SlideShare a Scribd company logo
1 of 49
First principles and Atomistic simulation of
transition-metal complexes for battery application
Asif Iqbal Bhatti
Grenoble INP Phelma
20th
December 2018
Asif Iqbal Bhatti (Grenoble INP Phelma) First principles and Atomistic simulation of transition-metal complexes for battery application20th December 2018 1 / 49
CONTENTS
Contents
Asif Iqbal Bhatti (Grenoble INP Phelma) First principles and Atomistic simulation of transition-metal complexes for battery application20th December 2018 2 / 49
INTRODUCTION Li-ion Batteries
Contents
Asif Iqbal Bhatti (Grenoble INP Phelma) First principles and Atomistic simulation of transition-metal complexes for battery application20th December 2018 3 / 49
INTRODUCTION Li-ion Batteries
Li-ion Batteries
Working mechanism of
Li-ion battery
Types of anode/cathode materials for Li-ion
batteries
Asif Iqbal Bhatti (Grenoble INP Phelma) First principles and Atomistic simulation of transition-metal complexes for battery application20th December 2018 4 / 49
INTRODUCTION Organic polymers
Cathode material: Organic polymers
Advantage
Low molecular weight
Rapid electron transfer kinetic
value ⇒ high capacity rate during
the charge/discharge process
Voltage & capacity can be tuned by
functionalization
Limitations
Low Cycling life and Structural
stability for some polymers
Asif Iqbal Bhatti (Grenoble INP Phelma) First principles and Atomistic simulation of transition-metal complexes for battery application20th December 2018 5 / 49
COORDINATION POLYMER
Contents
Asif Iqbal Bhatti (Grenoble INP Phelma) First principles and Atomistic simulation of transition-metal complexes for battery application20th December 2018 6 / 49
COORDINATION POLYMER Transition metal complexes
Metal Complexes as active Cathode materials
Combination of Ligand & Metal elements
Ability to vary degree of oxidation
And Voltage can be tuned according to electrolytic window
Coordination may show improved Structural Stability & Cycling life
Best candidate Fe, Ru, and Cu with bipyridine as a ligand
Asif Iqbal Bhatti (Grenoble INP Phelma) First principles and Atomistic simulation of transition-metal complexes for battery application20th December 2018 7 / 49
COORDINATION POLYMER Transition metal complexes
Bi-nuclear & Poly-nuclear structure
Asif Iqbal Bhatti (Grenoble INP Phelma) First principles and Atomistic simulation of transition-metal complexes for battery application20th December 2018 8 / 49
THEORETICAL FRAMEWORK
Contents
Asif Iqbal Bhatti (Grenoble INP Phelma) First principles and Atomistic simulation of transition-metal complexes for battery application20th December 2018 9 / 49
THEORETICAL FRAMEWORK Density functional theory
Kohn Sham Density Functional Theory (DFT)
EKS [ρ (r)] = Ts [ρ (r)] + ENe [ρ (r)] + EH [ρ (r)] + EXC [ρ (r)] (1)
Initial Guess ρ(r)
using LCAO: GTO
Calculate effective potential
νeff
(r) = Ven
(r) + ∫ρ(r΄)/|r-r΄|dr΄ + VXC
[ρ(r)]
Kohn Sham Equations
[-ℏ2
/2me
∂i
2
+ νeff
(r)] φi
= εi
φi
Compute the Electron Density & Total Energy
ρ(r) = ∑i
|φi
(r)|2
→ Etot[ρ(r)] = ...
CONVERGED?
Output Quantities
ρ0
(r), Ei
[ρ0
(r)] → Forces, Eigenvalues, Frequencies
SCF
MeanFieldApproximationVXC
[ρ(r)] = δEXC
[ρ]/δρ(r)
©
Exact EXC [ρ] functional is not known => All DFT
methods are approximations of this functional
GGA (PBE)
EXC ≈ EGGA
XC [ρ] = ρ (r) XC (ρ (r) , ρ (r)) dr
Hybrid functionals (PBE0)
E
Hybrid
XC = aEHF
X + (1 − a)EDFT
X + EDFT
C
.
.
delocalized state
localized state
Asif Iqbal Bhatti (Grenoble INP Phelma) First principles and Atomistic simulation of transition-metal complexes for battery application20th December 2018 10 / 49
THEORETICAL FRAMEWORK Density functional theory
Modeling Fe & Ru complex
Asif Iqbal Bhatti (Grenoble INP Phelma) First principles and Atomistic simulation of transition-metal complexes for battery application20th December 2018 11 / 49
DENSITY FUNCTIONAL THEORY Structural properties
Finding the ground state structure for Fe & Ru complex
Exploration of configuration space
For Fe and Ru complex TFSI−
cis state is found to be the minima by ≈ 0.3 eV
0.03 eV
3.31 kJ/mol
cis
trans
Gasphaseoptimization
Asif Iqbal Bhatti (Grenoble INP Phelma) First principles and Atomistic simulation of transition-metal complexes for battery application20th December 2018 12 / 49
DENSITY FUNCTIONAL THEORY Structural properties
Geometrical parameters
Fe2+/3+
Un Loaded
Full loaded Ru2+/3+
Un loaded
Full loaded
Fe average geometrical parameters
Neutral
PBE PBE0 Exp
Fe − N 1.960 1.986 1.965
C1 − C1 1.468 1.471 1.472
N − C1 1.371 1.351 1.350
Full Loaded
PBE PBE0 Exp
1.971 1.971 1.960
1.465 1.467 1.473
1.369 1.356 1.350
Ru average geometrical parameters
Neutral
PBE PBE0 Exp
Ru − N 2.064 2.063 2.054
C1 − C1 1.471 1.471 1.474
N − C1 1.372 1.355 1.354
Full Loaded
PBE PBE0 Exp
2.069 2.063 2.056
1.469 1.467 1.450
1.372 1.357 -
Asif Iqbal Bhatti (Grenoble INP Phelma) First principles and Atomistic simulation of transition-metal complexes for battery application20th December 2018 13 / 49
DENSITY FUNCTIONAL THEORY Fe/Ru Electronic properties
PBE0: Fe2+
Partial Density Of States (PDOS) analysis
No ligand field picture observed
Ci1
Ci2
-20 -18 -16 -14 -12 -10 -8 -6 -4 -2
0.0
0.5
1.0
1.5
Occupied Orbitals
Virtual Orbitals
Energy (eV)
HOMO
PBE0: PDOS plot for Fe
2+
(dmbpy)3
2PF6
-
mono-nuclear complex
Fe atom
Ci1
Ci2
N atoms
C and H atoms
Asif Iqbal Bhatti (Grenoble INP Phelma) First principles and Atomistic simulation of transition-metal complexes for battery application20th December 2018 14 / 49
DENSITY FUNCTIONAL THEORY Fe/Ru Electronic properties
PBE0: Fe3+
PDOS analysis
No localization of states
Ci1
Ci2
Ci3
-20 -18 -16 -14 -12 -10 -8 -6 -4 -2
0.0
0.5
1.0
1.5
0.0
0.5
1.0
1.5
PBE0: DOS plot for Fe
3+
(dmbpy)3
3PF6
-
mono-nuclear complex
Occupied Orbitals
Virtual Orbitals
spin down channel
LUMOHOMO
Energy (eV)
spin up chanel
HOMO
Fe atom
Ci1
Ci2
Ci3
N atoms
C and H atoms
Asif Iqbal Bhatti (Grenoble INP Phelma) First principles and Atomistic simulation of transition-metal complexes for battery application20th December 2018 15 / 49
DENSITY FUNCTIONAL THEORY Fe/Ru Electronic properties
PBE: Fe2+
PDOS analysis
Ligand field picture observed
t2g
eg
∆o
=0.25 eV
Ci2
Ci1
-20 -18 -16 -14 -12 -10 -8 -6 -4 -2
0.0
0.5
1.0
1.5
2.0
2.5
3.0
Occupied Orbitals
Virtual Orbitals
Energy (eV)
HOMO
PBE: PDOS plot for Neutral Mono-Nuclear complex
Ci1
Ci2
Fe atom
N atoms
C and H atoms
Asif Iqbal Bhatti (Grenoble INP Phelma) First principles and Atomistic simulation of transition-metal complexes for battery application20th December 2018 16 / 49
DENSITY FUNCTIONAL THEORY Fe/Ru Electronic properties
PBE: Fe3+
PDOS analysis
-20 -18 -16 -14 -12 -10 -8 -6 -4 -2
0.0
0.5
1.0
1.5
2.0
0.0
0.5
1.0
1.5
2.0
HOMO
Spin up channel
Spin down channel
LUMO
HOMO
Energy (eV)
Fe atom
N atoms
Ci1
Ci2
Ci3
C and H atoms
PBE: PDOS plot for Full loaded Mono-Nuclear complex
Occupied Orbitals
Virtuals Orbitals
t2g
eg
∆o
=0.62 eV
Ci1
Ci2
Ci3
Ligand field effect intact for PBE whereas PBE0 delocalizes the states
Asif Iqbal Bhatti (Grenoble INP Phelma) First principles and Atomistic simulation of transition-metal complexes for battery application20th December 2018 17 / 49
DENSITY FUNCTIONAL THEORY Cu Complex
Modeling the Cu complex
Asif Iqbal Bhatti (Grenoble INP Phelma) First principles and Atomistic simulation of transition-metal complexes for battery application20th December 2018 18 / 49
DENSITY FUNCTIONAL THEORY Cu Structural properties
Cu Configuration space & Ground state structure
Large conformational change: Deep
drawback for battery materials
For quick charge/discharge the
kinetics effects on compound
should be less
Less conformational change during the
oxidation step ⇒ the easier the
electron transfer (k0
)
105.0
151.6 81.9
Unloaded
Full Loaded
φo
θ
Cu+
/Cu2+
124.4o
125.7o
81.6o
Without Counter-ions
N
Cu
UnLoaded Full Loaded
Ci1
Ci2
Cu
122.0
80.2
137.2
107.6
80.2
97.3
N
With Counter-ions
Asif Iqbal Bhatti (Grenoble INP Phelma) First principles and Atomistic simulation of transition-metal complexes for battery application20th December 2018 19 / 49
DENSITY FUNCTIONAL THEORY Cu Electronic properties
PBE: Cu PDOS analysis
Peak shows not a regular tetrahedral geometry
Hybridization with counter-ions
Forms the pentavalent coordination
-20 -18 -16 -14 -12 -10 -8 -6 -4 -2
0.0
0.5
1.0
Virtual Orbitals
Occupied Orbitals
Energy (eV)
HOMO
PBE: PDOS plot for Cu
+
(dmbpy)2
PF6
-
N atoms
Ci1
Cu atom
C and H atoms
0.0
0.5
1.0
-20 -18 -16 -14 -12 -10 -8 -6 -4 -2
0.0
0.5
1.0
PBE: PDOS plot for Cu
2+
(dmbpy)2
2PF6
-
Cu atom
N atoms
Ci1
Ci2
C and H atoms
HUMO
HUMO
spin up channel
Energy (eV)
spin down channel
LUMO
Virtual Orbitals
Occupied Orbitals
Asif Iqbal Bhatti (Grenoble INP Phelma) First principles and Atomistic simulation of transition-metal complexes for battery application20th December 2018 20 / 49
DENSITY FUNCTIONAL THEORY Cu Electronic properties
PBE0: Cu PDOS analysis
Upon loading (Cu+
Cu2+
) reshaping of the peaks are observed
-20 -18 -16 -14 -12 -10 -8 -6 -4 -2
0.0
0.5
1.0
1.5
Occupied Orbital
Virtual Orbital HOMO-1
PBE0: PDOS plot for Cu
+
(dmbpy)2
PF6
-
Energy (eV)
N atoms
Cu atom
Ci1
C and H atoms
HOMO
0.0
0.5
1.0
-20 -18 -16 -14 -12 -10 -8 -6 -4 -2
0.0
0.5
1.0
Ci1
Ci2
Cu atom
N atoms
C and H atoms
LUMO
HOMO
HOMO
spin down channel
Energy (eV)
Occupied Orbitals
Virtual Orbitals
spin up channel
PBE0: PDOS plot for Cu
2+
(dmbpy)2
2PF6
-
Asif Iqbal Bhatti (Grenoble INP Phelma) First principles and Atomistic simulation of transition-metal complexes for battery application20th December 2018 21 / 49
DENSITY FUNCTIONAL THEORY Thermodynamic properties
Modeling the total reaction of the system
V0 potential includes solvated LiCi, and deposition of Li+
ion on the Anode
surface
V
M
= −
EUnloaded
nF
−
−ELoaded
nF
− V0
Asif Iqbal Bhatti (Grenoble INP Phelma) First principles and Atomistic simulation of transition-metal complexes for battery application20th December 2018 22 / 49
DENSITY FUNCTIONAL THEORY Mono-nuclear Voltages
Calculation of Relative Voltages
Ci-
Ci-
Ci-
Ci-
Ci-
VM
= – EUnloaded
– ELoaded
– V0
nℱ
Vrelative
= VM
– (VFe
)reference
= VM–Fe
Ci-
CiCi
PCM Model
Without counter-ions:
Way off by 1.5 V for Cu complex
PBE PBE0 Exp
VRu−Fe(V) +0.25 +0.31 +0.20
VCu−Fe(V) -2.51 -2.61 -1.03
With counter-ions:
VRu−Fe(V) VCu−Fe(V)
Ci ClO−
4 PF−
6 TFSI−
ClO−
4 PF−
6 TFSI−
PBE/PCM 0.17 0.28/0.24 0.31 -1.04 -0.68/-0.4 -0.85
PBE0/PCM 0.37 0.34/0.32 0.26 -0.97 -0.85/–0.5 -0.95
Exp 0.20 0.20 0.19 -1.03 -1.07 -1.14
Asif Iqbal Bhatti (Grenoble INP Phelma) First principles and Atomistic simulation of transition-metal complexes for battery application20th December 2018 23 / 49
Bi-nuclear
Bi-nuclear complex: Low dimensional system
Asif Iqbal Bhatti (Grenoble INP Phelma) First principles and Atomistic simulation of transition-metal complexes for battery application20th December 2018 24 / 49
Bi-nuclear Low dimensional system
Bi-nuclear: Low dimensional system
Experimentally, two compounds:
With one [a] and two [b] alkyl
chains are observed
Statistically, compound [a] is in
majority we decided to model this
system
N1 region N2 region
-(CH2
)n
-
d1 d2
dM
Ci
Ci
Our Approximation
[a]
[b]
-(CH2
)n
-
-(CH2
)n
-
Asif Iqbal Bhatti (Grenoble INP Phelma) First principles and Atomistic simulation of transition-metal complexes for battery application20th December 2018 25 / 49
Bi-nuclear Structural properties
Global geometry analysis
Exploring conformational space with alkyl chain of length n, − (CH2)n − ≡ nC
Interplay between cation center and counter-ions to find the optimum
geometry (Purely electrostatic interaction)
Asif Iqbal Bhatti (Grenoble INP Phelma) First principles and Atomistic simulation of transition-metal complexes for battery application20th December 2018 26 / 49
Bi-nuclear Local geometrical parameters
Local Geometry of Iron sites w.r.t chain length
Average bond distances for two sites with respect to chain length
6 C 4 C 2 C
1 . 9 5 0
1 . 9 5 5
1 . 9 6 0
1 . 9 6 5
1 . 9 7 0
X C : P B E S i t e F e 1
E x p
A l k y l c h a i n n C
Fe1-N1(Bonddistances)
F e 1 - N 1 : N
F e 1 - N 1 : F L
6 C 4 C 2 C
1 . 9 5 0
1 . 9 5 5
1 . 9 6 0
1 . 9 6 5
1 . 9 7 0
E x p
X C : P B E S i t e F e 2
A l k y l c h a i n n C
F e 2 - N 2 : N
F e 2 - N 2 : F L
Fe2-N2(Bonddistances)
Asif Iqbal Bhatti (Grenoble INP Phelma) First principles and Atomistic simulation of transition-metal complexes for battery application20th December 2018 27 / 49
PBE: Comparison of PDOS plot for FL (Full loaded) system
Ligand field effect preserved similar to Mono-nuclear PDOS
Bi-nuclear Mono-nuclear
- 2 0 - 1 9 - 1 8 - 1 7 - 1 6 - 1 5 - 1 4 - 1 3 - 1 2 - 1 1 - 1 0 - 9 - 8 - 7 - 6 - 5 - 4 - 3 - 2 - 1 0
0 . 0
0 . 5
1 . 0
1 . 5
- 2 0 - 1 9 - 1 8 - 1 7 - 1 6 - 1 5 - 1 4 - 1 3 - 1 2 - 1 1 - 1 0 - 9 - 8 - 7 - 6 - 5 - 4 - 3 - 2 - 1 0
0 . 0
0 . 5
1 . 0
1 . 5
F e 2 a t o m
N 2 a t o m s
C i 2
C i 3
C i 5
C a n d H a t o m s
6 C : F L
H O M O
E n e r g y ( e V )
H O M O
L U M O
O c u p i e d O r b i t a l s
V i r t u a l s O r b i t a l s
S p i n u p c h a n n e l
S p i n d o w n c h a n n e l
6 C : F L
-20 -18 -16 -14 -12 -10 -8 -6 -4 -2
0.0
0.5
1.0
1.5
2.0
0.0
0.5
1.0
1.5
2.0
HOMO
Spin up channel
Spin down channel
LUMO
HOMO
Energy (eV)
Fe atom
N atoms
Ci1
Ci2
Ci3
C and H atoms
PBE: PDOS plot for Full loaded Mono-Nuclear complex
Occupied Orbitals
Virtuals Orbitals
t2g
eg
∆o
=0.62 eV
Ci1
Ci2
Ci3
PBE0: Comparison of PDOS plot for FL (Full loaded)
system
Ligand field vanished similar to Mono-nuclear PDOS
We observe metal sites are quite independent
Bi-nuclear Mono-nuclear
- 2 0 - 1 9 - 1 8 - 1 7 - 1 6 - 1 5 - 1 4 - 1 3 - 1 2 - 1 1 - 1 0 - 9 - 8 - 7 - 6 - 5 - 4 - 3 - 2 - 1 0
0 . 0
0 . 5
1 . 0
- 2 0 - 1 9 - 1 8 - 1 7 - 1 6 - 1 5 - 1 4 - 1 3 - 1 2 - 1 1 - 1 0 - 9 - 8 - 7 - 6 - 5 - 4 - 3 - 2 - 1 0
0 . 0
0 . 5
1 . 0
F e 2 a t o m
N 2 a t o m s
C i 2
C i 3
C i 4
C a n d H a t o m s
6 C : F L
H O M O
E n e r g y ( e V )
H O M O L U M O
6 C : F L
O c c u p i e d O r b i t a l s
V i r t u a l O r b i t a l s
S p i n u p c h a n n e l
S p i n d o w n c h a n n e l
Ci1
Ci2
Ci3
-20 -18 -16 -14 -12 -10 -8 -6 -4 -2
0.0
0.5
1.0
1.5
0.0
0.5
1.0
1.5
PBE0: DOS plot for Fe
3+
(dmbpy)3
3PF6
-
Mono-Nuclear complex
Occupied Orbitals
Virtual Orbitals
spin down channel
LUMOHOMO
Energy (eV)
spin up chanel
HOMO
Fe atom
Ci1
Ci2
Ci3
N atoms
C and H atoms
PDOS plot for HL (Half loaded) system
-(CH2
)n
-
dM
Ci
Ci
Fe1
FLN
Fe2
e-
e-
Ci
Ci
Ci
-20 -15 -10 -5 0
0.0
0.5
1.0
0.0
0.5
1.0
Occupied Orbitals
Virtual Orbitals
spin up channel
HOMO
spin down channel
HOMO
PBE0: HL Site 1
Energy (eV)
Fe1 atom
N1 atoms
C and H atoms
-20 -15 -10 -5 0
0.0
0.5
1.0
1.5
0.0
0.5
1.0
1.5
spin down channel
spin up channel
Occupied Orbitals
Virtual Orbitals HOMO
Energy (eV)
HOMO
PBE0: HL Site 2
Fe2 atom
N2 atoms
C and H atoms
-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0
0.0
0.5
1.0
1.5
Energy (eV)
PBE: Schematic representation for N complex
Ef
-20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0
0.0
0.5
1.0
1.5
Energy (eV)
Ef
PBE: Schematic representation for FL system
e-
No tunneling effect observed for PBE functional
Bi-nuclear Bi-nuclear Voltages
Voltage comparison of Mono & Bi-nuclear complex
–(CH2
)n
– = nC
dM
FL=D3,3
N=D2,2
N=D
HL=D2,3
M1/2
= Fe1/2, Ru1/2
Dn1,n2
= [Fe1(dmbpy)3
] n1
Ci + nC + [Fe2(dmbpy)3
] n2
Ci
n1
+ n2
+
VHL
= – E D2,2
+ E0
– E D3,2
F
VFL
= – E D2,2
+ 2E0
– E D3,3
2F
2 . 8
3 . 0
3 . 2
3 . 4
3 . 6
3 . 8
4 . 0
4 . 2
4 . 4
H L
P B E : 2 C
P B E : 4 C
P B E : 6 C
V m o n o - n u c l e a r
≈ 4 . 2 0 5
F e B i - n u c l e a r c o m p l e x v o l t a g e : f o r C i = P F 6
-
Voltage(Vrel
)
P B E 0 : 2 C
P B E 0 : 4 C
P B E 0 : 6 C
F L
Fe PBE0 PBE
alkyl VHL VFL VHL VFL
2C 3.00 3.76 - 4.16
4C 3.91 4.09 - 4.10
6C 3.89 3.96 - 4.15
Asif Iqbal Bhatti (Grenoble INP Phelma) First principles and Atomistic simulation of transition-metal complexes for battery application20th December 2018 31 / 49
MOLECULAR DYNAMICS (MD)
Contents
Asif Iqbal Bhatti (Grenoble INP Phelma) First principles and Atomistic simulation of transition-metal complexes for battery application20th December 2018 32 / 49
MOLECULAR DYNAMICS (MD) Amber potential
Amber Potential model
V(rN ) = bonds kij (rij − r0)2 + angles kθ(θijk − θ0)2 +
ndihedrals
i
ni,max
n
1
2
Vi,n[1 + cos(nωi − γi,n)]+
atoms
i<j
Aij
r12
ij
−
Bij
r6
ij
+
qi qj
εij rij
r0
rij
Vbond
Vangle
θijk
θ0
Vdihedrals
Bonded Interactions
ω
Nonbonded Interactions
Vnonbond
= VvdW
+Velectrostatic
qi
qj
Asif Iqbal Bhatti (Grenoble INP Phelma) First principles and Atomistic simulation of transition-metal complexes for battery application20th December 2018 33 / 49
MOLECULAR DYNAMICS (MD) Development of the Potential
Parameterization of the Potential using Seminario method
V(rN ) = bonds kij (rij − r0)2 + angles ka(θijk − θ0)2 +
((((((((((((
ndihedrals
i
ni,max
n
1
2
Vi,n[1 + cos(nωi − γi,n)] + atoms
i<j
Aij
r12
ij
−
Bij
r6
ij
+
qi qj
εij rij
Parameters obtained from the first shell
ignoring dihedral term. Because the structure
is quite rigid
Å AT Exp DFT parm10 Gaff
Fe − N M1-Yi 1.965(3) 1.96 - -
C1 − C1 cp-cp 1.472(6) 1.470 1.400 1.485
N − C1 Yi-cp 1.350(0) 1.363 1.339 1.339
nCi-
nCi-
nCi-
nCi-
nCinCi
Ci=TFSI-
Parameterization of inner sphere
C1 C1’
Asif Iqbal Bhatti (Grenoble INP Phelma) First principles and Atomistic simulation of transition-metal complexes for battery application20th December 2018 34 / 49
MOLECULAR DYNAMICS (MD) Solvent model
Creation of Acetonitrile (ACN) Solvent box
Explicit Solvent Model created: ACN
0.121
-0.269-0.422 0.329
n1 c1 c3
hc
Parameters for ACN taken from GAFF database
RESP charges obtained at PBE:Def2SVP level of theory
At Equilibrium, achieved the density around ρ ≈ 0.77 g/cm3
at 300 K
Asif Iqbal Bhatti (Grenoble INP Phelma) First principles and Atomistic simulation of transition-metal complexes for battery application20th December 2018 35 / 49
MOLECULAR DYNAMICS (MD) Simulation procedure
Simulation procedure
General steps for MD Simulation
Polymer
construction
Solution construction
solvents molecules randomly inserted
Minimization of the structure
NVT → Equilibration (NPT) → Dynamics (NVE)
ACN
Solvent
Asif Iqbal Bhatti (Grenoble INP Phelma) First principles and Atomistic simulation of transition-metal complexes for battery application20th December 2018 36 / 49
Results
MOLECULAR DYNAMICS (MD) Validation of Potential
Validation of Potential on Bi-nuclear system
Validated 6C chain for N and FL compound
MD DFT
Å N FL N FL
M1-nb 2.0 ± 0.04 2.0 ± 0.03 1.965(3) 1.96(3)
cp-cp 1.50 ± 0.02 1.50 ± 0.03 1.472(6) 1.473(6)
nb-cp 1.35 ± 0.01 1.35 ± 0.02 1.350(0) 1.350(0)
Deff (10−5cm2/s) 0.652 0.525 - -
Influence of the solvent (ACN) on the structure and diffusivity of Ci
Asif Iqbal Bhatti (Grenoble INP Phelma) First principles and Atomistic simulation of transition-metal complexes for battery application20th December 2018 38 / 49
MOLECULAR DYNAMICS (MD) Validation of Potential
Visualization of MD Trajectories for Bi-nuclear
Asif Iqbal Bhatti (Grenoble INP Phelma) First principles and Atomistic simulation of transition-metal complexes for battery application20th December 2018 39 / 49
Without Solvent With Solvent
CONSTRUCTION OF MACROMOLECULE
Construction of Poly-nuclear complex
Developed Fe Poly-nuclear complex using
in-house python code
With varying chain size, 4C and 6C, Cavity
Region (CR) is expanded
Boundary regions fixed with Methyl group
Asif Iqbal Bhatti (Grenoble INP Phelma) First principles and Atomistic simulation of transition-metal complexes for battery application20th December 2018 40 / 49
CONSTRUCTION OF MACROMOLECULE Fixing RESP charge
Fixing RESP charge on the main unit
Effective charge fitted according to this equation
α × Q
Alkyl Chain
2 + Q
(bpy)3
+ Q
Fen+
+ Q
n(TFSI−)
+ β × Q
n(CH3)
= 0
......
...
...
...
...
Asif Iqbal Bhatti (Grenoble INP Phelma) First principles and Atomistic simulation of transition-metal complexes for battery application20th December 2018 41 / 49
MD SIMULATION RESULTS OF POLY-NUCLEAR COMPLEX
Selection of Complex size
Poly-nuclear size Deff (10−5
cm2
/s) ρ (g/cm3
) β (t) = d log MSD
d log t
5606 0.10 0.82 0.59
10847 0.091 0.84 0.55
18133 0.085 0.86 0.53
Large structure means more statistics
Mean square displacement (MSD) plot for three complex size (Slopes are almost
same)
Asif Iqbal Bhatti (Grenoble INP Phelma) First principles and Atomistic simulation of transition-metal complexes for battery application20th December 2018 42 / 49
MD SIMULATION RESULTS OF POLY-NUCLEAR COMPLEX
Visualization of MD Trajectories for Poly-nuclear complex
Solvation stabilizes the structure due to screening effect (1 ns simulation)
Asif Iqbal Bhatti (Grenoble INP Phelma) First principles and Atomistic simulation of transition-metal complexes for battery application20th December 2018 43 / 49
With SolventWithout Solvent
MD SIMULATION RESULTS OF POLY-NUCLEAR COMPLEX Effect of Cavity on the Diffusivity of Ci
Effect of Chain Length on the Diffusivity of Ci
Effective diffusion (Deff ) of Ci in 4C chain is
lower than 6C due to crowded environment
large CR region allows more accumulation of
Li+
/Na+
ions
With respect to Bi-nuclear Deff reduce by a
factor of ≈ 10 due to entrapment
Å N FL
Fe − N 2.0 ± 0.02 2.0 ± 0.04
C1 − C1 1.50 ± 0.02 1.50 ± 0.03
N − C1 1.35 ± 0.01 1.35 ± 0.02
4C 6C 4C 6C
Deff (10−5
cm2
/s) 0.047 0.091 0.029 0.077
0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0
0
5
1 0
1 5
2 0
2 5
3 0
3 5
4 0
4 5
t ( p s )
<MSD>Å
2
4 C N e u t r a l
6 C N e u t r a l
4 C F u l l l o a d e d
6 C F u l l l o a d e d
3 0 0 3 5 0 4 0 0 4 5 0 5 0 0
0 . 5 5
0 . 6 0
0 . 6 5
0 . 7 0
0 . 7 5
0 . 8 0
0 . 8 5
0 . 9 0
T ( K )
ؒ(g/cm
3
)
4 C : F L
6 C : F L
Asif Iqbal Bhatti (Grenoble INP Phelma) First principles and Atomistic simulation of transition-metal complexes for battery application20th December 2018 44 / 49
MD SIMULATION RESULTS OF POLY-NUCLEAR COMPLEX Temperature Effect
Effect of Temperature on the Diffusivity of Ci
Simulated diffusion constant almost follows the Arrhenius function
(D = Ae
−Ea/RT
) with an activation energy (Ea) estimated: 18.652 kJ/mol.
Compared to [TFSI]
−
[BMIm]
+
ionic liquid, the experimental activation energy
is 27.50 kJ/mol
0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0
0
4 0
8 0
1 2 0
1 6 0
2 0 0
2 4 0
2 8 0
3 2 0
t ( p s )
<MSD>(Å2
)
6 C : F L T = 3 0 0 K
6 C : F L T = 3 5 0 K
6 C : F L T = 3 7 5 K
6 C : F L T = 4 0 0 K
6 C : F L T = 5 0 0 K
0 . 0 0 1 8 0 . 0 0 2 1 0 . 0 0 2 4 0 . 0 0 2 7 0 . 0 0 3 0 0 . 0 0 3 3
- 5 . 5
- 5 . 0
- 4 . 5
- 4 . 0
- 3 . 5
- 3 . 0
- 2 . 5
6 C : F L
ln(D(m
2
/s))
T
- 1
( K
- 1
)
Asif Iqbal Bhatti (Grenoble INP Phelma) First principles and Atomistic simulation of transition-metal complexes for battery application20th December 2018 45 / 49
CONSTRUCTION OF TRANSIENT STATE
Initiation of the loading process in a N state
Description of the Transient state
FL units embedded in a N complex
Counter-ions randomly inserted into the cavity region to study the diffusivity
N
N
N
N
N
N
FL
FL
FL
FL
FL
FL
FL
Asif Iqbal Bhatti (Grenoble INP Phelma) First principles and Atomistic simulation of transition-metal complexes for battery application20th December 2018 46 / 49
CONSTRUCTION OF TRANSIENT STATE Diffusion of Ci in Transient state
Diffusion of Ci in Transient state
For certain time frame we define the motion as Walking confined diffusion
Deff obtained 0.09 ×10−5
cm2
/s
5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 0
2 0
4 0
6 0
8 0
1 0 0
1 2 0
1 4 0
1 6 0
1 8 0
2 0 0
t ( p s )
<MSD>Å
2
O v e r a l l d i s p l a c e m e n t R
2
O v e r a l l d i s p l a c e m e n t X
2
O v e r a l l d i s p l a c e m e n t Y
2
O v e r a l l d i s p l a c e m e n t Z
2
6 C c h a i n : D i f f u s i o n o f T F S I
-
i n a F L s t a t e
Asif Iqbal Bhatti (Grenoble INP Phelma) First principles and Atomistic simulation of transition-metal complexes for battery application20th December 2018 47 / 49
Conclusions
Conclusions
Theoretical approach
PBE0 tends to delocalize
PBE0 is the least adequate approximation for these systems (Fe, Ru and Cu) in
terms of three properties (Geometry, Electronic & Voltage)
Results
Mono-nuclears voltage closely agrees with the experimental results
No effect of longer chains on the voltage is observed
Cu complex shows large conformational change upon loading making it less
reliable to use as cathode material
MD Simulation
Large cavity regions is preferred for fast diffusion hence, quick charging
There is influence of crowded porous environment on the diffusion of Ci
Asif Iqbal Bhatti (Grenoble INP Phelma) First principles and Atomistic simulation of transition-metal complexes for battery application20th December 2018 48 / 49
Perspectives
Perspectives
In reality, there will be alkyl chains
missing and the diffusion is expected
to change.
Study of the stabilization effects for
Cu complex with different ligands
Asif Iqbal Bhatti (Grenoble INP Phelma) First principles and Atomistic simulation of transition-metal complexes for battery application20th December 2018 49 / 49

More Related Content

Similar to First principle and Atomistic simulation of transition metal compounds for battery application

Dinesh Mullangi Departmental seminar 12th August 2015
Dinesh Mullangi Departmental seminar  12th August 2015Dinesh Mullangi Departmental seminar  12th August 2015
Dinesh Mullangi Departmental seminar 12th August 2015mullangi dinesh
 
In situ XAFS studies of carbon supported Pt and PtNi(1:1) catalysts for the o...
In situ XAFS studies of carbon supported Pt and PtNi(1:1) catalysts for the o...In situ XAFS studies of carbon supported Pt and PtNi(1:1) catalysts for the o...
In situ XAFS studies of carbon supported Pt and PtNi(1:1) catalysts for the o...qjia
 
Ecs 221 zn_o-fianall
Ecs 221 zn_o-fianallEcs 221 zn_o-fianall
Ecs 221 zn_o-fianallArun Kumar
 
Analysis of Lead-free Perovskite solar cells
Analysis of Lead-free Perovskite solar cellsAnalysis of Lead-free Perovskite solar cells
Analysis of Lead-free Perovskite solar cellsIRJET Journal
 
Rechargeable Li-ion batteries based on Olivine-structured (LiFePO4) catho...
Rechargeable Li-ion batteries based on Olivine-structured     (LiFePO4) catho...Rechargeable Li-ion batteries based on Olivine-structured     (LiFePO4) catho...
Rechargeable Li-ion batteries based on Olivine-structured (LiFePO4) catho...Arun Kumar
 
The Materials Project and computational materials discovery
The Materials Project and computational materials discoveryThe Materials Project and computational materials discovery
The Materials Project and computational materials discoveryAnubhav Jain
 
Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singa...
Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singa...Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singa...
Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singa...Dierk Raabe
 
Targeted Band Structure Design and Thermoelectric Materials Discovery Using H...
Targeted Band Structure Design and Thermoelectric Materials Discovery Using H...Targeted Band Structure Design and Thermoelectric Materials Discovery Using H...
Targeted Band Structure Design and Thermoelectric Materials Discovery Using H...Anubhav Jain
 
IRJET - Advances in Perovskite Solar Cells
IRJET - Advances in Perovskite Solar CellsIRJET - Advances in Perovskite Solar Cells
IRJET - Advances in Perovskite Solar CellsIRJET Journal
 
First principles study on structural, electronic, elastic and thermal propert...
First principles study on structural, electronic, elastic and thermal propert...First principles study on structural, electronic, elastic and thermal propert...
First principles study on structural, electronic, elastic and thermal propert...Alexander Decker
 
Lithium Iron Phosphate: Olivine Material for High Power Li-Ion Batteries - Cr...
Lithium Iron Phosphate: Olivine Material for High Power Li-Ion Batteries - Cr...Lithium Iron Phosphate: Olivine Material for High Power Li-Ion Batteries - Cr...
Lithium Iron Phosphate: Olivine Material for High Power Li-Ion Batteries - Cr...CrimsonPublishersRDMS
 
Understanding of thermal stability of lithium ion batteries
Understanding of thermal stability of lithium ion batteriesUnderstanding of thermal stability of lithium ion batteries
Understanding of thermal stability of lithium ion batteriesKhue Luu
 
Session_B2_Fillion.ppt
Session_B2_Fillion.pptSession_B2_Fillion.ppt
Session_B2_Fillion.pptAmmr2
 
Advantages and applications of computational chemistry
Advantages and applications of computational chemistryAdvantages and applications of computational chemistry
Advantages and applications of computational chemistrymanikanthaTumarada
 
nanotubes for fuelcells
nanotubes for fuelcellsnanotubes for fuelcells
nanotubes for fuelcellsAbdul Rahman
 

Similar to First principle and Atomistic simulation of transition metal compounds for battery application (20)

Dinesh Mullangi Departmental seminar 12th August 2015
Dinesh Mullangi Departmental seminar  12th August 2015Dinesh Mullangi Departmental seminar  12th August 2015
Dinesh Mullangi Departmental seminar 12th August 2015
 
In situ XAFS studies of carbon supported Pt and PtNi(1:1) catalysts for the o...
In situ XAFS studies of carbon supported Pt and PtNi(1:1) catalysts for the o...In situ XAFS studies of carbon supported Pt and PtNi(1:1) catalysts for the o...
In situ XAFS studies of carbon supported Pt and PtNi(1:1) catalysts for the o...
 
SOFC perovskite- DFT work
SOFC perovskite- DFT workSOFC perovskite- DFT work
SOFC perovskite- DFT work
 
Ecs 221 zn_o-fianall
Ecs 221 zn_o-fianallEcs 221 zn_o-fianall
Ecs 221 zn_o-fianall
 
Analysis of Lead-free Perovskite solar cells
Analysis of Lead-free Perovskite solar cellsAnalysis of Lead-free Perovskite solar cells
Analysis of Lead-free Perovskite solar cells
 
Rechargeable Li-ion batteries based on Olivine-structured (LiFePO4) catho...
Rechargeable Li-ion batteries based on Olivine-structured     (LiFePO4) catho...Rechargeable Li-ion batteries based on Olivine-structured     (LiFePO4) catho...
Rechargeable Li-ion batteries based on Olivine-structured (LiFePO4) catho...
 
The Materials Project and computational materials discovery
The Materials Project and computational materials discoveryThe Materials Project and computational materials discovery
The Materials Project and computational materials discovery
 
Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singa...
Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singa...Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singa...
Ab initio simulation in materials science, Dierk Raabe, lecture at IHPC Singa...
 
d2ta09922e1.pdf
d2ta09922e1.pdfd2ta09922e1.pdf
d2ta09922e1.pdf
 
Targeted Band Structure Design and Thermoelectric Materials Discovery Using H...
Targeted Band Structure Design and Thermoelectric Materials Discovery Using H...Targeted Band Structure Design and Thermoelectric Materials Discovery Using H...
Targeted Band Structure Design and Thermoelectric Materials Discovery Using H...
 
Batteries ppt
Batteries pptBatteries ppt
Batteries ppt
 
IRJET - Advances in Perovskite Solar Cells
IRJET - Advances in Perovskite Solar CellsIRJET - Advances in Perovskite Solar Cells
IRJET - Advances in Perovskite Solar Cells
 
ILS_target
ILS_targetILS_target
ILS_target
 
First principles study on structural, electronic, elastic and thermal propert...
First principles study on structural, electronic, elastic and thermal propert...First principles study on structural, electronic, elastic and thermal propert...
First principles study on structural, electronic, elastic and thermal propert...
 
Lithium Iron Phosphate: Olivine Material for High Power Li-Ion Batteries - Cr...
Lithium Iron Phosphate: Olivine Material for High Power Li-Ion Batteries - Cr...Lithium Iron Phosphate: Olivine Material for High Power Li-Ion Batteries - Cr...
Lithium Iron Phosphate: Olivine Material for High Power Li-Ion Batteries - Cr...
 
Understanding of thermal stability of lithium ion batteries
Understanding of thermal stability of lithium ion batteriesUnderstanding of thermal stability of lithium ion batteries
Understanding of thermal stability of lithium ion batteries
 
Session_B2_Fillion.ppt
Session_B2_Fillion.pptSession_B2_Fillion.ppt
Session_B2_Fillion.ppt
 
Advantages and applications of computational chemistry
Advantages and applications of computational chemistryAdvantages and applications of computational chemistry
Advantages and applications of computational chemistry
 
nanotubes for fuelcells
nanotubes for fuelcellsnanotubes for fuelcells
nanotubes for fuelcells
 
Perovskite Solar Cell
Perovskite Solar CellPerovskite Solar Cell
Perovskite Solar Cell
 

Recently uploaded

Taphonomy and Quality of the Fossil Record
Taphonomy and Quality of the  Fossil RecordTaphonomy and Quality of the  Fossil Record
Taphonomy and Quality of the Fossil RecordSangram Sahoo
 
Plasmid: types, structure and functions.
Plasmid: types, structure and functions.Plasmid: types, structure and functions.
Plasmid: types, structure and functions.Cherry
 
Site specific recombination and transposition.........pdf
Site specific recombination and transposition.........pdfSite specific recombination and transposition.........pdf
Site specific recombination and transposition.........pdfCherry
 
Major groups of bacteria: Spirochetes, Chlamydia, Rickettsia, nanobes, mycopl...
Major groups of bacteria: Spirochetes, Chlamydia, Rickettsia, nanobes, mycopl...Major groups of bacteria: Spirochetes, Chlamydia, Rickettsia, nanobes, mycopl...
Major groups of bacteria: Spirochetes, Chlamydia, Rickettsia, nanobes, mycopl...Cherry
 
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...Scintica Instrumentation
 
development of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virusdevelopment of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virusNazaninKarimi6
 
GENETICALLY MODIFIED ORGANISM'S PRESENTATION.ppt
GENETICALLY MODIFIED ORGANISM'S PRESENTATION.pptGENETICALLY MODIFIED ORGANISM'S PRESENTATION.ppt
GENETICALLY MODIFIED ORGANISM'S PRESENTATION.pptSyedArifMalki
 
Understanding Partial Differential Equations: Types and Solution Methods
Understanding Partial Differential Equations: Types and Solution MethodsUnderstanding Partial Differential Equations: Types and Solution Methods
Understanding Partial Differential Equations: Types and Solution Methodsimroshankoirala
 
Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.Cherry
 
Cyanide resistant respiration pathway.pptx
Cyanide resistant respiration pathway.pptxCyanide resistant respiration pathway.pptx
Cyanide resistant respiration pathway.pptxCherry
 
CYTOGENETIC MAP................ ppt.pptx
CYTOGENETIC MAP................ ppt.pptxCYTOGENETIC MAP................ ppt.pptx
CYTOGENETIC MAP................ ppt.pptxCherry
 
Fourth quarter science 9-Kinetic-and-Potential-Energy.pptx
Fourth quarter science 9-Kinetic-and-Potential-Energy.pptxFourth quarter science 9-Kinetic-and-Potential-Energy.pptx
Fourth quarter science 9-Kinetic-and-Potential-Energy.pptxrosenapiri1
 
X-rays from a Central “Exhaust Vent” of the Galactic Center Chimney
X-rays from a Central “Exhaust Vent” of the Galactic Center ChimneyX-rays from a Central “Exhaust Vent” of the Galactic Center Chimney
X-rays from a Central “Exhaust Vent” of the Galactic Center ChimneySérgio Sacani
 
Energy is the beat of life irrespective of the domains. ATP- the energy curre...
Energy is the beat of life irrespective of the domains. ATP- the energy curre...Energy is the beat of life irrespective of the domains. ATP- the energy curre...
Energy is the beat of life irrespective of the domains. ATP- the energy curre...Nistarini College, Purulia (W.B) India
 
Cot curve, melting temperature, unique and repetitive DNA
Cot curve, melting temperature, unique and repetitive DNACot curve, melting temperature, unique and repetitive DNA
Cot curve, melting temperature, unique and repetitive DNACherry
 
FS P2 COMBO MSTA LAST PUSH past exam papers.
FS P2 COMBO MSTA LAST PUSH past exam papers.FS P2 COMBO MSTA LAST PUSH past exam papers.
FS P2 COMBO MSTA LAST PUSH past exam papers.takadzanijustinmaime
 
Lipids: types, structure and important functions.
Lipids: types, structure and important functions.Lipids: types, structure and important functions.
Lipids: types, structure and important functions.Cherry
 
Genome sequencing,shotgun sequencing.pptx
Genome sequencing,shotgun sequencing.pptxGenome sequencing,shotgun sequencing.pptx
Genome sequencing,shotgun sequencing.pptxCherry
 
Method of Quantifying interactions and its types
Method of Quantifying interactions and its typesMethod of Quantifying interactions and its types
Method of Quantifying interactions and its typesNISHIKANTKRISHAN
 

Recently uploaded (20)

Chemistry Data Delivery from the US-EPA Center for Computational Toxicology a...
Chemistry Data Delivery from the US-EPA Center for Computational Toxicology a...Chemistry Data Delivery from the US-EPA Center for Computational Toxicology a...
Chemistry Data Delivery from the US-EPA Center for Computational Toxicology a...
 
Taphonomy and Quality of the Fossil Record
Taphonomy and Quality of the  Fossil RecordTaphonomy and Quality of the  Fossil Record
Taphonomy and Quality of the Fossil Record
 
Plasmid: types, structure and functions.
Plasmid: types, structure and functions.Plasmid: types, structure and functions.
Plasmid: types, structure and functions.
 
Site specific recombination and transposition.........pdf
Site specific recombination and transposition.........pdfSite specific recombination and transposition.........pdf
Site specific recombination and transposition.........pdf
 
Major groups of bacteria: Spirochetes, Chlamydia, Rickettsia, nanobes, mycopl...
Major groups of bacteria: Spirochetes, Chlamydia, Rickettsia, nanobes, mycopl...Major groups of bacteria: Spirochetes, Chlamydia, Rickettsia, nanobes, mycopl...
Major groups of bacteria: Spirochetes, Chlamydia, Rickettsia, nanobes, mycopl...
 
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
(May 9, 2024) Enhanced Ultrafast Vector Flow Imaging (VFI) Using Multi-Angle ...
 
development of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virusdevelopment of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virus
 
GENETICALLY MODIFIED ORGANISM'S PRESENTATION.ppt
GENETICALLY MODIFIED ORGANISM'S PRESENTATION.pptGENETICALLY MODIFIED ORGANISM'S PRESENTATION.ppt
GENETICALLY MODIFIED ORGANISM'S PRESENTATION.ppt
 
Understanding Partial Differential Equations: Types and Solution Methods
Understanding Partial Differential Equations: Types and Solution MethodsUnderstanding Partial Differential Equations: Types and Solution Methods
Understanding Partial Differential Equations: Types and Solution Methods
 
Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.Porella : features, morphology, anatomy, reproduction etc.
Porella : features, morphology, anatomy, reproduction etc.
 
Cyanide resistant respiration pathway.pptx
Cyanide resistant respiration pathway.pptxCyanide resistant respiration pathway.pptx
Cyanide resistant respiration pathway.pptx
 
CYTOGENETIC MAP................ ppt.pptx
CYTOGENETIC MAP................ ppt.pptxCYTOGENETIC MAP................ ppt.pptx
CYTOGENETIC MAP................ ppt.pptx
 
Fourth quarter science 9-Kinetic-and-Potential-Energy.pptx
Fourth quarter science 9-Kinetic-and-Potential-Energy.pptxFourth quarter science 9-Kinetic-and-Potential-Energy.pptx
Fourth quarter science 9-Kinetic-and-Potential-Energy.pptx
 
X-rays from a Central “Exhaust Vent” of the Galactic Center Chimney
X-rays from a Central “Exhaust Vent” of the Galactic Center ChimneyX-rays from a Central “Exhaust Vent” of the Galactic Center Chimney
X-rays from a Central “Exhaust Vent” of the Galactic Center Chimney
 
Energy is the beat of life irrespective of the domains. ATP- the energy curre...
Energy is the beat of life irrespective of the domains. ATP- the energy curre...Energy is the beat of life irrespective of the domains. ATP- the energy curre...
Energy is the beat of life irrespective of the domains. ATP- the energy curre...
 
Cot curve, melting temperature, unique and repetitive DNA
Cot curve, melting temperature, unique and repetitive DNACot curve, melting temperature, unique and repetitive DNA
Cot curve, melting temperature, unique and repetitive DNA
 
FS P2 COMBO MSTA LAST PUSH past exam papers.
FS P2 COMBO MSTA LAST PUSH past exam papers.FS P2 COMBO MSTA LAST PUSH past exam papers.
FS P2 COMBO MSTA LAST PUSH past exam papers.
 
Lipids: types, structure and important functions.
Lipids: types, structure and important functions.Lipids: types, structure and important functions.
Lipids: types, structure and important functions.
 
Genome sequencing,shotgun sequencing.pptx
Genome sequencing,shotgun sequencing.pptxGenome sequencing,shotgun sequencing.pptx
Genome sequencing,shotgun sequencing.pptx
 
Method of Quantifying interactions and its types
Method of Quantifying interactions and its typesMethod of Quantifying interactions and its types
Method of Quantifying interactions and its types
 

First principle and Atomistic simulation of transition metal compounds for battery application

  • 1. First principles and Atomistic simulation of transition-metal complexes for battery application Asif Iqbal Bhatti Grenoble INP Phelma 20th December 2018 Asif Iqbal Bhatti (Grenoble INP Phelma) First principles and Atomistic simulation of transition-metal complexes for battery application20th December 2018 1 / 49
  • 2. CONTENTS Contents Asif Iqbal Bhatti (Grenoble INP Phelma) First principles and Atomistic simulation of transition-metal complexes for battery application20th December 2018 2 / 49
  • 3. INTRODUCTION Li-ion Batteries Contents Asif Iqbal Bhatti (Grenoble INP Phelma) First principles and Atomistic simulation of transition-metal complexes for battery application20th December 2018 3 / 49
  • 4. INTRODUCTION Li-ion Batteries Li-ion Batteries Working mechanism of Li-ion battery Types of anode/cathode materials for Li-ion batteries Asif Iqbal Bhatti (Grenoble INP Phelma) First principles and Atomistic simulation of transition-metal complexes for battery application20th December 2018 4 / 49
  • 5. INTRODUCTION Organic polymers Cathode material: Organic polymers Advantage Low molecular weight Rapid electron transfer kinetic value ⇒ high capacity rate during the charge/discharge process Voltage & capacity can be tuned by functionalization Limitations Low Cycling life and Structural stability for some polymers Asif Iqbal Bhatti (Grenoble INP Phelma) First principles and Atomistic simulation of transition-metal complexes for battery application20th December 2018 5 / 49
  • 6. COORDINATION POLYMER Contents Asif Iqbal Bhatti (Grenoble INP Phelma) First principles and Atomistic simulation of transition-metal complexes for battery application20th December 2018 6 / 49
  • 7. COORDINATION POLYMER Transition metal complexes Metal Complexes as active Cathode materials Combination of Ligand & Metal elements Ability to vary degree of oxidation And Voltage can be tuned according to electrolytic window Coordination may show improved Structural Stability & Cycling life Best candidate Fe, Ru, and Cu with bipyridine as a ligand Asif Iqbal Bhatti (Grenoble INP Phelma) First principles and Atomistic simulation of transition-metal complexes for battery application20th December 2018 7 / 49
  • 8. COORDINATION POLYMER Transition metal complexes Bi-nuclear & Poly-nuclear structure Asif Iqbal Bhatti (Grenoble INP Phelma) First principles and Atomistic simulation of transition-metal complexes for battery application20th December 2018 8 / 49
  • 9. THEORETICAL FRAMEWORK Contents Asif Iqbal Bhatti (Grenoble INP Phelma) First principles and Atomistic simulation of transition-metal complexes for battery application20th December 2018 9 / 49
  • 10. THEORETICAL FRAMEWORK Density functional theory Kohn Sham Density Functional Theory (DFT) EKS [ρ (r)] = Ts [ρ (r)] + ENe [ρ (r)] + EH [ρ (r)] + EXC [ρ (r)] (1) Initial Guess ρ(r) using LCAO: GTO Calculate effective potential νeff (r) = Ven (r) + ∫ρ(r΄)/|r-r΄|dr΄ + VXC [ρ(r)] Kohn Sham Equations [-ℏ2 /2me ∂i 2 + νeff (r)] φi = εi φi Compute the Electron Density & Total Energy ρ(r) = ∑i |φi (r)|2 → Etot[ρ(r)] = ... CONVERGED? Output Quantities ρ0 (r), Ei [ρ0 (r)] → Forces, Eigenvalues, Frequencies SCF MeanFieldApproximationVXC [ρ(r)] = δEXC [ρ]/δρ(r) © Exact EXC [ρ] functional is not known => All DFT methods are approximations of this functional GGA (PBE) EXC ≈ EGGA XC [ρ] = ρ (r) XC (ρ (r) , ρ (r)) dr Hybrid functionals (PBE0) E Hybrid XC = aEHF X + (1 − a)EDFT X + EDFT C . . delocalized state localized state Asif Iqbal Bhatti (Grenoble INP Phelma) First principles and Atomistic simulation of transition-metal complexes for battery application20th December 2018 10 / 49
  • 11. THEORETICAL FRAMEWORK Density functional theory Modeling Fe & Ru complex Asif Iqbal Bhatti (Grenoble INP Phelma) First principles and Atomistic simulation of transition-metal complexes for battery application20th December 2018 11 / 49
  • 12. DENSITY FUNCTIONAL THEORY Structural properties Finding the ground state structure for Fe & Ru complex Exploration of configuration space For Fe and Ru complex TFSI− cis state is found to be the minima by ≈ 0.3 eV 0.03 eV 3.31 kJ/mol cis trans Gasphaseoptimization Asif Iqbal Bhatti (Grenoble INP Phelma) First principles and Atomistic simulation of transition-metal complexes for battery application20th December 2018 12 / 49
  • 13. DENSITY FUNCTIONAL THEORY Structural properties Geometrical parameters Fe2+/3+ Un Loaded Full loaded Ru2+/3+ Un loaded Full loaded Fe average geometrical parameters Neutral PBE PBE0 Exp Fe − N 1.960 1.986 1.965 C1 − C1 1.468 1.471 1.472 N − C1 1.371 1.351 1.350 Full Loaded PBE PBE0 Exp 1.971 1.971 1.960 1.465 1.467 1.473 1.369 1.356 1.350 Ru average geometrical parameters Neutral PBE PBE0 Exp Ru − N 2.064 2.063 2.054 C1 − C1 1.471 1.471 1.474 N − C1 1.372 1.355 1.354 Full Loaded PBE PBE0 Exp 2.069 2.063 2.056 1.469 1.467 1.450 1.372 1.357 - Asif Iqbal Bhatti (Grenoble INP Phelma) First principles and Atomistic simulation of transition-metal complexes for battery application20th December 2018 13 / 49
  • 14. DENSITY FUNCTIONAL THEORY Fe/Ru Electronic properties PBE0: Fe2+ Partial Density Of States (PDOS) analysis No ligand field picture observed Ci1 Ci2 -20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0.0 0.5 1.0 1.5 Occupied Orbitals Virtual Orbitals Energy (eV) HOMO PBE0: PDOS plot for Fe 2+ (dmbpy)3 2PF6 - mono-nuclear complex Fe atom Ci1 Ci2 N atoms C and H atoms Asif Iqbal Bhatti (Grenoble INP Phelma) First principles and Atomistic simulation of transition-metal complexes for battery application20th December 2018 14 / 49
  • 15. DENSITY FUNCTIONAL THEORY Fe/Ru Electronic properties PBE0: Fe3+ PDOS analysis No localization of states Ci1 Ci2 Ci3 -20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5 PBE0: DOS plot for Fe 3+ (dmbpy)3 3PF6 - mono-nuclear complex Occupied Orbitals Virtual Orbitals spin down channel LUMOHOMO Energy (eV) spin up chanel HOMO Fe atom Ci1 Ci2 Ci3 N atoms C and H atoms Asif Iqbal Bhatti (Grenoble INP Phelma) First principles and Atomistic simulation of transition-metal complexes for battery application20th December 2018 15 / 49
  • 16. DENSITY FUNCTIONAL THEORY Fe/Ru Electronic properties PBE: Fe2+ PDOS analysis Ligand field picture observed t2g eg ∆o =0.25 eV Ci2 Ci1 -20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0.0 0.5 1.0 1.5 2.0 2.5 3.0 Occupied Orbitals Virtual Orbitals Energy (eV) HOMO PBE: PDOS plot for Neutral Mono-Nuclear complex Ci1 Ci2 Fe atom N atoms C and H atoms Asif Iqbal Bhatti (Grenoble INP Phelma) First principles and Atomistic simulation of transition-metal complexes for battery application20th December 2018 16 / 49
  • 17. DENSITY FUNCTIONAL THEORY Fe/Ru Electronic properties PBE: Fe3+ PDOS analysis -20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 HOMO Spin up channel Spin down channel LUMO HOMO Energy (eV) Fe atom N atoms Ci1 Ci2 Ci3 C and H atoms PBE: PDOS plot for Full loaded Mono-Nuclear complex Occupied Orbitals Virtuals Orbitals t2g eg ∆o =0.62 eV Ci1 Ci2 Ci3 Ligand field effect intact for PBE whereas PBE0 delocalizes the states Asif Iqbal Bhatti (Grenoble INP Phelma) First principles and Atomistic simulation of transition-metal complexes for battery application20th December 2018 17 / 49
  • 18. DENSITY FUNCTIONAL THEORY Cu Complex Modeling the Cu complex Asif Iqbal Bhatti (Grenoble INP Phelma) First principles and Atomistic simulation of transition-metal complexes for battery application20th December 2018 18 / 49
  • 19. DENSITY FUNCTIONAL THEORY Cu Structural properties Cu Configuration space & Ground state structure Large conformational change: Deep drawback for battery materials For quick charge/discharge the kinetics effects on compound should be less Less conformational change during the oxidation step ⇒ the easier the electron transfer (k0 ) 105.0 151.6 81.9 Unloaded Full Loaded φo θ Cu+ /Cu2+ 124.4o 125.7o 81.6o Without Counter-ions N Cu UnLoaded Full Loaded Ci1 Ci2 Cu 122.0 80.2 137.2 107.6 80.2 97.3 N With Counter-ions Asif Iqbal Bhatti (Grenoble INP Phelma) First principles and Atomistic simulation of transition-metal complexes for battery application20th December 2018 19 / 49
  • 20. DENSITY FUNCTIONAL THEORY Cu Electronic properties PBE: Cu PDOS analysis Peak shows not a regular tetrahedral geometry Hybridization with counter-ions Forms the pentavalent coordination -20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0.0 0.5 1.0 Virtual Orbitals Occupied Orbitals Energy (eV) HOMO PBE: PDOS plot for Cu + (dmbpy)2 PF6 - N atoms Ci1 Cu atom C and H atoms 0.0 0.5 1.0 -20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0.0 0.5 1.0 PBE: PDOS plot for Cu 2+ (dmbpy)2 2PF6 - Cu atom N atoms Ci1 Ci2 C and H atoms HUMO HUMO spin up channel Energy (eV) spin down channel LUMO Virtual Orbitals Occupied Orbitals Asif Iqbal Bhatti (Grenoble INP Phelma) First principles and Atomistic simulation of transition-metal complexes for battery application20th December 2018 20 / 49
  • 21. DENSITY FUNCTIONAL THEORY Cu Electronic properties PBE0: Cu PDOS analysis Upon loading (Cu+ Cu2+ ) reshaping of the peaks are observed -20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0.0 0.5 1.0 1.5 Occupied Orbital Virtual Orbital HOMO-1 PBE0: PDOS plot for Cu + (dmbpy)2 PF6 - Energy (eV) N atoms Cu atom Ci1 C and H atoms HOMO 0.0 0.5 1.0 -20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0.0 0.5 1.0 Ci1 Ci2 Cu atom N atoms C and H atoms LUMO HOMO HOMO spin down channel Energy (eV) Occupied Orbitals Virtual Orbitals spin up channel PBE0: PDOS plot for Cu 2+ (dmbpy)2 2PF6 - Asif Iqbal Bhatti (Grenoble INP Phelma) First principles and Atomistic simulation of transition-metal complexes for battery application20th December 2018 21 / 49
  • 22. DENSITY FUNCTIONAL THEORY Thermodynamic properties Modeling the total reaction of the system V0 potential includes solvated LiCi, and deposition of Li+ ion on the Anode surface V M = − EUnloaded nF − −ELoaded nF − V0 Asif Iqbal Bhatti (Grenoble INP Phelma) First principles and Atomistic simulation of transition-metal complexes for battery application20th December 2018 22 / 49
  • 23. DENSITY FUNCTIONAL THEORY Mono-nuclear Voltages Calculation of Relative Voltages Ci- Ci- Ci- Ci- Ci- VM = – EUnloaded – ELoaded – V0 nℱ Vrelative = VM – (VFe )reference = VM–Fe Ci- CiCi PCM Model Without counter-ions: Way off by 1.5 V for Cu complex PBE PBE0 Exp VRu−Fe(V) +0.25 +0.31 +0.20 VCu−Fe(V) -2.51 -2.61 -1.03 With counter-ions: VRu−Fe(V) VCu−Fe(V) Ci ClO− 4 PF− 6 TFSI− ClO− 4 PF− 6 TFSI− PBE/PCM 0.17 0.28/0.24 0.31 -1.04 -0.68/-0.4 -0.85 PBE0/PCM 0.37 0.34/0.32 0.26 -0.97 -0.85/–0.5 -0.95 Exp 0.20 0.20 0.19 -1.03 -1.07 -1.14 Asif Iqbal Bhatti (Grenoble INP Phelma) First principles and Atomistic simulation of transition-metal complexes for battery application20th December 2018 23 / 49
  • 24. Bi-nuclear Bi-nuclear complex: Low dimensional system Asif Iqbal Bhatti (Grenoble INP Phelma) First principles and Atomistic simulation of transition-metal complexes for battery application20th December 2018 24 / 49
  • 25. Bi-nuclear Low dimensional system Bi-nuclear: Low dimensional system Experimentally, two compounds: With one [a] and two [b] alkyl chains are observed Statistically, compound [a] is in majority we decided to model this system N1 region N2 region -(CH2 )n - d1 d2 dM Ci Ci Our Approximation [a] [b] -(CH2 )n - -(CH2 )n - Asif Iqbal Bhatti (Grenoble INP Phelma) First principles and Atomistic simulation of transition-metal complexes for battery application20th December 2018 25 / 49
  • 26. Bi-nuclear Structural properties Global geometry analysis Exploring conformational space with alkyl chain of length n, − (CH2)n − ≡ nC Interplay between cation center and counter-ions to find the optimum geometry (Purely electrostatic interaction) Asif Iqbal Bhatti (Grenoble INP Phelma) First principles and Atomistic simulation of transition-metal complexes for battery application20th December 2018 26 / 49
  • 27. Bi-nuclear Local geometrical parameters Local Geometry of Iron sites w.r.t chain length Average bond distances for two sites with respect to chain length 6 C 4 C 2 C 1 . 9 5 0 1 . 9 5 5 1 . 9 6 0 1 . 9 6 5 1 . 9 7 0 X C : P B E S i t e F e 1 E x p A l k y l c h a i n n C Fe1-N1(Bonddistances) F e 1 - N 1 : N F e 1 - N 1 : F L 6 C 4 C 2 C 1 . 9 5 0 1 . 9 5 5 1 . 9 6 0 1 . 9 6 5 1 . 9 7 0 E x p X C : P B E S i t e F e 2 A l k y l c h a i n n C F e 2 - N 2 : N F e 2 - N 2 : F L Fe2-N2(Bonddistances) Asif Iqbal Bhatti (Grenoble INP Phelma) First principles and Atomistic simulation of transition-metal complexes for battery application20th December 2018 27 / 49
  • 28. PBE: Comparison of PDOS plot for FL (Full loaded) system Ligand field effect preserved similar to Mono-nuclear PDOS Bi-nuclear Mono-nuclear - 2 0 - 1 9 - 1 8 - 1 7 - 1 6 - 1 5 - 1 4 - 1 3 - 1 2 - 1 1 - 1 0 - 9 - 8 - 7 - 6 - 5 - 4 - 3 - 2 - 1 0 0 . 0 0 . 5 1 . 0 1 . 5 - 2 0 - 1 9 - 1 8 - 1 7 - 1 6 - 1 5 - 1 4 - 1 3 - 1 2 - 1 1 - 1 0 - 9 - 8 - 7 - 6 - 5 - 4 - 3 - 2 - 1 0 0 . 0 0 . 5 1 . 0 1 . 5 F e 2 a t o m N 2 a t o m s C i 2 C i 3 C i 5 C a n d H a t o m s 6 C : F L H O M O E n e r g y ( e V ) H O M O L U M O O c u p i e d O r b i t a l s V i r t u a l s O r b i t a l s S p i n u p c h a n n e l S p i n d o w n c h a n n e l 6 C : F L -20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0.0 0.5 1.0 1.5 2.0 0.0 0.5 1.0 1.5 2.0 HOMO Spin up channel Spin down channel LUMO HOMO Energy (eV) Fe atom N atoms Ci1 Ci2 Ci3 C and H atoms PBE: PDOS plot for Full loaded Mono-Nuclear complex Occupied Orbitals Virtuals Orbitals t2g eg ∆o =0.62 eV Ci1 Ci2 Ci3
  • 29. PBE0: Comparison of PDOS plot for FL (Full loaded) system Ligand field vanished similar to Mono-nuclear PDOS We observe metal sites are quite independent Bi-nuclear Mono-nuclear - 2 0 - 1 9 - 1 8 - 1 7 - 1 6 - 1 5 - 1 4 - 1 3 - 1 2 - 1 1 - 1 0 - 9 - 8 - 7 - 6 - 5 - 4 - 3 - 2 - 1 0 0 . 0 0 . 5 1 . 0 - 2 0 - 1 9 - 1 8 - 1 7 - 1 6 - 1 5 - 1 4 - 1 3 - 1 2 - 1 1 - 1 0 - 9 - 8 - 7 - 6 - 5 - 4 - 3 - 2 - 1 0 0 . 0 0 . 5 1 . 0 F e 2 a t o m N 2 a t o m s C i 2 C i 3 C i 4 C a n d H a t o m s 6 C : F L H O M O E n e r g y ( e V ) H O M O L U M O 6 C : F L O c c u p i e d O r b i t a l s V i r t u a l O r b i t a l s S p i n u p c h a n n e l S p i n d o w n c h a n n e l Ci1 Ci2 Ci3 -20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5 PBE0: DOS plot for Fe 3+ (dmbpy)3 3PF6 - Mono-Nuclear complex Occupied Orbitals Virtual Orbitals spin down channel LUMOHOMO Energy (eV) spin up chanel HOMO Fe atom Ci1 Ci2 Ci3 N atoms C and H atoms
  • 30. PDOS plot for HL (Half loaded) system -(CH2 )n - dM Ci Ci Fe1 FLN Fe2 e- e- Ci Ci Ci -20 -15 -10 -5 0 0.0 0.5 1.0 0.0 0.5 1.0 Occupied Orbitals Virtual Orbitals spin up channel HOMO spin down channel HOMO PBE0: HL Site 1 Energy (eV) Fe1 atom N1 atoms C and H atoms -20 -15 -10 -5 0 0.0 0.5 1.0 1.5 0.0 0.5 1.0 1.5 spin down channel spin up channel Occupied Orbitals Virtual Orbitals HOMO Energy (eV) HOMO PBE0: HL Site 2 Fe2 atom N2 atoms C and H atoms -20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 0.0 0.5 1.0 1.5 Energy (eV) PBE: Schematic representation for N complex Ef -20 -18 -16 -14 -12 -10 -8 -6 -4 -2 0 0.0 0.5 1.0 1.5 Energy (eV) Ef PBE: Schematic representation for FL system e- No tunneling effect observed for PBE functional
  • 31. Bi-nuclear Bi-nuclear Voltages Voltage comparison of Mono & Bi-nuclear complex –(CH2 )n – = nC dM FL=D3,3 N=D2,2 N=D HL=D2,3 M1/2 = Fe1/2, Ru1/2 Dn1,n2 = [Fe1(dmbpy)3 ] n1 Ci + nC + [Fe2(dmbpy)3 ] n2 Ci n1 + n2 + VHL = – E D2,2 + E0 – E D3,2 F VFL = – E D2,2 + 2E0 – E D3,3 2F 2 . 8 3 . 0 3 . 2 3 . 4 3 . 6 3 . 8 4 . 0 4 . 2 4 . 4 H L P B E : 2 C P B E : 4 C P B E : 6 C V m o n o - n u c l e a r ≈ 4 . 2 0 5 F e B i - n u c l e a r c o m p l e x v o l t a g e : f o r C i = P F 6 - Voltage(Vrel ) P B E 0 : 2 C P B E 0 : 4 C P B E 0 : 6 C F L Fe PBE0 PBE alkyl VHL VFL VHL VFL 2C 3.00 3.76 - 4.16 4C 3.91 4.09 - 4.10 6C 3.89 3.96 - 4.15 Asif Iqbal Bhatti (Grenoble INP Phelma) First principles and Atomistic simulation of transition-metal complexes for battery application20th December 2018 31 / 49
  • 32. MOLECULAR DYNAMICS (MD) Contents Asif Iqbal Bhatti (Grenoble INP Phelma) First principles and Atomistic simulation of transition-metal complexes for battery application20th December 2018 32 / 49
  • 33. MOLECULAR DYNAMICS (MD) Amber potential Amber Potential model V(rN ) = bonds kij (rij − r0)2 + angles kθ(θijk − θ0)2 + ndihedrals i ni,max n 1 2 Vi,n[1 + cos(nωi − γi,n)]+ atoms i<j Aij r12 ij − Bij r6 ij + qi qj εij rij r0 rij Vbond Vangle θijk θ0 Vdihedrals Bonded Interactions ω Nonbonded Interactions Vnonbond = VvdW +Velectrostatic qi qj Asif Iqbal Bhatti (Grenoble INP Phelma) First principles and Atomistic simulation of transition-metal complexes for battery application20th December 2018 33 / 49
  • 34. MOLECULAR DYNAMICS (MD) Development of the Potential Parameterization of the Potential using Seminario method V(rN ) = bonds kij (rij − r0)2 + angles ka(θijk − θ0)2 + (((((((((((( ndihedrals i ni,max n 1 2 Vi,n[1 + cos(nωi − γi,n)] + atoms i<j Aij r12 ij − Bij r6 ij + qi qj εij rij Parameters obtained from the first shell ignoring dihedral term. Because the structure is quite rigid Å AT Exp DFT parm10 Gaff Fe − N M1-Yi 1.965(3) 1.96 - - C1 − C1 cp-cp 1.472(6) 1.470 1.400 1.485 N − C1 Yi-cp 1.350(0) 1.363 1.339 1.339 nCi- nCi- nCi- nCi- nCinCi Ci=TFSI- Parameterization of inner sphere C1 C1’ Asif Iqbal Bhatti (Grenoble INP Phelma) First principles and Atomistic simulation of transition-metal complexes for battery application20th December 2018 34 / 49
  • 35. MOLECULAR DYNAMICS (MD) Solvent model Creation of Acetonitrile (ACN) Solvent box Explicit Solvent Model created: ACN 0.121 -0.269-0.422 0.329 n1 c1 c3 hc Parameters for ACN taken from GAFF database RESP charges obtained at PBE:Def2SVP level of theory At Equilibrium, achieved the density around ρ ≈ 0.77 g/cm3 at 300 K Asif Iqbal Bhatti (Grenoble INP Phelma) First principles and Atomistic simulation of transition-metal complexes for battery application20th December 2018 35 / 49
  • 36. MOLECULAR DYNAMICS (MD) Simulation procedure Simulation procedure General steps for MD Simulation Polymer construction Solution construction solvents molecules randomly inserted Minimization of the structure NVT → Equilibration (NPT) → Dynamics (NVE) ACN Solvent Asif Iqbal Bhatti (Grenoble INP Phelma) First principles and Atomistic simulation of transition-metal complexes for battery application20th December 2018 36 / 49
  • 38. MOLECULAR DYNAMICS (MD) Validation of Potential Validation of Potential on Bi-nuclear system Validated 6C chain for N and FL compound MD DFT Å N FL N FL M1-nb 2.0 ± 0.04 2.0 ± 0.03 1.965(3) 1.96(3) cp-cp 1.50 ± 0.02 1.50 ± 0.03 1.472(6) 1.473(6) nb-cp 1.35 ± 0.01 1.35 ± 0.02 1.350(0) 1.350(0) Deff (10−5cm2/s) 0.652 0.525 - - Influence of the solvent (ACN) on the structure and diffusivity of Ci Asif Iqbal Bhatti (Grenoble INP Phelma) First principles and Atomistic simulation of transition-metal complexes for battery application20th December 2018 38 / 49
  • 39. MOLECULAR DYNAMICS (MD) Validation of Potential Visualization of MD Trajectories for Bi-nuclear Asif Iqbal Bhatti (Grenoble INP Phelma) First principles and Atomistic simulation of transition-metal complexes for battery application20th December 2018 39 / 49 Without Solvent With Solvent
  • 40. CONSTRUCTION OF MACROMOLECULE Construction of Poly-nuclear complex Developed Fe Poly-nuclear complex using in-house python code With varying chain size, 4C and 6C, Cavity Region (CR) is expanded Boundary regions fixed with Methyl group Asif Iqbal Bhatti (Grenoble INP Phelma) First principles and Atomistic simulation of transition-metal complexes for battery application20th December 2018 40 / 49
  • 41. CONSTRUCTION OF MACROMOLECULE Fixing RESP charge Fixing RESP charge on the main unit Effective charge fitted according to this equation α × Q Alkyl Chain 2 + Q (bpy)3 + Q Fen+ + Q n(TFSI−) + β × Q n(CH3) = 0 ...... ... ... ... ... Asif Iqbal Bhatti (Grenoble INP Phelma) First principles and Atomistic simulation of transition-metal complexes for battery application20th December 2018 41 / 49
  • 42. MD SIMULATION RESULTS OF POLY-NUCLEAR COMPLEX Selection of Complex size Poly-nuclear size Deff (10−5 cm2 /s) ρ (g/cm3 ) β (t) = d log MSD d log t 5606 0.10 0.82 0.59 10847 0.091 0.84 0.55 18133 0.085 0.86 0.53 Large structure means more statistics Mean square displacement (MSD) plot for three complex size (Slopes are almost same) Asif Iqbal Bhatti (Grenoble INP Phelma) First principles and Atomistic simulation of transition-metal complexes for battery application20th December 2018 42 / 49
  • 43. MD SIMULATION RESULTS OF POLY-NUCLEAR COMPLEX Visualization of MD Trajectories for Poly-nuclear complex Solvation stabilizes the structure due to screening effect (1 ns simulation) Asif Iqbal Bhatti (Grenoble INP Phelma) First principles and Atomistic simulation of transition-metal complexes for battery application20th December 2018 43 / 49 With SolventWithout Solvent
  • 44. MD SIMULATION RESULTS OF POLY-NUCLEAR COMPLEX Effect of Cavity on the Diffusivity of Ci Effect of Chain Length on the Diffusivity of Ci Effective diffusion (Deff ) of Ci in 4C chain is lower than 6C due to crowded environment large CR region allows more accumulation of Li+ /Na+ ions With respect to Bi-nuclear Deff reduce by a factor of ≈ 10 due to entrapment Å N FL Fe − N 2.0 ± 0.02 2.0 ± 0.04 C1 − C1 1.50 ± 0.02 1.50 ± 0.03 N − C1 1.35 ± 0.01 1.35 ± 0.02 4C 6C 4C 6C Deff (10−5 cm2 /s) 0.047 0.091 0.029 0.077 0 1 0 0 2 0 0 3 0 0 4 0 0 5 0 0 0 5 1 0 1 5 2 0 2 5 3 0 3 5 4 0 4 5 t ( p s ) <MSD>Å 2 4 C N e u t r a l 6 C N e u t r a l 4 C F u l l l o a d e d 6 C F u l l l o a d e d 3 0 0 3 5 0 4 0 0 4 5 0 5 0 0 0 . 5 5 0 . 6 0 0 . 6 5 0 . 7 0 0 . 7 5 0 . 8 0 0 . 8 5 0 . 9 0 T ( K ) ؒ(g/cm 3 ) 4 C : F L 6 C : F L Asif Iqbal Bhatti (Grenoble INP Phelma) First principles and Atomistic simulation of transition-metal complexes for battery application20th December 2018 44 / 49
  • 45. MD SIMULATION RESULTS OF POLY-NUCLEAR COMPLEX Temperature Effect Effect of Temperature on the Diffusivity of Ci Simulated diffusion constant almost follows the Arrhenius function (D = Ae −Ea/RT ) with an activation energy (Ea) estimated: 18.652 kJ/mol. Compared to [TFSI] − [BMIm] + ionic liquid, the experimental activation energy is 27.50 kJ/mol 0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 0 4 0 8 0 1 2 0 1 6 0 2 0 0 2 4 0 2 8 0 3 2 0 t ( p s ) <MSD>(Å2 ) 6 C : F L T = 3 0 0 K 6 C : F L T = 3 5 0 K 6 C : F L T = 3 7 5 K 6 C : F L T = 4 0 0 K 6 C : F L T = 5 0 0 K 0 . 0 0 1 8 0 . 0 0 2 1 0 . 0 0 2 4 0 . 0 0 2 7 0 . 0 0 3 0 0 . 0 0 3 3 - 5 . 5 - 5 . 0 - 4 . 5 - 4 . 0 - 3 . 5 - 3 . 0 - 2 . 5 6 C : F L ln(D(m 2 /s)) T - 1 ( K - 1 ) Asif Iqbal Bhatti (Grenoble INP Phelma) First principles and Atomistic simulation of transition-metal complexes for battery application20th December 2018 45 / 49
  • 46. CONSTRUCTION OF TRANSIENT STATE Initiation of the loading process in a N state Description of the Transient state FL units embedded in a N complex Counter-ions randomly inserted into the cavity region to study the diffusivity N N N N N N FL FL FL FL FL FL FL Asif Iqbal Bhatti (Grenoble INP Phelma) First principles and Atomistic simulation of transition-metal complexes for battery application20th December 2018 46 / 49
  • 47. CONSTRUCTION OF TRANSIENT STATE Diffusion of Ci in Transient state Diffusion of Ci in Transient state For certain time frame we define the motion as Walking confined diffusion Deff obtained 0.09 ×10−5 cm2 /s 5 0 0 1 0 0 0 1 5 0 0 2 0 0 0 2 5 0 0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 1 4 0 1 6 0 1 8 0 2 0 0 t ( p s ) <MSD>Å 2 O v e r a l l d i s p l a c e m e n t R 2 O v e r a l l d i s p l a c e m e n t X 2 O v e r a l l d i s p l a c e m e n t Y 2 O v e r a l l d i s p l a c e m e n t Z 2 6 C c h a i n : D i f f u s i o n o f T F S I - i n a F L s t a t e Asif Iqbal Bhatti (Grenoble INP Phelma) First principles and Atomistic simulation of transition-metal complexes for battery application20th December 2018 47 / 49
  • 48. Conclusions Conclusions Theoretical approach PBE0 tends to delocalize PBE0 is the least adequate approximation for these systems (Fe, Ru and Cu) in terms of three properties (Geometry, Electronic & Voltage) Results Mono-nuclears voltage closely agrees with the experimental results No effect of longer chains on the voltage is observed Cu complex shows large conformational change upon loading making it less reliable to use as cathode material MD Simulation Large cavity regions is preferred for fast diffusion hence, quick charging There is influence of crowded porous environment on the diffusion of Ci Asif Iqbal Bhatti (Grenoble INP Phelma) First principles and Atomistic simulation of transition-metal complexes for battery application20th December 2018 48 / 49
  • 49. Perspectives Perspectives In reality, there will be alkyl chains missing and the diffusion is expected to change. Study of the stabilization effects for Cu complex with different ligands Asif Iqbal Bhatti (Grenoble INP Phelma) First principles and Atomistic simulation of transition-metal complexes for battery application20th December 2018 49 / 49