SlideShare a Scribd company logo
1 of 95
7 IT 01
Digital Signal Processing
Unit III: Frequency Analysis using Z- Transform
Prof. (Dr.) Prashant V. Ingole
Professor and Head,
Dept. of Information Technology,
Prof Ram Meghe Institute of Technology and Research, Badnera.
7 IT 01 Digital Signal Processing (Winter 2021) L25
7 IT 01 Digital Signal Processing (Winter 2021) L25
Course Outline
UNIT III: The Z- Transform
– Z-Transform
– Properties of the Region of Convergence of the z-Transform
– The Inverse Z-Transform
– Z-Transform Properties
Course Outcomes (COs)
β€’ Analyze DT LTI Systems using Z transform
7 IT 01 Digital Signal Processing (Winter 2021) L25
Z- Transform
β€’ We have studied that Fourier Transform play a key role in
representing and analyzing the discrete time signals and systems.
β€’ However Fourier Transform is subjected to many constraints
Signal under analysis x(n) need to be absolutely summable.
β€’ So we are in need of a generalized analysis tool
β€’ Z Transform is the generalized form of Fourier Transform
β€’ Analog Signals οƒ  Laplace Transform
‒ Digital Signals Z Transform
β€’ Motivation
1. Convergence of all types of Signals
2. Convenience of notations
3. Use of powerful complex variable theory for analysis
7 IT 01 Digital Signal Processing (Winter 2021) L25
z Transform Definition
β€’ z transform of the discrete time signal x(n) is defined as a power
series
β€’ 𝑿 𝒛 = 𝒏=βˆ’βˆž
∞ 𝒙(𝒏)π’›βˆ’π’ where z is the complex variable
β€’ The Fourier Transform was earlier defined as
β€’ 𝑋 𝑒𝑗𝑀 = 𝑛=βˆ’βˆž
∞ π‘₯(𝑛)π‘’βˆ’π‘—π‘€π‘›
β€’ Observe the similarity in these two mathematical tools
β€’ By comparison it can be easily found that 𝑧 = 𝑒𝑗𝑀 and
so π‘§βˆ’π‘› = π‘’βˆ’π‘—π‘€π‘›
7 IT 01 Digital Signal Processing (Winter 2021) L25
z Transform
β€’ The z Transform definition equation
𝑋 𝑧 =
𝑛=βˆ’βˆž
∞
π‘₯(𝑛)π‘§βˆ’π‘›
is also known as direct z transform.
The inverse procedure to obtain the x(n) from X(z) is called as an Inverse
z transform.
Notations:
β€’ The z transform of the signal x(n) is denoted as X(z) = z(x(n))
β€’ The relationship between x(n) and X(z) is indicated by
x(n) z X(z)
7 IT 01 Digital Signal Processing (Winter 2021) L25
Fourier Transform of DT Aperiodic Signals
z Transform is a infinite power series (π‘Žπ‘›) with z being the complex
variable .
Some time z Transform is considered as an operator and denoted as z( . )
that is
𝑧 π‘₯ 𝑛 = 𝑛=βˆ’βˆž
∞ π‘₯ 𝑛 π‘§βˆ’π‘› = 𝑋(𝑧)
β€’ When z transform is defined from -∞ to ∞ it is referred to as the
bilateral or two sided z transform
β€’ But practical signals are causal so the z transform is defined either from
0 to ∞ and it is known as unilateral or single sided z transform
β€’ 𝑋(𝑧) = 𝑛=0
∞
π‘₯ 𝑛 π‘§βˆ’π‘› οƒŸ unilateral or single sided z transform
7 IT 01 Digital Signal Processing (Winter 2021) L25
z Transform
In 𝑋(𝑧) = 𝑛=0
∞
π‘₯ 𝑛 π‘§βˆ’π‘›
if we replace 𝑧 = 𝑒𝑗𝑀
then the equation reduces
to Fourier transform equation
𝑋 𝑒𝑗𝑀 = 𝑛=βˆ’βˆž
∞ π‘₯(𝑛)π‘’βˆ’π‘—π‘€π‘›
When we consider 𝑧 = 𝑒𝑗𝑀 it is in fact 𝑧 = 1 βˆ— 𝑒𝑗𝑀 i.e. in polar form π‘Ÿ βˆ— 𝑒𝑗𝑀
That means restricting the value of |z|=1 we get Fourier transform.
More generally we can express the complex variable z in polar form as
z = π‘Ÿ βˆ— 𝑒𝑗𝑀
So the z transform equation becomes 𝑋 π‘Ÿπ‘’π‘—π‘€
= 𝑛=βˆ’βˆž
∞
π‘₯(𝑛)(π‘Ÿπ‘’π‘—π‘€
)βˆ’π‘›
𝑋 π‘Ÿπ‘’π‘—π‘€ = 𝑛=βˆ’βˆž
∞ (π‘₯(𝑛)π‘Ÿβˆ’π‘›)(𝑒𝑗𝑀)βˆ’π‘›
This equation can be interpreted as the Fourier transform of the signal
π‘₯(𝑛)π‘Ÿβˆ’π‘› . Obviously for r = 1, this equation reduces to Fourier Transform of
x(n).
7 IT 01 Digital Signal Processing (Winter 2021) L25
Polar Representation of Z Transform and Unit Circle
Since z Transform is a function of complex variable z it is convenient to
describe, represent and interpret it using a complex z plane.
In the plane a contour corresponding to |z| = 1 is a circle of unit radius.
This contour is also referred to as unit circle in z plane as shown in
figure. 𝑧𝑖
1 w
πœ‹ 0 π‘§π‘Ÿ
βˆ’πœ‹ 0
The z transform evaluated on the unit circle is the Fourier Transform
7 IT 01 Digital Signal Processing (Winter 2021) L25
Periodicity in z Transform
If we evaluate X(z) at the points on the unit circle in z plane beginning at
z = 1 that is at w=0, through z= j (at w= πœ‹/2) to z=-1 (at w= πœ‹ ) to
z= -j (at w= 3πœ‹/2) and finally back to z = 1 at w= 2πœ‹
We obtain the Fourier Transform for 0 ≀ 𝑀 ≀ 2πœ‹ at that time we discussed
w as a linear frequency variable.
The same frequency in z plane is represented as a angular variable which
vary from w=0 at z = 1 to w= πœ‹/2 at z = j to w = πœ‹ at z= -1 to w=
3πœ‹
2
at z = -j
to w = 2πœ‹ at z= 1, thus completing a period around the unit circle.
With this interpretation the inherent periodicity of frequency in Fourier
Transform is captured naturally. Since a change of angle of w = 2πœ‹ radians in
z plane corresponds to traversing the unit circle one and returning to the
exactly same point.
7 IT 01 Digital Signal Processing (Winter 2021) L25
Region of Convergence in z Transform
In Fourier series the power series representing the Fourier transform does
not converge for all sequences, because the infinite may not always be
finite.
Similarly z transform does not converge for all sequences or all values of z.
For any given sequence the set of values of z for which the z transform
X(z) converges is called as the Region Of Convergence (ROC).
Since z transform is an infinite power series, it exists for those values of z
for which this series converges.
The region of Convergence X(z) is the set of all values of z for which the
X(z) attains the finite value.
Thus anytime we cite z transform we should also specify the Region of
Convergence (ROC)
7 IT 01 Digital Signal Processing (Winter 2021) L25
z –Transform Evaluation
Ex 1: Find z transform of finite duration signal x(n)={1, 2, 7, 5, 0, 1}
Solution : The z transform equation is 𝑋 𝑧 = 𝑛=0
∞
π‘₯ 𝑛 . π‘§βˆ’π‘›
So X(z) =1.𝑧0 +2*π‘§βˆ’1 + 7π‘§βˆ’2 + 5π‘§βˆ’3 + 0. π‘§βˆ’4 + 1. π‘§βˆ’5
X(z) =1 +2π‘§βˆ’1 + 7π‘§βˆ’2 + 5π‘§βˆ’3 + π‘§βˆ’5
For finite duration causal signals the ROC is entire z plane except z=0
7 IT 01 Digital Signal Processing (Winter 2021) L25
z –Transform Evaluation
Ex 1: Find z transform of finite duration signal x(n)={1, 2, 7, 5, 0, 1}
Solution : The z transform equation is 𝑋 𝑧 = 𝑛=0
∞
π‘₯ 𝑛 . π‘§βˆ’π‘›
So X(z) =1.𝑧0 +2*π‘§βˆ’1 + 7π‘§βˆ’2 + 5π‘§βˆ’3 + 0. π‘§βˆ’4 + 1. π‘§βˆ’5
X(z) =1 +2π‘§βˆ’1 + 7π‘§βˆ’2 + 5π‘§βˆ’3 + π‘§βˆ’5
For finite duration causal signals the ROC is entire z plane except z=0
Ex 2: Find z transform of finite duration signal x(n)={1, 2, 7, 5, 0, 1}
Solution : The z transform equation is 𝑋 𝑧 = 𝑛=0
∞
π‘₯ 𝑛 . π‘§βˆ’π‘›
So X(z) =1.𝑧+2 +2*𝑧+1 + 7𝑧0 + 5π‘§βˆ’1 + 0. π‘§βˆ’2 + 1. π‘§βˆ’3
X(z) =1𝑧+2
+2𝑧+1
+ 7 + 5π‘§βˆ’1
+ π‘§βˆ’3
For finite duration non causal signals the ROC is entire z plane except z=0
and z = ∞
7 IT 01 Digital Signal Processing (Winter 2021) L25
z Transform Problems
Ex 3: Find z transform of finite duration signal x(n)={0, 0, 1, 2, 5, 7, 0, 1}
Solution : The z transform equation is 𝑋 𝑧 = 𝑛=0
∞
π‘₯ 𝑛 . π‘§βˆ’π‘›
So X(z) = π‘§βˆ’2 + 2π‘§βˆ’3 + 5. π‘§βˆ’4 + 7. π‘§βˆ’5 + 0. π‘§βˆ’6 + 1. π‘§βˆ’7
X(z) =π‘§βˆ’2 + 2π‘§βˆ’3 + 5. π‘§βˆ’4 + 7. π‘§βˆ’5 + 1. π‘§βˆ’7
For finite duration causal signals the ROC is entire z plane except z=0
7 IT 01 Digital Signal Processing (Winter 2021) L25
z Transform Problems
Ex 3: Find z transform of finite duration signal x(n)={0, 0, 1, 2, 5, 7, 0, 1}
Solution : The z transform equation is 𝑋 𝑧 = 𝑛=0
∞
π‘₯ 𝑛 . π‘§βˆ’π‘›
So X(z) = π‘§βˆ’2 + 2π‘§βˆ’3 + 5. π‘§βˆ’4 + 7. π‘§βˆ’5 + 0. π‘§βˆ’6 + 1. π‘§βˆ’7
X(z) =π‘§βˆ’2 + 2π‘§βˆ’3 + 5. π‘§βˆ’4 + 7. π‘§βˆ’5 + 1. π‘§βˆ’7
For finite duration causal signals the ROC is entire z plane except z=0
Ex 4: Find z transform of finite duration signal x(n)=𝛿(𝑛)
Solution : The z transform equation is 𝑋 𝑧 = 𝑛=0
∞
π‘₯ 𝑛 . π‘§βˆ’π‘›
So X(z) = 1. 𝑧0 = 1
For this finite duration causal signals the ROC is entire z plane
including z = 0 and z = ∞ .
7 IT 01 Digital Signal Processing (Winter 2021) L25
z Transform Problems
Ex 5: Find z transform of finite duration signal x(n)=𝛿(𝑛 βˆ’ π‘˜)
Solution : The z transform equation is 𝑋 𝑧 = 𝑛=0
∞
π‘₯ 𝑛 . π‘§βˆ’π‘›
So X(z) = 1. π‘§βˆ’π‘˜
= π‘§βˆ’π‘˜
(for k > 0)
For this finite duration causal signals, the ROC is entire z plane
except z=0 .
7 IT 01 Digital Signal Processing (Winter 2021) L25
z Transform Problems
Ex 5: Find z transform of finite duration signal x(n)=𝛿(𝑛 βˆ’ π‘˜)
Solution : The z transform equation is 𝑋 𝑧 = 𝑛=0
∞
π‘₯ 𝑛 . π‘§βˆ’π‘›
So X(z) = 1. π‘§βˆ’π‘˜ = π‘§βˆ’π‘˜ (for k > 0)
For this finite duration causal signals, the ROC is entire z plane
except z=0 .
Ex 6: Find z transform of finite duration signal x(n)=𝛿(𝑛 + π‘˜)
Solution : The z transform equation is 𝑋 𝑧 = 𝑛=0
∞
π‘₯ 𝑛 . π‘§βˆ’π‘›
So X(z) = 1. 𝑧+π‘˜ = 𝑧+π‘˜ (for k > 0)
For this finite duration causal signals, the ROC is entire z plane
except z = ∞ .
7 IT 01 Digital Signal Processing (Winter 2021) L25
Finite Signals and ROC
7 IT 01 Digital Signal Processing (Winter 2021) L25
Convergence of z Transform
If 𝑧 = 𝑒𝑗𝑀 then ROC is unit circle (r = 1)
So | z | = 1
But let us suppose 𝑧 = π‘Ÿ. 𝑒𝑗𝑀
if we replace it in the definition of the z transform
The z transform equation becomes 𝑋 π‘Ÿπ‘’π‘—π‘€ = 𝑛=βˆ’βˆž
∞ π‘₯(𝑛)(π‘Ÿπ‘’π‘—π‘€)βˆ’π‘›
𝑋 π‘Ÿπ‘’π‘—π‘€ = 𝑛=βˆ’βˆž
∞ (π‘₯(𝑛)π‘Ÿβˆ’π‘›)(𝑒𝑗𝑀)βˆ’π‘›
Uniform convergence of the Fourier transform requires that the sequence be
absolutely summable. So applying this condition to the above equation we
get the condition as:
𝑛=βˆ’βˆž
∞
π‘₯ 𝑛 π‘Ÿβˆ’π‘›
< ∞
For absolute convergence of the z transform.
7 IT 01 Digital Signal Processing (Winter 2021) L25
Convergence of z Transform
This condition indicates that because of the multiplication of the
sequence by the real exponential sequence π‘Ÿβˆ’π‘›, it is possible for the z
transform to converge even if the Fourier Transform does not converge.
Ex: Find Fourier Transform of signal x(n) = u(n) οƒ  Answer is FT does not exist
Reason is signal u(n) is not absolutely summable.
Ex: Find z transform of signal x(n) = u(n)
Solution: x(n) = u(n) is not absolutely summable so its FT cannot be found.
However while finding z transform as per the definition we find FT of
π‘₯ 𝑛 π‘Ÿβˆ’π‘›
. An this multiplication is absolutely summable for r > 1.
This means z transform of the unit step exists with ROC |z| > 1 i.e. ROC is
exterior of the unit circle in z Plane
7 IT 01 Digital Signal Processing (Winter 2021) L25
Convergence of z Transform
Convergence of the power series in definition of z transform depend only on |z|.
Since |X(z)| < ∞ if 𝑛=0
∞
|π‘₯ 𝑛 |. |𝑧|βˆ’π‘› < ∞
Thus if some value of 𝑧 = 𝑧1 is in the ROC, then all values of z defined by a circle
with radius z = |𝑧1|will also be in the ROC.
In ROC of X(z), |X(z)| < ∞
But as per the definition of z transform
|𝑋 𝑧 | = | 𝑛=βˆ’βˆž
∞
π‘₯ 𝑛 π‘Ÿβˆ’π‘›
. π‘’βˆ’π‘—π‘€π‘›
|
|𝑋 𝑧 | < 𝑛=βˆ’βˆž
∞ |π‘₯ 𝑛 π‘Ÿβˆ’π‘›|. |π‘’βˆ’π‘—π‘€π‘›|
|𝑋 𝑧 | < 𝑛=βˆ’βˆž
∞
|π‘₯ 𝑛 π‘Ÿβˆ’π‘›
|
Hence |𝑋 𝑧 | is finite if sequence π‘₯ 𝑛 π‘Ÿβˆ’π‘›
is absolutely summable.
The problem of finding ROC for finding X(z) is equivalent to determining the range
of values for r for which 𝒙 𝒏 . π’“βˆ’π’
is absolutely summable.
7 IT 01 Digital Signal Processing (Winter 2021) L25
Convergence of z Transform
Corrolary
|𝑋 𝑧 | < 𝑛=βˆ’βˆž
βˆ’1
π‘₯ 𝑛 π‘Ÿβˆ’π‘›
+ 𝑛=0
∞
π‘₯ 𝑛 π‘Ÿβˆ’π‘›
|𝑋 𝑧 | < 𝑛=1
∞
π‘₯ βˆ’π‘› π‘Ÿπ‘›
+ 𝑛=0
∞
π‘₯ 𝑛 /π‘Ÿπ‘›
1) Non Causal component, 2) Causal component
If X(z) converges in some region of the complex z plane, both the above
summations must be finite in that region.
If the first sum converges, there must exist values of r small enough such
that the product sequence π‘₯ βˆ’π‘› π‘Ÿπ‘›
in range 1 ≀ 𝑛 ≀ ∞ is absolutely
summable. Therefore the ROC of the first term 𝑧𝑖
consists of all points in a circle of radius π‘Ÿ < π‘Ÿ1 π‘Ÿ1 π‘§π‘Ÿ
where π‘Ÿ1 < ∞.
7 IT 01 Digital Signal Processing (Winter 2021) L25
Convergence of z Transform
Corrolary
|𝑋 𝑧 | < 𝑛=βˆ’βˆž
βˆ’1
π‘₯ 𝑛 π‘Ÿβˆ’π‘›
+ 𝑛=0
∞
π‘₯ 𝑛 π‘Ÿβˆ’π‘›
|𝑋 𝑧 | < 𝑛=1
∞
π‘₯ βˆ’π‘› π‘Ÿπ‘› + 𝑛=0
∞
π‘₯ 𝑛 /π‘Ÿπ‘›
1) Non Causal component, 2) Causal component
If the second sum converges, there must exist values of r large enough
such that the product sequence π‘₯ 𝑛 /π‘Ÿπ‘›
in range 0 ≀ 𝑛 ≀ ∞ is
absolutely summable. Hence ROC of the second term in above
equation π‘Ÿ2 𝑧𝑖
consists of all points outside a circle of radius π‘Ÿ > π‘Ÿ2 π‘§π‘Ÿ
7 IT 01 Digital Signal Processing (Winter 2021) L25
Convergence of z Transform
Since the convergence of X(z) requires that both sums in the above
equation be finite, it follows that the ROC of X(z) is generally specified as
the annual region in the z plane π‘Ÿ2 ≀ π‘Ÿ ≀ π‘Ÿ1, which is the common
region where both sums are finite i.e. π‘Ÿ2 < π‘Ÿ1 is a ring.
π‘Ÿ1 𝑧𝑖
π‘Ÿ2
π‘§π‘Ÿ
Annular region in z plane which is a
ROC for the bilateral z transform.
7 IT 01 Digital Signal Processing (Winter 2021) L25
z Transform Problems
Ex: Determine z Transform of the signal π‘₯ 𝑛 =
1
2
𝑛
𝑒(𝑛)
Solution : In this example the signal x(n) is a infinite power series
So x(n)={1, Β½,
1
2
2
,
1
2
3
,
1
2
4
,
1
2
5
, ……}
The z transform is given by 𝑋 𝑧 = 𝑛=0
∞
π‘₯ 𝑛 . π‘§βˆ’π‘›
as the signal is causal
Applying this formula to our power series function we get z transform of x(n)
𝑋 𝑧 =
𝑛=0
∞
(1/2)𝑛
. π‘§βˆ’π‘›
𝑋 𝑧 =
𝑛=0
∞
(
1
2
. π‘§βˆ’1
)𝑛
Considering A= (
1
2
. π‘§βˆ’1
) we can write above equation as X(z) = 1+A+𝐴2
+𝐴3
+𝐴4
+
….
7 IT 01 Digital Signal Processing (Winter 2021) L25
z Transform Problems
Ex: Determine z Transform of the signal π‘₯ 𝑛 =
1
2
𝑛
𝑒(𝑛)
Continued : Considering A= (
1
2
. π‘§βˆ’1) ; then X(z) = 1+A+𝐴2+𝐴3+𝐴4+ ….
The infinite power series can be represented by IGSS as 𝑋(𝑧) =
1
1βˆ’π΄
Putting value of A in the above equation we get 𝑋(𝑧) =
1
1βˆ’
1
2
.π‘§βˆ’1
As per IGSS formula A < 1 so
1
2
. π‘§βˆ’1 < 1 that means z >
1
2
This means the ROC is exterior of the circle with radius
1
2
𝑧𝑖
ROC consists of all points in the region that is 1
2 π‘§π‘Ÿ
Outside the circle with radius
1
2
as shown in figure. ROC
7 IT 01 Digital Signal Processing (Winter 2021) L25
z Transform Problems
Ex: Determine z Transform of the signal π‘₯ 𝑛 = 𝛼𝑛
𝑒(𝑛)
Solution : In this example the signal x(n) is a infinite power series
So x(n)={1, , 𝛼 2
, 𝛼 3
, 𝛼 4
, 𝛼 5
, ……}
The z transform is given by 𝑋 𝑧 = 𝑛=0
∞
π‘₯ 𝑛 . π‘§βˆ’π‘›
as the signal is causal
Applying this formula to our power series function we get z transform of x(n)
𝑋 𝑧 =
𝑛=0
∞
(𝛼)𝑛. π‘§βˆ’π‘›
𝑋 𝑧 =
𝑛=0
∞
(𝛼. π‘§βˆ’1
)𝑛
Considering A= (𝛼. π‘§βˆ’1) we can write above equation X(z) = 1+A+𝐴2+𝐴3+𝐴4+ ….
7 IT 01 Digital Signal Processing (Winter 2021) L25
z Transform Problems
Ex: Determine z Transform of the signal π‘₯ 𝑛 = 𝛼 𝑛
𝑒(𝑛)
Continued : Considering A= (𝛼. π‘§βˆ’1
) ; then X(z) = 1+A+𝐴2
+𝐴3
+𝐴4
+ ….
The infinite power series can be represented by IGSS as 𝑋(𝑧) =
1
1βˆ’π΄
Putting value of A in the above equation we get 𝑿(𝒛) =
𝟏
πŸβˆ’πœΆπ’›βˆ’πŸ
As per IGSS formula A < 1 so 𝛼. π‘§βˆ’1 < 1 that means z > 𝛼
This means the ROC is exterior of the circle with radius 𝛼
ROC consists of all points in the region that is outside the circle with radius
𝑧𝑖
𝛼 π‘§π‘Ÿ
ROC
7 IT 01 Digital Signal Processing (Winter 2021) L25
z Transform Problems
Thus we have a transform pair
π‘₯ 𝑛 = 𝛼𝑛𝑒 𝑛 β†’ 𝑧 β†’ 𝑋(𝑧) =
1
1βˆ’π›Όπ‘§βˆ’1 with ROC |z|> 𝛼
Thus ROC is exterior of the circle in z plane with radius 𝛼
If we set 𝛼=1 then the input signal reduces to π‘₯ 𝑛 = 𝑒 𝑛 and
its z transform reduces to 𝑋 𝑧 =
1
1βˆ’π‘§βˆ’1 =
𝑧
π‘§βˆ’1
with ROC |z| > 1
7 IT 01 Digital Signal Processing (Winter 2021) L25
z Transform Problems
Ex: Determine z Transform of the signal π‘₯ 𝑛 = βˆ’π›Όπ‘›π‘’(βˆ’π‘› βˆ’ 1)
Solution : From the definition of z transform we have
𝑋 𝑧 = 𝑛=βˆ’βˆž
∞ π‘₯ 𝑛 . π‘§βˆ’π‘›
as the signal is anti-causal
𝑋 𝑧 =
𝑛=βˆ’βˆž
βˆ’1
π‘₯(𝑛). π‘§βˆ’π‘› +
𝑛=0
∞
π‘₯(𝑛). π‘§βˆ’π‘› =
𝑛=βˆ’βˆž
βˆ’1
π‘₯(𝑛). π‘§βˆ’π‘›
𝑋 𝑧 =
𝑛=βˆ’βˆž
βˆ’1
(βˆ’π›Όπ‘›)π‘§βˆ’π‘› = βˆ’
𝑛=βˆ’βˆž
βˆ’1
(𝛼𝑛)π‘§βˆ’π‘›
𝑋 𝑧 = βˆ’
𝑛=βˆ’βˆž
βˆ’1
(𝛼𝑛)π‘§βˆ’π‘› = βˆ’
𝑛=1
∞
(π›Όβˆ’π‘›)𝑧𝑛
7 IT 01 Digital Signal Processing (Winter 2021) L25
z Transform Problems
𝑋 𝑧 = βˆ’
𝑛=βˆ’βˆž
βˆ’1
(𝛼𝑛
)π‘§βˆ’π‘›
= βˆ’
𝑛=1
∞
(π›Όβˆ’π‘›
)𝑧𝑛
𝑋 𝑧 = βˆ’
𝑛=1
∞
(π›Όβˆ’1
𝑧)𝑛
Let A= π›Όβˆ’1𝑧, then as per IGSS formula we have 𝑋 𝑧 = βˆ’
𝐴
1βˆ’π΄
= βˆ’
π›Όβˆ’1𝑧
1βˆ’π›Όβˆ’1𝑧
𝑋 𝑧 =
1
1 βˆ’ π›Όπ‘§βˆ’1
With A < 1 that is π›Όβˆ’1
𝑧 < 1 that means z < 𝛼
This means the ROC is interior of the circle with radius 𝛼 𝑧𝑖
ROC consists of all points in the region that is inside 𝛼 π‘§π‘Ÿ
the circle with radius 𝛼.
7 IT 01 Digital Signal Processing (Winter 2021) L25
z Transform Problems
So we found that signal π‘₯ 𝑛 = 𝛼𝑛
𝑒 𝑛 causal signal
and signal π‘₯ 𝑛 = βˆ’π›Όπ‘›π‘’(βˆ’π‘› βˆ’ 1) an anti-causal signal has a same z
transform that is
𝑋 𝑧 =
1
1 βˆ’ π›Όπ‘§βˆ’1
However these signals differ in ROC and it can be easily found that
for π‘₯ 𝑛 = 𝛼𝑛𝑒 𝑛 (causal signal)
the ROC is exterior of the circle in z plane with radius 𝛼
For π‘₯ 𝑛 = βˆ’π›Όπ‘›π‘’(βˆ’π‘› βˆ’ 1) (an anti-causal signal) 𝑧𝑖
the ROC is interior of the circle in z plane with radius 𝛼 𝛼
𝑧𝑖
7 IT 01 Digital Signal Processing (Winter 2021) L25
z Transform Problems
Ex: Det. z Transform of the signal π‘₯ 𝑛 = 𝛼𝑛𝑒 𝑛 + 𝛽𝑛𝑒(βˆ’π‘› βˆ’ 1)
Solution : This is a Bilateral or double sided z transform problem
z transform is given by 𝑋 𝑧 = 𝑛=βˆ’βˆž
∞ π‘₯ 𝑛 . π‘§βˆ’π‘› So in this case
𝑋 𝑧 =
𝑛=βˆ’βˆž
βˆ’1
π›½π‘›π‘§βˆ’π‘› +
𝑛=0
∞
π›Όπ‘›π‘§βˆ’π‘›
𝑋 𝑧 =
𝑛=0
∞
π›Όπ‘›π‘§βˆ’π‘› +
𝑛=βˆ’βˆž
βˆ’1
π›½π‘›π‘§βˆ’π‘›
𝑋 𝑧 =
𝑛=0
∞
π›Όπ‘›π‘§βˆ’π‘› +
𝑛=1
∞
π›½βˆ’π‘›π‘§π‘›
7 IT 01 Digital Signal Processing (Winter 2021) L25
z Transform Problems
Ex: Det. z Transform of the signal π‘₯ 𝑛 = 𝛼𝑛
𝑒 𝑛 + 𝛽𝑛
𝑒(βˆ’π‘› βˆ’ 1)
Solution :
𝑋 𝑧 =
𝑛=0
∞
(π›Όπ‘§βˆ’1
)𝑛
+
𝑛=1
∞
(π›½βˆ’1
𝑧)𝑛
Applying IGSS formula , For first power series we get
1
1βˆ’π›Όπ‘§βˆ’1 with
|π›Όπ‘§βˆ’1
|<1 that is |z| > 𝛼 that is ROC is exterior of the circle with radius 𝛼
Similarly by applying IGSS for second power series we get
π›½βˆ’1𝑧
1βˆ’π›½βˆ’1𝑧
with
|π›½βˆ’1𝑧|<1 that is |z| < 𝛽 that is ROC is interior of the circle with radius Ξ².
In determining the X(z), if | 𝛽 | < | 𝛼 | ROC in z domain does not coincide
with each other so they do not converge simultaneously
7 IT 01 Digital Signal Processing (Winter 2021) L25
z Transform Problems
Ex: Det. z Transform of the signal π‘₯ 𝑛 = 𝛼𝑛
𝑒 𝑛 + 𝛽𝑛
𝑒(βˆ’π‘› βˆ’ 1)
Solution :
𝑋 𝑧 =
𝑛=0
∞
(π›Όπ‘§βˆ’1
)𝑛
+
𝑛=1
∞
(π›½βˆ’1
𝑧)𝑛
But if | 𝛽 | > | 𝛼 | ROC of ring shape in z domain coincide with each other
so they converge simultaneously
𝑋 𝑧 =
1
1βˆ’π›Όπ‘§βˆ’1 +
π›½βˆ’1𝑧
1βˆ’π›½βˆ’1𝑧
=
1
1βˆ’π›Όπ‘§βˆ’1 -
1
1βˆ’π›½π‘§βˆ’1
And ROC is |𝛼|< |z| <|𝛽|
7 IT 01 Digital Signal Processing (Winter 2021) L25
Infinite Signals and ROC
7 IT 01 Digital Signal Processing (Winter 2021) L25
Properties of z Transform
The z transform is a very powerful tool and this is exhibited by it’s powerful
set of properties.
Note : when we combine several z transforms, the ROC of the overall
transform is at least the intersection of their ROCs.
Properties:
1. Linearity
2. Time Shifting
3. Scaling in z domain
4. Time Reversal
5. Differentiation in z domain
6. Convolution of two sequences
7 IT 01 Digital Signal Processing (Winter 2021) L25
Linearity Property
1. Linearity:
If π‘₯1 𝑛 ← 𝑧 β†’ 𝑋1(𝑧) and π‘₯2 𝑛 ← 𝑧 β†’ 𝑋2(𝑧)
Then π‘₯ 𝑛 = π‘Ž1π‘₯1 𝑛 + π‘Ž2π‘₯2 𝑛 ← 𝑧 β†’ 𝑋 𝑧 = π‘Ž1𝑋1 𝑧 + π‘Ž2𝑋2 𝑧
Proof: 𝑧 π‘₯ 𝑛 = 𝑋 𝑧 = π‘˜=βˆ’βˆž
∞
π‘₯(π‘˜)π‘§βˆ’π‘˜
For π‘₯ π‘˜ = π‘Ž1π‘₯1 π‘˜ + π‘Ž2π‘₯2 π‘˜
𝑋 𝑧 = π‘˜=βˆ’βˆž
∞
(π‘Ž1π‘₯1 π‘˜ + π‘Ž2π‘₯2(π‘˜))π‘§βˆ’π‘˜
= π‘˜=βˆ’βˆž
∞
π‘Ž1π‘₯1 π‘˜ π‘§βˆ’π‘˜ + π‘Ž2π‘₯2(π‘˜)π‘§βˆ’π‘˜
= π‘Ž1 π‘˜=βˆ’βˆž
∞
π‘₯1 π‘˜ π‘§βˆ’π‘˜
+ π‘Ž2 π‘˜=βˆ’βˆž
∞
π‘₯2(π‘˜)π‘§βˆ’π‘˜
Thus
𝑋1 𝑧 𝑋2 𝑧
𝑋 𝑧 = π‘Ž1𝑋1 𝑧 + π‘Ž2𝑋2 𝑧
Thus the signal can be expressed first in composite form and then its
z transform can be found.
7 IT 01 Digital Signal Processing (Winter 2021) L25
Problems on Linearity Property
Ex: Determine the z Transform and ROC of the Signal
x(n) =(π‘Žπ‘› + π‘Žβˆ’π‘›)𝑒(𝑛)
Solution : Z Transform is given by 𝑋 𝑧 = 𝑛=βˆ’βˆž
∞
π‘₯ 𝑛 . π‘§βˆ’π‘›
This signal can be represented as π‘₯1 = π‘Žπ‘›π‘’ 𝑛 and π‘₯2 = π‘Žβˆ’π‘›π‘’ 𝑛
So we have π‘₯ 𝑛 = π‘₯1 𝑛 + π‘₯2(𝑛)
For π‘₯1 = π‘Žπ‘›π‘’ 𝑛 by applying z transform 𝑋1 𝑧 =
1
1βˆ’π‘Žπ‘§βˆ’1 with
|π‘Žπ‘§βˆ’1|<1 or |z| > a
Similarly for π‘₯2 = π‘Žβˆ’π‘›
𝑒 𝑛 by applying z transform 𝑋1 𝑧 =
1
1βˆ’π‘Žβˆ’1π‘§βˆ’1 with
|π‘Žβˆ’1π‘§βˆ’1|<1 or |z| < π‘Žβˆ’1
So X 𝑧 =
1
1βˆ’π‘Žπ‘§βˆ’1 βˆ’
1
1βˆ’π‘Žβˆ’1π‘§βˆ’1
7 IT 01 Digital Signal Processing (Winter 2021) L25
Problems on Linearity Property
Ex: Determine the z Transform and ROC of the Signal
x(n) =(π‘Žπ‘› + π‘Žβˆ’π‘›)𝑒(𝑛)
Solution :
So X 𝑧 =
1
1βˆ’π‘Žπ‘§βˆ’1 βˆ’
1
1βˆ’π‘Žβˆ’1π‘§βˆ’1
=
𝑧
π‘§βˆ’π‘Ž
βˆ’
𝑧
π‘§βˆ’π‘Žβˆ’1
With ROC as intersection of ROCs of these two regions that are
|z|> a and |z| < 1/a
So ROC is the annual region between circle with radius 1/a and circle with
Radius a
7 IT 01 Digital Signal Processing (Winter 2021) L25
Problems on Linearity Property
EX: Determine the z transform of signal π‘₯(𝑛) = (cos 𝑀0𝑛)u(n)
Solution : Given signal is π‘₯(𝑛) = (cos 𝑀0𝑛)u(n)
This signal can be decomposed by using Eular’s Identity as
cos 𝑀0𝑛 =
𝑒𝑗𝑀0𝑛 + π‘’βˆ’π‘—π‘€0𝑛
2
So π‘₯(𝑛) = (
𝑒𝑗𝑀0𝑛+π‘’βˆ’π‘—π‘€0𝑛
2
)u(n)
Thus the decomposed signal is represented as
π‘₯ 𝑛 =
𝑒𝑗𝑀0𝑛
2
u n +
π‘’βˆ’π‘—π‘€0𝑛
2
u n
𝑋 𝑧 =
1
2
[𝑧(𝑒𝑗𝑀0𝑛)+𝑧(π‘’βˆ’π‘—π‘€0𝑛)]
We can write π‘₯1(𝑛) = 𝑒𝑗𝑀0𝑛𝑒(𝑛) and π‘₯2(𝑛) = π‘’βˆ’π‘—π‘€0𝑛𝑒(𝑛)
7 IT 01 Digital Signal Processing (Winter 2021) L25
Problems on Linearity Property
𝑿 𝒛 =
𝟏
𝟐
[𝒛(π’†π’‹π’˜πŸŽπ’)+𝒛(π’†βˆ’π’‹π’˜πŸŽπ’)]
We can write π‘₯1 = 𝑒𝑗𝑀0𝑛𝑒(𝑛) and π‘₯2 = π‘’βˆ’π‘—π‘€0𝑛𝑒(𝑛)
Let us say 𝛼 = 𝑒𝑗𝑀0 so 𝛼 = 𝑒𝑗𝑀0 = 1
𝑋1 𝑧 = 𝑧{ 𝑒𝑗𝑀0𝑛 𝑒 𝑛 } = 𝑛=0
∞
𝑒𝑗𝑀0𝑛 π‘§βˆ’π‘›
𝑋1 𝑧 = 𝑛=0
∞
(𝑒𝑗𝑀0π‘§βˆ’1)𝑛 =
1
1βˆ’(𝑒𝑗𝑀0π‘§βˆ’1)
where |𝑒𝑗𝑀0π‘§βˆ’1| < 1
As 𝑒𝑗𝑀0 = 1 , ROC is |z|> 1
Now let us say 𝛼 = π‘’βˆ’π‘—π‘€0 so 𝛼 = π‘’βˆ’π‘—π‘€0 = 1
𝑋2 𝑧 = 𝑧{ π‘’βˆ’π‘—π‘€0𝑛 𝑒 𝑛 } = 𝑛=0
∞
π‘’βˆ’π‘—π‘€0𝑛 π‘§βˆ’π‘›
𝑋2 𝑧 = 𝑛=0
∞
(π‘’βˆ’π‘—π‘€0π‘§βˆ’1
)𝑛
=
1
1βˆ’(π‘’βˆ’π‘—π‘€0π‘§βˆ’1)
where |π‘’βˆ’π‘—π‘€0π‘§βˆ’1
| < 1
As 𝑒𝑗𝑀0 = 1 , ROC is |z|> 1
7 IT 01 Digital Signal Processing (Winter 2021) L25
Problems on Linearity Property
𝑿 𝒛 =
𝟏
𝟐
[𝒛(π’†π’‹π’˜πŸŽπ’)+𝒛(π’†π’‹π’˜πŸŽπ’)]
𝑋 𝑧 =
1
2
{
1
1βˆ’(𝑒𝑗𝑀0π‘§βˆ’1)
+
1
1βˆ’(π‘’βˆ’π‘—π‘€0π‘§βˆ’1)
}
Where ROC in both cases is |z|> 1
𝑋 𝑧 =
1
2
{
1βˆ’(π‘’βˆ’π‘—π‘€0π‘§βˆ’1+1βˆ’(𝑒𝑗𝑀0π‘§βˆ’1)
1βˆ’π‘’π‘—π‘€0π‘§βˆ’1 βˆ—(1βˆ’π‘’βˆ’π‘—π‘€0π‘§βˆ’1)
}
𝑋 𝑧 =
1
2
{
2βˆ’π‘’βˆ’π‘—π‘€0π‘§βˆ’1βˆ’π‘’π‘—π‘€0π‘§βˆ’1
1βˆ’π‘’π‘—π‘€0π‘§βˆ’1 βˆ—(1βˆ’π‘’βˆ’π‘—π‘€0π‘§βˆ’1)
}
Solving Numerator = 2 βˆ’ π‘’βˆ’π‘—π‘€0π‘§βˆ’1 βˆ’ 𝑒𝑗𝑀0π‘§βˆ’1
= 2 βˆ’
2(𝑒𝑗𝑀0+π‘’βˆ’π‘—π‘€0) π‘§βˆ’1
2
= 2 βˆ’ 2 π‘π‘œπ‘ π‘€0π‘§βˆ’1
7 IT 01 Digital Signal Processing (Winter 2021) L25
Problems on Linearity Property
𝑋 𝑧 =
1
2
{
2βˆ’π‘’βˆ’π‘—π‘€0π‘§βˆ’1βˆ’π‘’π‘—π‘€0π‘§βˆ’1
1βˆ’π‘’π‘—π‘€0π‘§βˆ’1 βˆ—(1βˆ’π‘’βˆ’π‘—π‘€0π‘§βˆ’1)
}
Solving Denominator = (1 βˆ’ 𝑒𝑗𝑀0π‘§βˆ’1 βˆ’ π‘’βˆ’π‘—π‘€0π‘§βˆ’1 + π‘§βˆ’2)
= (1 βˆ’ 2π‘§βˆ’1 𝑒𝑗𝑀0+π‘’βˆ’π‘—π‘€0
2
+ π‘§βˆ’2)
= 1 βˆ’ 2π‘§βˆ’1 cos π‘€π‘œ + π‘§βˆ’2
So
𝑋(𝑧) =
2(1 βˆ’ π‘π‘œπ‘ π‘€0π‘§βˆ’1)
2(1 βˆ’ 2π‘§βˆ’1 cos π‘€π‘œ + π‘§βˆ’2)
Ans is 𝑿(𝒛) =
πŸβˆ’π’„π’π’”π’˜πŸŽπ’›βˆ’πŸ
πŸβˆ’πŸπ’›βˆ’πŸ 𝒄𝒐𝒔 π’˜π’+π’›βˆ’πŸ with ROC is |z|>1
7 IT 01 Digital Signal Processing (Winter 2021) L25
Problems on Linearity Property
EX: Determine the z transform of signal π‘₯(𝑛) = (sin 𝑀0𝑛)u(n)
Solution : Given signal is π‘₯(𝑛) = (𝑠𝑖𝑛 𝑀0𝑛)u(n)
This signal can be decomposed by using Eular’s Identity as
sin 𝑀0𝑛 =
𝑒𝑗𝑀0𝑛 βˆ’ π‘’βˆ’π‘—π‘€0𝑛
2𝑗
So π‘₯(𝑛) = (
𝑒𝑗𝑀0π‘›βˆ’π‘’βˆ’π‘—π‘€0𝑛
2𝑗
)u(n)
Thus the decomposed signal is represented as
π‘₯ 𝑛 =
𝑒𝑗𝑀0𝑛
2𝑗
u n βˆ’
π‘’βˆ’π‘—π‘€0𝑛
2𝑗
u n
𝑋 𝑧 =
1
2𝑗
[𝑧(𝑒𝑗𝑀0𝑛)-𝑧(π‘’βˆ’π‘—π‘€0𝑛)]
We can write π‘₯1 = 𝑒𝑗𝑀0𝑛
𝑒(𝑛) and π‘₯2 = π‘’βˆ’π‘—π‘€0𝑛
𝑒(𝑛)
7 IT 01 Digital Signal Processing (Winter 2021) L25
Problems on Linearity Property
𝑿 𝒛 =
𝟏
πŸπ’‹
[𝒛(π’†π’‹π’˜πŸŽπ’)-𝒛(π’†βˆ’π’‹π’˜πŸŽπ’)]
We can write π‘₯1 = 𝑒𝑗𝑀0𝑛𝑒(𝑛) and π‘₯2 = π‘’βˆ’π‘—π‘€0𝑛𝑒(𝑛)
Let us say 𝛼 = 𝑒𝑗𝑀0 so 𝛼 = 𝑒𝑗𝑀0 = 1
𝑋1 𝑧 = 𝑧{ 𝑒𝑗𝑀0𝑛 𝑒 𝑛 } = 𝑛=0
∞
𝑒𝑗𝑀0𝑛 π‘§βˆ’π‘›
𝑋1 𝑧 = 𝑛=0
∞
(𝑒𝑗𝑀0π‘§βˆ’1
)𝑛
=
1
1βˆ’(𝑒𝑗𝑀0π‘§βˆ’1)
where |𝑒𝑗𝑀0π‘§βˆ’1
| < 1
As 𝑒𝑗𝑀0 = 1 , ROC is |z|> 1
Now let us say 𝛼 = π‘’βˆ’π‘—π‘€0 so 𝛼 = π‘’βˆ’π‘—π‘€0 = 1
𝑋1 𝑧 = 𝑧{ π‘’βˆ’π‘—π‘€0𝑛 𝑒 𝑛 } = 𝑛=0
∞
π‘’βˆ’π‘—π‘€0𝑛 π‘§βˆ’π‘›
𝑋1 𝑧 = 𝑛=0
∞
(π‘’βˆ’π‘—π‘€0π‘§βˆ’1)𝑛 =
1
1βˆ’(π‘’βˆ’π‘—π‘€0π‘§βˆ’1)
where |π‘’βˆ’π‘—π‘€0π‘§βˆ’1| < 1
As 𝑒𝑗𝑀0 = 1 , ROC is |z|> 1
7 IT 01 Digital Signal Processing (Winter 2021) L25
Problems on Linearity Property
𝑿 𝒛 =
𝟏
πŸπ’‹
[𝒛(π’†π’‹π’˜πŸŽπ’)-𝒛(π’†βˆ’π’‹π’˜πŸŽπ’)]
𝑋 𝑧 =
1
2𝑗
{
1
1βˆ’(𝑒𝑗𝑀0π‘§βˆ’1)
βˆ’
1
1βˆ’(π‘’βˆ’π‘—π‘€0π‘§βˆ’1)
}
Where ROC in both cases is |z|> 1
𝑋 𝑧 =
1
2𝑗
{
1βˆ’π‘’βˆ’π‘—π‘€0π‘§βˆ’1βˆ’1+𝑒𝑗𝑀0π‘§βˆ’1)
1βˆ’π‘’π‘—π‘€0π‘§βˆ’1 βˆ—(1βˆ’π‘’βˆ’π‘—π‘€0π‘§βˆ’1)
}
𝑋 𝑧 =
1
2𝑗
{
βˆ’π‘’βˆ’π‘—π‘€0π‘§βˆ’1+𝑒𝑗𝑀0π‘§βˆ’1
1βˆ’π‘’π‘—π‘€0π‘§βˆ’1 βˆ—(1βˆ’π‘’βˆ’π‘—π‘€0π‘§βˆ’1)
}
Solving Numerator = π‘’βˆ’π‘—π‘€0π‘§βˆ’1 βˆ’ 𝑒𝑗𝑀0π‘§βˆ’1
=
(𝑒𝑗𝑀0βˆ’π‘’βˆ’π‘—π‘€0) π‘§βˆ’1
2𝑗
= sin 𝑀0 π‘§βˆ’1
7 IT 01 Digital Signal Processing (Winter 2021) L25
Problems on Linearity Property
𝑋 𝑧 =
1
2
{
2βˆ’π‘’βˆ’π‘—π‘€0π‘§βˆ’1βˆ’π‘’π‘—π‘€0π‘§βˆ’1
1βˆ’π‘’π‘—π‘€0π‘§βˆ’1 βˆ—(1βˆ’π‘’βˆ’π‘—π‘€0π‘§βˆ’1)
}
Solving Denominator = (1 βˆ’ 𝑒𝑗𝑀0π‘§βˆ’1 βˆ’ π‘’βˆ’π‘—π‘€0π‘§βˆ’1 + π‘§βˆ’2)
= (1 βˆ’ 2π‘§βˆ’1 𝑒𝑗𝑀0+π‘’βˆ’π‘—π‘€0
2
+ π‘§βˆ’2)
= 1 βˆ’ 2π‘§βˆ’1 cos π‘€π‘œ + π‘§βˆ’2
So
𝑋(𝑧) =
𝑠𝑖𝑛 𝑀0π‘§βˆ’1
2(1 βˆ’ 2π‘§βˆ’1 cos π‘€π‘œ + π‘§βˆ’2)
Ans is 𝑿(𝒛) =
π’”π’Šπ’ π’˜πŸŽπ’›βˆ’πŸ
πŸβˆ’πŸπ’›βˆ’πŸ 𝒄𝒐𝒔 π’˜π’+π’›βˆ’πŸ with ROC |z|>1
7 IT 01 Digital Signal Processing (Winter 2021) L25
Problems on Linearity Property
EX: Determine the z transform and ROC of the signal
π‘₯ 𝑛 = βˆ’
1
3
𝑛
u n + βˆ’
1
2
𝑛
u(βˆ’n βˆ’ 1)
Solution : Given signal is π‘₯(𝑛) so X(z) =z(x(n))
Let π‘₯1(𝑛) = βˆ’
1
3
𝑛
𝑒(𝑛) and π‘₯2(𝑛) = βˆ’
1
2
𝑛
𝑒(βˆ’π‘› βˆ’ 1)
So π‘₯ 𝑛 = π‘₯1 𝑛 + π‘₯2(𝑛)
For z transform of power series in n, π‘₯ 𝑛 = 𝛼𝑛𝑒 𝑛
by using IGSSS formula
we have 𝑋 𝑧 =
1
1βˆ’π›Όπ‘§βˆ’1 with ROC |z|>𝛼
so 𝑋1 𝑧 = 𝑧 π‘₯1 𝑛 = z( βˆ’
1
3
𝑛
𝑒(𝑛)) =
1
1+
1
3
π‘§βˆ’1
with ROC |z|>
1
3
7 IT 01 Digital Signal Processing (Winter 2021) L25
Problems on Linearity Property
Similarly
𝑋2 𝑧 = 𝑧 π‘₯2 𝑛 = z( βˆ’
1
2
𝑛
𝑒(βˆ’π‘› βˆ’ 1)) =
1
1+
1
2
π‘§βˆ’1
with ROC |z|<
1
2
So
𝑋 𝑧 =
1
1+
1
3
π‘§βˆ’1
+
1
1+
1
2
π‘§βˆ’1
with ROC is |z|> 1/3 and |z|<1/2
7 IT 01 Digital Signal Processing (Winter 2021) L25
Properties of z Transform
The z transform is a very powerful tool and this is exhibited by it’s powerful
set of properties.
Note : when we combine several z transforms, the ROC of the overall
transform is at least the intersection of their ROCs.
Properties:
1. Linearity
2. Time Shifting
3. Scaling in z domain
4. Time Reversal
5. Differentiation in z domain
6. Convolution of two sequences
7 IT 01 Digital Signal Processing (Winter 2021) L25
Time Shifting Property
𝟐) π‘»π’Šπ’Žπ’† π‘Ίπ’‰π’Šπ’‡π’•π’Šπ’π’ˆ π‘·π’“π’π’‘π’†π’“π’•π’š
If π‘₯ 𝑛 𝑧 𝑋 𝑧 Then π‘₯ 𝑛 βˆ’ π‘˜ 𝑧 π‘§βˆ’π‘˜π‘‹ 𝑧
Proof:
𝑋 𝑧 = 𝑧 π‘₯ 𝑛 βˆ’ π‘˜ =
𝑛=0
∞
π‘₯(𝑛 βˆ’ π‘˜)π‘§βˆ’π‘›
Let m= n-k so above equation becomes
𝑋 𝑧 =
π‘š=0
∞
π‘₯(π‘š)π‘§βˆ’(π‘š+π‘˜) =
π‘š=0
∞
π‘₯ π‘š π‘§βˆ’π‘š. π‘§βˆ’π‘˜
𝑿 𝒛 = π’›βˆ’π’Œ
π’Ž=𝟎
∞
𝒙 π’Ž π’›βˆ’π’Ž
= π’›βˆ’π’Œ
. 𝑿(𝒛) Hence Proved
So this property states that shifting sequence in time corresponds to
multiplication Z transform by π‘§βˆ’π‘˜ in z domain.
7 IT 01 Digital Signal Processing (Winter 2021) L25
Problems on Time Shifting Property
Ex : Find out z transform of x(n) =u(n-1) using time shifting property.
Solution : Given signal is shifted form of unit sample sequence by 1.
So π‘ˆ 𝑧 =
1
1βˆ’π‘§βˆ’1 =
𝑧
π‘§βˆ’1
The given signal is shifted by 1 sample so k=1 in this case so
𝑋 𝑧 = π‘§βˆ’1
𝑧
𝑧 βˆ’ 1
=
1
𝑧 βˆ’ 1
7 IT 01 Digital Signal Processing (Winter 2021) L25
Problems on Time Shifting Property
Ex : Find out z transform of x(n) =u(n-1) using time shifting property.
Solution : Given signal is shifted form of unit sample sequence by 1.
So π‘ˆ 𝑧 =
1
1βˆ’π‘§βˆ’1 =
𝑧
π‘§βˆ’1
with ROC |z|>1
The given signal is shifted by 1 sample so k=1 in this case so
𝑋 𝑧 = π‘§βˆ’1
𝑧
𝑧 βˆ’ 1
=
1
𝑧 βˆ’ 1
With ROC as |z|>1 that is ROC is exterior of the circle with radius 1
in z plane.
7 IT 01 Digital Signal Processing (Winter 2021) L25
Problems on Time Shifting Property
Ex : Find z transform of finite duration signal x(n)={1, 2, 7, 5, 0, 1} and
then find z transform of x(n-3) and x(n+2) using time shifting property .
Solution : The z transform equation is 𝑋 𝑧 = 𝑛=0
∞
π‘₯ 𝑛 . π‘§βˆ’π‘›
1) So X(z) =1.𝑧0
+2*π‘§βˆ’1
+ 7π‘§βˆ’2
+ 5π‘§βˆ’3
+ 0. π‘§βˆ’4
+ 1. π‘§βˆ’5
X(z) =1 +2π‘§βˆ’1 + 7π‘§βˆ’2 + 5π‘§βˆ’3 + π‘§βˆ’5
For finite duration causal signals the ROC is entire z plane except z=0
2) For x(n-3)={0, 0 , 0, 1, 2, 7, 5, 0, 1} here k=3
𝑋1(z) =π‘§βˆ’3 𝑋 𝑧 = π‘§βˆ’3(1 +2π‘§βˆ’1 + 7π‘§βˆ’2 + 5π‘§βˆ’3 + π‘§βˆ’5)
𝑋1(z) = π‘§βˆ’3 +2π‘§βˆ’4 + 7π‘§βˆ’5 + 5π‘§βˆ’6 + π‘§βˆ’8) :ROC entire z plane except z=0
3) For x(n+2)={1, 2, 7, 5, 0, 1} here k=-2
𝑋2(z) =𝑧+2 𝑋 𝑧 = 𝑧+2(1 +2π‘§βˆ’1 + 7π‘§βˆ’2 + 5π‘§βˆ’3 + π‘§βˆ’5)
𝑋2(z) =𝑧+2 𝑋 𝑧 = 𝑧+2 +2𝑧+1 + 7𝑧0 + 5π‘§βˆ’1 + π‘§βˆ’3) :ROC entire z plane except z=0 and z = ∞
7 IT 01 Digital Signal Processing (Winter 2021) L25
Properties of z Transform
The z transform is a very powerful tool and this is exhibited by it’s powerful
set of properties.
Note : when we combine several z transforms, the ROC of the overall
transform is at least the intersection of their ROCs.
Properties:
1. Linearity
2. Time Shifting
3. Scaling in z domain
4. Time Reversal
5. Differentiation in z domain
6. Convolution of two sequences
7 IT 01 Digital Signal Processing (Winter 2021) L25
Scaling in z-Domain Property
3) Scaling in Z domain :
If π‘₯ 𝑛 𝑧 𝑋 𝑧 with ROC π‘Ÿ1 < 𝑧 < π‘Ÿ2
Then π‘Žπ‘›π‘₯ 𝑛 𝑧 𝑋 π‘Žβˆ’1𝑧 with ROC |π‘Ž|π‘Ÿ1 < 𝑧 < |π‘Ž|π‘Ÿ2
Where a may be real or complex.
Proof : Let us apply the definition of z transform
𝑋 𝑧 = 𝑧 π‘Žπ‘›π‘₯ 𝑛 = 𝑛=0
∞
π‘₯ 𝑛 . π‘Žπ‘›. π‘§βˆ’π‘›
𝑋 𝑧 =
𝑛=0
∞
π‘₯ 𝑛 . (π‘Žβˆ’1
𝑧)βˆ’π‘›
So this is a form of π‘Žβˆ’1𝑧 transform that is X(π‘Žβˆ’1𝑧)
Now putting this value in z in ROC equation get π‘Ÿ1 < π‘Žβˆ’1𝑧 < π‘Ÿ2 and by
cross multiplication we get |π‘Ž|π‘Ÿ1 < 𝑧 < |π‘Ž|π‘Ÿ2
7 IT 01 Digital Signal Processing (Winter 2021) L25
Problems on scaling in z domain Property
EX: Determine z transform of signal using scaling in z domain
π‘₯(𝑛) = (π‘Žπ‘›cos 𝑀0𝑛)u(n)
Solution: By knowing the z transform of (cos 𝑀0𝑛)u(n) it becomes very easy
to find z transform of given signal using the scaling in z domain property.
For x n = (cos 𝑀0𝑛)u(n) the z transform is
𝑿(𝒛) =
πŸβˆ’π’„π’π’”π’˜πŸŽπ’›βˆ’πŸ
πŸβˆ’πŸπ’›βˆ’πŸ 𝒄𝒐𝒔 π’˜π’+π’›βˆ’πŸ with ROC is |z|>1
By knowing this and using scaling in z domain property z transform of the
given signal can be found by replacing z by π’‚βˆ’πŸπ’› in above equation
X(z) =
1 βˆ’ cosw0(aβˆ’1
z)βˆ’1
1 βˆ’ 2(aβˆ’1z)βˆ’1cos wo + (aβˆ’1z)βˆ’2
7 IT 01 Digital Signal Processing (Winter 2021) L25
Problems on scaling in z domain Property
X(z) =
1 βˆ’ π‘Žπ‘§βˆ’1cosw0
1 βˆ’ 2π‘Žπ‘§βˆ’1 cos wo + π‘Ž2π‘§βˆ’2
For finding the ROC replace z by aβˆ’1z
For ROC |z| > 1 we will have
ROC as |aβˆ’1z|>1
That is |z| > a
7 IT 01 Digital Signal Processing (Winter 2021) L25
Problems on scaling in z domain Property
EX: Determine z transform of signal using scaling in z domain
π‘₯(𝑛) = (π‘Žπ‘›sin 𝑀0𝑛)u(n)
Solution:By knowing the z transform of (𝑠𝑖𝑛 𝑀0𝑛)u(n) it becomes very easy
to find z transform of given signal using the scaling in z domain property.
For x n = (𝑠𝑖𝑛 𝑀0𝑛)u(n) the z transform is
X(z) =
π‘§βˆ’1sinw0
1 βˆ’ 2π‘§βˆ’1 cos wo + π‘§βˆ’2
By knowing this and using scaling in z domain property z transform of the
given signal can be found by replacing z by π’‚βˆ’πŸπ’› in above equation
X(z) =
(aβˆ’1z)βˆ’1sinw0
1 βˆ’ 2(aβˆ’1z)βˆ’1cos wo + (aβˆ’1z)βˆ’2
7 IT 01 Digital Signal Processing (Winter 2021) L25
Problems on scaling in z domain Property
EX: Determine z transform of signal using scaling in z domain
π‘₯(𝑛) = (π‘Žπ‘›sin 𝑀0𝑛)u(n)
X(z) =
azβˆ’1sinw0
1 βˆ’ 2π‘Žπ‘§βˆ’1 cos wo + π‘Ž2π‘§βˆ’2
For finding the ROC replace z by aβˆ’1
z
For ROC |z| > 1 we will have
ROC as |aβˆ’1z|>1
That is |z| > a
7 IT 01 Digital Signal Processing (Winter 2021) L25
Properties of z Transform
The z transform is a very powerful tool and this is exhibited by it’s powerful
set of properties.
Note : when we combine several z transforms, the ROC of the overall
transform is at least the intersection of their ROCs.
Properties:
1. Linearity
2. Time Shifting
3. Scaling in z domain
4. Time Reversal
5. Differentiation in z domain
6. Convolution of two sequences
7 IT 01 Digital Signal Processing (Winter 2021) L25
Time Reversal Property
4) Time Reversal Property :
If π‘₯ 𝑛 𝑧 𝑋 𝑧 with ROC π‘Ÿ1 < 𝑧 < π‘Ÿ2
Then x βˆ’π‘› 𝑧 𝑋 π‘§βˆ’1
with ROC
1
π‘Ÿ2
< 𝑧 <
1
π‘Ÿ1
Where a may be real or complex.
Proof : Let us apply the definition of z transform
𝑋 𝑧 = 𝑧 π‘₯ βˆ’π‘› = 𝑛=βˆ’βˆž
∞ π‘₯ βˆ’π‘› . π‘§βˆ’π‘›
Now let l=-n then
𝑧 π‘₯ βˆ’π‘› =
𝑙=βˆ’βˆž
∞
π‘₯ 𝑙 . (π‘§βˆ’1
)βˆ’π‘™
= 𝑋(π‘§βˆ’1
)
ROC is π‘Ÿ1 < π‘§βˆ’1 < π‘Ÿ2 that is π‘Ÿ1 <
1
𝑧
< π‘Ÿ2 that means
1
π‘Ÿ2
< 𝑧 <
1
π‘Ÿ1
7 IT 01 Digital Signal Processing (Winter 2021) L25
Problems on Time Reversal Property
Ex: Determine z transform of π‘₯(𝑛) = 𝑒(βˆ’π‘›)
Solution: z transform is defined as
𝑋 𝑧 =
𝑛=0
∞
π‘₯ 𝑛 . (𝑧)βˆ’π‘›
We know the transform pair
𝑧 𝑒 𝑛 = π‘ˆ(𝑧) =
1
1βˆ’π‘§βˆ’1 with ROC |z| >1
By using the time reversal property
𝑧 𝑒 βˆ’π‘› = π‘ˆ(π‘§βˆ’1
) =
1
1βˆ’(π‘§βˆ’1)βˆ’1 with ROC |z| < 1
𝑧 𝑒 βˆ’π‘› =
1
1βˆ’π‘§
with ROC |z| < 1
7 IT 01 Digital Signal Processing (Winter 2021) L25
Properties of z Transform
The z transform is a very powerful tool and this is exhibited by it’s powerful
set of properties.
Note : when we combine several z transforms, the ROC of the overall
transform is at least the intersection of their ROCs.
Properties:
1. Linearity
2. Time Shifting
3. Scaling in z domain
4. Time Reversal
5. Differentiation in z domain
6. Convolution of two sequences
7 IT 01 Digital Signal Processing (Winter 2021) L25
Differentiation in z Domain Property
5) Differentiation in z Domain Property :
If π‘₯ 𝑛) 𝑧 𝑋 𝑧
Then n x 𝑛 𝑧 βˆ’ 𝑧
𝑑𝑋(𝑧)
𝑑𝑧
with same ROC
Proof : For signal π‘₯ 𝑛 𝑧 𝑋 𝑧
Using the definition of z transform
𝑋 𝑧 = 𝑧 π‘₯ 𝑛 = 𝑛=0
∞
π‘₯ 𝑛 . π‘§βˆ’π‘›
Taking differentiation of both sides
𝑑𝑋 𝑧
𝑑𝑧
=
𝑛=0
∞
π‘₯ 𝑛 .
𝑑
𝑑𝑧
π‘§βˆ’π‘›
𝑑𝑋 𝑧
𝑑𝑧
=
𝑛=0
∞
π‘₯ 𝑛 . (βˆ’π‘›. π‘§βˆ’π‘›βˆ’1)
7 IT 01 Digital Signal Processing (Winter 2021) L25
Differentiation in z Domain Property
𝑑𝑋 𝑧
𝑑𝑧
=
𝑛=0
∞
π‘₯ 𝑛 . (βˆ’π‘›. π‘§βˆ’π‘›βˆ’1
)
𝑑𝑋 𝑧
𝑑𝑧
= βˆ’
𝑛=0
∞
𝑛π‘₯ 𝑛 . (π‘§βˆ’1
) π‘§βˆ’π‘›
𝑑𝑋 𝑧
𝑑𝑧
= βˆ’π‘§βˆ’1
𝑛=0
∞
𝑛π‘₯ 𝑛 . π‘§βˆ’π‘›
𝑑𝑋 𝑧
𝑑𝑧
= βˆ’π‘§βˆ’1
𝑧 𝑛π‘₯ 𝑛
βˆ’π‘§
𝑑𝑋 𝑧
𝑑𝑧
= 𝑧 𝑛π‘₯ 𝑛
βˆ’π‘§
𝑑𝑋 𝑧
𝑑𝑧
𝑧 𝑛π‘₯ 𝑛
With both X 𝑧 π‘Žπ‘›π‘‘
𝑑𝑋 𝑧
𝑑𝑧
has same ROC
7 IT 01 Digital Signal Processing (Winter 2021) L25
Problems on Diff. in z Domain Property
EX : Determine the z transform of the given signal π‘₯ 𝑛 = π‘›π‘Žπ‘›
𝑒(𝑛)
Solution : In this case we can write π‘₯ 𝑛 = 𝑛 [π‘Žπ‘›π‘’ 𝑛 ]
let π‘₯1 𝑛 = π‘Žπ‘›π‘’(𝑛)
So π‘₯ 𝑛 = 𝑛π‘₯1(𝑛)
𝑋1 𝑧 =
1
1βˆ’π‘Žπ‘§βˆ’1 with ROC |z| > a
By using differentiation in z domain property z transform of 𝑛π‘₯(𝑛) is
βˆ’π‘§
𝑑𝑋 𝑧
𝑑𝑧
so in this case 𝑧 π‘₯ 𝑛 = βˆ’π‘§
𝑑
𝑑𝑧
(
1
1βˆ’π‘Žπ‘§βˆ’1)
Using differentiation formula
𝑑
𝑑𝑧
𝑒
𝑣
=
𝑒.π‘‘π‘£βˆ’π‘£.𝑑𝑒
𝑣2
We get X 𝑧 =
π‘Žπ‘§βˆ’1
(1βˆ’π‘Žπ‘§βˆ’1)2 with ROC |z| > a
7 IT 01 Digital Signal Processing (Winter 2021) L25
Problems on Diff. in z Domain Property
EX : Determine the z transform of the given signal π‘₯ 𝑛 = π‘›π‘Žπ‘›
𝑒(𝑛)
So : In this case we can write π‘₯ 𝑛 = 𝑛 [π‘Žπ‘›π‘’ 𝑛 ]let π‘₯1 𝑛 = π‘Žπ‘›
𝑒(𝑛) , So π‘₯ 𝑛 = 𝑛π‘₯1(𝑛)
𝑋1 𝑧 =
1
1βˆ’π‘Žπ‘§βˆ’1 with ROC |z| > a
By using differentiation in z domain property z transform of 𝑛π‘₯(𝑛) is
βˆ’π‘§
𝑑𝑋 𝑧
𝑑𝑧
so in this case 𝑧 π‘₯ 𝑛 = βˆ’π‘§
𝑑
𝑑𝑧
(
1
1βˆ’π‘Žπ‘§βˆ’1)
Using differentiation formula
𝑑
𝑑𝑧
𝑒
𝑣
=
𝑒.π‘‘π‘£βˆ’π‘£.𝑑𝑒
𝑣2
We get X 𝑧 =
π‘Žπ‘§βˆ’1
(1βˆ’π‘Žπ‘§βˆ’1)2 with ROC |z| > a
If we consider a=1 we get a ramp signal π‘₯ 𝑛 = 𝑛𝑒(𝑛)
So its z transform is X 𝑧 =
π‘§βˆ’1
(1βˆ’π‘§βˆ’1)2 with ROC |z| > 1
7 IT 01 Digital Signal Processing (Winter 2021) L25
Properties of z Transform
The z transform is a very powerful tool and this is exhibited by it’s powerful
set of properties.
Note : when we combine several z transforms, the ROC of the overall
transform is at least the intersection of their ROCs.
Properties:
1. Linearity
2. Time Shifting
3. Scaling in z domain
4. Time Reversal
5. Differentiation in z domain
6. Convolution of two sequences
7 IT 01 Digital Signal Processing (Winter 2021) L25
Convolution Property
6) Convolution of Two Sequences Property
If π‘₯1 𝑛 𝑧 𝑋1 𝑧 and If π‘₯2 𝑛 𝑧 𝑋2 𝑧
Then for π‘₯ 𝑛 = π‘₯1 𝑛 βˆ— π‘₯2 𝑛 𝑧 𝑋 𝑧 = 𝑋1 𝑧 . 𝑋2 𝑧
ROC of X(z) is at least an intersection of ROCs for 𝑋1 𝑧 and 𝑋2 𝑧 .
Proof : Convolution of π‘₯1 𝑛 π‘Žπ‘›π‘‘ π‘₯2 𝑛 is defined as
𝑦 𝑛 =
π‘˜=βˆ’βˆž
∞
π‘₯1 π‘˜ . π‘₯2(𝑛 βˆ’ π‘˜)
Z transform of x(n) is 𝑋 𝑧 = π‘˜=βˆ’βˆž
∞
π‘₯ 𝑛 . π‘§βˆ’π‘›
𝑋 𝑧 =
π‘˜=βˆ’βˆž
∞
π‘₯1 π‘˜ .
𝑛=βˆ’βˆž
∞
π‘₯2(𝑛 βˆ’ π‘˜) . π‘§βˆ’π‘›
7 IT 01 Digital Signal Processing (Winter 2021) L25
Convolution Property
𝑋 𝑧 =
π‘˜=βˆ’βˆž
∞
π‘₯1 π‘˜ .
𝑛=βˆ’βˆž
∞
π‘₯2(𝑛 βˆ’ π‘˜) . π‘§βˆ’π‘›
Interchanging the order of summation and using the property of shifting
in time domain we have z transform of x(n-k) as π‘§βˆ’π‘˜
𝑋 𝑧 . So we can
write above equation as
𝑋 𝑧 =
π‘˜=βˆ’βˆž
∞
π‘₯1 π‘˜ . π‘§βˆ’π‘˜π‘‹2(𝑧)
𝑋 𝑧 = 𝑋1 𝑧 𝑋2(𝑧)
7 IT 01 Digital Signal Processing (Winter 2021) L25
Convolution Property
Compute convolution of signals π‘₯1(𝑛)={1, 2, 1} and π‘₯1(𝑛)={1 : 0 ≀ n ≀5
{ 0 : Elsewhere
Solution: π‘₯1(𝑛)={1, 2, 1} and π‘₯1(𝑛)={1, 1, 1, 1, 1, 1}
Z transform is given by 𝑋 𝑧 = π‘˜=βˆ’βˆž
∞
π‘₯ 𝑛 . π‘§βˆ’π‘›
So 𝑋1 𝑧 = 1 + 2π‘§βˆ’1
+ π‘§βˆ’2
and
𝑋2 𝑧 = 1 + π‘§βˆ’1 + π‘§βˆ’2 + π‘§βˆ’3 + π‘§βˆ’4 + π‘§βˆ’5
Using convolution property
π‘₯ 𝑛 = π‘₯1 𝑛 βˆ— π‘₯2 𝑛 π‘‘β„Žπ‘’π‘› 𝑋 𝑧 = 𝑋1 𝑧 . 𝑋2 𝑧
𝑋 𝑧 =(1 + 2π‘§βˆ’1 + π‘§βˆ’2).(1 + π‘§βˆ’1 + π‘§βˆ’2 + π‘§βˆ’3 + π‘§βˆ’4 + π‘§βˆ’5)
𝑋 𝑧 = (1 + 3π‘§βˆ’1
+ 4π‘§βˆ’2
+ 4π‘§βˆ’3
+ 4π‘§βˆ’4
+ 4π‘§βˆ’5
+ 3π‘§βˆ’6
+ π‘§βˆ’7
).
The convolved signal can be obtained by taking inverse z transform as
x(n)={1, 3, 4, 4, 4, 4, 3, 1}
7 IT 01 Digital Signal Processing (Winter 2021) L25
Convolution Property
Compute convolution of signals π‘₯1(𝑛)={1, -2, 1} and π‘₯1(𝑛)={1 : 0 ≀ n ≀5
{ 0 : Elsewhere
Solution: π‘₯1(𝑛)={1, -2, 1} and π‘₯2(𝑛)={1, 1, 1, 1, 1, 1}
Z transform is given by 𝑋 𝑧 = π‘˜=βˆ’βˆž
∞
π‘₯ 𝑛 . π‘§βˆ’π‘›
So 𝑋1 𝑧 = 1 βˆ’ 2π‘§βˆ’1
+ π‘§βˆ’2
and
𝑋2 𝑧 = 1 + π‘§βˆ’1 + π‘§βˆ’2 + π‘§βˆ’3 + π‘§βˆ’4 + π‘§βˆ’5
Using convolution property
π‘₯ 𝑛 = π‘₯1 𝑛 βˆ— π‘₯2 𝑛 π‘‘β„Žπ‘’π‘› 𝑋 𝑧 = 𝑋1 𝑧 . 𝑋2 𝑧
𝑋 𝑧 =(1 βˆ’ 2π‘§βˆ’1 + π‘§βˆ’2).(1 + π‘§βˆ’1 + π‘§βˆ’2 + π‘§βˆ’3 + π‘§βˆ’4 + π‘§βˆ’5)
𝑋 𝑧 = (1 βˆ’ π‘§βˆ’1
βˆ’ π‘§βˆ’6
+ π‘§βˆ’7
).
The convolved signal can be obtained by taking inverse z transform as
x(n)={1, -1, 0, 0, 0, 0, -1, 1}
7 IT 01 Digital Signal Processing (Winter 2021) L25
Summary of z Transform Pairs
7 IT 01 Digital Signal Processing (Winter 2021) L25
Inverse z Transform
Forward z transform equation is
z x n = X z =
𝑛=βˆ’βˆž
∞
π‘₯ 𝑛 . π‘§βˆ’π‘›
This is used for frequency analysis. When we need the signal back in time
domain we need to take Inverse z Transform.
π‘₯ 𝑛 = π‘§βˆ’1
𝑋 𝑧 .
By definition of Inverse z Transform
π‘₯ 𝑑 =
1
2πœ‹ 𝑐
π‘§π‘›βˆ’1𝑋(𝑧)𝑑𝑧
To find Inverse z Transform there are three methods :
1) Power Series Method
2) Partial Fraction Method
3) Residues of Contour Integral method
7 IT 01 Digital Signal Processing (Winter 2021) L25
Inverse z Transform
1) Power Series Method :
This method requires division of polynomials in z.
In this we represent 𝑋 𝑧 =
𝑃(𝑧)
𝑄(𝑧)
,
By directly performing this division we obtain.
𝑋 𝑧 = π‘Ž0 + π‘Ž1π‘§βˆ’1
+ π‘Ž2π‘§βˆ’2
+ π‘Ž3π‘§βˆ’3
+ π‘Ž4π‘§βˆ’4
+ β‹― .
This form is very suitable for identifying fixed duration signals and
infinite signals by comparing it with definition of z transform
𝑋 𝑍 =
𝑛=βˆ’βˆž
∞
π‘₯ 𝑛 . π‘§βˆ’π‘›
𝑋 𝑧 = π‘₯(0) + π‘₯(1)π‘§βˆ’1 + π‘₯(2)π‘§βˆ’2 + π‘₯(3)π‘§βˆ’3 + π‘₯(4)π‘§βˆ’4 for causal signal
So by comparing above equation with z transform definition we can
directly find out the time domain sequence.
7 IT 01 Digital Signal Processing (Winter 2021) L25
Inverse z Transform
Ex: Determine Inverse Z Transform (IZT) of
𝑋 𝑧 =
1
1βˆ’π‘Žπ‘§βˆ’1 with ROC |z| > a
Solution: Given is 𝑋 𝑧 =
1
1βˆ’π‘Žπ‘§βˆ’1
Simplifying given equation 𝑋 𝑧 =
𝑧
π‘§βˆ’π‘Ž
So 𝑋 𝑧 = 1 + π‘Žπ‘§βˆ’1 + π‘Ž2π‘§βˆ’2 + π‘Ž3π‘§βˆ’3+. .
For given ROC |z| > a means ROC is
Exterior of the circle with radius a
and the sequence is causal.
This sequence can be written as
𝑋 𝑧 = 𝑛=0
∞
(π‘Žπ‘§βˆ’1)βˆ’π‘›
7 IT 01 Digital Signal Processing (Winter 2021) L25
Inverse z Transform
Ex: Determine Inverse Z Transform (IZT) of
𝑋 𝑧 =
1
1βˆ’π‘Žπ‘§βˆ’1 with ROC |z| > a
Solution: Given is 𝑋 𝑧 =
1
1βˆ’π‘Žπ‘§βˆ’1
Simplifying given equation 𝑋 𝑧 =
𝑧
π‘§βˆ’π‘Ž
So 𝑋 𝑧 = 1 + π‘Žπ‘§βˆ’1 + π‘Ž2π‘§βˆ’2 + π‘Ž3π‘§βˆ’3+. .
𝑋 𝑧 = 𝑛=0
∞
(π‘Žπ‘§βˆ’1
)βˆ’π‘›
𝑋 𝑧 = 𝑛=0
∞
π‘Žπ‘›π‘§βˆ’π‘›
So this is z transform of signal π‘₯ 𝑛 = π‘Žπ‘›π‘’(𝑛) for n β‰₯ 0 or
as usual, for all n.
7 IT 01 Digital Signal Processing (Winter 2021) L25
Inverse z Transform
Ex: Determine Inverse Z Transform (IZT) of
𝑋 𝑧 =
1
1βˆ’π‘Žπ‘§βˆ’1 with ROC |z| < a
Solution: Given is 𝑋 𝑧 =
1
1βˆ’π‘Žπ‘§βˆ’1
Simplifying given equation 𝑋 𝑧 =
𝑧
π‘§βˆ’π‘Ž
If ROC is given as the |z| < a
Then write 𝑋 𝑧 =
𝑧
βˆ’π‘Ž+𝑧
and perform
Division
So 𝑋 𝑧 = βˆ’π‘Žβˆ’1
𝑧1
βˆ’ π‘Žβˆ’2
𝑧2
+ π‘Žβˆ’3
𝑧3
+. .
For given ROC |z| < a means ROC is
interior of the circle with radius a
and the sequence is anticausal.
This sequence can be written as
𝑋 𝑧 = 𝑛=0
∞
(π‘Žβˆ’1
𝑧)βˆ’π‘›
7 IT 01 Digital Signal Processing (Winter 2021) L25
Inverse z Transform
Ex: Determine Inverse Z Transform (IZT) of
𝑋 𝑧 =
1
1βˆ’π‘Žπ‘§βˆ’1 with ROC |z| < a
Solution: Given is 𝑋 𝑧 =
1
1βˆ’π‘Žπ‘§βˆ’1
Simplifying given equation 𝑋 𝑧 =
𝑧
βˆ’π‘Ž+π‘Ž
So 𝑋 𝑧 = 𝑋 𝑧 = βˆ’π‘Žβˆ’1𝑧1 βˆ’ π‘Žβˆ’2𝑧2 + π‘Žβˆ’3𝑧3+. .
𝑋 𝑧 = βˆ’
𝑛=1
∞
π‘Ž1π‘§βˆ’1 βˆ’π‘› = βˆ’
𝑛=1
∞
π‘Žβˆ’π‘›π‘§π‘›
𝑋 𝑧 = 𝑛=βˆ’1
βˆ’βˆž
π‘Žπ‘›π‘§βˆ’π‘›
So this is z transform of signal π‘₯ 𝑛 = βˆ’π‘Žπ‘›
𝑒(βˆ’π‘› βˆ’ 1)
7 IT 01 Digital Signal Processing (Winter 2021) L25
Inverse z Transform
Ex: Determine Inverse Z Transform (IZT) of
𝑋 𝑧 =
1
1βˆ’2π‘§βˆ’1+π‘§βˆ’2 with
1) ROC |z| > 1
2) ROC |z| < 0.75
Solution: Given is 𝑋 𝑧 =
1
1βˆ’2π‘§βˆ’1+π‘§βˆ’2
For Case 1) Perform division as 𝑋 𝑧 =
1
1βˆ’2π‘§βˆ’1+π‘§βˆ’2
For Case 2) Perform division as 𝑋 𝑧 =
1
π‘§βˆ’2βˆ’2π‘§βˆ’1+1
7 IT 01 Digital Signal Processing (Winter 2021) L25
Inverse z Transform
Forward z transform equation is
z x n = X z =
𝑛=βˆ’βˆž
∞
π‘₯ 𝑛 . π‘§βˆ’π‘›
This is used for frequency analysis. When we need the signal back in time
domain we need to take Inverse z Transform.
π‘₯ 𝑛 = π‘§βˆ’1(𝑋 𝑧 )
To find Inverse z Transform there are three methods :
1) Power Series Method
2) Partial Fraction Method
3) Residues of Contour Integral method
7 IT 01 Digital Signal Processing (Winter 2021) L25
Inverse z Transform
2) Partial Fraction Method:
Basic of this method is if the pole zero form of the X(z) is available only
then this method is useful. If pole zero form of the X(z) is available then
by partial fraction method we get the equation in the form of terms
𝑧
π‘§βˆ’π‘Ž
for which we know the x(n).
For this we must know the equivalent pairs
Partial Fraction Term Signal Converges absolutely if | z | > a
𝑧
π‘§βˆ’π‘Ž
π‘Žπ‘›
n β‰₯ 0
𝑧2
(π‘§βˆ’π‘Ž)2 (𝑛 + 1) π‘Žπ‘› n β‰₯ 0
𝑧3
(π‘§βˆ’π‘Ž)3
1
2
(𝑛 + 1)(𝑛 + 2) π‘Žπ‘›
n β‰₯ 0
7 IT 01 Digital Signal Processing (Winter 2021) L25
Inverse z Transform
2) Partial Fraction Method:
Partial Fraction Term Signal Converges absolutely if | z | < a
𝑧
π‘§βˆ’π‘Ž
βˆ’π‘Žπ‘› n < 0
𝑧2
(π‘§βˆ’π‘Ž)2 βˆ’(𝑛 + 1) π‘Žπ‘›
n < 0
𝑧3
(π‘§βˆ’π‘Ž)3 βˆ’
1
2
(𝑛 + 1)(𝑛 + 2) π‘Žπ‘› n < 0
7 IT 01 Digital Signal Processing (Winter 2021) L25
Inverse z Transform
EX : 2) Partial Fraction Method:
Partial Fraction Term Signal Converges absolutely if | z | < a
𝑧
π‘§βˆ’π‘Ž
βˆ’π‘Žπ‘› n < 0
𝑧2
(π‘§βˆ’π‘Ž)2 βˆ’(𝑛 + 1) π‘Žπ‘›
n < 0
𝑧3
(π‘§βˆ’π‘Ž)3 βˆ’
1
2
(𝑛 + 1)(𝑛 + 2) π‘Žπ‘› n < 0
General form of the X(z) after partial fraction is
𝑋 𝑧 = 𝐢0 +
𝐢1𝑧
𝑧 βˆ’ 𝑝1
+
𝐢2𝑧
𝑧 βˆ’ 𝑝2
+
𝐢3𝑧
𝑧 βˆ’ 𝑝3
7 IT 01 Digital Signal Processing (Winter 2021) L25
Inverse z Transform
Ex: Determine IZT using partial fraction method for given function
𝑋 𝑧 =
3𝑧
2𝑧2βˆ’5𝑧+2
ROC | z | >1
Solution : For the given Z T equation 𝑋 𝑧 =
3𝑧
2𝑧2βˆ’5𝑧+2
Performing the Partial fraction
𝑋 𝑧 =
3𝑧
(π‘§βˆ’2)(2π‘§βˆ’1)
𝑝1=2 and 𝑝2 =
1
2
General form of the X(z) after partial fraction is
𝑋 𝑧 = 𝐢0 +
𝐢1𝑧
π‘§βˆ’π‘1
+
𝐢2𝑧
π‘§βˆ’π‘2
𝐢0=𝑋 𝑧 |𝑧=0 = 0
𝑋 𝑧 =
𝐢1𝑧
π‘§βˆ’π‘1
+
𝐢2𝑧
π‘§βˆ’π‘2
7 IT 01 Digital Signal Processing (Winter 2021) L25
Inverse z Transform
𝑋 𝑧 =
3𝑧
(π‘§βˆ’2)(2π‘§βˆ’1)
𝐢1 =
π‘§βˆ’π‘1
𝑧
𝑋(𝑧)|𝑧=2
=
3
(2π‘§βˆ’1)
|𝑧=2
=
3
(2βˆ—2βˆ’1)
= 1
𝐢2 =
π‘§βˆ’π‘2
𝑧
𝑋(𝑧)|𝑧=
1
2
=
3
(π‘§βˆ’2)
|𝑧=
1
2
=
3
(
1
2
βˆ’2)
=
3
βˆ’(
3
2
)
= 3(βˆ’
2
3
)
= βˆ’2
7 IT 01 Digital Signal Processing (Winter 2021) L25
Inverse z Transform
𝑋 𝑧 =
3𝑧
(π‘§βˆ’2)(2π‘§βˆ’1)
𝑋 𝑧 =
𝑧
π‘§βˆ’2
βˆ’
2𝑧
2(π‘§βˆ’
1
2
)
𝑋 𝑧 =
𝑧
𝑧 βˆ’ 2
βˆ’
𝑧
𝑧 βˆ’
1
2
=
1
1 βˆ’ 2π‘§βˆ’1
βˆ’
1
1 βˆ’
1
2
π‘§βˆ’1
So by comparing with the standard form we have the time domain
equation as
x 𝑑 = 2𝑛𝑒 𝑛 βˆ’
1
2
𝑛
𝑒 𝑛
x 𝑑 = (2𝑛 βˆ’
1
2
𝑛
)𝑒 𝑛
7 IT 01 Digital Signal Processing (Winter 2021) L25
Inverse z Transform
Forward z transform equation is
z x n = X z =
𝑛=βˆ’βˆž
∞
π‘₯ 𝑛 . π‘§βˆ’π‘›
This is used for frequency analysis. When we need the signal back in time
domain we need to take Inverse z Transform.
π‘₯ 𝑛 = π‘§βˆ’1(𝑋 𝑧 )
To find Inverse z Transform there are three methods :
1) Power Series Method
2) Partial Fraction Method
3) Residues of Contour Integral method
7 IT 01 Digital Signal Processing (Winter 2021) L25
Inverse z Transform
3)Residues of Contour Integral method
This method actually use the definition of the inverse z transform
This is most complicated method out of these three methods for IZT
By definition of Inverse z Transform
π‘₯ 𝑑 =
1
2πœ‹ 𝑐
π‘§π‘›βˆ’1𝑋(𝑧)𝑑𝑧
Direct evaluation of this contour integral is generally difficult, so
residues theorem is used.
According to this theorem we find coefficients of given X(z) at poles
This gives us x(n)
𝑅𝑧=π‘Ž =
π‘‘π‘šβˆ’1
π‘‘π‘§π‘šβˆ’1
(
𝑧 βˆ’ π‘Ž π‘š
π‘š βˆ’ 1 !
𝐺(𝑧))|𝑧=1
7 IT 01 Digital Signal Processing (Winter 2021) L25
Inverse z Transform
𝑅𝑧=π‘Ž =
π‘‘π‘šβˆ’1
π‘‘π‘§π‘šβˆ’1
(
𝑧 βˆ’ π‘Ž π‘š
π‘š βˆ’ 1 !
𝐺(𝑧))|𝑧=1
Ex: Determine Inverse z Transform of 𝑋 𝑧 =
1
π‘§βˆ’1 (π‘§βˆ’2)
Solution : By using definition find G(z)
𝐺(𝑧) = π‘§π‘›βˆ’1𝑋(𝑧)
𝐺(𝑧) =
π‘§π‘›βˆ’1
π‘§βˆ’1 (π‘§βˆ’2)
In this case if n=0 then π‘§βˆ’1
in the numerator will become simple pole
𝐺(𝑧) =
1
𝑧 π‘§βˆ’1 (π‘§βˆ’2)
for |z| >1
7 IT 01 Digital Signal Processing (Winter 2021) L25
Inverse z Transform
Case : n=0
𝐺(𝑧) =
1
𝑧 π‘§βˆ’1 (π‘§βˆ’2)
Using Residue Theorem
π‘₯ 0 = 𝐺𝑅𝑧=0 + 𝐺𝑅𝑧=1 + 𝐺𝑅𝑧=2
𝐺𝑅𝑧=0 = 𝑧 βˆ’ 0 𝐺(𝑧) for pole at z=0
𝐺𝑅𝑧=0 = 𝑧𝐺 𝑧 =
𝑧
𝑧 π‘§βˆ’1 (π‘§βˆ’2)
=
1
π‘§βˆ’1 (π‘§βˆ’2)
|𝑧=0
𝐺𝑅𝑧=0 =
1
𝑧 βˆ’ 1 (𝑧 βˆ’ 2)
|𝑧=0 =
1
2
𝐺𝑅𝑧=1 = 𝑧 βˆ’ 1 𝐺(𝑧) for pole at z = 1
𝐺𝑅𝑧=1 = 𝑧 βˆ’ 1 𝐺 𝑧 =
𝑧 βˆ’ 1
𝑧 𝑧 βˆ’ 1 𝑧 βˆ’ 2
=
1
𝑧 𝑧 βˆ’ 2
|𝑧=1 =
1
(1)(βˆ’1)
= βˆ’1
7 IT 01 Digital Signal Processing (Winter 2021) L25
Inverse z Transform
Case I: n=0
𝐺𝑅𝑧=2 = 𝑧 βˆ’ 2 𝐺(𝑧) for pole at z=2
𝐺𝑅𝑧=2 = 𝑧 βˆ’ 2 𝐺 𝑧 =
𝑧 βˆ’ 2
𝑧 𝑧 βˆ’ 1 𝑧 βˆ’ 2
=
1
𝑧 𝑧 βˆ’ 1
|𝑧=2 =
1
(2)(1)
=
1
2
π‘₯ 0 = 𝐺𝑅𝑧=0 + 𝐺𝑅𝑧=1 + 𝐺𝑅𝑧=2 = 1/2 βˆ’ 1 + 1/2 =0
Case II :n > 0
π‘₯ 0 = 𝐺𝑅𝑧=1 + 𝐺𝑅𝑧=2
Here 𝐺 𝑧 =
π‘§π‘›βˆ’1
π‘§βˆ’1 π‘§βˆ’2
𝐺𝑅𝑧=1 = 𝑧 βˆ’ 1 𝐺(𝑧) for pole at z = 1
𝐺𝑅𝑧=1 = 𝑧 βˆ’ 1 𝐺 𝑧 =
𝑧 βˆ’ 1 π‘§π‘›βˆ’1
𝑧 βˆ’ 1 𝑧 βˆ’ 2
=
π‘§π‘›βˆ’1
𝑧 βˆ’ 2
|𝑧=1 =
(1)π‘›βˆ’1
(βˆ’1)
= βˆ’1
7 IT 01 Digital Signal Processing (Winter 2021) L25
Inverse z Transform
Case I: n >0
𝐺𝑅𝑧=2 = 𝑧 βˆ’ 2 𝐺 𝑧 =
𝑧 βˆ’ 2 π‘§π‘›βˆ’1
𝑧 βˆ’ 1 𝑧 βˆ’ 2
=
π‘§π‘›βˆ’1
𝑧 βˆ’ 1
|𝑧=2 =
(2)π‘›βˆ’1
(1)
= βˆ’1
𝐺𝑅𝑧=1 = 𝑧 βˆ’ 1 𝐺(𝑧) for pole at z = 1
π‘₯ 𝑛 = βˆ’1 + 2 π‘›βˆ’1
π‘₯ 𝑛 = βˆ’(1 + 2 π‘›βˆ’1)
So complete signal is
0 for n=0
x(n)=
-(1-(2)π‘›βˆ’1
) for n >0
THANK YOU !
7 IT 01 Digital Signal Processing (Winter 2021) L25

More Related Content

Similar to Frequency Analysis using Z Transform.pptx

Dsp U Lec05 The Z Transform
Dsp U   Lec05 The Z TransformDsp U   Lec05 The Z Transform
Dsp U Lec05 The Z Transformtaha25
Β 
Z transforms and their applications
Z transforms and their applicationsZ transforms and their applications
Z transforms and their applicationsRam Kumar K R
Β 
Ch3_Z-transform.pdf
Ch3_Z-transform.pdfCh3_Z-transform.pdf
Ch3_Z-transform.pdfshannlevia123
Β 
Z transform and Properties of Z Transform
Z transform and Properties of Z TransformZ transform and Properties of Z Transform
Z transform and Properties of Z TransformAnujKumar734472
Β 
lec z-transform.ppt
lec z-transform.pptlec z-transform.ppt
lec z-transform.pptMohammadRefai6
Β 
Polya recurrence
Polya recurrencePolya recurrence
Polya recurrenceBrian Burns
Β 
DSP_2018_FOEHU - Lec 04 - The z-Transform
DSP_2018_FOEHU - Lec 04 - The z-TransformDSP_2018_FOEHU - Lec 04 - The z-Transform
DSP_2018_FOEHU - Lec 04 - The z-TransformAmr E. Mohamed
Β 
Z-transform and Its Inverse.ppt
Z-transform and Its Inverse.pptZ-transform and Its Inverse.ppt
Z-transform and Its Inverse.pptNahi20
Β 
Time Series Analysis
Time Series AnalysisTime Series Analysis
Time Series AnalysisAmit Ghosh
Β 
DSP_FOEHU - Lec 08 - The Discrete Fourier Transform
DSP_FOEHU - Lec 08 - The Discrete Fourier TransformDSP_FOEHU - Lec 08 - The Discrete Fourier Transform
DSP_FOEHU - Lec 08 - The Discrete Fourier TransformAmr E. Mohamed
Β 
Z Transform, Causal, Anti-Causal and Two sided sequence, Region of Convergenc...
Z Transform, Causal, Anti-Causal and Two sided sequence, Region of Convergenc...Z Transform, Causal, Anti-Causal and Two sided sequence, Region of Convergenc...
Z Transform, Causal, Anti-Causal and Two sided sequence, Region of Convergenc...Waqas Afzal
Β 
Z transform
Z transformZ transform
Z transformnirav34
Β 

Similar to Frequency Analysis using Z Transform.pptx (20)

Lecture8
Lecture8Lecture8
Lecture8
Β 
Dsp U Lec05 The Z Transform
Dsp U   Lec05 The Z TransformDsp U   Lec05 The Z Transform
Dsp U Lec05 The Z Transform
Β 
Z transforms and their applications
Z transforms and their applicationsZ transforms and their applications
Z transforms and their applications
Β 
Z transform
Z transformZ transform
Z transform
Β 
Signal3
Signal3Signal3
Signal3
Β 
Ch3_Z-transform.pdf
Ch3_Z-transform.pdfCh3_Z-transform.pdf
Ch3_Z-transform.pdf
Β 
Z transform and Properties of Z Transform
Z transform and Properties of Z TransformZ transform and Properties of Z Transform
Z transform and Properties of Z Transform
Β 
lec z-transform.ppt
lec z-transform.pptlec z-transform.ppt
lec z-transform.ppt
Β 
ch3-4
ch3-4ch3-4
ch3-4
Β 
Polya recurrence
Polya recurrencePolya recurrence
Polya recurrence
Β 
DSP_2018_FOEHU - Lec 04 - The z-Transform
DSP_2018_FOEHU - Lec 04 - The z-TransformDSP_2018_FOEHU - Lec 04 - The z-Transform
DSP_2018_FOEHU - Lec 04 - The z-Transform
Β 
21 5 ztransform
21 5 ztransform21 5 ztransform
21 5 ztransform
Β 
Z-transform and Its Inverse.ppt
Z-transform and Its Inverse.pptZ-transform and Its Inverse.ppt
Z-transform and Its Inverse.ppt
Β 
lec07_DFT.pdf
lec07_DFT.pdflec07_DFT.pdf
lec07_DFT.pdf
Β 
Time Series Analysis
Time Series AnalysisTime Series Analysis
Time Series Analysis
Β 
21 3 ztransform
21 3 ztransform21 3 ztransform
21 3 ztransform
Β 
DSP_FOEHU - Lec 08 - The Discrete Fourier Transform
DSP_FOEHU - Lec 08 - The Discrete Fourier TransformDSP_FOEHU - Lec 08 - The Discrete Fourier Transform
DSP_FOEHU - Lec 08 - The Discrete Fourier Transform
Β 
Lecture5
Lecture5Lecture5
Lecture5
Β 
Z Transform, Causal, Anti-Causal and Two sided sequence, Region of Convergenc...
Z Transform, Causal, Anti-Causal and Two sided sequence, Region of Convergenc...Z Transform, Causal, Anti-Causal and Two sided sequence, Region of Convergenc...
Z Transform, Causal, Anti-Causal and Two sided sequence, Region of Convergenc...
Β 
Z transform
Z transformZ transform
Z transform
Β 

Recently uploaded

Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...VICTOR MAESTRE RAMIREZ
Β 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVRajaP95
Β 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escortsranjana rawat
Β 
πŸ”9953056974πŸ”!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
πŸ”9953056974πŸ”!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...πŸ”9953056974πŸ”!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
πŸ”9953056974πŸ”!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...9953056974 Low Rate Call Girls In Saket, Delhi NCR
Β 
Current Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLCurrent Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLDeelipZope
Β 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidNikhilNagaraju
Β 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
Β 
chaitra-1.pptx fake news detection using machine learning
chaitra-1.pptx  fake news detection using machine learningchaitra-1.pptx  fake news detection using machine learning
chaitra-1.pptx fake news detection using machine learningmisbanausheenparvam
Β 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024Mark Billinghurst
Β 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineeringmalavadedarshan25
Β 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AIabhishek36461
Β 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx959SahilShah
Β 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
Β 
HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2RajaP95
Β 
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ
Β 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...Soham Mondal
Β 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
Β 
Study on Air-Water & Water-Water Heat Exchange in a Finned ο»ΏTube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned ο»ΏTube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned ο»ΏTube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned ο»ΏTube ExchangerAnamika Sarkar
Β 

Recently uploaded (20)

Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...
Β 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
Β 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
Β 
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptxExploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Β 
β˜… CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
β˜… CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCRβ˜… CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
β˜… CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
Β 
πŸ”9953056974πŸ”!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
πŸ”9953056974πŸ”!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...πŸ”9953056974πŸ”!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
πŸ”9953056974πŸ”!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
Β 
Current Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLCurrent Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCL
Β 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfid
Β 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
Β 
chaitra-1.pptx fake news detection using machine learning
chaitra-1.pptx  fake news detection using machine learningchaitra-1.pptx  fake news detection using machine learning
chaitra-1.pptx fake news detection using machine learning
Β 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024
Β 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineering
Β 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AI
Β 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx
Β 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
Β 
HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2
Β 
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
Β 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
Β 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
Β 
Study on Air-Water & Water-Water Heat Exchange in a Finned ο»ΏTube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned ο»ΏTube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned ο»ΏTube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned ο»ΏTube Exchanger
Β 

Frequency Analysis using Z Transform.pptx

  • 1. 7 IT 01 Digital Signal Processing Unit III: Frequency Analysis using Z- Transform Prof. (Dr.) Prashant V. Ingole Professor and Head, Dept. of Information Technology, Prof Ram Meghe Institute of Technology and Research, Badnera. 7 IT 01 Digital Signal Processing (Winter 2021) L25
  • 2. 7 IT 01 Digital Signal Processing (Winter 2021) L25 Course Outline UNIT III: The Z- Transform – Z-Transform – Properties of the Region of Convergence of the z-Transform – The Inverse Z-Transform – Z-Transform Properties Course Outcomes (COs) β€’ Analyze DT LTI Systems using Z transform
  • 3. 7 IT 01 Digital Signal Processing (Winter 2021) L25 Z- Transform β€’ We have studied that Fourier Transform play a key role in representing and analyzing the discrete time signals and systems. β€’ However Fourier Transform is subjected to many constraints Signal under analysis x(n) need to be absolutely summable. β€’ So we are in need of a generalized analysis tool β€’ Z Transform is the generalized form of Fourier Transform β€’ Analog Signals οƒ  Laplace Transform β€’ Digital Signalsοƒ  Z Transform β€’ Motivation 1. Convergence of all types of Signals 2. Convenience of notations 3. Use of powerful complex variable theory for analysis
  • 4. 7 IT 01 Digital Signal Processing (Winter 2021) L25 z Transform Definition β€’ z transform of the discrete time signal x(n) is defined as a power series β€’ 𝑿 𝒛 = 𝒏=βˆ’βˆž ∞ 𝒙(𝒏)π’›βˆ’π’ where z is the complex variable β€’ The Fourier Transform was earlier defined as β€’ 𝑋 𝑒𝑗𝑀 = 𝑛=βˆ’βˆž ∞ π‘₯(𝑛)π‘’βˆ’π‘—π‘€π‘› β€’ Observe the similarity in these two mathematical tools β€’ By comparison it can be easily found that 𝑧 = 𝑒𝑗𝑀 and so π‘§βˆ’π‘› = π‘’βˆ’π‘—π‘€π‘›
  • 5. 7 IT 01 Digital Signal Processing (Winter 2021) L25 z Transform β€’ The z Transform definition equation 𝑋 𝑧 = 𝑛=βˆ’βˆž ∞ π‘₯(𝑛)π‘§βˆ’π‘› is also known as direct z transform. The inverse procedure to obtain the x(n) from X(z) is called as an Inverse z transform. Notations: β€’ The z transform of the signal x(n) is denoted as X(z) = z(x(n)) β€’ The relationship between x(n) and X(z) is indicated by x(n) z X(z)
  • 6. 7 IT 01 Digital Signal Processing (Winter 2021) L25 Fourier Transform of DT Aperiodic Signals z Transform is a infinite power series (π‘Žπ‘›) with z being the complex variable . Some time z Transform is considered as an operator and denoted as z( . ) that is 𝑧 π‘₯ 𝑛 = 𝑛=βˆ’βˆž ∞ π‘₯ 𝑛 π‘§βˆ’π‘› = 𝑋(𝑧) β€’ When z transform is defined from -∞ to ∞ it is referred to as the bilateral or two sided z transform β€’ But practical signals are causal so the z transform is defined either from 0 to ∞ and it is known as unilateral or single sided z transform β€’ 𝑋(𝑧) = 𝑛=0 ∞ π‘₯ 𝑛 π‘§βˆ’π‘› οƒŸ unilateral or single sided z transform
  • 7. 7 IT 01 Digital Signal Processing (Winter 2021) L25 z Transform In 𝑋(𝑧) = 𝑛=0 ∞ π‘₯ 𝑛 π‘§βˆ’π‘› if we replace 𝑧 = 𝑒𝑗𝑀 then the equation reduces to Fourier transform equation 𝑋 𝑒𝑗𝑀 = 𝑛=βˆ’βˆž ∞ π‘₯(𝑛)π‘’βˆ’π‘—π‘€π‘› When we consider 𝑧 = 𝑒𝑗𝑀 it is in fact 𝑧 = 1 βˆ— 𝑒𝑗𝑀 i.e. in polar form π‘Ÿ βˆ— 𝑒𝑗𝑀 That means restricting the value of |z|=1 we get Fourier transform. More generally we can express the complex variable z in polar form as z = π‘Ÿ βˆ— 𝑒𝑗𝑀 So the z transform equation becomes 𝑋 π‘Ÿπ‘’π‘—π‘€ = 𝑛=βˆ’βˆž ∞ π‘₯(𝑛)(π‘Ÿπ‘’π‘—π‘€ )βˆ’π‘› 𝑋 π‘Ÿπ‘’π‘—π‘€ = 𝑛=βˆ’βˆž ∞ (π‘₯(𝑛)π‘Ÿβˆ’π‘›)(𝑒𝑗𝑀)βˆ’π‘› This equation can be interpreted as the Fourier transform of the signal π‘₯(𝑛)π‘Ÿβˆ’π‘› . Obviously for r = 1, this equation reduces to Fourier Transform of x(n).
  • 8. 7 IT 01 Digital Signal Processing (Winter 2021) L25 Polar Representation of Z Transform and Unit Circle Since z Transform is a function of complex variable z it is convenient to describe, represent and interpret it using a complex z plane. In the plane a contour corresponding to |z| = 1 is a circle of unit radius. This contour is also referred to as unit circle in z plane as shown in figure. 𝑧𝑖 1 w πœ‹ 0 π‘§π‘Ÿ βˆ’πœ‹ 0 The z transform evaluated on the unit circle is the Fourier Transform
  • 9. 7 IT 01 Digital Signal Processing (Winter 2021) L25 Periodicity in z Transform If we evaluate X(z) at the points on the unit circle in z plane beginning at z = 1 that is at w=0, through z= j (at w= πœ‹/2) to z=-1 (at w= πœ‹ ) to z= -j (at w= 3πœ‹/2) and finally back to z = 1 at w= 2πœ‹ We obtain the Fourier Transform for 0 ≀ 𝑀 ≀ 2πœ‹ at that time we discussed w as a linear frequency variable. The same frequency in z plane is represented as a angular variable which vary from w=0 at z = 1 to w= πœ‹/2 at z = j to w = πœ‹ at z= -1 to w= 3πœ‹ 2 at z = -j to w = 2πœ‹ at z= 1, thus completing a period around the unit circle. With this interpretation the inherent periodicity of frequency in Fourier Transform is captured naturally. Since a change of angle of w = 2πœ‹ radians in z plane corresponds to traversing the unit circle one and returning to the exactly same point.
  • 10. 7 IT 01 Digital Signal Processing (Winter 2021) L25 Region of Convergence in z Transform In Fourier series the power series representing the Fourier transform does not converge for all sequences, because the infinite may not always be finite. Similarly z transform does not converge for all sequences or all values of z. For any given sequence the set of values of z for which the z transform X(z) converges is called as the Region Of Convergence (ROC). Since z transform is an infinite power series, it exists for those values of z for which this series converges. The region of Convergence X(z) is the set of all values of z for which the X(z) attains the finite value. Thus anytime we cite z transform we should also specify the Region of Convergence (ROC)
  • 11. 7 IT 01 Digital Signal Processing (Winter 2021) L25 z –Transform Evaluation Ex 1: Find z transform of finite duration signal x(n)={1, 2, 7, 5, 0, 1} Solution : The z transform equation is 𝑋 𝑧 = 𝑛=0 ∞ π‘₯ 𝑛 . π‘§βˆ’π‘› So X(z) =1.𝑧0 +2*π‘§βˆ’1 + 7π‘§βˆ’2 + 5π‘§βˆ’3 + 0. π‘§βˆ’4 + 1. π‘§βˆ’5 X(z) =1 +2π‘§βˆ’1 + 7π‘§βˆ’2 + 5π‘§βˆ’3 + π‘§βˆ’5 For finite duration causal signals the ROC is entire z plane except z=0
  • 12. 7 IT 01 Digital Signal Processing (Winter 2021) L25 z –Transform Evaluation Ex 1: Find z transform of finite duration signal x(n)={1, 2, 7, 5, 0, 1} Solution : The z transform equation is 𝑋 𝑧 = 𝑛=0 ∞ π‘₯ 𝑛 . π‘§βˆ’π‘› So X(z) =1.𝑧0 +2*π‘§βˆ’1 + 7π‘§βˆ’2 + 5π‘§βˆ’3 + 0. π‘§βˆ’4 + 1. π‘§βˆ’5 X(z) =1 +2π‘§βˆ’1 + 7π‘§βˆ’2 + 5π‘§βˆ’3 + π‘§βˆ’5 For finite duration causal signals the ROC is entire z plane except z=0 Ex 2: Find z transform of finite duration signal x(n)={1, 2, 7, 5, 0, 1} Solution : The z transform equation is 𝑋 𝑧 = 𝑛=0 ∞ π‘₯ 𝑛 . π‘§βˆ’π‘› So X(z) =1.𝑧+2 +2*𝑧+1 + 7𝑧0 + 5π‘§βˆ’1 + 0. π‘§βˆ’2 + 1. π‘§βˆ’3 X(z) =1𝑧+2 +2𝑧+1 + 7 + 5π‘§βˆ’1 + π‘§βˆ’3 For finite duration non causal signals the ROC is entire z plane except z=0 and z = ∞
  • 13. 7 IT 01 Digital Signal Processing (Winter 2021) L25 z Transform Problems Ex 3: Find z transform of finite duration signal x(n)={0, 0, 1, 2, 5, 7, 0, 1} Solution : The z transform equation is 𝑋 𝑧 = 𝑛=0 ∞ π‘₯ 𝑛 . π‘§βˆ’π‘› So X(z) = π‘§βˆ’2 + 2π‘§βˆ’3 + 5. π‘§βˆ’4 + 7. π‘§βˆ’5 + 0. π‘§βˆ’6 + 1. π‘§βˆ’7 X(z) =π‘§βˆ’2 + 2π‘§βˆ’3 + 5. π‘§βˆ’4 + 7. π‘§βˆ’5 + 1. π‘§βˆ’7 For finite duration causal signals the ROC is entire z plane except z=0
  • 14. 7 IT 01 Digital Signal Processing (Winter 2021) L25 z Transform Problems Ex 3: Find z transform of finite duration signal x(n)={0, 0, 1, 2, 5, 7, 0, 1} Solution : The z transform equation is 𝑋 𝑧 = 𝑛=0 ∞ π‘₯ 𝑛 . π‘§βˆ’π‘› So X(z) = π‘§βˆ’2 + 2π‘§βˆ’3 + 5. π‘§βˆ’4 + 7. π‘§βˆ’5 + 0. π‘§βˆ’6 + 1. π‘§βˆ’7 X(z) =π‘§βˆ’2 + 2π‘§βˆ’3 + 5. π‘§βˆ’4 + 7. π‘§βˆ’5 + 1. π‘§βˆ’7 For finite duration causal signals the ROC is entire z plane except z=0 Ex 4: Find z transform of finite duration signal x(n)=𝛿(𝑛) Solution : The z transform equation is 𝑋 𝑧 = 𝑛=0 ∞ π‘₯ 𝑛 . π‘§βˆ’π‘› So X(z) = 1. 𝑧0 = 1 For this finite duration causal signals the ROC is entire z plane including z = 0 and z = ∞ .
  • 15. 7 IT 01 Digital Signal Processing (Winter 2021) L25 z Transform Problems Ex 5: Find z transform of finite duration signal x(n)=𝛿(𝑛 βˆ’ π‘˜) Solution : The z transform equation is 𝑋 𝑧 = 𝑛=0 ∞ π‘₯ 𝑛 . π‘§βˆ’π‘› So X(z) = 1. π‘§βˆ’π‘˜ = π‘§βˆ’π‘˜ (for k > 0) For this finite duration causal signals, the ROC is entire z plane except z=0 .
  • 16. 7 IT 01 Digital Signal Processing (Winter 2021) L25 z Transform Problems Ex 5: Find z transform of finite duration signal x(n)=𝛿(𝑛 βˆ’ π‘˜) Solution : The z transform equation is 𝑋 𝑧 = 𝑛=0 ∞ π‘₯ 𝑛 . π‘§βˆ’π‘› So X(z) = 1. π‘§βˆ’π‘˜ = π‘§βˆ’π‘˜ (for k > 0) For this finite duration causal signals, the ROC is entire z plane except z=0 . Ex 6: Find z transform of finite duration signal x(n)=𝛿(𝑛 + π‘˜) Solution : The z transform equation is 𝑋 𝑧 = 𝑛=0 ∞ π‘₯ 𝑛 . π‘§βˆ’π‘› So X(z) = 1. 𝑧+π‘˜ = 𝑧+π‘˜ (for k > 0) For this finite duration causal signals, the ROC is entire z plane except z = ∞ .
  • 17. 7 IT 01 Digital Signal Processing (Winter 2021) L25 Finite Signals and ROC
  • 18. 7 IT 01 Digital Signal Processing (Winter 2021) L25 Convergence of z Transform If 𝑧 = 𝑒𝑗𝑀 then ROC is unit circle (r = 1) So | z | = 1 But let us suppose 𝑧 = π‘Ÿ. 𝑒𝑗𝑀 if we replace it in the definition of the z transform The z transform equation becomes 𝑋 π‘Ÿπ‘’π‘—π‘€ = 𝑛=βˆ’βˆž ∞ π‘₯(𝑛)(π‘Ÿπ‘’π‘—π‘€)βˆ’π‘› 𝑋 π‘Ÿπ‘’π‘—π‘€ = 𝑛=βˆ’βˆž ∞ (π‘₯(𝑛)π‘Ÿβˆ’π‘›)(𝑒𝑗𝑀)βˆ’π‘› Uniform convergence of the Fourier transform requires that the sequence be absolutely summable. So applying this condition to the above equation we get the condition as: 𝑛=βˆ’βˆž ∞ π‘₯ 𝑛 π‘Ÿβˆ’π‘› < ∞ For absolute convergence of the z transform.
  • 19. 7 IT 01 Digital Signal Processing (Winter 2021) L25 Convergence of z Transform This condition indicates that because of the multiplication of the sequence by the real exponential sequence π‘Ÿβˆ’π‘›, it is possible for the z transform to converge even if the Fourier Transform does not converge. Ex: Find Fourier Transform of signal x(n) = u(n) οƒ  Answer is FT does not exist Reason is signal u(n) is not absolutely summable. Ex: Find z transform of signal x(n) = u(n) Solution: x(n) = u(n) is not absolutely summable so its FT cannot be found. However while finding z transform as per the definition we find FT of π‘₯ 𝑛 π‘Ÿβˆ’π‘› . An this multiplication is absolutely summable for r > 1. This means z transform of the unit step exists with ROC |z| > 1 i.e. ROC is exterior of the unit circle in z Plane
  • 20. 7 IT 01 Digital Signal Processing (Winter 2021) L25 Convergence of z Transform Convergence of the power series in definition of z transform depend only on |z|. Since |X(z)| < ∞ if 𝑛=0 ∞ |π‘₯ 𝑛 |. |𝑧|βˆ’π‘› < ∞ Thus if some value of 𝑧 = 𝑧1 is in the ROC, then all values of z defined by a circle with radius z = |𝑧1|will also be in the ROC. In ROC of X(z), |X(z)| < ∞ But as per the definition of z transform |𝑋 𝑧 | = | 𝑛=βˆ’βˆž ∞ π‘₯ 𝑛 π‘Ÿβˆ’π‘› . π‘’βˆ’π‘—π‘€π‘› | |𝑋 𝑧 | < 𝑛=βˆ’βˆž ∞ |π‘₯ 𝑛 π‘Ÿβˆ’π‘›|. |π‘’βˆ’π‘—π‘€π‘›| |𝑋 𝑧 | < 𝑛=βˆ’βˆž ∞ |π‘₯ 𝑛 π‘Ÿβˆ’π‘› | Hence |𝑋 𝑧 | is finite if sequence π‘₯ 𝑛 π‘Ÿβˆ’π‘› is absolutely summable. The problem of finding ROC for finding X(z) is equivalent to determining the range of values for r for which 𝒙 𝒏 . π’“βˆ’π’ is absolutely summable.
  • 21. 7 IT 01 Digital Signal Processing (Winter 2021) L25 Convergence of z Transform Corrolary |𝑋 𝑧 | < 𝑛=βˆ’βˆž βˆ’1 π‘₯ 𝑛 π‘Ÿβˆ’π‘› + 𝑛=0 ∞ π‘₯ 𝑛 π‘Ÿβˆ’π‘› |𝑋 𝑧 | < 𝑛=1 ∞ π‘₯ βˆ’π‘› π‘Ÿπ‘› + 𝑛=0 ∞ π‘₯ 𝑛 /π‘Ÿπ‘› 1) Non Causal component, 2) Causal component If X(z) converges in some region of the complex z plane, both the above summations must be finite in that region. If the first sum converges, there must exist values of r small enough such that the product sequence π‘₯ βˆ’π‘› π‘Ÿπ‘› in range 1 ≀ 𝑛 ≀ ∞ is absolutely summable. Therefore the ROC of the first term 𝑧𝑖 consists of all points in a circle of radius π‘Ÿ < π‘Ÿ1 π‘Ÿ1 π‘§π‘Ÿ where π‘Ÿ1 < ∞.
  • 22. 7 IT 01 Digital Signal Processing (Winter 2021) L25 Convergence of z Transform Corrolary |𝑋 𝑧 | < 𝑛=βˆ’βˆž βˆ’1 π‘₯ 𝑛 π‘Ÿβˆ’π‘› + 𝑛=0 ∞ π‘₯ 𝑛 π‘Ÿβˆ’π‘› |𝑋 𝑧 | < 𝑛=1 ∞ π‘₯ βˆ’π‘› π‘Ÿπ‘› + 𝑛=0 ∞ π‘₯ 𝑛 /π‘Ÿπ‘› 1) Non Causal component, 2) Causal component If the second sum converges, there must exist values of r large enough such that the product sequence π‘₯ 𝑛 /π‘Ÿπ‘› in range 0 ≀ 𝑛 ≀ ∞ is absolutely summable. Hence ROC of the second term in above equation π‘Ÿ2 𝑧𝑖 consists of all points outside a circle of radius π‘Ÿ > π‘Ÿ2 π‘§π‘Ÿ
  • 23. 7 IT 01 Digital Signal Processing (Winter 2021) L25 Convergence of z Transform Since the convergence of X(z) requires that both sums in the above equation be finite, it follows that the ROC of X(z) is generally specified as the annual region in the z plane π‘Ÿ2 ≀ π‘Ÿ ≀ π‘Ÿ1, which is the common region where both sums are finite i.e. π‘Ÿ2 < π‘Ÿ1 is a ring. π‘Ÿ1 𝑧𝑖 π‘Ÿ2 π‘§π‘Ÿ Annular region in z plane which is a ROC for the bilateral z transform.
  • 24. 7 IT 01 Digital Signal Processing (Winter 2021) L25 z Transform Problems Ex: Determine z Transform of the signal π‘₯ 𝑛 = 1 2 𝑛 𝑒(𝑛) Solution : In this example the signal x(n) is a infinite power series So x(n)={1, Β½, 1 2 2 , 1 2 3 , 1 2 4 , 1 2 5 , ……} The z transform is given by 𝑋 𝑧 = 𝑛=0 ∞ π‘₯ 𝑛 . π‘§βˆ’π‘› as the signal is causal Applying this formula to our power series function we get z transform of x(n) 𝑋 𝑧 = 𝑛=0 ∞ (1/2)𝑛 . π‘§βˆ’π‘› 𝑋 𝑧 = 𝑛=0 ∞ ( 1 2 . π‘§βˆ’1 )𝑛 Considering A= ( 1 2 . π‘§βˆ’1 ) we can write above equation as X(z) = 1+A+𝐴2 +𝐴3 +𝐴4 + ….
  • 25. 7 IT 01 Digital Signal Processing (Winter 2021) L25 z Transform Problems Ex: Determine z Transform of the signal π‘₯ 𝑛 = 1 2 𝑛 𝑒(𝑛) Continued : Considering A= ( 1 2 . π‘§βˆ’1) ; then X(z) = 1+A+𝐴2+𝐴3+𝐴4+ …. The infinite power series can be represented by IGSS as 𝑋(𝑧) = 1 1βˆ’π΄ Putting value of A in the above equation we get 𝑋(𝑧) = 1 1βˆ’ 1 2 .π‘§βˆ’1 As per IGSS formula A < 1 so 1 2 . π‘§βˆ’1 < 1 that means z > 1 2 This means the ROC is exterior of the circle with radius 1 2 𝑧𝑖 ROC consists of all points in the region that is 1 2 π‘§π‘Ÿ Outside the circle with radius 1 2 as shown in figure. ROC
  • 26. 7 IT 01 Digital Signal Processing (Winter 2021) L25 z Transform Problems Ex: Determine z Transform of the signal π‘₯ 𝑛 = 𝛼𝑛 𝑒(𝑛) Solution : In this example the signal x(n) is a infinite power series So x(n)={1, , 𝛼 2 , 𝛼 3 , 𝛼 4 , 𝛼 5 , ……} The z transform is given by 𝑋 𝑧 = 𝑛=0 ∞ π‘₯ 𝑛 . π‘§βˆ’π‘› as the signal is causal Applying this formula to our power series function we get z transform of x(n) 𝑋 𝑧 = 𝑛=0 ∞ (𝛼)𝑛. π‘§βˆ’π‘› 𝑋 𝑧 = 𝑛=0 ∞ (𝛼. π‘§βˆ’1 )𝑛 Considering A= (𝛼. π‘§βˆ’1) we can write above equation X(z) = 1+A+𝐴2+𝐴3+𝐴4+ ….
  • 27. 7 IT 01 Digital Signal Processing (Winter 2021) L25 z Transform Problems Ex: Determine z Transform of the signal π‘₯ 𝑛 = 𝛼 𝑛 𝑒(𝑛) Continued : Considering A= (𝛼. π‘§βˆ’1 ) ; then X(z) = 1+A+𝐴2 +𝐴3 +𝐴4 + …. The infinite power series can be represented by IGSS as 𝑋(𝑧) = 1 1βˆ’π΄ Putting value of A in the above equation we get 𝑿(𝒛) = 𝟏 πŸβˆ’πœΆπ’›βˆ’πŸ As per IGSS formula A < 1 so 𝛼. π‘§βˆ’1 < 1 that means z > 𝛼 This means the ROC is exterior of the circle with radius 𝛼 ROC consists of all points in the region that is outside the circle with radius 𝑧𝑖 𝛼 π‘§π‘Ÿ ROC
  • 28. 7 IT 01 Digital Signal Processing (Winter 2021) L25 z Transform Problems Thus we have a transform pair π‘₯ 𝑛 = 𝛼𝑛𝑒 𝑛 β†’ 𝑧 β†’ 𝑋(𝑧) = 1 1βˆ’π›Όπ‘§βˆ’1 with ROC |z|> 𝛼 Thus ROC is exterior of the circle in z plane with radius 𝛼 If we set 𝛼=1 then the input signal reduces to π‘₯ 𝑛 = 𝑒 𝑛 and its z transform reduces to 𝑋 𝑧 = 1 1βˆ’π‘§βˆ’1 = 𝑧 π‘§βˆ’1 with ROC |z| > 1
  • 29. 7 IT 01 Digital Signal Processing (Winter 2021) L25 z Transform Problems Ex: Determine z Transform of the signal π‘₯ 𝑛 = βˆ’π›Όπ‘›π‘’(βˆ’π‘› βˆ’ 1) Solution : From the definition of z transform we have 𝑋 𝑧 = 𝑛=βˆ’βˆž ∞ π‘₯ 𝑛 . π‘§βˆ’π‘› as the signal is anti-causal 𝑋 𝑧 = 𝑛=βˆ’βˆž βˆ’1 π‘₯(𝑛). π‘§βˆ’π‘› + 𝑛=0 ∞ π‘₯(𝑛). π‘§βˆ’π‘› = 𝑛=βˆ’βˆž βˆ’1 π‘₯(𝑛). π‘§βˆ’π‘› 𝑋 𝑧 = 𝑛=βˆ’βˆž βˆ’1 (βˆ’π›Όπ‘›)π‘§βˆ’π‘› = βˆ’ 𝑛=βˆ’βˆž βˆ’1 (𝛼𝑛)π‘§βˆ’π‘› 𝑋 𝑧 = βˆ’ 𝑛=βˆ’βˆž βˆ’1 (𝛼𝑛)π‘§βˆ’π‘› = βˆ’ 𝑛=1 ∞ (π›Όβˆ’π‘›)𝑧𝑛
  • 30. 7 IT 01 Digital Signal Processing (Winter 2021) L25 z Transform Problems 𝑋 𝑧 = βˆ’ 𝑛=βˆ’βˆž βˆ’1 (𝛼𝑛 )π‘§βˆ’π‘› = βˆ’ 𝑛=1 ∞ (π›Όβˆ’π‘› )𝑧𝑛 𝑋 𝑧 = βˆ’ 𝑛=1 ∞ (π›Όβˆ’1 𝑧)𝑛 Let A= π›Όβˆ’1𝑧, then as per IGSS formula we have 𝑋 𝑧 = βˆ’ 𝐴 1βˆ’π΄ = βˆ’ π›Όβˆ’1𝑧 1βˆ’π›Όβˆ’1𝑧 𝑋 𝑧 = 1 1 βˆ’ π›Όπ‘§βˆ’1 With A < 1 that is π›Όβˆ’1 𝑧 < 1 that means z < 𝛼 This means the ROC is interior of the circle with radius 𝛼 𝑧𝑖 ROC consists of all points in the region that is inside 𝛼 π‘§π‘Ÿ the circle with radius 𝛼.
  • 31. 7 IT 01 Digital Signal Processing (Winter 2021) L25 z Transform Problems So we found that signal π‘₯ 𝑛 = 𝛼𝑛 𝑒 𝑛 causal signal and signal π‘₯ 𝑛 = βˆ’π›Όπ‘›π‘’(βˆ’π‘› βˆ’ 1) an anti-causal signal has a same z transform that is 𝑋 𝑧 = 1 1 βˆ’ π›Όπ‘§βˆ’1 However these signals differ in ROC and it can be easily found that for π‘₯ 𝑛 = 𝛼𝑛𝑒 𝑛 (causal signal) the ROC is exterior of the circle in z plane with radius 𝛼 For π‘₯ 𝑛 = βˆ’π›Όπ‘›π‘’(βˆ’π‘› βˆ’ 1) (an anti-causal signal) 𝑧𝑖 the ROC is interior of the circle in z plane with radius 𝛼 𝛼 𝑧𝑖
  • 32. 7 IT 01 Digital Signal Processing (Winter 2021) L25 z Transform Problems Ex: Det. z Transform of the signal π‘₯ 𝑛 = 𝛼𝑛𝑒 𝑛 + 𝛽𝑛𝑒(βˆ’π‘› βˆ’ 1) Solution : This is a Bilateral or double sided z transform problem z transform is given by 𝑋 𝑧 = 𝑛=βˆ’βˆž ∞ π‘₯ 𝑛 . π‘§βˆ’π‘› So in this case 𝑋 𝑧 = 𝑛=βˆ’βˆž βˆ’1 π›½π‘›π‘§βˆ’π‘› + 𝑛=0 ∞ π›Όπ‘›π‘§βˆ’π‘› 𝑋 𝑧 = 𝑛=0 ∞ π›Όπ‘›π‘§βˆ’π‘› + 𝑛=βˆ’βˆž βˆ’1 π›½π‘›π‘§βˆ’π‘› 𝑋 𝑧 = 𝑛=0 ∞ π›Όπ‘›π‘§βˆ’π‘› + 𝑛=1 ∞ π›½βˆ’π‘›π‘§π‘›
  • 33. 7 IT 01 Digital Signal Processing (Winter 2021) L25 z Transform Problems Ex: Det. z Transform of the signal π‘₯ 𝑛 = 𝛼𝑛 𝑒 𝑛 + 𝛽𝑛 𝑒(βˆ’π‘› βˆ’ 1) Solution : 𝑋 𝑧 = 𝑛=0 ∞ (π›Όπ‘§βˆ’1 )𝑛 + 𝑛=1 ∞ (π›½βˆ’1 𝑧)𝑛 Applying IGSS formula , For first power series we get 1 1βˆ’π›Όπ‘§βˆ’1 with |π›Όπ‘§βˆ’1 |<1 that is |z| > 𝛼 that is ROC is exterior of the circle with radius 𝛼 Similarly by applying IGSS for second power series we get π›½βˆ’1𝑧 1βˆ’π›½βˆ’1𝑧 with |π›½βˆ’1𝑧|<1 that is |z| < 𝛽 that is ROC is interior of the circle with radius Ξ². In determining the X(z), if | 𝛽 | < | 𝛼 | ROC in z domain does not coincide with each other so they do not converge simultaneously
  • 34. 7 IT 01 Digital Signal Processing (Winter 2021) L25 z Transform Problems Ex: Det. z Transform of the signal π‘₯ 𝑛 = 𝛼𝑛 𝑒 𝑛 + 𝛽𝑛 𝑒(βˆ’π‘› βˆ’ 1) Solution : 𝑋 𝑧 = 𝑛=0 ∞ (π›Όπ‘§βˆ’1 )𝑛 + 𝑛=1 ∞ (π›½βˆ’1 𝑧)𝑛 But if | 𝛽 | > | 𝛼 | ROC of ring shape in z domain coincide with each other so they converge simultaneously 𝑋 𝑧 = 1 1βˆ’π›Όπ‘§βˆ’1 + π›½βˆ’1𝑧 1βˆ’π›½βˆ’1𝑧 = 1 1βˆ’π›Όπ‘§βˆ’1 - 1 1βˆ’π›½π‘§βˆ’1 And ROC is |𝛼|< |z| <|𝛽|
  • 35. 7 IT 01 Digital Signal Processing (Winter 2021) L25 Infinite Signals and ROC
  • 36. 7 IT 01 Digital Signal Processing (Winter 2021) L25 Properties of z Transform The z transform is a very powerful tool and this is exhibited by it’s powerful set of properties. Note : when we combine several z transforms, the ROC of the overall transform is at least the intersection of their ROCs. Properties: 1. Linearity 2. Time Shifting 3. Scaling in z domain 4. Time Reversal 5. Differentiation in z domain 6. Convolution of two sequences
  • 37. 7 IT 01 Digital Signal Processing (Winter 2021) L25 Linearity Property 1. Linearity: If π‘₯1 𝑛 ← 𝑧 β†’ 𝑋1(𝑧) and π‘₯2 𝑛 ← 𝑧 β†’ 𝑋2(𝑧) Then π‘₯ 𝑛 = π‘Ž1π‘₯1 𝑛 + π‘Ž2π‘₯2 𝑛 ← 𝑧 β†’ 𝑋 𝑧 = π‘Ž1𝑋1 𝑧 + π‘Ž2𝑋2 𝑧 Proof: 𝑧 π‘₯ 𝑛 = 𝑋 𝑧 = π‘˜=βˆ’βˆž ∞ π‘₯(π‘˜)π‘§βˆ’π‘˜ For π‘₯ π‘˜ = π‘Ž1π‘₯1 π‘˜ + π‘Ž2π‘₯2 π‘˜ 𝑋 𝑧 = π‘˜=βˆ’βˆž ∞ (π‘Ž1π‘₯1 π‘˜ + π‘Ž2π‘₯2(π‘˜))π‘§βˆ’π‘˜ = π‘˜=βˆ’βˆž ∞ π‘Ž1π‘₯1 π‘˜ π‘§βˆ’π‘˜ + π‘Ž2π‘₯2(π‘˜)π‘§βˆ’π‘˜ = π‘Ž1 π‘˜=βˆ’βˆž ∞ π‘₯1 π‘˜ π‘§βˆ’π‘˜ + π‘Ž2 π‘˜=βˆ’βˆž ∞ π‘₯2(π‘˜)π‘§βˆ’π‘˜ Thus 𝑋1 𝑧 𝑋2 𝑧 𝑋 𝑧 = π‘Ž1𝑋1 𝑧 + π‘Ž2𝑋2 𝑧 Thus the signal can be expressed first in composite form and then its z transform can be found.
  • 38. 7 IT 01 Digital Signal Processing (Winter 2021) L25 Problems on Linearity Property Ex: Determine the z Transform and ROC of the Signal x(n) =(π‘Žπ‘› + π‘Žβˆ’π‘›)𝑒(𝑛) Solution : Z Transform is given by 𝑋 𝑧 = 𝑛=βˆ’βˆž ∞ π‘₯ 𝑛 . π‘§βˆ’π‘› This signal can be represented as π‘₯1 = π‘Žπ‘›π‘’ 𝑛 and π‘₯2 = π‘Žβˆ’π‘›π‘’ 𝑛 So we have π‘₯ 𝑛 = π‘₯1 𝑛 + π‘₯2(𝑛) For π‘₯1 = π‘Žπ‘›π‘’ 𝑛 by applying z transform 𝑋1 𝑧 = 1 1βˆ’π‘Žπ‘§βˆ’1 with |π‘Žπ‘§βˆ’1|<1 or |z| > a Similarly for π‘₯2 = π‘Žβˆ’π‘› 𝑒 𝑛 by applying z transform 𝑋1 𝑧 = 1 1βˆ’π‘Žβˆ’1π‘§βˆ’1 with |π‘Žβˆ’1π‘§βˆ’1|<1 or |z| < π‘Žβˆ’1 So X 𝑧 = 1 1βˆ’π‘Žπ‘§βˆ’1 βˆ’ 1 1βˆ’π‘Žβˆ’1π‘§βˆ’1
  • 39. 7 IT 01 Digital Signal Processing (Winter 2021) L25 Problems on Linearity Property Ex: Determine the z Transform and ROC of the Signal x(n) =(π‘Žπ‘› + π‘Žβˆ’π‘›)𝑒(𝑛) Solution : So X 𝑧 = 1 1βˆ’π‘Žπ‘§βˆ’1 βˆ’ 1 1βˆ’π‘Žβˆ’1π‘§βˆ’1 = 𝑧 π‘§βˆ’π‘Ž βˆ’ 𝑧 π‘§βˆ’π‘Žβˆ’1 With ROC as intersection of ROCs of these two regions that are |z|> a and |z| < 1/a So ROC is the annual region between circle with radius 1/a and circle with Radius a
  • 40. 7 IT 01 Digital Signal Processing (Winter 2021) L25 Problems on Linearity Property EX: Determine the z transform of signal π‘₯(𝑛) = (cos 𝑀0𝑛)u(n) Solution : Given signal is π‘₯(𝑛) = (cos 𝑀0𝑛)u(n) This signal can be decomposed by using Eular’s Identity as cos 𝑀0𝑛 = 𝑒𝑗𝑀0𝑛 + π‘’βˆ’π‘—π‘€0𝑛 2 So π‘₯(𝑛) = ( 𝑒𝑗𝑀0𝑛+π‘’βˆ’π‘—π‘€0𝑛 2 )u(n) Thus the decomposed signal is represented as π‘₯ 𝑛 = 𝑒𝑗𝑀0𝑛 2 u n + π‘’βˆ’π‘—π‘€0𝑛 2 u n 𝑋 𝑧 = 1 2 [𝑧(𝑒𝑗𝑀0𝑛)+𝑧(π‘’βˆ’π‘—π‘€0𝑛)] We can write π‘₯1(𝑛) = 𝑒𝑗𝑀0𝑛𝑒(𝑛) and π‘₯2(𝑛) = π‘’βˆ’π‘—π‘€0𝑛𝑒(𝑛)
  • 41. 7 IT 01 Digital Signal Processing (Winter 2021) L25 Problems on Linearity Property 𝑿 𝒛 = 𝟏 𝟐 [𝒛(π’†π’‹π’˜πŸŽπ’)+𝒛(π’†βˆ’π’‹π’˜πŸŽπ’)] We can write π‘₯1 = 𝑒𝑗𝑀0𝑛𝑒(𝑛) and π‘₯2 = π‘’βˆ’π‘—π‘€0𝑛𝑒(𝑛) Let us say 𝛼 = 𝑒𝑗𝑀0 so 𝛼 = 𝑒𝑗𝑀0 = 1 𝑋1 𝑧 = 𝑧{ 𝑒𝑗𝑀0𝑛 𝑒 𝑛 } = 𝑛=0 ∞ 𝑒𝑗𝑀0𝑛 π‘§βˆ’π‘› 𝑋1 𝑧 = 𝑛=0 ∞ (𝑒𝑗𝑀0π‘§βˆ’1)𝑛 = 1 1βˆ’(𝑒𝑗𝑀0π‘§βˆ’1) where |𝑒𝑗𝑀0π‘§βˆ’1| < 1 As 𝑒𝑗𝑀0 = 1 , ROC is |z|> 1 Now let us say 𝛼 = π‘’βˆ’π‘—π‘€0 so 𝛼 = π‘’βˆ’π‘—π‘€0 = 1 𝑋2 𝑧 = 𝑧{ π‘’βˆ’π‘—π‘€0𝑛 𝑒 𝑛 } = 𝑛=0 ∞ π‘’βˆ’π‘—π‘€0𝑛 π‘§βˆ’π‘› 𝑋2 𝑧 = 𝑛=0 ∞ (π‘’βˆ’π‘—π‘€0π‘§βˆ’1 )𝑛 = 1 1βˆ’(π‘’βˆ’π‘—π‘€0π‘§βˆ’1) where |π‘’βˆ’π‘—π‘€0π‘§βˆ’1 | < 1 As 𝑒𝑗𝑀0 = 1 , ROC is |z|> 1
  • 42. 7 IT 01 Digital Signal Processing (Winter 2021) L25 Problems on Linearity Property 𝑿 𝒛 = 𝟏 𝟐 [𝒛(π’†π’‹π’˜πŸŽπ’)+𝒛(π’†π’‹π’˜πŸŽπ’)] 𝑋 𝑧 = 1 2 { 1 1βˆ’(𝑒𝑗𝑀0π‘§βˆ’1) + 1 1βˆ’(π‘’βˆ’π‘—π‘€0π‘§βˆ’1) } Where ROC in both cases is |z|> 1 𝑋 𝑧 = 1 2 { 1βˆ’(π‘’βˆ’π‘—π‘€0π‘§βˆ’1+1βˆ’(𝑒𝑗𝑀0π‘§βˆ’1) 1βˆ’π‘’π‘—π‘€0π‘§βˆ’1 βˆ—(1βˆ’π‘’βˆ’π‘—π‘€0π‘§βˆ’1) } 𝑋 𝑧 = 1 2 { 2βˆ’π‘’βˆ’π‘—π‘€0π‘§βˆ’1βˆ’π‘’π‘—π‘€0π‘§βˆ’1 1βˆ’π‘’π‘—π‘€0π‘§βˆ’1 βˆ—(1βˆ’π‘’βˆ’π‘—π‘€0π‘§βˆ’1) } Solving Numerator = 2 βˆ’ π‘’βˆ’π‘—π‘€0π‘§βˆ’1 βˆ’ 𝑒𝑗𝑀0π‘§βˆ’1 = 2 βˆ’ 2(𝑒𝑗𝑀0+π‘’βˆ’π‘—π‘€0) π‘§βˆ’1 2 = 2 βˆ’ 2 π‘π‘œπ‘ π‘€0π‘§βˆ’1
  • 43. 7 IT 01 Digital Signal Processing (Winter 2021) L25 Problems on Linearity Property 𝑋 𝑧 = 1 2 { 2βˆ’π‘’βˆ’π‘—π‘€0π‘§βˆ’1βˆ’π‘’π‘—π‘€0π‘§βˆ’1 1βˆ’π‘’π‘—π‘€0π‘§βˆ’1 βˆ—(1βˆ’π‘’βˆ’π‘—π‘€0π‘§βˆ’1) } Solving Denominator = (1 βˆ’ 𝑒𝑗𝑀0π‘§βˆ’1 βˆ’ π‘’βˆ’π‘—π‘€0π‘§βˆ’1 + π‘§βˆ’2) = (1 βˆ’ 2π‘§βˆ’1 𝑒𝑗𝑀0+π‘’βˆ’π‘—π‘€0 2 + π‘§βˆ’2) = 1 βˆ’ 2π‘§βˆ’1 cos π‘€π‘œ + π‘§βˆ’2 So 𝑋(𝑧) = 2(1 βˆ’ π‘π‘œπ‘ π‘€0π‘§βˆ’1) 2(1 βˆ’ 2π‘§βˆ’1 cos π‘€π‘œ + π‘§βˆ’2) Ans is 𝑿(𝒛) = πŸβˆ’π’„π’π’”π’˜πŸŽπ’›βˆ’πŸ πŸβˆ’πŸπ’›βˆ’πŸ 𝒄𝒐𝒔 π’˜π’+π’›βˆ’πŸ with ROC is |z|>1
  • 44. 7 IT 01 Digital Signal Processing (Winter 2021) L25 Problems on Linearity Property EX: Determine the z transform of signal π‘₯(𝑛) = (sin 𝑀0𝑛)u(n) Solution : Given signal is π‘₯(𝑛) = (𝑠𝑖𝑛 𝑀0𝑛)u(n) This signal can be decomposed by using Eular’s Identity as sin 𝑀0𝑛 = 𝑒𝑗𝑀0𝑛 βˆ’ π‘’βˆ’π‘—π‘€0𝑛 2𝑗 So π‘₯(𝑛) = ( 𝑒𝑗𝑀0π‘›βˆ’π‘’βˆ’π‘—π‘€0𝑛 2𝑗 )u(n) Thus the decomposed signal is represented as π‘₯ 𝑛 = 𝑒𝑗𝑀0𝑛 2𝑗 u n βˆ’ π‘’βˆ’π‘—π‘€0𝑛 2𝑗 u n 𝑋 𝑧 = 1 2𝑗 [𝑧(𝑒𝑗𝑀0𝑛)-𝑧(π‘’βˆ’π‘—π‘€0𝑛)] We can write π‘₯1 = 𝑒𝑗𝑀0𝑛 𝑒(𝑛) and π‘₯2 = π‘’βˆ’π‘—π‘€0𝑛 𝑒(𝑛)
  • 45. 7 IT 01 Digital Signal Processing (Winter 2021) L25 Problems on Linearity Property 𝑿 𝒛 = 𝟏 πŸπ’‹ [𝒛(π’†π’‹π’˜πŸŽπ’)-𝒛(π’†βˆ’π’‹π’˜πŸŽπ’)] We can write π‘₯1 = 𝑒𝑗𝑀0𝑛𝑒(𝑛) and π‘₯2 = π‘’βˆ’π‘—π‘€0𝑛𝑒(𝑛) Let us say 𝛼 = 𝑒𝑗𝑀0 so 𝛼 = 𝑒𝑗𝑀0 = 1 𝑋1 𝑧 = 𝑧{ 𝑒𝑗𝑀0𝑛 𝑒 𝑛 } = 𝑛=0 ∞ 𝑒𝑗𝑀0𝑛 π‘§βˆ’π‘› 𝑋1 𝑧 = 𝑛=0 ∞ (𝑒𝑗𝑀0π‘§βˆ’1 )𝑛 = 1 1βˆ’(𝑒𝑗𝑀0π‘§βˆ’1) where |𝑒𝑗𝑀0π‘§βˆ’1 | < 1 As 𝑒𝑗𝑀0 = 1 , ROC is |z|> 1 Now let us say 𝛼 = π‘’βˆ’π‘—π‘€0 so 𝛼 = π‘’βˆ’π‘—π‘€0 = 1 𝑋1 𝑧 = 𝑧{ π‘’βˆ’π‘—π‘€0𝑛 𝑒 𝑛 } = 𝑛=0 ∞ π‘’βˆ’π‘—π‘€0𝑛 π‘§βˆ’π‘› 𝑋1 𝑧 = 𝑛=0 ∞ (π‘’βˆ’π‘—π‘€0π‘§βˆ’1)𝑛 = 1 1βˆ’(π‘’βˆ’π‘—π‘€0π‘§βˆ’1) where |π‘’βˆ’π‘—π‘€0π‘§βˆ’1| < 1 As 𝑒𝑗𝑀0 = 1 , ROC is |z|> 1
  • 46. 7 IT 01 Digital Signal Processing (Winter 2021) L25 Problems on Linearity Property 𝑿 𝒛 = 𝟏 πŸπ’‹ [𝒛(π’†π’‹π’˜πŸŽπ’)-𝒛(π’†βˆ’π’‹π’˜πŸŽπ’)] 𝑋 𝑧 = 1 2𝑗 { 1 1βˆ’(𝑒𝑗𝑀0π‘§βˆ’1) βˆ’ 1 1βˆ’(π‘’βˆ’π‘—π‘€0π‘§βˆ’1) } Where ROC in both cases is |z|> 1 𝑋 𝑧 = 1 2𝑗 { 1βˆ’π‘’βˆ’π‘—π‘€0π‘§βˆ’1βˆ’1+𝑒𝑗𝑀0π‘§βˆ’1) 1βˆ’π‘’π‘—π‘€0π‘§βˆ’1 βˆ—(1βˆ’π‘’βˆ’π‘—π‘€0π‘§βˆ’1) } 𝑋 𝑧 = 1 2𝑗 { βˆ’π‘’βˆ’π‘—π‘€0π‘§βˆ’1+𝑒𝑗𝑀0π‘§βˆ’1 1βˆ’π‘’π‘—π‘€0π‘§βˆ’1 βˆ—(1βˆ’π‘’βˆ’π‘—π‘€0π‘§βˆ’1) } Solving Numerator = π‘’βˆ’π‘—π‘€0π‘§βˆ’1 βˆ’ 𝑒𝑗𝑀0π‘§βˆ’1 = (𝑒𝑗𝑀0βˆ’π‘’βˆ’π‘—π‘€0) π‘§βˆ’1 2𝑗 = sin 𝑀0 π‘§βˆ’1
  • 47. 7 IT 01 Digital Signal Processing (Winter 2021) L25 Problems on Linearity Property 𝑋 𝑧 = 1 2 { 2βˆ’π‘’βˆ’π‘—π‘€0π‘§βˆ’1βˆ’π‘’π‘—π‘€0π‘§βˆ’1 1βˆ’π‘’π‘—π‘€0π‘§βˆ’1 βˆ—(1βˆ’π‘’βˆ’π‘—π‘€0π‘§βˆ’1) } Solving Denominator = (1 βˆ’ 𝑒𝑗𝑀0π‘§βˆ’1 βˆ’ π‘’βˆ’π‘—π‘€0π‘§βˆ’1 + π‘§βˆ’2) = (1 βˆ’ 2π‘§βˆ’1 𝑒𝑗𝑀0+π‘’βˆ’π‘—π‘€0 2 + π‘§βˆ’2) = 1 βˆ’ 2π‘§βˆ’1 cos π‘€π‘œ + π‘§βˆ’2 So 𝑋(𝑧) = 𝑠𝑖𝑛 𝑀0π‘§βˆ’1 2(1 βˆ’ 2π‘§βˆ’1 cos π‘€π‘œ + π‘§βˆ’2) Ans is 𝑿(𝒛) = π’”π’Šπ’ π’˜πŸŽπ’›βˆ’πŸ πŸβˆ’πŸπ’›βˆ’πŸ 𝒄𝒐𝒔 π’˜π’+π’›βˆ’πŸ with ROC |z|>1
  • 48. 7 IT 01 Digital Signal Processing (Winter 2021) L25 Problems on Linearity Property EX: Determine the z transform and ROC of the signal π‘₯ 𝑛 = βˆ’ 1 3 𝑛 u n + βˆ’ 1 2 𝑛 u(βˆ’n βˆ’ 1) Solution : Given signal is π‘₯(𝑛) so X(z) =z(x(n)) Let π‘₯1(𝑛) = βˆ’ 1 3 𝑛 𝑒(𝑛) and π‘₯2(𝑛) = βˆ’ 1 2 𝑛 𝑒(βˆ’π‘› βˆ’ 1) So π‘₯ 𝑛 = π‘₯1 𝑛 + π‘₯2(𝑛) For z transform of power series in n, π‘₯ 𝑛 = 𝛼𝑛𝑒 𝑛 by using IGSSS formula we have 𝑋 𝑧 = 1 1βˆ’π›Όπ‘§βˆ’1 with ROC |z|>𝛼 so 𝑋1 𝑧 = 𝑧 π‘₯1 𝑛 = z( βˆ’ 1 3 𝑛 𝑒(𝑛)) = 1 1+ 1 3 π‘§βˆ’1 with ROC |z|> 1 3
  • 49. 7 IT 01 Digital Signal Processing (Winter 2021) L25 Problems on Linearity Property Similarly 𝑋2 𝑧 = 𝑧 π‘₯2 𝑛 = z( βˆ’ 1 2 𝑛 𝑒(βˆ’π‘› βˆ’ 1)) = 1 1+ 1 2 π‘§βˆ’1 with ROC |z|< 1 2 So 𝑋 𝑧 = 1 1+ 1 3 π‘§βˆ’1 + 1 1+ 1 2 π‘§βˆ’1 with ROC is |z|> 1/3 and |z|<1/2
  • 50. 7 IT 01 Digital Signal Processing (Winter 2021) L25 Properties of z Transform The z transform is a very powerful tool and this is exhibited by it’s powerful set of properties. Note : when we combine several z transforms, the ROC of the overall transform is at least the intersection of their ROCs. Properties: 1. Linearity 2. Time Shifting 3. Scaling in z domain 4. Time Reversal 5. Differentiation in z domain 6. Convolution of two sequences
  • 51. 7 IT 01 Digital Signal Processing (Winter 2021) L25 Time Shifting Property 𝟐) π‘»π’Šπ’Žπ’† π‘Ίπ’‰π’Šπ’‡π’•π’Šπ’π’ˆ π‘·π’“π’π’‘π’†π’“π’•π’š If π‘₯ 𝑛 𝑧 𝑋 𝑧 Then π‘₯ 𝑛 βˆ’ π‘˜ 𝑧 π‘§βˆ’π‘˜π‘‹ 𝑧 Proof: 𝑋 𝑧 = 𝑧 π‘₯ 𝑛 βˆ’ π‘˜ = 𝑛=0 ∞ π‘₯(𝑛 βˆ’ π‘˜)π‘§βˆ’π‘› Let m= n-k so above equation becomes 𝑋 𝑧 = π‘š=0 ∞ π‘₯(π‘š)π‘§βˆ’(π‘š+π‘˜) = π‘š=0 ∞ π‘₯ π‘š π‘§βˆ’π‘š. π‘§βˆ’π‘˜ 𝑿 𝒛 = π’›βˆ’π’Œ π’Ž=𝟎 ∞ 𝒙 π’Ž π’›βˆ’π’Ž = π’›βˆ’π’Œ . 𝑿(𝒛) Hence Proved So this property states that shifting sequence in time corresponds to multiplication Z transform by π‘§βˆ’π‘˜ in z domain.
  • 52. 7 IT 01 Digital Signal Processing (Winter 2021) L25 Problems on Time Shifting Property Ex : Find out z transform of x(n) =u(n-1) using time shifting property. Solution : Given signal is shifted form of unit sample sequence by 1. So π‘ˆ 𝑧 = 1 1βˆ’π‘§βˆ’1 = 𝑧 π‘§βˆ’1 The given signal is shifted by 1 sample so k=1 in this case so 𝑋 𝑧 = π‘§βˆ’1 𝑧 𝑧 βˆ’ 1 = 1 𝑧 βˆ’ 1
  • 53. 7 IT 01 Digital Signal Processing (Winter 2021) L25 Problems on Time Shifting Property Ex : Find out z transform of x(n) =u(n-1) using time shifting property. Solution : Given signal is shifted form of unit sample sequence by 1. So π‘ˆ 𝑧 = 1 1βˆ’π‘§βˆ’1 = 𝑧 π‘§βˆ’1 with ROC |z|>1 The given signal is shifted by 1 sample so k=1 in this case so 𝑋 𝑧 = π‘§βˆ’1 𝑧 𝑧 βˆ’ 1 = 1 𝑧 βˆ’ 1 With ROC as |z|>1 that is ROC is exterior of the circle with radius 1 in z plane.
  • 54. 7 IT 01 Digital Signal Processing (Winter 2021) L25 Problems on Time Shifting Property Ex : Find z transform of finite duration signal x(n)={1, 2, 7, 5, 0, 1} and then find z transform of x(n-3) and x(n+2) using time shifting property . Solution : The z transform equation is 𝑋 𝑧 = 𝑛=0 ∞ π‘₯ 𝑛 . π‘§βˆ’π‘› 1) So X(z) =1.𝑧0 +2*π‘§βˆ’1 + 7π‘§βˆ’2 + 5π‘§βˆ’3 + 0. π‘§βˆ’4 + 1. π‘§βˆ’5 X(z) =1 +2π‘§βˆ’1 + 7π‘§βˆ’2 + 5π‘§βˆ’3 + π‘§βˆ’5 For finite duration causal signals the ROC is entire z plane except z=0 2) For x(n-3)={0, 0 , 0, 1, 2, 7, 5, 0, 1} here k=3 𝑋1(z) =π‘§βˆ’3 𝑋 𝑧 = π‘§βˆ’3(1 +2π‘§βˆ’1 + 7π‘§βˆ’2 + 5π‘§βˆ’3 + π‘§βˆ’5) 𝑋1(z) = π‘§βˆ’3 +2π‘§βˆ’4 + 7π‘§βˆ’5 + 5π‘§βˆ’6 + π‘§βˆ’8) :ROC entire z plane except z=0 3) For x(n+2)={1, 2, 7, 5, 0, 1} here k=-2 𝑋2(z) =𝑧+2 𝑋 𝑧 = 𝑧+2(1 +2π‘§βˆ’1 + 7π‘§βˆ’2 + 5π‘§βˆ’3 + π‘§βˆ’5) 𝑋2(z) =𝑧+2 𝑋 𝑧 = 𝑧+2 +2𝑧+1 + 7𝑧0 + 5π‘§βˆ’1 + π‘§βˆ’3) :ROC entire z plane except z=0 and z = ∞
  • 55. 7 IT 01 Digital Signal Processing (Winter 2021) L25 Properties of z Transform The z transform is a very powerful tool and this is exhibited by it’s powerful set of properties. Note : when we combine several z transforms, the ROC of the overall transform is at least the intersection of their ROCs. Properties: 1. Linearity 2. Time Shifting 3. Scaling in z domain 4. Time Reversal 5. Differentiation in z domain 6. Convolution of two sequences
  • 56. 7 IT 01 Digital Signal Processing (Winter 2021) L25 Scaling in z-Domain Property 3) Scaling in Z domain : If π‘₯ 𝑛 𝑧 𝑋 𝑧 with ROC π‘Ÿ1 < 𝑧 < π‘Ÿ2 Then π‘Žπ‘›π‘₯ 𝑛 𝑧 𝑋 π‘Žβˆ’1𝑧 with ROC |π‘Ž|π‘Ÿ1 < 𝑧 < |π‘Ž|π‘Ÿ2 Where a may be real or complex. Proof : Let us apply the definition of z transform 𝑋 𝑧 = 𝑧 π‘Žπ‘›π‘₯ 𝑛 = 𝑛=0 ∞ π‘₯ 𝑛 . π‘Žπ‘›. π‘§βˆ’π‘› 𝑋 𝑧 = 𝑛=0 ∞ π‘₯ 𝑛 . (π‘Žβˆ’1 𝑧)βˆ’π‘› So this is a form of π‘Žβˆ’1𝑧 transform that is X(π‘Žβˆ’1𝑧) Now putting this value in z in ROC equation get π‘Ÿ1 < π‘Žβˆ’1𝑧 < π‘Ÿ2 and by cross multiplication we get |π‘Ž|π‘Ÿ1 < 𝑧 < |π‘Ž|π‘Ÿ2
  • 57. 7 IT 01 Digital Signal Processing (Winter 2021) L25 Problems on scaling in z domain Property EX: Determine z transform of signal using scaling in z domain π‘₯(𝑛) = (π‘Žπ‘›cos 𝑀0𝑛)u(n) Solution: By knowing the z transform of (cos 𝑀0𝑛)u(n) it becomes very easy to find z transform of given signal using the scaling in z domain property. For x n = (cos 𝑀0𝑛)u(n) the z transform is 𝑿(𝒛) = πŸβˆ’π’„π’π’”π’˜πŸŽπ’›βˆ’πŸ πŸβˆ’πŸπ’›βˆ’πŸ 𝒄𝒐𝒔 π’˜π’+π’›βˆ’πŸ with ROC is |z|>1 By knowing this and using scaling in z domain property z transform of the given signal can be found by replacing z by π’‚βˆ’πŸπ’› in above equation X(z) = 1 βˆ’ cosw0(aβˆ’1 z)βˆ’1 1 βˆ’ 2(aβˆ’1z)βˆ’1cos wo + (aβˆ’1z)βˆ’2
  • 58. 7 IT 01 Digital Signal Processing (Winter 2021) L25 Problems on scaling in z domain Property X(z) = 1 βˆ’ π‘Žπ‘§βˆ’1cosw0 1 βˆ’ 2π‘Žπ‘§βˆ’1 cos wo + π‘Ž2π‘§βˆ’2 For finding the ROC replace z by aβˆ’1z For ROC |z| > 1 we will have ROC as |aβˆ’1z|>1 That is |z| > a
  • 59. 7 IT 01 Digital Signal Processing (Winter 2021) L25 Problems on scaling in z domain Property EX: Determine z transform of signal using scaling in z domain π‘₯(𝑛) = (π‘Žπ‘›sin 𝑀0𝑛)u(n) Solution:By knowing the z transform of (𝑠𝑖𝑛 𝑀0𝑛)u(n) it becomes very easy to find z transform of given signal using the scaling in z domain property. For x n = (𝑠𝑖𝑛 𝑀0𝑛)u(n) the z transform is X(z) = π‘§βˆ’1sinw0 1 βˆ’ 2π‘§βˆ’1 cos wo + π‘§βˆ’2 By knowing this and using scaling in z domain property z transform of the given signal can be found by replacing z by π’‚βˆ’πŸπ’› in above equation X(z) = (aβˆ’1z)βˆ’1sinw0 1 βˆ’ 2(aβˆ’1z)βˆ’1cos wo + (aβˆ’1z)βˆ’2
  • 60. 7 IT 01 Digital Signal Processing (Winter 2021) L25 Problems on scaling in z domain Property EX: Determine z transform of signal using scaling in z domain π‘₯(𝑛) = (π‘Žπ‘›sin 𝑀0𝑛)u(n) X(z) = azβˆ’1sinw0 1 βˆ’ 2π‘Žπ‘§βˆ’1 cos wo + π‘Ž2π‘§βˆ’2 For finding the ROC replace z by aβˆ’1 z For ROC |z| > 1 we will have ROC as |aβˆ’1z|>1 That is |z| > a
  • 61. 7 IT 01 Digital Signal Processing (Winter 2021) L25 Properties of z Transform The z transform is a very powerful tool and this is exhibited by it’s powerful set of properties. Note : when we combine several z transforms, the ROC of the overall transform is at least the intersection of their ROCs. Properties: 1. Linearity 2. Time Shifting 3. Scaling in z domain 4. Time Reversal 5. Differentiation in z domain 6. Convolution of two sequences
  • 62. 7 IT 01 Digital Signal Processing (Winter 2021) L25 Time Reversal Property 4) Time Reversal Property : If π‘₯ 𝑛 𝑧 𝑋 𝑧 with ROC π‘Ÿ1 < 𝑧 < π‘Ÿ2 Then x βˆ’π‘› 𝑧 𝑋 π‘§βˆ’1 with ROC 1 π‘Ÿ2 < 𝑧 < 1 π‘Ÿ1 Where a may be real or complex. Proof : Let us apply the definition of z transform 𝑋 𝑧 = 𝑧 π‘₯ βˆ’π‘› = 𝑛=βˆ’βˆž ∞ π‘₯ βˆ’π‘› . π‘§βˆ’π‘› Now let l=-n then 𝑧 π‘₯ βˆ’π‘› = 𝑙=βˆ’βˆž ∞ π‘₯ 𝑙 . (π‘§βˆ’1 )βˆ’π‘™ = 𝑋(π‘§βˆ’1 ) ROC is π‘Ÿ1 < π‘§βˆ’1 < π‘Ÿ2 that is π‘Ÿ1 < 1 𝑧 < π‘Ÿ2 that means 1 π‘Ÿ2 < 𝑧 < 1 π‘Ÿ1
  • 63. 7 IT 01 Digital Signal Processing (Winter 2021) L25 Problems on Time Reversal Property Ex: Determine z transform of π‘₯(𝑛) = 𝑒(βˆ’π‘›) Solution: z transform is defined as 𝑋 𝑧 = 𝑛=0 ∞ π‘₯ 𝑛 . (𝑧)βˆ’π‘› We know the transform pair 𝑧 𝑒 𝑛 = π‘ˆ(𝑧) = 1 1βˆ’π‘§βˆ’1 with ROC |z| >1 By using the time reversal property 𝑧 𝑒 βˆ’π‘› = π‘ˆ(π‘§βˆ’1 ) = 1 1βˆ’(π‘§βˆ’1)βˆ’1 with ROC |z| < 1 𝑧 𝑒 βˆ’π‘› = 1 1βˆ’π‘§ with ROC |z| < 1
  • 64. 7 IT 01 Digital Signal Processing (Winter 2021) L25 Properties of z Transform The z transform is a very powerful tool and this is exhibited by it’s powerful set of properties. Note : when we combine several z transforms, the ROC of the overall transform is at least the intersection of their ROCs. Properties: 1. Linearity 2. Time Shifting 3. Scaling in z domain 4. Time Reversal 5. Differentiation in z domain 6. Convolution of two sequences
  • 65. 7 IT 01 Digital Signal Processing (Winter 2021) L25 Differentiation in z Domain Property 5) Differentiation in z Domain Property : If π‘₯ 𝑛) 𝑧 𝑋 𝑧 Then n x 𝑛 𝑧 βˆ’ 𝑧 𝑑𝑋(𝑧) 𝑑𝑧 with same ROC Proof : For signal π‘₯ 𝑛 𝑧 𝑋 𝑧 Using the definition of z transform 𝑋 𝑧 = 𝑧 π‘₯ 𝑛 = 𝑛=0 ∞ π‘₯ 𝑛 . π‘§βˆ’π‘› Taking differentiation of both sides 𝑑𝑋 𝑧 𝑑𝑧 = 𝑛=0 ∞ π‘₯ 𝑛 . 𝑑 𝑑𝑧 π‘§βˆ’π‘› 𝑑𝑋 𝑧 𝑑𝑧 = 𝑛=0 ∞ π‘₯ 𝑛 . (βˆ’π‘›. π‘§βˆ’π‘›βˆ’1)
  • 66. 7 IT 01 Digital Signal Processing (Winter 2021) L25 Differentiation in z Domain Property 𝑑𝑋 𝑧 𝑑𝑧 = 𝑛=0 ∞ π‘₯ 𝑛 . (βˆ’π‘›. π‘§βˆ’π‘›βˆ’1 ) 𝑑𝑋 𝑧 𝑑𝑧 = βˆ’ 𝑛=0 ∞ 𝑛π‘₯ 𝑛 . (π‘§βˆ’1 ) π‘§βˆ’π‘› 𝑑𝑋 𝑧 𝑑𝑧 = βˆ’π‘§βˆ’1 𝑛=0 ∞ 𝑛π‘₯ 𝑛 . π‘§βˆ’π‘› 𝑑𝑋 𝑧 𝑑𝑧 = βˆ’π‘§βˆ’1 𝑧 𝑛π‘₯ 𝑛 βˆ’π‘§ 𝑑𝑋 𝑧 𝑑𝑧 = 𝑧 𝑛π‘₯ 𝑛 βˆ’π‘§ 𝑑𝑋 𝑧 𝑑𝑧 𝑧 𝑛π‘₯ 𝑛 With both X 𝑧 π‘Žπ‘›π‘‘ 𝑑𝑋 𝑧 𝑑𝑧 has same ROC
  • 67. 7 IT 01 Digital Signal Processing (Winter 2021) L25 Problems on Diff. in z Domain Property EX : Determine the z transform of the given signal π‘₯ 𝑛 = π‘›π‘Žπ‘› 𝑒(𝑛) Solution : In this case we can write π‘₯ 𝑛 = 𝑛 [π‘Žπ‘›π‘’ 𝑛 ] let π‘₯1 𝑛 = π‘Žπ‘›π‘’(𝑛) So π‘₯ 𝑛 = 𝑛π‘₯1(𝑛) 𝑋1 𝑧 = 1 1βˆ’π‘Žπ‘§βˆ’1 with ROC |z| > a By using differentiation in z domain property z transform of 𝑛π‘₯(𝑛) is βˆ’π‘§ 𝑑𝑋 𝑧 𝑑𝑧 so in this case 𝑧 π‘₯ 𝑛 = βˆ’π‘§ 𝑑 𝑑𝑧 ( 1 1βˆ’π‘Žπ‘§βˆ’1) Using differentiation formula 𝑑 𝑑𝑧 𝑒 𝑣 = 𝑒.π‘‘π‘£βˆ’π‘£.𝑑𝑒 𝑣2 We get X 𝑧 = π‘Žπ‘§βˆ’1 (1βˆ’π‘Žπ‘§βˆ’1)2 with ROC |z| > a
  • 68. 7 IT 01 Digital Signal Processing (Winter 2021) L25 Problems on Diff. in z Domain Property EX : Determine the z transform of the given signal π‘₯ 𝑛 = π‘›π‘Žπ‘› 𝑒(𝑛) So : In this case we can write π‘₯ 𝑛 = 𝑛 [π‘Žπ‘›π‘’ 𝑛 ]let π‘₯1 𝑛 = π‘Žπ‘› 𝑒(𝑛) , So π‘₯ 𝑛 = 𝑛π‘₯1(𝑛) 𝑋1 𝑧 = 1 1βˆ’π‘Žπ‘§βˆ’1 with ROC |z| > a By using differentiation in z domain property z transform of 𝑛π‘₯(𝑛) is βˆ’π‘§ 𝑑𝑋 𝑧 𝑑𝑧 so in this case 𝑧 π‘₯ 𝑛 = βˆ’π‘§ 𝑑 𝑑𝑧 ( 1 1βˆ’π‘Žπ‘§βˆ’1) Using differentiation formula 𝑑 𝑑𝑧 𝑒 𝑣 = 𝑒.π‘‘π‘£βˆ’π‘£.𝑑𝑒 𝑣2 We get X 𝑧 = π‘Žπ‘§βˆ’1 (1βˆ’π‘Žπ‘§βˆ’1)2 with ROC |z| > a If we consider a=1 we get a ramp signal π‘₯ 𝑛 = 𝑛𝑒(𝑛) So its z transform is X 𝑧 = π‘§βˆ’1 (1βˆ’π‘§βˆ’1)2 with ROC |z| > 1
  • 69. 7 IT 01 Digital Signal Processing (Winter 2021) L25 Properties of z Transform The z transform is a very powerful tool and this is exhibited by it’s powerful set of properties. Note : when we combine several z transforms, the ROC of the overall transform is at least the intersection of their ROCs. Properties: 1. Linearity 2. Time Shifting 3. Scaling in z domain 4. Time Reversal 5. Differentiation in z domain 6. Convolution of two sequences
  • 70. 7 IT 01 Digital Signal Processing (Winter 2021) L25 Convolution Property 6) Convolution of Two Sequences Property If π‘₯1 𝑛 𝑧 𝑋1 𝑧 and If π‘₯2 𝑛 𝑧 𝑋2 𝑧 Then for π‘₯ 𝑛 = π‘₯1 𝑛 βˆ— π‘₯2 𝑛 𝑧 𝑋 𝑧 = 𝑋1 𝑧 . 𝑋2 𝑧 ROC of X(z) is at least an intersection of ROCs for 𝑋1 𝑧 and 𝑋2 𝑧 . Proof : Convolution of π‘₯1 𝑛 π‘Žπ‘›π‘‘ π‘₯2 𝑛 is defined as 𝑦 𝑛 = π‘˜=βˆ’βˆž ∞ π‘₯1 π‘˜ . π‘₯2(𝑛 βˆ’ π‘˜) Z transform of x(n) is 𝑋 𝑧 = π‘˜=βˆ’βˆž ∞ π‘₯ 𝑛 . π‘§βˆ’π‘› 𝑋 𝑧 = π‘˜=βˆ’βˆž ∞ π‘₯1 π‘˜ . 𝑛=βˆ’βˆž ∞ π‘₯2(𝑛 βˆ’ π‘˜) . π‘§βˆ’π‘›
  • 71. 7 IT 01 Digital Signal Processing (Winter 2021) L25 Convolution Property 𝑋 𝑧 = π‘˜=βˆ’βˆž ∞ π‘₯1 π‘˜ . 𝑛=βˆ’βˆž ∞ π‘₯2(𝑛 βˆ’ π‘˜) . π‘§βˆ’π‘› Interchanging the order of summation and using the property of shifting in time domain we have z transform of x(n-k) as π‘§βˆ’π‘˜ 𝑋 𝑧 . So we can write above equation as 𝑋 𝑧 = π‘˜=βˆ’βˆž ∞ π‘₯1 π‘˜ . π‘§βˆ’π‘˜π‘‹2(𝑧) 𝑋 𝑧 = 𝑋1 𝑧 𝑋2(𝑧)
  • 72. 7 IT 01 Digital Signal Processing (Winter 2021) L25 Convolution Property Compute convolution of signals π‘₯1(𝑛)={1, 2, 1} and π‘₯1(𝑛)={1 : 0 ≀ n ≀5 { 0 : Elsewhere Solution: π‘₯1(𝑛)={1, 2, 1} and π‘₯1(𝑛)={1, 1, 1, 1, 1, 1} Z transform is given by 𝑋 𝑧 = π‘˜=βˆ’βˆž ∞ π‘₯ 𝑛 . π‘§βˆ’π‘› So 𝑋1 𝑧 = 1 + 2π‘§βˆ’1 + π‘§βˆ’2 and 𝑋2 𝑧 = 1 + π‘§βˆ’1 + π‘§βˆ’2 + π‘§βˆ’3 + π‘§βˆ’4 + π‘§βˆ’5 Using convolution property π‘₯ 𝑛 = π‘₯1 𝑛 βˆ— π‘₯2 𝑛 π‘‘β„Žπ‘’π‘› 𝑋 𝑧 = 𝑋1 𝑧 . 𝑋2 𝑧 𝑋 𝑧 =(1 + 2π‘§βˆ’1 + π‘§βˆ’2).(1 + π‘§βˆ’1 + π‘§βˆ’2 + π‘§βˆ’3 + π‘§βˆ’4 + π‘§βˆ’5) 𝑋 𝑧 = (1 + 3π‘§βˆ’1 + 4π‘§βˆ’2 + 4π‘§βˆ’3 + 4π‘§βˆ’4 + 4π‘§βˆ’5 + 3π‘§βˆ’6 + π‘§βˆ’7 ). The convolved signal can be obtained by taking inverse z transform as x(n)={1, 3, 4, 4, 4, 4, 3, 1}
  • 73. 7 IT 01 Digital Signal Processing (Winter 2021) L25 Convolution Property Compute convolution of signals π‘₯1(𝑛)={1, -2, 1} and π‘₯1(𝑛)={1 : 0 ≀ n ≀5 { 0 : Elsewhere Solution: π‘₯1(𝑛)={1, -2, 1} and π‘₯2(𝑛)={1, 1, 1, 1, 1, 1} Z transform is given by 𝑋 𝑧 = π‘˜=βˆ’βˆž ∞ π‘₯ 𝑛 . π‘§βˆ’π‘› So 𝑋1 𝑧 = 1 βˆ’ 2π‘§βˆ’1 + π‘§βˆ’2 and 𝑋2 𝑧 = 1 + π‘§βˆ’1 + π‘§βˆ’2 + π‘§βˆ’3 + π‘§βˆ’4 + π‘§βˆ’5 Using convolution property π‘₯ 𝑛 = π‘₯1 𝑛 βˆ— π‘₯2 𝑛 π‘‘β„Žπ‘’π‘› 𝑋 𝑧 = 𝑋1 𝑧 . 𝑋2 𝑧 𝑋 𝑧 =(1 βˆ’ 2π‘§βˆ’1 + π‘§βˆ’2).(1 + π‘§βˆ’1 + π‘§βˆ’2 + π‘§βˆ’3 + π‘§βˆ’4 + π‘§βˆ’5) 𝑋 𝑧 = (1 βˆ’ π‘§βˆ’1 βˆ’ π‘§βˆ’6 + π‘§βˆ’7 ). The convolved signal can be obtained by taking inverse z transform as x(n)={1, -1, 0, 0, 0, 0, -1, 1}
  • 74. 7 IT 01 Digital Signal Processing (Winter 2021) L25 Summary of z Transform Pairs
  • 75. 7 IT 01 Digital Signal Processing (Winter 2021) L25 Inverse z Transform Forward z transform equation is z x n = X z = 𝑛=βˆ’βˆž ∞ π‘₯ 𝑛 . π‘§βˆ’π‘› This is used for frequency analysis. When we need the signal back in time domain we need to take Inverse z Transform. π‘₯ 𝑛 = π‘§βˆ’1 𝑋 𝑧 . By definition of Inverse z Transform π‘₯ 𝑑 = 1 2πœ‹ 𝑐 π‘§π‘›βˆ’1𝑋(𝑧)𝑑𝑧 To find Inverse z Transform there are three methods : 1) Power Series Method 2) Partial Fraction Method 3) Residues of Contour Integral method
  • 76. 7 IT 01 Digital Signal Processing (Winter 2021) L25 Inverse z Transform 1) Power Series Method : This method requires division of polynomials in z. In this we represent 𝑋 𝑧 = 𝑃(𝑧) 𝑄(𝑧) , By directly performing this division we obtain. 𝑋 𝑧 = π‘Ž0 + π‘Ž1π‘§βˆ’1 + π‘Ž2π‘§βˆ’2 + π‘Ž3π‘§βˆ’3 + π‘Ž4π‘§βˆ’4 + β‹― . This form is very suitable for identifying fixed duration signals and infinite signals by comparing it with definition of z transform 𝑋 𝑍 = 𝑛=βˆ’βˆž ∞ π‘₯ 𝑛 . π‘§βˆ’π‘› 𝑋 𝑧 = π‘₯(0) + π‘₯(1)π‘§βˆ’1 + π‘₯(2)π‘§βˆ’2 + π‘₯(3)π‘§βˆ’3 + π‘₯(4)π‘§βˆ’4 for causal signal So by comparing above equation with z transform definition we can directly find out the time domain sequence.
  • 77. 7 IT 01 Digital Signal Processing (Winter 2021) L25 Inverse z Transform Ex: Determine Inverse Z Transform (IZT) of 𝑋 𝑧 = 1 1βˆ’π‘Žπ‘§βˆ’1 with ROC |z| > a Solution: Given is 𝑋 𝑧 = 1 1βˆ’π‘Žπ‘§βˆ’1 Simplifying given equation 𝑋 𝑧 = 𝑧 π‘§βˆ’π‘Ž So 𝑋 𝑧 = 1 + π‘Žπ‘§βˆ’1 + π‘Ž2π‘§βˆ’2 + π‘Ž3π‘§βˆ’3+. . For given ROC |z| > a means ROC is Exterior of the circle with radius a and the sequence is causal. This sequence can be written as 𝑋 𝑧 = 𝑛=0 ∞ (π‘Žπ‘§βˆ’1)βˆ’π‘›
  • 78. 7 IT 01 Digital Signal Processing (Winter 2021) L25 Inverse z Transform Ex: Determine Inverse Z Transform (IZT) of 𝑋 𝑧 = 1 1βˆ’π‘Žπ‘§βˆ’1 with ROC |z| > a Solution: Given is 𝑋 𝑧 = 1 1βˆ’π‘Žπ‘§βˆ’1 Simplifying given equation 𝑋 𝑧 = 𝑧 π‘§βˆ’π‘Ž So 𝑋 𝑧 = 1 + π‘Žπ‘§βˆ’1 + π‘Ž2π‘§βˆ’2 + π‘Ž3π‘§βˆ’3+. . 𝑋 𝑧 = 𝑛=0 ∞ (π‘Žπ‘§βˆ’1 )βˆ’π‘› 𝑋 𝑧 = 𝑛=0 ∞ π‘Žπ‘›π‘§βˆ’π‘› So this is z transform of signal π‘₯ 𝑛 = π‘Žπ‘›π‘’(𝑛) for n β‰₯ 0 or as usual, for all n.
  • 79. 7 IT 01 Digital Signal Processing (Winter 2021) L25 Inverse z Transform Ex: Determine Inverse Z Transform (IZT) of 𝑋 𝑧 = 1 1βˆ’π‘Žπ‘§βˆ’1 with ROC |z| < a Solution: Given is 𝑋 𝑧 = 1 1βˆ’π‘Žπ‘§βˆ’1 Simplifying given equation 𝑋 𝑧 = 𝑧 π‘§βˆ’π‘Ž If ROC is given as the |z| < a Then write 𝑋 𝑧 = 𝑧 βˆ’π‘Ž+𝑧 and perform Division So 𝑋 𝑧 = βˆ’π‘Žβˆ’1 𝑧1 βˆ’ π‘Žβˆ’2 𝑧2 + π‘Žβˆ’3 𝑧3 +. . For given ROC |z| < a means ROC is interior of the circle with radius a and the sequence is anticausal. This sequence can be written as 𝑋 𝑧 = 𝑛=0 ∞ (π‘Žβˆ’1 𝑧)βˆ’π‘›
  • 80. 7 IT 01 Digital Signal Processing (Winter 2021) L25 Inverse z Transform Ex: Determine Inverse Z Transform (IZT) of 𝑋 𝑧 = 1 1βˆ’π‘Žπ‘§βˆ’1 with ROC |z| < a Solution: Given is 𝑋 𝑧 = 1 1βˆ’π‘Žπ‘§βˆ’1 Simplifying given equation 𝑋 𝑧 = 𝑧 βˆ’π‘Ž+π‘Ž So 𝑋 𝑧 = 𝑋 𝑧 = βˆ’π‘Žβˆ’1𝑧1 βˆ’ π‘Žβˆ’2𝑧2 + π‘Žβˆ’3𝑧3+. . 𝑋 𝑧 = βˆ’ 𝑛=1 ∞ π‘Ž1π‘§βˆ’1 βˆ’π‘› = βˆ’ 𝑛=1 ∞ π‘Žβˆ’π‘›π‘§π‘› 𝑋 𝑧 = 𝑛=βˆ’1 βˆ’βˆž π‘Žπ‘›π‘§βˆ’π‘› So this is z transform of signal π‘₯ 𝑛 = βˆ’π‘Žπ‘› 𝑒(βˆ’π‘› βˆ’ 1)
  • 81. 7 IT 01 Digital Signal Processing (Winter 2021) L25 Inverse z Transform Ex: Determine Inverse Z Transform (IZT) of 𝑋 𝑧 = 1 1βˆ’2π‘§βˆ’1+π‘§βˆ’2 with 1) ROC |z| > 1 2) ROC |z| < 0.75 Solution: Given is 𝑋 𝑧 = 1 1βˆ’2π‘§βˆ’1+π‘§βˆ’2 For Case 1) Perform division as 𝑋 𝑧 = 1 1βˆ’2π‘§βˆ’1+π‘§βˆ’2 For Case 2) Perform division as 𝑋 𝑧 = 1 π‘§βˆ’2βˆ’2π‘§βˆ’1+1
  • 82. 7 IT 01 Digital Signal Processing (Winter 2021) L25 Inverse z Transform Forward z transform equation is z x n = X z = 𝑛=βˆ’βˆž ∞ π‘₯ 𝑛 . π‘§βˆ’π‘› This is used for frequency analysis. When we need the signal back in time domain we need to take Inverse z Transform. π‘₯ 𝑛 = π‘§βˆ’1(𝑋 𝑧 ) To find Inverse z Transform there are three methods : 1) Power Series Method 2) Partial Fraction Method 3) Residues of Contour Integral method
  • 83. 7 IT 01 Digital Signal Processing (Winter 2021) L25 Inverse z Transform 2) Partial Fraction Method: Basic of this method is if the pole zero form of the X(z) is available only then this method is useful. If pole zero form of the X(z) is available then by partial fraction method we get the equation in the form of terms 𝑧 π‘§βˆ’π‘Ž for which we know the x(n). For this we must know the equivalent pairs Partial Fraction Term Signal Converges absolutely if | z | > a 𝑧 π‘§βˆ’π‘Ž π‘Žπ‘› n β‰₯ 0 𝑧2 (π‘§βˆ’π‘Ž)2 (𝑛 + 1) π‘Žπ‘› n β‰₯ 0 𝑧3 (π‘§βˆ’π‘Ž)3 1 2 (𝑛 + 1)(𝑛 + 2) π‘Žπ‘› n β‰₯ 0
  • 84. 7 IT 01 Digital Signal Processing (Winter 2021) L25 Inverse z Transform 2) Partial Fraction Method: Partial Fraction Term Signal Converges absolutely if | z | < a 𝑧 π‘§βˆ’π‘Ž βˆ’π‘Žπ‘› n < 0 𝑧2 (π‘§βˆ’π‘Ž)2 βˆ’(𝑛 + 1) π‘Žπ‘› n < 0 𝑧3 (π‘§βˆ’π‘Ž)3 βˆ’ 1 2 (𝑛 + 1)(𝑛 + 2) π‘Žπ‘› n < 0
  • 85. 7 IT 01 Digital Signal Processing (Winter 2021) L25 Inverse z Transform EX : 2) Partial Fraction Method: Partial Fraction Term Signal Converges absolutely if | z | < a 𝑧 π‘§βˆ’π‘Ž βˆ’π‘Žπ‘› n < 0 𝑧2 (π‘§βˆ’π‘Ž)2 βˆ’(𝑛 + 1) π‘Žπ‘› n < 0 𝑧3 (π‘§βˆ’π‘Ž)3 βˆ’ 1 2 (𝑛 + 1)(𝑛 + 2) π‘Žπ‘› n < 0 General form of the X(z) after partial fraction is 𝑋 𝑧 = 𝐢0 + 𝐢1𝑧 𝑧 βˆ’ 𝑝1 + 𝐢2𝑧 𝑧 βˆ’ 𝑝2 + 𝐢3𝑧 𝑧 βˆ’ 𝑝3
  • 86. 7 IT 01 Digital Signal Processing (Winter 2021) L25 Inverse z Transform Ex: Determine IZT using partial fraction method for given function 𝑋 𝑧 = 3𝑧 2𝑧2βˆ’5𝑧+2 ROC | z | >1 Solution : For the given Z T equation 𝑋 𝑧 = 3𝑧 2𝑧2βˆ’5𝑧+2 Performing the Partial fraction 𝑋 𝑧 = 3𝑧 (π‘§βˆ’2)(2π‘§βˆ’1) 𝑝1=2 and 𝑝2 = 1 2 General form of the X(z) after partial fraction is 𝑋 𝑧 = 𝐢0 + 𝐢1𝑧 π‘§βˆ’π‘1 + 𝐢2𝑧 π‘§βˆ’π‘2 𝐢0=𝑋 𝑧 |𝑧=0 = 0 𝑋 𝑧 = 𝐢1𝑧 π‘§βˆ’π‘1 + 𝐢2𝑧 π‘§βˆ’π‘2
  • 87. 7 IT 01 Digital Signal Processing (Winter 2021) L25 Inverse z Transform 𝑋 𝑧 = 3𝑧 (π‘§βˆ’2)(2π‘§βˆ’1) 𝐢1 = π‘§βˆ’π‘1 𝑧 𝑋(𝑧)|𝑧=2 = 3 (2π‘§βˆ’1) |𝑧=2 = 3 (2βˆ—2βˆ’1) = 1 𝐢2 = π‘§βˆ’π‘2 𝑧 𝑋(𝑧)|𝑧= 1 2 = 3 (π‘§βˆ’2) |𝑧= 1 2 = 3 ( 1 2 βˆ’2) = 3 βˆ’( 3 2 ) = 3(βˆ’ 2 3 ) = βˆ’2
  • 88. 7 IT 01 Digital Signal Processing (Winter 2021) L25 Inverse z Transform 𝑋 𝑧 = 3𝑧 (π‘§βˆ’2)(2π‘§βˆ’1) 𝑋 𝑧 = 𝑧 π‘§βˆ’2 βˆ’ 2𝑧 2(π‘§βˆ’ 1 2 ) 𝑋 𝑧 = 𝑧 𝑧 βˆ’ 2 βˆ’ 𝑧 𝑧 βˆ’ 1 2 = 1 1 βˆ’ 2π‘§βˆ’1 βˆ’ 1 1 βˆ’ 1 2 π‘§βˆ’1 So by comparing with the standard form we have the time domain equation as x 𝑑 = 2𝑛𝑒 𝑛 βˆ’ 1 2 𝑛 𝑒 𝑛 x 𝑑 = (2𝑛 βˆ’ 1 2 𝑛 )𝑒 𝑛
  • 89. 7 IT 01 Digital Signal Processing (Winter 2021) L25 Inverse z Transform Forward z transform equation is z x n = X z = 𝑛=βˆ’βˆž ∞ π‘₯ 𝑛 . π‘§βˆ’π‘› This is used for frequency analysis. When we need the signal back in time domain we need to take Inverse z Transform. π‘₯ 𝑛 = π‘§βˆ’1(𝑋 𝑧 ) To find Inverse z Transform there are three methods : 1) Power Series Method 2) Partial Fraction Method 3) Residues of Contour Integral method
  • 90. 7 IT 01 Digital Signal Processing (Winter 2021) L25 Inverse z Transform 3)Residues of Contour Integral method This method actually use the definition of the inverse z transform This is most complicated method out of these three methods for IZT By definition of Inverse z Transform π‘₯ 𝑑 = 1 2πœ‹ 𝑐 π‘§π‘›βˆ’1𝑋(𝑧)𝑑𝑧 Direct evaluation of this contour integral is generally difficult, so residues theorem is used. According to this theorem we find coefficients of given X(z) at poles This gives us x(n) 𝑅𝑧=π‘Ž = π‘‘π‘šβˆ’1 π‘‘π‘§π‘šβˆ’1 ( 𝑧 βˆ’ π‘Ž π‘š π‘š βˆ’ 1 ! 𝐺(𝑧))|𝑧=1
  • 91. 7 IT 01 Digital Signal Processing (Winter 2021) L25 Inverse z Transform 𝑅𝑧=π‘Ž = π‘‘π‘šβˆ’1 π‘‘π‘§π‘šβˆ’1 ( 𝑧 βˆ’ π‘Ž π‘š π‘š βˆ’ 1 ! 𝐺(𝑧))|𝑧=1 Ex: Determine Inverse z Transform of 𝑋 𝑧 = 1 π‘§βˆ’1 (π‘§βˆ’2) Solution : By using definition find G(z) 𝐺(𝑧) = π‘§π‘›βˆ’1𝑋(𝑧) 𝐺(𝑧) = π‘§π‘›βˆ’1 π‘§βˆ’1 (π‘§βˆ’2) In this case if n=0 then π‘§βˆ’1 in the numerator will become simple pole 𝐺(𝑧) = 1 𝑧 π‘§βˆ’1 (π‘§βˆ’2) for |z| >1
  • 92. 7 IT 01 Digital Signal Processing (Winter 2021) L25 Inverse z Transform Case : n=0 𝐺(𝑧) = 1 𝑧 π‘§βˆ’1 (π‘§βˆ’2) Using Residue Theorem π‘₯ 0 = 𝐺𝑅𝑧=0 + 𝐺𝑅𝑧=1 + 𝐺𝑅𝑧=2 𝐺𝑅𝑧=0 = 𝑧 βˆ’ 0 𝐺(𝑧) for pole at z=0 𝐺𝑅𝑧=0 = 𝑧𝐺 𝑧 = 𝑧 𝑧 π‘§βˆ’1 (π‘§βˆ’2) = 1 π‘§βˆ’1 (π‘§βˆ’2) |𝑧=0 𝐺𝑅𝑧=0 = 1 𝑧 βˆ’ 1 (𝑧 βˆ’ 2) |𝑧=0 = 1 2 𝐺𝑅𝑧=1 = 𝑧 βˆ’ 1 𝐺(𝑧) for pole at z = 1 𝐺𝑅𝑧=1 = 𝑧 βˆ’ 1 𝐺 𝑧 = 𝑧 βˆ’ 1 𝑧 𝑧 βˆ’ 1 𝑧 βˆ’ 2 = 1 𝑧 𝑧 βˆ’ 2 |𝑧=1 = 1 (1)(βˆ’1) = βˆ’1
  • 93. 7 IT 01 Digital Signal Processing (Winter 2021) L25 Inverse z Transform Case I: n=0 𝐺𝑅𝑧=2 = 𝑧 βˆ’ 2 𝐺(𝑧) for pole at z=2 𝐺𝑅𝑧=2 = 𝑧 βˆ’ 2 𝐺 𝑧 = 𝑧 βˆ’ 2 𝑧 𝑧 βˆ’ 1 𝑧 βˆ’ 2 = 1 𝑧 𝑧 βˆ’ 1 |𝑧=2 = 1 (2)(1) = 1 2 π‘₯ 0 = 𝐺𝑅𝑧=0 + 𝐺𝑅𝑧=1 + 𝐺𝑅𝑧=2 = 1/2 βˆ’ 1 + 1/2 =0 Case II :n > 0 π‘₯ 0 = 𝐺𝑅𝑧=1 + 𝐺𝑅𝑧=2 Here 𝐺 𝑧 = π‘§π‘›βˆ’1 π‘§βˆ’1 π‘§βˆ’2 𝐺𝑅𝑧=1 = 𝑧 βˆ’ 1 𝐺(𝑧) for pole at z = 1 𝐺𝑅𝑧=1 = 𝑧 βˆ’ 1 𝐺 𝑧 = 𝑧 βˆ’ 1 π‘§π‘›βˆ’1 𝑧 βˆ’ 1 𝑧 βˆ’ 2 = π‘§π‘›βˆ’1 𝑧 βˆ’ 2 |𝑧=1 = (1)π‘›βˆ’1 (βˆ’1) = βˆ’1
  • 94. 7 IT 01 Digital Signal Processing (Winter 2021) L25 Inverse z Transform Case I: n >0 𝐺𝑅𝑧=2 = 𝑧 βˆ’ 2 𝐺 𝑧 = 𝑧 βˆ’ 2 π‘§π‘›βˆ’1 𝑧 βˆ’ 1 𝑧 βˆ’ 2 = π‘§π‘›βˆ’1 𝑧 βˆ’ 1 |𝑧=2 = (2)π‘›βˆ’1 (1) = βˆ’1 𝐺𝑅𝑧=1 = 𝑧 βˆ’ 1 𝐺(𝑧) for pole at z = 1 π‘₯ 𝑛 = βˆ’1 + 2 π‘›βˆ’1 π‘₯ 𝑛 = βˆ’(1 + 2 π‘›βˆ’1) So complete signal is 0 for n=0 x(n)= -(1-(2)π‘›βˆ’1 ) for n >0
  • 95. THANK YOU ! 7 IT 01 Digital Signal Processing (Winter 2021) L25