SlideShare a Scribd company logo
1 of 12
enrico.ferrero@uniupo.it
SPRAY-WEB 1.0
Un community model Lagrangiano per la ricerca
Enrico Ferrero
Università del Piemonte Orientale
enrico.ferrero@uniupo.it
Convenzione	per	la	REALIZZAZIONE	DELLA	VERSIONE	PUBBLICA	DEL	CODICE	DI	
DISPERSIONE	LAGRANGIANO	SPRAY	(SPRAY-WEB)	
Tra	
•Ricerca	sul	Sistema	Energe3co	-	RSE	SpA	
•CNR	–	ISAC,		Consiglio	Nazionale	delle	Ricerche,	Is3tuto	di	Scienze	dell’Atmosfera	e	del	
Clima	U.O.S.	di	Torino	
•Università	del	Piemonte	Orientale,	Dipar3mento	di	Scienze	e	Innovazione	Tecnologica	
•ARIANET	Srl,
enrico.ferrero@uniupo.it
Un po’ di storia
• Nell’arco	degli	ul3mi	30	anni,	ques3	en3	hanno	collaborato	nello	
sviluppo	e	nella	messa	a	punto	di	un	modello	Lagrangiano	“a	par3celle”	
denominato	“SPRAY”.
• aPraverso	una	sessione	di	lavoro	di	due	seQmane	presso	i	laboratori	di	EDF	–	Direc3on	des	
Etudes	et	Reserch	a	Chatou	(Parigi	-	Francia)	a	cui	parteciparono	Jacques	Moussafir	(EDF),	
Domenico	Anfossi	(CNR-ICGF)	di	Torino,	Giuseppe	Brusasca,	(ENEL-DSR)	di	Milano	e	Paolo	
ZanneQ	(EnviroComp);	
• tale	versione	fu	completata	e	resa	opera3va	
presso	il	Servizio	Ambiente	dell’ENEL-DSR	di	
Milano	dal	Gianni	Tinarelli	in	collaborazione	con	
Giuseppe	Brusasca	e	Domenico	Anfossi.		
•Tale	codice	“nasce”	ufficialmente	nel	1987
enrico.ferrero@uniupo.it
• Ques3	tre	ricercatori	cos3tuiscono	il	nucleo	base	di	sviluppo	e	validazione	
del	codice	nei	primi	anni	
• successivamente	nel	1990,	si	aggiunge	al	gruppo	di	sviluppo	Enrico	Ferrero	
dell’Università	del	Piemonte	Orientale	e	nel	1994		Silvia	Trini	Castelli	del	CNR-
ISAC	(già	ICGF)	di	Torino.	
• Nel 1996-97 Stefano Alessandrini svolge la sua tesi di laurea sul codice, e
collaborerà allo sviluppo del codice, tramite finanziamenti del Fondo di
Ricerca per il Sistema Elettrico, come dipendente RSE, presso cui è assunto
nel 2001.
La storia continua………
• Jacques	Moussafir	seguirà	sempre	gli	sviluppi	del	codice,	in	par3colare	quelli	
lega3	all’applicazione	alla	micorscala,	e	sarà	lui	a	dare	il	nome	SPRAY	al	codice	di	
calcolo	quando	uscirà	da	EDF	per	fondare	la	società	ARIA	Technologies	SA.
enrico.ferrero@uniupo.it
Physica A 388 (2009) 1375–1387
Contents lists available at ScienceDirect
Physica A
journal homepage: www.elsevier.com/locate/physa
A hybrid Lagrangian–Eulerian particle model for reacting pollutant
dispersion in non-homogeneous non-isotropic turbulence
Stefano Alessandrinia
, Enrico Ferrerob,⇤
a
CESI RICERCA via Rubattino 54, 20134 Milano, Italy
b
Dipartimento di Scienze e Tecnologie Avanzate, Università del Piemonte Orientale, via Bellini 25/g, 15100, Alessandria, Italy
a r t i c l e i n f o
Article history:
Received 23 July 2008
Received in revised form 16 October 2008
Available online 16 December 2008
Keywords:
Dispersion
Turbulence
Stochastic model
a b s t r a c t
Lagrangian stochastic models are recognized as being powerful tools for pollutant
dispersion at different scales in complex terrain and at different stability conditions. One
of the still unresolved problems is the difficulty of including chemical reactions when, for
example, NO2 or O3 concentrations have to be predicted in the presence of NOx emissions.
In this work, a Lagrangian stochastic (single particle) model is modified in order to account
for simple chemical reactions and tested against measured data in a wind tunnel. It is
well-known that, in the single particle models the trajectories are considered independent
and hence the concentration correlations and fluctuations cannot be calculated. However,
these models can be simply modified to account for the segregation throughout a proper
parameterisation derived from measurements. Further, in order to avoid the use of the large
amount of computational resources, which would be necessary due to the release of an high
number of particles filling the whole domain, needed to reproduce the ozone background
concentration, we mark the particles with a deficit of ozone instead of its concentration. A
numerical experiment is carried out and the results of the comparisons between calculated
and measured concentrations of different species are presented and discussed.
© 2008 Elsevier B.V. All rights reserved.
1. Introduction
Lagrangian stochastic models are nowadays recognised as being the most powerful tool for predicting atmospheric
pollution at high resolution in complex terrain and different meteorological conditions. As a matter of fact, they
have demonstrated their ability in simulating concentration fields taking advantage of the sophisticated meteorological
measurements and/or of meteorological model forecasts [1].
The behaviour of a single passive tracer particle in a turbulent flow is well known both from theoretical and modelling
points of view. Since the early work of Taylor [2] a theory has been developed and the models have been applied to
different kinds of turbulent flows including non-homogeneous and non-isotropic turbulence. The most exhaustive work is
by Thomson [3], who proposed a complete theory for the one-particle dispersion in 3D turbulence based on the concept of
a Markovian stochastic process. In this frame, the dynamics of a passive tracer particle is described by a couple of stochastic
differential equations: the Langevin equation for the turbulent velocity and the Fokker–Planck equation for the Eulerian
probability density function (PDF) of the stochastic process. Based on this fundamental work many numerical models have
been developed aiming to simulate the dispersion of pollutants in the atmospheric boundary layer in different stability
conditions (see for instance Refs. [4–8]). These models are able to account for higher order turbulence moments of the
atmospheric PDF and complex turbulence flow dynamics [9,1], and have demonstrated that they accurately reproduce the
mean concentration field of the dispersed tracer.
⇤ Corresponding author.
E-mail address: enrico.ferrero@unipmn.it (E. Ferrero).
0378-4371/$ – see front matter © 2008 Elsevier B.V. All rights reserved.
doi:10.1016/j.physa.2008.12.015
Le principali pubblicazioni…..
A new Lagrangian method for modelling the buoyant plume rise
Stefano Alessandrini a,*, Enrico Ferrero b,c,1
, Domenico Anfossi c,2
a
RSE, Ricerca Sistema Energetico, via Rubattino 54, 20134 Milano, Italy
b
Università del Piemonte Orientale, Dipartimento di Scienze e Innovazione Tecnologica, viale Teresa Michel 11, 15121 Alessandria, Italy
c
ISAC-CNR, Istituto di Scienze dell’Atmosfera e del Clima, Corso Fiume 4, 10133 Torino, Italy
h i g h l i g h t s
 The paper deals with the problem of the plume rise in the dispersion model.
 A new technique based on temperature difference is used for plume rise computation.
 Comparison of the model with experiments shows a satisfactory agreement.
a r t i c l e i n f o
Article history:
Received 5 October 2012
Received in revised form
12 April 2013
Accepted 26 April 2013
Keywords:
Plume rise
Pollution dispersion
Lagrangian model
a b s t r a c t
A new method for the buoyant plume rise computation is proposed. Following Alessandrini and Ferrero
(Phys A 388:1375e1387, 2009) a scalar transported by the particles and representing the temperature
difference between the plume and the environment air is introduced. As a consequence, no more par-
ticles than those inside the plume have to be released to simulate the entrainment of the background air
temperature. A second scalar, the vertical plume velocity, is assigned to each particle. In this way the
entrainment is properly simulated and the plume rise is calculated from the local property of the flow.
The model has been tested against data from two laboratory experiments in neutral and stable stratified
flows. The comparison shows a good agreement.
Then, we tested our new model against literature analytical formulae in a simple uniform neutral
atmosphere, considering either the case of a single plume or the one of two plumes from adjacent stacks
combining during the rising stage. Finally, a comparison of the model against an atmospheric tracer
experiment (Bull Run), characterized by vertically non-homogeneous fields (wind velocity, temperature,
velocity standard deviations and time scales), was performed. All the tests confirmed the satisfactory
performance of the model.
Ó 2013 Elsevier Ltd. All rights reserved.
1. Introduction
The computation of plume rise is one of the basic aspects for a
correct estimation of the transport and dispersion of airborne
pollutants and for the evaluation of ground level concentration.
A buoyant plume rises under the action of its initial momentum
and buoyancy. It experiences a shear force at its perimeter, where
momentum is transferred from the plume to the surrounding air,
and ambient air is entrained into the plume. This phenomenon,
entrainment, is responsible of the plume diameter increase, of the
decrease of its mean velocity and of the average temperature dif-
ference between air and plume as well. In the first stage the plume
also spreads under the action of the buoyancy-generated turbu-
lence but progressively the effect of ambient turbulence becomes
predominant. In a calm atmosphere, plumes rise almost vertically,
whereas in windy situations they bend over. In this case, the ve-
locity of any plume parcel is the vector composition of horizontal
wind velocity and vertical plume velocity in the first stage and then
approaches the horizontal wind velocity.
In the Eulerian dispersion models, the calculation of plume rise
is based on the fluid dynamic equations, namely on the mass,
momentum and energy conservation equations. A complete,
Contents lists available at SciVerse ScienceDirect
Atmospheric Environment
journal homepage: www.elsevier.com/locate/atmosenv
Atmospheric Environment 77 (2013) 239e249
Atmospheric Environment 40 (2006) 7234–7245
Tracer dispersion simulation in low wind speed conditions with
a new 2D Langevin equation system
D. Anfossia,Ã, S. Alessandrinib
, S. Trini Castellia
, E. Ferreroc
,
D. Oettld
, G. Degraziae
a
C.N.R., Istituto di Scienze dell’Atmosfera e del Clima, Torino, Italy
b
CESI S.p.A., Milano, Italy
c
Dipartimento di Scienze e Tecnologie Avanzate, Universita` del Piemonte Orientale, Alessandria, Italy
d
Institute for Internal Combustion Engines and Thermodynamics, Graz University of Technology, Graz, Austria
e
Universidade Federal de Santa Maria, Santa Maria, RS, Brazil
Received 17 January 2006; received in revised form 10 April 2006; accepted 23 May 2006
Abstract
The simulation of atmospheric dispersion in low wind speed conditions (LW) is still recognised as a challenge for
modellers. Recently, a new system of two coupled Langevin equations that explicitly accounts for meandering has been
proposed. It is based on the study of turbulence and dispersion properties in LW. The new system was implemented in the
Lagrangian stochastic particle models LAMBDA and GRAL. In this paper we present simulations with this new approach
applying it to the tracer experiments carried out in LW by Idaho National Engineering Laboratory (INEL, USA) in 1974
and by the Graz University of Technology and CNR-Torino near Graz in 2003. To assess the improvement obtained with
the present model with respect to previous models not taking into account the meandering effect, the simulations for the
INEL experiments were also performed with the old version of LAMBDA. The results of the comparisons clearly indicate
that the new approach improves the simulation results.
r 2006 Elsevier Ltd. All rights reserved.
Keywords: Low wind speeds; Meandering; Dispersion; Tracer experiments; Langevin equation system
1. Introduction
It is well known that atmospheric dispersion in
low wind speed (LW hereafter) conditions is mainly
governed by meandering (low frequency horizontal
wind oscillations). In such conditions, the airborne
pollutants are generally dispersed over rather wide
angular sectors. This fact together with the problem
of defining a precise mean wind direction in such
conditions makes the simulation of dispersion
rather difficult. In particular, it appears that
standard Gaussian plume models are inadequate
(Sagendorf and Dickson, 1974; Wilson et al., 1976;
Brusasca et al., 1992; Oettl et al., 2001) and more
appropriate types of models, taking explicitly into
account the meandering phenomenon, must be
used. With reference to this, we briefly recall that
ARTICLE IN PRESS
www.elsevier.com/locate/atmosenv
Atmospheric Environment Vol. 27A, No. 9, pp. 1443 1451, 1993. 00046981/93 $6.00+0.00
Printed in Great Britain. q') 1993 Pergamon Press Ltd
A SIMPLE WAY OF COMPUTING BUOYANT PLUME RISE
IN LAGRANGIAN STOCHASTIC DISPERSION MODELS
D. ANFOSSI
Istituto di Cosmogeofisica del CNR. C.so Fiume 4, 10133, Torino, Italy
E. FERRERO
Istituto di Fisica Generale, Via Giuria 1, 10125 Torino, Italy
and
G. BRUSASCA,A. MARZORATI,and G. TINARELLI
ENEL/CRTN, Servizio Ambiente, Via Rubattino 54, 20134 Milano, Italy
(First received 16 June 1992 and in finaljbrm 25 November 1992)
Abstract--A simple and easy to use method to include Eulerian plume rise in Lagrangian particle models is
presented. This approach takes into account the vertical variation of wind and stability. Its ability to
realistically simulate plume rise and spread, both through numerical experiments under typical atmo-
spheric conditions and by comparison with actual plumes detected by a Differential Lidar in a case study, is
shown. Despite its simplicity, our method proved to describe the main plume rise characteristics in a
satisfactory way and to yield a fair agreement among observed and predicted plume centreline heights and
standard deviations.
Key word index: Plume rise, Lagrangian particle models, plume spread, elevated releases, field experiment.
F
Fi
F'
9
n(t)
He
Hs
r
s
t
ra
rf
rLi
U
U I
v
y;
w
W~
w b
Wo
Z
At
AZ
Oo/Oz
P
NOTATION
buoyancy flux (m4 s- 3)
buoyancy flux of each particle (m4 s- 3)
buoyancy flux fluctuation (m4 s- a)
acceleration of gravity (m s- 2)
mean plume centreline height at a particular
cross-section (m)
plume rise as a function of t (m)
final plume rise (m)
stack height (m)
stack radius (m)
stability parameter (s-2)
time (s)
ambient temperature (K)
plume exit temperature (K)
Lagrangian time scales (s)
longitudinal component of wind speed (m s- 1)
mean horizontal wind speed at a particular cross-
section (m s- 1)
wind fluctuation (m s- 1)
crosswind component of wind speed (m s- 1)
horizontal downwind distance of a cross-section
(m)
vertical component of wind speed (m s- 1)
fluctuation of the vertical component of wind
speed (m s- 1)
buoyancy velocity (m s 1)
plume exit velocity (m s-1)
vertical coordinate (m)
time step (s)
plume rise increment (m)
ambient potential temperature gradient (K m- 1)
random forcing (m s- 1)
mean range (m)
o-u
ov
ow
{7Z
longitudinal component of wind speed standard
deviation (m s- 1)
crosswind component of wind speed standard
deviation (m s i)
vertical component of wind speed standard devi-
ation (m s 1)
vertical standard deviation (m)
horizontal standard deviation (m).
I. INTRODUCTION
A correct estimation of buoyant plume rise is one of
the basic requirements for the determination of
ground level concentrations of airbone pollutant
emitted by industrial stacks. In fact maximum ground
level concentration is roughly inversely proportional
to the square of the plume final height H e.
In Eulerian models, H e is generally computed by
means of simple analytical expressions like the well-
known Briggs' formulae (1975) and inserted in the
model as an input parameter. In contrast, the inclu-
sion of plume rise in Lagrangian particle models is not
as straightforward as in the Eulerian ones, so that a
complete and rigorous method is not yet available.
This is mainly due to the intrinsic impossibility of
Lagrangian particle models to simulate correctly the
entrainment phenomenon. To do this, these models
should take into account all the fluid simultaneously.
In fact the buoyancy and, as a consequence, the
1443
enrico.ferrero@uniupo.it
principali caratteristiche dell’attuale versione
di SPRAY-WEB
Reazioni chimiche
Diverse versioni di plume rise dinamico
Deposizione secca e umida
Equazione di Langevin
per la temperatura
223 ONOONO
k
+→+ 322 ONOhONO
J
+→++ ν
Author
Figure 3. Comparison of the measured (Weil et al. 2002) and simulated (both with Anfossi et al.,
1993 and Bisignano and Devenish, 2015 plume rise methods) vertical profiles of dimensionless
crosswind-integrated concentration as a function of dimensionless downwind distance for F∗=0.1.
Buoyant plume rise in Lagrangian particle models 1449
IIII.
911.
8111.
711.
61111.
• '~llll.
411.
N
310.
21111.
100.
I.
II.
' I ~ I I ' I ' I ' I ' I ' I ' I
- - - ~- -.:-_--::.-':;: .... i.--; .;:::~: ~:----.;':~-:.--..::
• -~ =:t-~..=- -. .; .:. , -.. ~.:.~. ...~_,_:~:..:,::_;,.7..7L..._2.....,~.
_.. -~-:*: '-;-:.'.'--:~---. ::- L- ..... ..:. -.;:-;i;--?:%:~:. !S-:: :---~:.-:.--:- L
OOWNVlND DISTANCE (ml
Fig. 4. As in Fig. 2 but for a non-homogeneous multi-layered atmosphere. A deep fog fills the
first layer, from 0 to 250 m, where almost calm conditions prevail (u= 1ms-t); an inversion
layer with a large temperature increase (8°) lies between 250 and 400 m; the superior layer is
isothermal.
LIOAR
1000
. •
soo I-  I~ :,
21s~[
0
123:
500 l 1000x (m)
200~
1115~i
Fig. 5. Plain view of relative Lidar--stack positions,
cross-sections and plume simulation.
Table 1. Sostanj Power Plant specifications on 2 April 1991
Stack Stack Exit Exit
Stack height radius velocity temperature
operating H+ r wo Tf
(m) (m) (m s - ~) (K)
5 230 3.1 9.2 450
1,2,3 100 3.25 6.2 450
in the first cross-section (185 °) only the plume emitted
by stack 5 was tracked; in the second cross-section
(200°) both plumes (not yet combined) were detected
and in the third one (215°) the merged plume was
measured.
Wind (u, v, w) information was continuously collec-
ted by the ENEL Doppler Sodar (Elisei et al,, 1986),
averaging every 30 min, from a minimum height of
50 m to a maximum height of about 1000 m (space
resolution of about 50 m). However, as the Doppler
Sodar (located near the DIAL) was more than 1000 m
away from the stacks and the terrain was rather
complex, the (u, v, w) data obtained by the mass
consistent model MINERVE (Geai, 1987), initialized
by the Sodar profile and by six low level wind records
enrico.ferrero@uniupo.it
Ai	potenziali	u-lizzatori	che	scaricheranno	il	codice	dalla	rete	verrà	richiesto	di	
aderire	alle	policy	di	uso	indicate,	a7raverso	la	presa	in	visione	e	firma	di	un	
documento	con	il	quale	viene	preso	ufficialmente	l’impegno	di	rispe7arle.	
Art.	1		Finalità
versione	pubblica	denominata	SPRAY-WEB	del	modello	SPRAY	per	fini	di	ricerca.
Le	versioni	di	SPRAY-WEB	saranno	distribuite	con	obbligo	di	u3lizzo	per	aQvità	
di	ricerca	senza	scopi	commerciali.
enrico.ferrero@uniupo.it
Le	par3	concordano	sul	faPo	che	SPRAY-WEB	debba	diventare	un	
community	model,	che	incen3vi	il	libero	scambio	di	informazioni	e	di	
innovazione	riguardo	gli	sviluppi	teorici	e	favorendo	le	potenziali	
applicazioni	pra3che	con	modelli	di	questo	3po.
Un comunity model Lagrangiano per la ricerca
enrico.ferrero@uniupo.it
L'aQvità	è	finalizzata	alla	realizzazione	di	una	
piaDaforma	informaGca	online	su	cui	risiederà	il	
codice	SPRAY-WEB,	compreso	di	sorgen-	e	script	
necessari	alla	compilazione,	nonché	di	case	studies	
per	testare	il	codice.
Art.	2		 Descrizione	dell’aQvità
La	versione	del	codice	che	verrà	messa	a	disposizione	sul	sito	sarà	
concordata	tra	gli	en3	aderen3	alla	convenzione	e	le	decisioni	in	
proposito	dovranno	essere	prese	all'unanimità.	
Si	intende	creare,	aPraverso	questo	
strumento	un	gruppo	di	sviluppatori	e	
uGlizzatori	del	codice
enrico.ferrero@uniupo.it
Verrà	realizzato	un	blog	per	la	discussione	tra	i	
gestori	del	sito	(vedi	En3	partecipan3)	e	gli	
u3lizzatori,	ed	analogamente	per	ciò	che	riguarda	
aggiornamen3,	nuove	rou-nes	o	versione	del	codice	
stesso.
Non	si	prevede	di	fornire	agli	u3lizzatori	strumen3	
per	il	pre	e	post	processing,	così	come	i	da3	
meteorologici	di	input.	
Sarà	messo	a	disposizione	un	esempio	di	codice	di	
interfaccia	tra	un	modello	meteorologico	e	SPRAY-
WEB.
Come funziona?
enrico.ferrero@uniupo.it
u3lizzo	di	Git	(Torvalds	et	al.)	come	sistema	di	controllo	
distribuito	per	la	ges3one	dello	sviluppo	di	SPRAY-WEB;	
u3lizzo	della	piaPaforma	web	GitHub	o	GitLab,	dedicata	
allo	sviluppo	e	alla	distribuzione	di	strumen3	FOSS	(Free/
Libre		Open-Source	Sorware).
๏versione	“single	processor”	per	sistema	opera3vo	
“Linux”,		
๏opportuno	“test	case”		
๏“quick	manual”	(in	italiano	ed	inglese),		
๏	nonché	l’aggiornamento	del	Manuale
In dettaglio…..
enrico.ferrero@uniupo.it
Attuali collaborazioni

More Related Content

What's hot

Air quality dispersion modeling
Air quality dispersion modelingAir quality dispersion modeling
Air quality dispersion modelingECRD IN
 
Gaussian Plume Dispersion Model
Gaussian Plume Dispersion ModelGaussian Plume Dispersion Model
Gaussian Plume Dispersion ModelKulvendra Patel
 
11 air pollution dispersion
11 air pollution dispersion11 air pollution dispersion
11 air pollution dispersionGaurav Pahuja
 
DMUG 2016 - Alun Roberts-Jones, Environment Agency
DMUG 2016 - Alun Roberts-Jones, Environment AgencyDMUG 2016 - Alun Roberts-Jones, Environment Agency
DMUG 2016 - Alun Roberts-Jones, Environment AgencyIES / IAQM
 
Higher than predicted_saltation_threshold_wind_speeds_on_titan
Higher than predicted_saltation_threshold_wind_speeds_on_titanHigher than predicted_saltation_threshold_wind_speeds_on_titan
Higher than predicted_saltation_threshold_wind_speeds_on_titanSérgio Sacani
 
Comparative Calibration Method Between two Different Wavelengths With Aureole...
Comparative Calibration Method Between two Different Wavelengths With Aureole...Comparative Calibration Method Between two Different Wavelengths With Aureole...
Comparative Calibration Method Between two Different Wavelengths With Aureole...Waqas Tariq
 
Islam Intel poster FINAL
Islam Intel poster FINALIslam Intel poster FINAL
Islam Intel poster FINALTahsina Islam
 
A Possible Relationship between Gravitational Variations and Earthquakes in C...
A Possible Relationship between Gravitational Variations and Earthquakes in C...A Possible Relationship between Gravitational Variations and Earthquakes in C...
A Possible Relationship between Gravitational Variations and Earthquakes in C...inventionjournals
 
Hydrostatic equilibrium
Hydrostatic equilibriumHydrostatic equilibrium
Hydrostatic equilibriumAniketJha24
 
Understanding units of gas concentration
Understanding units of gas concentrationUnderstanding units of gas concentration
Understanding units of gas concentrationUsama Khan
 
Droplet burning rate enhancement of ethanol with the addition of graphite nan...
Droplet burning rate enhancement of ethanol with the addition of graphite nan...Droplet burning rate enhancement of ethanol with the addition of graphite nan...
Droplet burning rate enhancement of ethanol with the addition of graphite nan...Saad Tanvir
 
CALPUFF versus AERMOD comparison
CALPUFF versus AERMOD comparisonCALPUFF versus AERMOD comparison
CALPUFF versus AERMOD comparisonkonder71
 
CorbellaPringle&Stretch_Spectra&CPs_CE2015
CorbellaPringle&Stretch_Spectra&CPs_CE2015CorbellaPringle&Stretch_Spectra&CPs_CE2015
CorbellaPringle&Stretch_Spectra&CPs_CE2015Justin Pringle
 
Publication_Draft_09Aug
Publication_Draft_09AugPublication_Draft_09Aug
Publication_Draft_09AugKevin Schmidt
 
Titan’s aerosol and stratospheric ice opacities between 18 and 500 μm vertic...
Titan’s aerosol and stratospheric ice opacities between 18 and 500 μm  vertic...Titan’s aerosol and stratospheric ice opacities between 18 and 500 μm  vertic...
Titan’s aerosol and stratospheric ice opacities between 18 and 500 μm vertic...Sérgio Sacani
 

What's hot (20)

Air quality dispersion modeling
Air quality dispersion modelingAir quality dispersion modeling
Air quality dispersion modeling
 
Gaussian Plume Dispersion Model
Gaussian Plume Dispersion ModelGaussian Plume Dispersion Model
Gaussian Plume Dispersion Model
 
Temperature effect on phase transition radiation of water
Temperature effect on phase transition radiation of waterTemperature effect on phase transition radiation of water
Temperature effect on phase transition radiation of water
 
11 air pollution dispersion
11 air pollution dispersion11 air pollution dispersion
11 air pollution dispersion
 
DMUG 2016 - Alun Roberts-Jones, Environment Agency
DMUG 2016 - Alun Roberts-Jones, Environment AgencyDMUG 2016 - Alun Roberts-Jones, Environment Agency
DMUG 2016 - Alun Roberts-Jones, Environment Agency
 
Higher than predicted_saltation_threshold_wind_speeds_on_titan
Higher than predicted_saltation_threshold_wind_speeds_on_titanHigher than predicted_saltation_threshold_wind_speeds_on_titan
Higher than predicted_saltation_threshold_wind_speeds_on_titan
 
Comparative Calibration Method Between two Different Wavelengths With Aureole...
Comparative Calibration Method Between two Different Wavelengths With Aureole...Comparative Calibration Method Between two Different Wavelengths With Aureole...
Comparative Calibration Method Between two Different Wavelengths With Aureole...
 
Islam Intel poster FINAL
Islam Intel poster FINALIslam Intel poster FINAL
Islam Intel poster FINAL
 
A Possible Relationship between Gravitational Variations and Earthquakes in C...
A Possible Relationship between Gravitational Variations and Earthquakes in C...A Possible Relationship between Gravitational Variations and Earthquakes in C...
A Possible Relationship between Gravitational Variations and Earthquakes in C...
 
Hydrostatic equilibrium
Hydrostatic equilibriumHydrostatic equilibrium
Hydrostatic equilibrium
 
Understanding units of gas concentration
Understanding units of gas concentrationUnderstanding units of gas concentration
Understanding units of gas concentration
 
Droplet burning rate enhancement of ethanol with the addition of graphite nan...
Droplet burning rate enhancement of ethanol with the addition of graphite nan...Droplet burning rate enhancement of ethanol with the addition of graphite nan...
Droplet burning rate enhancement of ethanol with the addition of graphite nan...
 
Poster oslo 2010 (v2)
Poster oslo 2010 (v2)Poster oslo 2010 (v2)
Poster oslo 2010 (v2)
 
Thesis Guillermo Kardolus
Thesis Guillermo KardolusThesis Guillermo Kardolus
Thesis Guillermo Kardolus
 
CALPUFF versus AERMOD comparison
CALPUFF versus AERMOD comparisonCALPUFF versus AERMOD comparison
CALPUFF versus AERMOD comparison
 
AIR POLLUTION CONTROL L 16
AIR POLLUTION CONTROL L 16AIR POLLUTION CONTROL L 16
AIR POLLUTION CONTROL L 16
 
CorbellaPringle&Stretch_Spectra&CPs_CE2015
CorbellaPringle&Stretch_Spectra&CPs_CE2015CorbellaPringle&Stretch_Spectra&CPs_CE2015
CorbellaPringle&Stretch_Spectra&CPs_CE2015
 
Publication_Draft_09Aug
Publication_Draft_09AugPublication_Draft_09Aug
Publication_Draft_09Aug
 
Austin Journal of Hydrology
Austin Journal of HydrologyAustin Journal of Hydrology
Austin Journal of Hydrology
 
Titan’s aerosol and stratospheric ice opacities between 18 and 500 μm vertic...
Titan’s aerosol and stratospheric ice opacities between 18 and 500 μm  vertic...Titan’s aerosol and stratospheric ice opacities between 18 and 500 μm  vertic...
Titan’s aerosol and stratospheric ice opacities between 18 and 500 μm vertic...
 

Similar to SPRAY-WEB

Modelling deposition and resuspension of aerosols in an Euler/Euler approach
Modelling deposition and resuspension of aerosols in an Euler/Euler approachModelling deposition and resuspension of aerosols in an Euler/Euler approach
Modelling deposition and resuspension of aerosols in an Euler/Euler approachFLUIDIAN
 
Analysis of combustion processes in a gun ib
Analysis of combustion processes in a gun ibAnalysis of combustion processes in a gun ib
Analysis of combustion processes in a gun ibqurat31
 
Climate_Modelling_Saurabh.pdf
Climate_Modelling_Saurabh.pdfClimate_Modelling_Saurabh.pdf
Climate_Modelling_Saurabh.pdfAtikNawaz2
 
Supercritical Evaporation of a Drop
Supercritical Evaporation of a DropSupercritical Evaporation of a Drop
Supercritical Evaporation of a DropIJRES Journal
 
2015-06-08_MSc_Thesis_Olij_Final.pdf
2015-06-08_MSc_Thesis_Olij_Final.pdf2015-06-08_MSc_Thesis_Olij_Final.pdf
2015-06-08_MSc_Thesis_Olij_Final.pdfRonaldyn Dabu
 
Numerical study on free-surface flow
Numerical study on free-surface flowNumerical study on free-surface flow
Numerical study on free-surface flowmiguelpgomes07
 
Atmospheric Chemistry Models
Atmospheric Chemistry ModelsAtmospheric Chemistry Models
Atmospheric Chemistry Modelsahmad bassiouny
 
Droplet thermal behavior study with light scattering technique
Droplet thermal behavior study with light scattering techniqueDroplet thermal behavior study with light scattering technique
Droplet thermal behavior study with light scattering techniqueAnurak Atthasit
 
Numerical Study Of Flue Gas Flow In A Multi Cyclone Separator
Numerical Study Of Flue Gas Flow In A Multi Cyclone SeparatorNumerical Study Of Flue Gas Flow In A Multi Cyclone Separator
Numerical Study Of Flue Gas Flow In A Multi Cyclone SeparatorIJERA Editor
 
Modeling ultrasonic attenuation coefficient and comparative study with the pr...
Modeling ultrasonic attenuation coefficient and comparative study with the pr...Modeling ultrasonic attenuation coefficient and comparative study with the pr...
Modeling ultrasonic attenuation coefficient and comparative study with the pr...IOSR Journals
 
Airpollution Dispersion And Modelling Using Computers Ub Chitranshi
Airpollution Dispersion And Modelling Using Computers  Ub ChitranshiAirpollution Dispersion And Modelling Using Computers  Ub Chitranshi
Airpollution Dispersion And Modelling Using Computers Ub ChitranshiKetan Wadodkar
 
Evaporation effects on jetting performance
Evaporation effects on jetting performanceEvaporation effects on jetting performance
Evaporation effects on jetting performanceRobert Cornell
 
Paper id 36201531
Paper id 36201531Paper id 36201531
Paper id 36201531IJRAT
 
Effect of Geometry on Variation of Heat Flux and Drag for Launch Vehicle -- Z...
Effect of Geometry on Variation of Heat Flux and Drag for Launch Vehicle -- Z...Effect of Geometry on Variation of Heat Flux and Drag for Launch Vehicle -- Z...
Effect of Geometry on Variation of Heat Flux and Drag for Launch Vehicle -- Z...Abhishek Jain
 
White Paper - Air Filtration And Cleanliness
White Paper - Air Filtration And CleanlinessWhite Paper - Air Filtration And Cleanliness
White Paper - Air Filtration And Cleanlinessscottheinze
 
writingsamplecritiquenew
writingsamplecritiquenewwritingsamplecritiquenew
writingsamplecritiquenewPamela Benet
 
An Experimental Study of the Effect of Partial Premixing Level on the Interac...
An Experimental Study of the Effect of Partial Premixing Level on the Interac...An Experimental Study of the Effect of Partial Premixing Level on the Interac...
An Experimental Study of the Effect of Partial Premixing Level on the Interac...Waqas Tariq
 
Vibration membranes in_air
Vibration membranes in_airVibration membranes in_air
Vibration membranes in_airA NC
 

Similar to SPRAY-WEB (20)

Modelling deposition and resuspension of aerosols in an Euler/Euler approach
Modelling deposition and resuspension of aerosols in an Euler/Euler approachModelling deposition and resuspension of aerosols in an Euler/Euler approach
Modelling deposition and resuspension of aerosols in an Euler/Euler approach
 
Analysis of combustion processes in a gun ib
Analysis of combustion processes in a gun ibAnalysis of combustion processes in a gun ib
Analysis of combustion processes in a gun ib
 
Climate_Modelling_Saurabh.pdf
Climate_Modelling_Saurabh.pdfClimate_Modelling_Saurabh.pdf
Climate_Modelling_Saurabh.pdf
 
Supercritical Evaporation of a Drop
Supercritical Evaporation of a DropSupercritical Evaporation of a Drop
Supercritical Evaporation of a Drop
 
2015-06-08_MSc_Thesis_Olij_Final.pdf
2015-06-08_MSc_Thesis_Olij_Final.pdf2015-06-08_MSc_Thesis_Olij_Final.pdf
2015-06-08_MSc_Thesis_Olij_Final.pdf
 
Numerical study on free-surface flow
Numerical study on free-surface flowNumerical study on free-surface flow
Numerical study on free-surface flow
 
Atmospheric Chemistry Models
Atmospheric Chemistry ModelsAtmospheric Chemistry Models
Atmospheric Chemistry Models
 
Droplet thermal behavior study with light scattering technique
Droplet thermal behavior study with light scattering techniqueDroplet thermal behavior study with light scattering technique
Droplet thermal behavior study with light scattering technique
 
Research Plan
Research PlanResearch Plan
Research Plan
 
Numerical Study Of Flue Gas Flow In A Multi Cyclone Separator
Numerical Study Of Flue Gas Flow In A Multi Cyclone SeparatorNumerical Study Of Flue Gas Flow In A Multi Cyclone Separator
Numerical Study Of Flue Gas Flow In A Multi Cyclone Separator
 
Modeling ultrasonic attenuation coefficient and comparative study with the pr...
Modeling ultrasonic attenuation coefficient and comparative study with the pr...Modeling ultrasonic attenuation coefficient and comparative study with the pr...
Modeling ultrasonic attenuation coefficient and comparative study with the pr...
 
Airpollution Dispersion And Modelling Using Computers Ub Chitranshi
Airpollution Dispersion And Modelling Using Computers  Ub ChitranshiAirpollution Dispersion And Modelling Using Computers  Ub Chitranshi
Airpollution Dispersion And Modelling Using Computers Ub Chitranshi
 
Evaporation effects on jetting performance
Evaporation effects on jetting performanceEvaporation effects on jetting performance
Evaporation effects on jetting performance
 
Paper id 36201531
Paper id 36201531Paper id 36201531
Paper id 36201531
 
Effect of Geometry on Variation of Heat Flux and Drag for Launch Vehicle -- Z...
Effect of Geometry on Variation of Heat Flux and Drag for Launch Vehicle -- Z...Effect of Geometry on Variation of Heat Flux and Drag for Launch Vehicle -- Z...
Effect of Geometry on Variation of Heat Flux and Drag for Launch Vehicle -- Z...
 
C04651725
C04651725C04651725
C04651725
 
White Paper - Air Filtration And Cleanliness
White Paper - Air Filtration And CleanlinessWhite Paper - Air Filtration And Cleanliness
White Paper - Air Filtration And Cleanliness
 
writingsamplecritiquenew
writingsamplecritiquenewwritingsamplecritiquenew
writingsamplecritiquenew
 
An Experimental Study of the Effect of Partial Premixing Level on the Interac...
An Experimental Study of the Effect of Partial Premixing Level on the Interac...An Experimental Study of the Effect of Partial Premixing Level on the Interac...
An Experimental Study of the Effect of Partial Premixing Level on the Interac...
 
Vibration membranes in_air
Vibration membranes in_airVibration membranes in_air
Vibration membranes in_air
 

More from ARIANET

Gruppo di lavoro Olores: New guideline on assessment of odour exposure by usi...
Gruppo di lavoro Olores: New guideline on assessment of odour exposure by usi...Gruppo di lavoro Olores: New guideline on assessment of odour exposure by usi...
Gruppo di lavoro Olores: New guideline on assessment of odour exposure by usi...ARIANET
 
Valutazione dell'impatto di un'infrastruttura verde CityTree su concentrazion...
Valutazione dell'impatto di un'infrastruttura verde CityTree su concentrazion...Valutazione dell'impatto di un'infrastruttura verde CityTree su concentrazion...
Valutazione dell'impatto di un'infrastruttura verde CityTree su concentrazion...ARIANET
 
Sistemi di previsione innestati per Regione Marche e comune di Ancona
Sistemi di previsione innestati per Regione Marche e comune di AnconaSistemi di previsione innestati per Regione Marche e comune di Ancona
Sistemi di previsione innestati per Regione Marche e comune di AnconaARIANET
 
Caratterizzazione delle specie vegetali per la stima delle emissioni biogeniche
Caratterizzazione delle specie vegetali per la stima delle emissioni biogenicheCaratterizzazione delle specie vegetali per la stima delle emissioni biogeniche
Caratterizzazione delle specie vegetali per la stima delle emissioni biogenicheARIANET
 
Prandi incendi giornata arianet_2021
Prandi incendi giornata arianet_2021Prandi incendi giornata arianet_2021
Prandi incendi giornata arianet_2021ARIANET
 
Attività modellistiche nel campo degli odori all'interno del progetto NOSE
Attività modellistiche nel campo degli odori all'interno del progetto NOSEAttività modellistiche nel campo degli odori all'interno del progetto NOSE
Attività modellistiche nel campo degli odori all'interno del progetto NOSEARIANET
 
Verifica delle previsioni di ozono e PM10 per il Veneto
Verifica delle previsioni di ozono e PM10 per il VenetoVerifica delle previsioni di ozono e PM10 per il Veneto
Verifica delle previsioni di ozono e PM10 per il VenetoARIANET
 
Qualità dell'aria ed epidemiologia: progetti BEEP e BIGEPI
Qualità dell'aria ed epidemiologia: progetti BEEP e BIGEPIQualità dell'aria ed epidemiologia: progetti BEEP e BIGEPI
Qualità dell'aria ed epidemiologia: progetti BEEP e BIGEPIARIANET
 
VEG-GAP LIFE+: Vegetation for urban green air quality plans
VEG-GAP LIFE+: Vegetation for urban green air quality plansVEG-GAP LIFE+: Vegetation for urban green air quality plans
VEG-GAP LIFE+: Vegetation for urban green air quality plansARIANET
 
Modelling the Notre-Dame de Paris fire
Modelling the Notre-Dame de Paris fireModelling the Notre-Dame de Paris fire
Modelling the Notre-Dame de Paris fireARIANET
 
Gruppo di lavoro WMO-GAW Covid-19
Gruppo di lavoro WMO-GAW Covid-19Gruppo di lavoro WMO-GAW Covid-19
Gruppo di lavoro WMO-GAW Covid-19ARIANET
 
CREATE H2020 - Modellistica per l'ottimizzazione ambientale delle rotte aeron...
CREATE H2020 - Modellistica per l'ottimizzazione ambientale delle rotte aeron...CREATE H2020 - Modellistica per l'ottimizzazione ambientale delle rotte aeron...
CREATE H2020 - Modellistica per l'ottimizzazione ambientale delle rotte aeron...ARIANET
 
Emissioni dell'Aeroporto di Venezia: monitoraggio e modellistica di dispersione
Emissioni dell'Aeroporto di Venezia: monitoraggio e modellistica di dispersioneEmissioni dell'Aeroporto di Venezia: monitoraggio e modellistica di dispersione
Emissioni dell'Aeroporto di Venezia: monitoraggio e modellistica di dispersioneARIANET
 
Source apportionment approaches and non-linearities
Source apportionment approaches and non-linearitiesSource apportionment approaches and non-linearities
Source apportionment approaches and non-linearitiesARIANET
 
FAIRMODE CT4 modellistica a microscala
FAIRMODE CT4 modellistica a microscalaFAIRMODE CT4 modellistica a microscala
FAIRMODE CT4 modellistica a microscalaARIANET
 
On-line source apportionment in FARM
On-line source apportionment in FARMOn-line source apportionment in FARM
On-line source apportionment in FARMARIANET
 
Suite modellistiche 2020 novità principali
Suite modellistiche 2020 novità principaliSuite modellistiche 2020 novità principali
Suite modellistiche 2020 novità principaliARIANET
 
Disaggregazione delle emissioni di BaP da riscaldamento a legna
Disaggregazione delle emissioni di BaP da riscaldamento a legnaDisaggregazione delle emissioni di BaP da riscaldamento a legna
Disaggregazione delle emissioni di BaP da riscaldamento a legnaARIANET
 
Sviluppo modellistico del modello nazionale nel secondo anno di CAMS50
Sviluppo modellistico del modello nazionale nel secondo anno di CAMS50Sviluppo modellistico del modello nazionale nel secondo anno di CAMS50
Sviluppo modellistico del modello nazionale nel secondo anno di CAMS50ARIANET
 
Source apportionment spaziale e settoriale con Sherpa e FARM
Source apportionment spaziale e settoriale con Sherpa e FARMSource apportionment spaziale e settoriale con Sherpa e FARM
Source apportionment spaziale e settoriale con Sherpa e FARMARIANET
 

More from ARIANET (20)

Gruppo di lavoro Olores: New guideline on assessment of odour exposure by usi...
Gruppo di lavoro Olores: New guideline on assessment of odour exposure by usi...Gruppo di lavoro Olores: New guideline on assessment of odour exposure by usi...
Gruppo di lavoro Olores: New guideline on assessment of odour exposure by usi...
 
Valutazione dell'impatto di un'infrastruttura verde CityTree su concentrazion...
Valutazione dell'impatto di un'infrastruttura verde CityTree su concentrazion...Valutazione dell'impatto di un'infrastruttura verde CityTree su concentrazion...
Valutazione dell'impatto di un'infrastruttura verde CityTree su concentrazion...
 
Sistemi di previsione innestati per Regione Marche e comune di Ancona
Sistemi di previsione innestati per Regione Marche e comune di AnconaSistemi di previsione innestati per Regione Marche e comune di Ancona
Sistemi di previsione innestati per Regione Marche e comune di Ancona
 
Caratterizzazione delle specie vegetali per la stima delle emissioni biogeniche
Caratterizzazione delle specie vegetali per la stima delle emissioni biogenicheCaratterizzazione delle specie vegetali per la stima delle emissioni biogeniche
Caratterizzazione delle specie vegetali per la stima delle emissioni biogeniche
 
Prandi incendi giornata arianet_2021
Prandi incendi giornata arianet_2021Prandi incendi giornata arianet_2021
Prandi incendi giornata arianet_2021
 
Attività modellistiche nel campo degli odori all'interno del progetto NOSE
Attività modellistiche nel campo degli odori all'interno del progetto NOSEAttività modellistiche nel campo degli odori all'interno del progetto NOSE
Attività modellistiche nel campo degli odori all'interno del progetto NOSE
 
Verifica delle previsioni di ozono e PM10 per il Veneto
Verifica delle previsioni di ozono e PM10 per il VenetoVerifica delle previsioni di ozono e PM10 per il Veneto
Verifica delle previsioni di ozono e PM10 per il Veneto
 
Qualità dell'aria ed epidemiologia: progetti BEEP e BIGEPI
Qualità dell'aria ed epidemiologia: progetti BEEP e BIGEPIQualità dell'aria ed epidemiologia: progetti BEEP e BIGEPI
Qualità dell'aria ed epidemiologia: progetti BEEP e BIGEPI
 
VEG-GAP LIFE+: Vegetation for urban green air quality plans
VEG-GAP LIFE+: Vegetation for urban green air quality plansVEG-GAP LIFE+: Vegetation for urban green air quality plans
VEG-GAP LIFE+: Vegetation for urban green air quality plans
 
Modelling the Notre-Dame de Paris fire
Modelling the Notre-Dame de Paris fireModelling the Notre-Dame de Paris fire
Modelling the Notre-Dame de Paris fire
 
Gruppo di lavoro WMO-GAW Covid-19
Gruppo di lavoro WMO-GAW Covid-19Gruppo di lavoro WMO-GAW Covid-19
Gruppo di lavoro WMO-GAW Covid-19
 
CREATE H2020 - Modellistica per l'ottimizzazione ambientale delle rotte aeron...
CREATE H2020 - Modellistica per l'ottimizzazione ambientale delle rotte aeron...CREATE H2020 - Modellistica per l'ottimizzazione ambientale delle rotte aeron...
CREATE H2020 - Modellistica per l'ottimizzazione ambientale delle rotte aeron...
 
Emissioni dell'Aeroporto di Venezia: monitoraggio e modellistica di dispersione
Emissioni dell'Aeroporto di Venezia: monitoraggio e modellistica di dispersioneEmissioni dell'Aeroporto di Venezia: monitoraggio e modellistica di dispersione
Emissioni dell'Aeroporto di Venezia: monitoraggio e modellistica di dispersione
 
Source apportionment approaches and non-linearities
Source apportionment approaches and non-linearitiesSource apportionment approaches and non-linearities
Source apportionment approaches and non-linearities
 
FAIRMODE CT4 modellistica a microscala
FAIRMODE CT4 modellistica a microscalaFAIRMODE CT4 modellistica a microscala
FAIRMODE CT4 modellistica a microscala
 
On-line source apportionment in FARM
On-line source apportionment in FARMOn-line source apportionment in FARM
On-line source apportionment in FARM
 
Suite modellistiche 2020 novità principali
Suite modellistiche 2020 novità principaliSuite modellistiche 2020 novità principali
Suite modellistiche 2020 novità principali
 
Disaggregazione delle emissioni di BaP da riscaldamento a legna
Disaggregazione delle emissioni di BaP da riscaldamento a legnaDisaggregazione delle emissioni di BaP da riscaldamento a legna
Disaggregazione delle emissioni di BaP da riscaldamento a legna
 
Sviluppo modellistico del modello nazionale nel secondo anno di CAMS50
Sviluppo modellistico del modello nazionale nel secondo anno di CAMS50Sviluppo modellistico del modello nazionale nel secondo anno di CAMS50
Sviluppo modellistico del modello nazionale nel secondo anno di CAMS50
 
Source apportionment spaziale e settoriale con Sherpa e FARM
Source apportionment spaziale e settoriale con Sherpa e FARMSource apportionment spaziale e settoriale con Sherpa e FARM
Source apportionment spaziale e settoriale con Sherpa e FARM
 

Recently uploaded

Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Sérgio Sacani
 
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptxUnlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptxanandsmhk
 
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxPhysiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxAArockiyaNisha
 
Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...RohitNehra6
 
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Lokesh Kothari
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTSérgio Sacani
 
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSpermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSarthak Sekhar Mondal
 
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bNightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bSérgio Sacani
 
Boyles law module in the grade 10 science
Boyles law module in the grade 10 scienceBoyles law module in the grade 10 science
Boyles law module in the grade 10 sciencefloriejanemacaya1
 
A relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfA relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfnehabiju2046
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsSérgio Sacani
 
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...jana861314
 
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfAnalytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfSwapnil Therkar
 
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxSOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxkessiyaTpeter
 
Scheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docxScheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docxyaramohamed343013
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...Sérgio Sacani
 
GFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxGFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxAleenaTreesaSaji
 
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.aasikanpl
 
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCESTERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCEPRINCE C P
 

Recently uploaded (20)

Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
Discovery of an Accretion Streamer and a Slow Wide-angle Outflow around FUOri...
 
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptxUnlocking  the Potential: Deep dive into ocean of Ceramic Magnets.pptx
Unlocking the Potential: Deep dive into ocean of Ceramic Magnets.pptx
 
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptxPhysiochemical properties of nanomaterials and its nanotoxicity.pptx
Physiochemical properties of nanomaterials and its nanotoxicity.pptx
 
Biopesticide (2).pptx .This slides helps to know the different types of biop...
Biopesticide (2).pptx  .This slides helps to know the different types of biop...Biopesticide (2).pptx  .This slides helps to know the different types of biop...
Biopesticide (2).pptx .This slides helps to know the different types of biop...
 
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
Labelling Requirements and Label Claims for Dietary Supplements and Recommend...
 
Disentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOSTDisentangling the origin of chemical differences using GHOST
Disentangling the origin of chemical differences using GHOST
 
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatidSpermiogenesis or Spermateleosis or metamorphosis of spermatid
Spermiogenesis or Spermateleosis or metamorphosis of spermatid
 
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43bNightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
Nightside clouds and disequilibrium chemistry on the hot Jupiter WASP-43b
 
The Philosophy of Science
The Philosophy of ScienceThe Philosophy of Science
The Philosophy of Science
 
Boyles law module in the grade 10 science
Boyles law module in the grade 10 scienceBoyles law module in the grade 10 science
Boyles law module in the grade 10 science
 
A relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfA relative description on Sonoporation.pdf
A relative description on Sonoporation.pdf
 
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroidsHubble Asteroid Hunter III. Physical properties of newly found asteroids
Hubble Asteroid Hunter III. Physical properties of newly found asteroids
 
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
 
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdfAnalytical Profile of Coleus Forskohlii | Forskolin .pdf
Analytical Profile of Coleus Forskohlii | Forskolin .pdf
 
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxSOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
 
Scheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docxScheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docx
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
 
GFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptxGFP in rDNA Technology (Biotechnology).pptx
GFP in rDNA Technology (Biotechnology).pptx
 
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Munirka Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
 
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCESTERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
STERILITY TESTING OF PHARMACEUTICALS ppt by DR.C.P.PRINCE
 

SPRAY-WEB

  • 1. enrico.ferrero@uniupo.it SPRAY-WEB 1.0 Un community model Lagrangiano per la ricerca Enrico Ferrero Università del Piemonte Orientale
  • 3. enrico.ferrero@uniupo.it Un po’ di storia • Nell’arco degli ul3mi 30 anni, ques3 en3 hanno collaborato nello sviluppo e nella messa a punto di un modello Lagrangiano “a par3celle” denominato “SPRAY”. • aPraverso una sessione di lavoro di due seQmane presso i laboratori di EDF – Direc3on des Etudes et Reserch a Chatou (Parigi - Francia) a cui parteciparono Jacques Moussafir (EDF), Domenico Anfossi (CNR-ICGF) di Torino, Giuseppe Brusasca, (ENEL-DSR) di Milano e Paolo ZanneQ (EnviroComp); • tale versione fu completata e resa opera3va presso il Servizio Ambiente dell’ENEL-DSR di Milano dal Gianni Tinarelli in collaborazione con Giuseppe Brusasca e Domenico Anfossi. •Tale codice “nasce” ufficialmente nel 1987
  • 4. enrico.ferrero@uniupo.it • Ques3 tre ricercatori cos3tuiscono il nucleo base di sviluppo e validazione del codice nei primi anni • successivamente nel 1990, si aggiunge al gruppo di sviluppo Enrico Ferrero dell’Università del Piemonte Orientale e nel 1994 Silvia Trini Castelli del CNR- ISAC (già ICGF) di Torino. • Nel 1996-97 Stefano Alessandrini svolge la sua tesi di laurea sul codice, e collaborerà allo sviluppo del codice, tramite finanziamenti del Fondo di Ricerca per il Sistema Elettrico, come dipendente RSE, presso cui è assunto nel 2001. La storia continua……… • Jacques Moussafir seguirà sempre gli sviluppi del codice, in par3colare quelli lega3 all’applicazione alla micorscala, e sarà lui a dare il nome SPRAY al codice di calcolo quando uscirà da EDF per fondare la società ARIA Technologies SA.
  • 5. enrico.ferrero@uniupo.it Physica A 388 (2009) 1375–1387 Contents lists available at ScienceDirect Physica A journal homepage: www.elsevier.com/locate/physa A hybrid Lagrangian–Eulerian particle model for reacting pollutant dispersion in non-homogeneous non-isotropic turbulence Stefano Alessandrinia , Enrico Ferrerob,⇤ a CESI RICERCA via Rubattino 54, 20134 Milano, Italy b Dipartimento di Scienze e Tecnologie Avanzate, Università del Piemonte Orientale, via Bellini 25/g, 15100, Alessandria, Italy a r t i c l e i n f o Article history: Received 23 July 2008 Received in revised form 16 October 2008 Available online 16 December 2008 Keywords: Dispersion Turbulence Stochastic model a b s t r a c t Lagrangian stochastic models are recognized as being powerful tools for pollutant dispersion at different scales in complex terrain and at different stability conditions. One of the still unresolved problems is the difficulty of including chemical reactions when, for example, NO2 or O3 concentrations have to be predicted in the presence of NOx emissions. In this work, a Lagrangian stochastic (single particle) model is modified in order to account for simple chemical reactions and tested against measured data in a wind tunnel. It is well-known that, in the single particle models the trajectories are considered independent and hence the concentration correlations and fluctuations cannot be calculated. However, these models can be simply modified to account for the segregation throughout a proper parameterisation derived from measurements. Further, in order to avoid the use of the large amount of computational resources, which would be necessary due to the release of an high number of particles filling the whole domain, needed to reproduce the ozone background concentration, we mark the particles with a deficit of ozone instead of its concentration. A numerical experiment is carried out and the results of the comparisons between calculated and measured concentrations of different species are presented and discussed. © 2008 Elsevier B.V. All rights reserved. 1. Introduction Lagrangian stochastic models are nowadays recognised as being the most powerful tool for predicting atmospheric pollution at high resolution in complex terrain and different meteorological conditions. As a matter of fact, they have demonstrated their ability in simulating concentration fields taking advantage of the sophisticated meteorological measurements and/or of meteorological model forecasts [1]. The behaviour of a single passive tracer particle in a turbulent flow is well known both from theoretical and modelling points of view. Since the early work of Taylor [2] a theory has been developed and the models have been applied to different kinds of turbulent flows including non-homogeneous and non-isotropic turbulence. The most exhaustive work is by Thomson [3], who proposed a complete theory for the one-particle dispersion in 3D turbulence based on the concept of a Markovian stochastic process. In this frame, the dynamics of a passive tracer particle is described by a couple of stochastic differential equations: the Langevin equation for the turbulent velocity and the Fokker–Planck equation for the Eulerian probability density function (PDF) of the stochastic process. Based on this fundamental work many numerical models have been developed aiming to simulate the dispersion of pollutants in the atmospheric boundary layer in different stability conditions (see for instance Refs. [4–8]). These models are able to account for higher order turbulence moments of the atmospheric PDF and complex turbulence flow dynamics [9,1], and have demonstrated that they accurately reproduce the mean concentration field of the dispersed tracer. ⇤ Corresponding author. E-mail address: enrico.ferrero@unipmn.it (E. Ferrero). 0378-4371/$ – see front matter © 2008 Elsevier B.V. All rights reserved. doi:10.1016/j.physa.2008.12.015 Le principali pubblicazioni….. A new Lagrangian method for modelling the buoyant plume rise Stefano Alessandrini a,*, Enrico Ferrero b,c,1 , Domenico Anfossi c,2 a RSE, Ricerca Sistema Energetico, via Rubattino 54, 20134 Milano, Italy b Università del Piemonte Orientale, Dipartimento di Scienze e Innovazione Tecnologica, viale Teresa Michel 11, 15121 Alessandria, Italy c ISAC-CNR, Istituto di Scienze dell’Atmosfera e del Clima, Corso Fiume 4, 10133 Torino, Italy h i g h l i g h t s The paper deals with the problem of the plume rise in the dispersion model. A new technique based on temperature difference is used for plume rise computation. Comparison of the model with experiments shows a satisfactory agreement. a r t i c l e i n f o Article history: Received 5 October 2012 Received in revised form 12 April 2013 Accepted 26 April 2013 Keywords: Plume rise Pollution dispersion Lagrangian model a b s t r a c t A new method for the buoyant plume rise computation is proposed. Following Alessandrini and Ferrero (Phys A 388:1375e1387, 2009) a scalar transported by the particles and representing the temperature difference between the plume and the environment air is introduced. As a consequence, no more par- ticles than those inside the plume have to be released to simulate the entrainment of the background air temperature. A second scalar, the vertical plume velocity, is assigned to each particle. In this way the entrainment is properly simulated and the plume rise is calculated from the local property of the flow. The model has been tested against data from two laboratory experiments in neutral and stable stratified flows. The comparison shows a good agreement. Then, we tested our new model against literature analytical formulae in a simple uniform neutral atmosphere, considering either the case of a single plume or the one of two plumes from adjacent stacks combining during the rising stage. Finally, a comparison of the model against an atmospheric tracer experiment (Bull Run), characterized by vertically non-homogeneous fields (wind velocity, temperature, velocity standard deviations and time scales), was performed. All the tests confirmed the satisfactory performance of the model. Ó 2013 Elsevier Ltd. All rights reserved. 1. Introduction The computation of plume rise is one of the basic aspects for a correct estimation of the transport and dispersion of airborne pollutants and for the evaluation of ground level concentration. A buoyant plume rises under the action of its initial momentum and buoyancy. It experiences a shear force at its perimeter, where momentum is transferred from the plume to the surrounding air, and ambient air is entrained into the plume. This phenomenon, entrainment, is responsible of the plume diameter increase, of the decrease of its mean velocity and of the average temperature dif- ference between air and plume as well. In the first stage the plume also spreads under the action of the buoyancy-generated turbu- lence but progressively the effect of ambient turbulence becomes predominant. In a calm atmosphere, plumes rise almost vertically, whereas in windy situations they bend over. In this case, the ve- locity of any plume parcel is the vector composition of horizontal wind velocity and vertical plume velocity in the first stage and then approaches the horizontal wind velocity. In the Eulerian dispersion models, the calculation of plume rise is based on the fluid dynamic equations, namely on the mass, momentum and energy conservation equations. A complete, Contents lists available at SciVerse ScienceDirect Atmospheric Environment journal homepage: www.elsevier.com/locate/atmosenv Atmospheric Environment 77 (2013) 239e249 Atmospheric Environment 40 (2006) 7234–7245 Tracer dispersion simulation in low wind speed conditions with a new 2D Langevin equation system D. Anfossia,Ã, S. Alessandrinib , S. Trini Castellia , E. Ferreroc , D. Oettld , G. Degraziae a C.N.R., Istituto di Scienze dell’Atmosfera e del Clima, Torino, Italy b CESI S.p.A., Milano, Italy c Dipartimento di Scienze e Tecnologie Avanzate, Universita` del Piemonte Orientale, Alessandria, Italy d Institute for Internal Combustion Engines and Thermodynamics, Graz University of Technology, Graz, Austria e Universidade Federal de Santa Maria, Santa Maria, RS, Brazil Received 17 January 2006; received in revised form 10 April 2006; accepted 23 May 2006 Abstract The simulation of atmospheric dispersion in low wind speed conditions (LW) is still recognised as a challenge for modellers. Recently, a new system of two coupled Langevin equations that explicitly accounts for meandering has been proposed. It is based on the study of turbulence and dispersion properties in LW. The new system was implemented in the Lagrangian stochastic particle models LAMBDA and GRAL. In this paper we present simulations with this new approach applying it to the tracer experiments carried out in LW by Idaho National Engineering Laboratory (INEL, USA) in 1974 and by the Graz University of Technology and CNR-Torino near Graz in 2003. To assess the improvement obtained with the present model with respect to previous models not taking into account the meandering effect, the simulations for the INEL experiments were also performed with the old version of LAMBDA. The results of the comparisons clearly indicate that the new approach improves the simulation results. r 2006 Elsevier Ltd. All rights reserved. Keywords: Low wind speeds; Meandering; Dispersion; Tracer experiments; Langevin equation system 1. Introduction It is well known that atmospheric dispersion in low wind speed (LW hereafter) conditions is mainly governed by meandering (low frequency horizontal wind oscillations). In such conditions, the airborne pollutants are generally dispersed over rather wide angular sectors. This fact together with the problem of defining a precise mean wind direction in such conditions makes the simulation of dispersion rather difficult. In particular, it appears that standard Gaussian plume models are inadequate (Sagendorf and Dickson, 1974; Wilson et al., 1976; Brusasca et al., 1992; Oettl et al., 2001) and more appropriate types of models, taking explicitly into account the meandering phenomenon, must be used. With reference to this, we briefly recall that ARTICLE IN PRESS www.elsevier.com/locate/atmosenv Atmospheric Environment Vol. 27A, No. 9, pp. 1443 1451, 1993. 00046981/93 $6.00+0.00 Printed in Great Britain. q') 1993 Pergamon Press Ltd A SIMPLE WAY OF COMPUTING BUOYANT PLUME RISE IN LAGRANGIAN STOCHASTIC DISPERSION MODELS D. ANFOSSI Istituto di Cosmogeofisica del CNR. C.so Fiume 4, 10133, Torino, Italy E. FERRERO Istituto di Fisica Generale, Via Giuria 1, 10125 Torino, Italy and G. BRUSASCA,A. MARZORATI,and G. TINARELLI ENEL/CRTN, Servizio Ambiente, Via Rubattino 54, 20134 Milano, Italy (First received 16 June 1992 and in finaljbrm 25 November 1992) Abstract--A simple and easy to use method to include Eulerian plume rise in Lagrangian particle models is presented. This approach takes into account the vertical variation of wind and stability. Its ability to realistically simulate plume rise and spread, both through numerical experiments under typical atmo- spheric conditions and by comparison with actual plumes detected by a Differential Lidar in a case study, is shown. Despite its simplicity, our method proved to describe the main plume rise characteristics in a satisfactory way and to yield a fair agreement among observed and predicted plume centreline heights and standard deviations. Key word index: Plume rise, Lagrangian particle models, plume spread, elevated releases, field experiment. F Fi F' 9 n(t) He Hs r s t ra rf rLi U U I v y; w W~ w b Wo Z At AZ Oo/Oz P NOTATION buoyancy flux (m4 s- 3) buoyancy flux of each particle (m4 s- 3) buoyancy flux fluctuation (m4 s- a) acceleration of gravity (m s- 2) mean plume centreline height at a particular cross-section (m) plume rise as a function of t (m) final plume rise (m) stack height (m) stack radius (m) stability parameter (s-2) time (s) ambient temperature (K) plume exit temperature (K) Lagrangian time scales (s) longitudinal component of wind speed (m s- 1) mean horizontal wind speed at a particular cross- section (m s- 1) wind fluctuation (m s- 1) crosswind component of wind speed (m s- 1) horizontal downwind distance of a cross-section (m) vertical component of wind speed (m s- 1) fluctuation of the vertical component of wind speed (m s- 1) buoyancy velocity (m s 1) plume exit velocity (m s-1) vertical coordinate (m) time step (s) plume rise increment (m) ambient potential temperature gradient (K m- 1) random forcing (m s- 1) mean range (m) o-u ov ow {7Z longitudinal component of wind speed standard deviation (m s- 1) crosswind component of wind speed standard deviation (m s i) vertical component of wind speed standard devi- ation (m s 1) vertical standard deviation (m) horizontal standard deviation (m). I. INTRODUCTION A correct estimation of buoyant plume rise is one of the basic requirements for the determination of ground level concentrations of airbone pollutant emitted by industrial stacks. In fact maximum ground level concentration is roughly inversely proportional to the square of the plume final height H e. In Eulerian models, H e is generally computed by means of simple analytical expressions like the well- known Briggs' formulae (1975) and inserted in the model as an input parameter. In contrast, the inclu- sion of plume rise in Lagrangian particle models is not as straightforward as in the Eulerian ones, so that a complete and rigorous method is not yet available. This is mainly due to the intrinsic impossibility of Lagrangian particle models to simulate correctly the entrainment phenomenon. To do this, these models should take into account all the fluid simultaneously. In fact the buoyancy and, as a consequence, the 1443
  • 6. enrico.ferrero@uniupo.it principali caratteristiche dell’attuale versione di SPRAY-WEB Reazioni chimiche Diverse versioni di plume rise dinamico Deposizione secca e umida Equazione di Langevin per la temperatura 223 ONOONO k +→+ 322 ONOhONO J +→++ ν Author Figure 3. Comparison of the measured (Weil et al. 2002) and simulated (both with Anfossi et al., 1993 and Bisignano and Devenish, 2015 plume rise methods) vertical profiles of dimensionless crosswind-integrated concentration as a function of dimensionless downwind distance for F∗=0.1. Buoyant plume rise in Lagrangian particle models 1449 IIII. 911. 8111. 711. 61111. • '~llll. 411. N 310. 21111. 100. I. II. ' I ~ I I ' I ' I ' I ' I ' I ' I - - - ~- -.:-_--::.-':;: .... i.--; .;:::~: ~:----.;':~-:.--..:: • -~ =:t-~..=- -. .; .:. , -.. ~.:.~. ...~_,_:~:..:,::_;,.7..7L..._2.....,~. _.. -~-:*: '-;-:.'.'--:~---. ::- L- ..... ..:. -.;:-;i;--?:%:~:. !S-:: :---~:.-:.--:- L OOWNVlND DISTANCE (ml Fig. 4. As in Fig. 2 but for a non-homogeneous multi-layered atmosphere. A deep fog fills the first layer, from 0 to 250 m, where almost calm conditions prevail (u= 1ms-t); an inversion layer with a large temperature increase (8°) lies between 250 and 400 m; the superior layer is isothermal. LIOAR 1000 . • soo I- I~ :, 21s~[ 0 123: 500 l 1000x (m) 200~ 1115~i Fig. 5. Plain view of relative Lidar--stack positions, cross-sections and plume simulation. Table 1. Sostanj Power Plant specifications on 2 April 1991 Stack Stack Exit Exit Stack height radius velocity temperature operating H+ r wo Tf (m) (m) (m s - ~) (K) 5 230 3.1 9.2 450 1,2,3 100 3.25 6.2 450 in the first cross-section (185 °) only the plume emitted by stack 5 was tracked; in the second cross-section (200°) both plumes (not yet combined) were detected and in the third one (215°) the merged plume was measured. Wind (u, v, w) information was continuously collec- ted by the ENEL Doppler Sodar (Elisei et al,, 1986), averaging every 30 min, from a minimum height of 50 m to a maximum height of about 1000 m (space resolution of about 50 m). However, as the Doppler Sodar (located near the DIAL) was more than 1000 m away from the stacks and the terrain was rather complex, the (u, v, w) data obtained by the mass consistent model MINERVE (Geai, 1987), initialized by the Sodar profile and by six low level wind records