiment_report, headers=["Metric", "Score"]))
 
 # Append the existing average scores to the log
 score_log.append(score_log_entry)
 
 # Persist the log for next run
 pickle.dump(score_log, open(score_log_filename, "wb"))
 
 #
 # Analyze and report feature importance changes
 #
 
 # Compute averages for each feature
 feature_importance_entry = defaultdict(float)
 for feature_name, value_list in feature_importances.items():
 average_importance = sum(value_list) / len(value_list)
 feature_importance_entry[feature_name] = average_importance
 
 # Sort the feature importances in descending order and print
 import operator
 sorted_feature_importances = sorted(
 feature_importance_entry.items(),
 key=operator.itemgetter(1),
 reverse=True
 )
 
 print("nFeature Importances")
 print("-------------------")
 print(tabulate(sorted_feature_importances, headers=['Name', 'Importance']))
 
 #
 # Compare this run's feature importances with the previous run's
 #
 
 # Load the feature importance log or initialize an empty one
 try:
 feature_log_filename = "{}/models/feature_log.pickle".format(base_path)
 feature_log = pickle.load(open(feature_log_filename, "rb"))
 if not isinstance(feature_log, list):
 feature_log = []
 except IOError:
 feature_log = []
 
 # Compute and display the change in score for each feature
 try:
 last_feature_log = feature_log[-1]
 except (IndexError, TypeError, AttributeError):
 last_feature_log = defaultdict(float)
 for feature_name, importance in feature_importance_entry.items():
 last_feature_log[feature_name] = importance
 
 # Compute the deltas
 feature_deltas = {}
 for feature_name in feature_importances.keys():
 run_delta = feature_importance_entry[feature_name] - last_feature_log[feature_name]
 feature_deltas[feature_name] = run_delta
 
 # Sort feature deltas, biggest change first
 import operator
 sorted_feature_deltas = sorted(
 feature_deltas.items(),
 key=operator.itemgetter(1),
 reverse=True
 )
 
 # Display sorted feature deltas
 print("nFeature Importance Delta Report")
 print("-------------------------------")
 print(tabulate(sorted_feature_deltas, headers=["Feature", "Delta"]))
 
 # Append the existing average deltas to the log
 feature_log.append(feature_importance_entry)
 
 # Persist the log for next run
 pickle.dump(feature_log, open(feature_log_filename, "wb"))
 
 if __name__ == "__main__":
 main(sys.argv[1])

  • 59. Data Syndrome Russell Jurney Principal Consultant Email : rjurney@datasyndrome.com Web : datasyndrome.com Data Syndrome, LLC