SlideShare a Scribd company logo
1 of 27
Enzyme classification and properties
ENZYMES
Definitions--
 A biomolecule either Protein or RNA, that catalyse a
specific chemical reaction, enhance the rate of a
reaction by providing a reaction path with a lower
activation energy
Fundamental Properties
1) Catalytic power-speeding up reactions 108 to
1020 fold.
They speed up reactions without being
used up.
2) Specificity
a) for substrate - ranges from absolute to relative
b) for reaction catalyzed
3) Regulated-- some enzymes can sense metabolic
signals.
Catalytic Power
Catalytic Power is defined as the Ratio of the Enzyme-Catalyzed Rate of a
Reaction to the Uncatalyzed Rate
e.g. Urease-
 At 20°C, the rate constant for the enzyme-
catalyzed reaction is 3 X 104/sec
 the rate constant for the uncatalyzed hydrolysis
of urea is 3 X 1010/sec
 1014 is the ratio of the catalyzed rate to the
uncatalyzed rate of reaction
Specificity
Defined as the Selectivity of Enzymes for the Reactants Upon which They Act
 In an enzyme-catalyzed reaction, none of the substrate is diverted into
nonproductive side reactions, so no wasteful by-products are produced.
The substances upon which an enzyme acts are
traditionally called- substrates
The selective qualities of an enzyme are collectively
recognized- specificity
The specific site on the enzyme where substrate binds and
catalysis occurs is called- active site
Regulation
Regulation of Enzyme Activity Ensures That the Rate of Metabolic Reactions Is
Appropriate to Cellular Requirements
 essential to the integration and regulation of metabolism
Achieved by various ways
 Inhibitor
 Activator
 Hormonal
 Rate of synthesis
2. Names bearing little resemblance to their activity
e.g. catalase - the peroxide-decomposing enzyme
Proteolytic enzymes (proteases) of the digestive tract
Trypsin- Gr. Word Tryein means to wear down
Pepsin- Pepsis means digestion
IUB nomemclature
1956 - to create a systematic basis for enzyme nomenclature
 4 digit numbered code
 first digit - major class
 Second digit - sub class
 third digit - sub sub class
 final digit - specific enzyme
2.7.1.1
ATP: glucose phosphotransferase
2- class name (transferase)
7- subclass name (phosphotransferase)
1- sub sub class (hydroxyl group as acceptor)
1- specific enzyme (D- glucose as phosphoryl group
acceptor)
Enzyme classification
 Six classes
1. Oxidoreductase- transfer of reducing equivalents from
one redox system to another
e.g. Alcohol Dehydrogenase
Lactate dehydrogenase
cytochrome oxidase
2. Transferase
functional group is transferred from one compound to
another
e.g. kinases
transaminase
phosphorylase
3. Hydrolase
cleave C-O, C-N, C-S or P-O etc bonds by adding water
across the bond
e.g. lipase
acid phosphatase
(important in digestive process)
4. Lyases
cleave C-O, C-N, or C-S bonds but do so without addition of
water and without oxidizing or reducing the substrates
e.g. aldolase
fumarase
Carbonic anhydrase
5. Isomerase
catalyze intramolecular rearrangements of functional
groups that reversibly interconvert to optical or
geometric isomers
e.g. Triose isomerase
phosphohexose isomerase
mutase
6. Ligase
catalyze biosynthetic reactions that form a covalent bond
between two substrates utilizing ATP-ADP
interconversion
e.g. glutamine synthetase
DNA- ligase
Specificity
 highly specific compared to other catalyst
 catalyzes only specific reaction
3 types
1. Stereospecificity/ optical specificity
2. Reaction specificity
3. Substrate specificity
Optical specificity
 able to recognise optical isomers of the substrate
 Act only on one isomer
e.g. enzymes of amino acid metabolism (D & L Amino acid
oxidase)
Isomerase do not exhibit stereospecificity
Reaction Specificity
 catalyze only one specific reaction over substrate
e.g. amino acid can undergo deamination, transamination,
decarboxylation and each is catalysed by separate
enzyme
Substrate specificity
specific towards their substrates
e.g. glucokinase and galactokinase- both transfer phophoryl
group from ATP to different molecule
3 types
a. Absolute
b. Relative substrate
c. broad
Absolute substrate specificity
 Act only on one substrate
e.g. urease
Relative substrate specificity
 act on structurally related substrates
 Further divide into
i. Group dependent- act on specific group e.g. trypsin-
break peptide bond between lysine and arginine,
Chymotripsin act on aromatic AA
ii. Bond specificity- act on specific bond e.g. proteolytic
enzyme, glycosidase
Broad specificity
 Act on closely related substrates
e.g. hexokinase- act on many hexoses
Chemical Nature &
Properties of Enzyme
 Protein or RNA
 Tertiary structure and specific conformation- essential
for catalytic power
 Holoenzyme- functional unit
 Apoenzyme & coenzyme
Prosthetic group Coenzyme/cofactor
Non protein molecule Non protein molecule
Tightly (covalently)
bound
Loosely bound
Stable incorporation Dissociable
Cannot be dissociated Seperable by dialysis
etc
 Monomeric Enzyme- made of a single
polypeptide e.g. ribonuclease, trypsin
 Oligomeric Enzyme- more than one
polypeptide e.g. LDH, aspartate
carbamoylase
 Multienzyme complex- specific sites to
catalyse different reactions in sequence.
Only native conformation is active not
individual e.g. pyruvate dehydrogenase
Multienzyme Complexes and
Multifunctional Enzymes
 In a number of metabolic pathways, several
enzymes which catalyze different stages of
the process have been found to be
associated noncovalently, giving a
multienzyme complex.
 Examples: Pyruvate Dehydrogenase Complex;
Electron Respiratory Chain
 In other cases, different activities may be
found on a single multifunctional polypeptide
chain. The presence of multiple activities is
on a single polypeptide chain is usually the
result of a gene fusion event

More Related Content

Similar to specificity.ppt

enzymes2-140121084121-phpapp02.pdf
enzymes2-140121084121-phpapp02.pdfenzymes2-140121084121-phpapp02.pdf
enzymes2-140121084121-phpapp02.pdf
RuchikaMaurya4
 
enzymes-classification-isoenzymes.ppt
enzymes-classification-isoenzymes.pptenzymes-classification-isoenzymes.ppt
enzymes-classification-isoenzymes.ppt
rehankhan28664
 
enzyme activity.pptx
enzyme activity.pptxenzyme activity.pptx
enzyme activity.pptx
GetahunAlega
 

Similar to specificity.ppt (20)

enzymes2-140121084121-phpapp02.pdf
enzymes2-140121084121-phpapp02.pdfenzymes2-140121084121-phpapp02.pdf
enzymes2-140121084121-phpapp02.pdf
 
Enzymes
EnzymesEnzymes
Enzymes
 
ENZYMES.ppt
ENZYMES.pptENZYMES.ppt
ENZYMES.ppt
 
Enzymes msc
Enzymes msc Enzymes msc
Enzymes msc
 
Chapter 4 enzymes
Chapter 4 enzymesChapter 4 enzymes
Chapter 4 enzymes
 
enzymes-classification-isoenzymes.ppt
enzymes-classification-isoenzymes.pptenzymes-classification-isoenzymes.ppt
enzymes-classification-isoenzymes.ppt
 
Enzymes
EnzymesEnzymes
Enzymes
 
Enzymes
EnzymesEnzymes
Enzymes
 
Enzymes
EnzymesEnzymes
Enzymes
 
ENZYMES.ppt
ENZYMES.pptENZYMES.ppt
ENZYMES.ppt
 
Enzymology CHS VET-1 bsa.pdf
Enzymology CHS VET-1 bsa.pdfEnzymology CHS VET-1 bsa.pdf
Enzymology CHS VET-1 bsa.pdf
 
Enzymes and enzyme inhibition
Enzymes and enzyme inhibitionEnzymes and enzyme inhibition
Enzymes and enzyme inhibition
 
Enzymes- Overview
Enzymes- OverviewEnzymes- Overview
Enzymes- Overview
 
Enzymes.pptx
Enzymes.pptxEnzymes.pptx
Enzymes.pptx
 
enzyme activity.pptx
enzyme activity.pptxenzyme activity.pptx
enzyme activity.pptx
 
Enzymes
EnzymesEnzymes
Enzymes
 
Enzymes
Enzymes Enzymes
Enzymes
 
ENZYMES.pptx
ENZYMES.pptxENZYMES.pptx
ENZYMES.pptx
 
enzymes and it's clinical applications.pptx
enzymes and it's clinical applications.pptxenzymes and it's clinical applications.pptx
enzymes and it's clinical applications.pptx
 
Presentation1.pptx......................
Presentation1.pptx......................Presentation1.pptx......................
Presentation1.pptx......................
 

More from VrishtiAgrawal1 (11)

1.1 Cardiovascular system, Kathy M._ccby.pptx
1.1 Cardiovascular system, Kathy M._ccby.pptx1.1 Cardiovascular system, Kathy M._ccby.pptx
1.1 Cardiovascular system, Kathy M._ccby.pptx
 
2.1 Endocrine system , Kathy M._ccby.pptx
2.1 Endocrine system , Kathy M._ccby.pptx2.1 Endocrine system , Kathy M._ccby.pptx
2.1 Endocrine system , Kathy M._ccby.pptx
 
plasmodium-140225055335-phpapp02 (1).pptx
plasmodium-140225055335-phpapp02 (1).pptxplasmodium-140225055335-phpapp02 (1).pptx
plasmodium-140225055335-phpapp02 (1).pptx
 
routineexaminationofstool-170326170848.pptx
routineexaminationofstool-170326170848.pptxroutineexaminationofstool-170326170848.pptx
routineexaminationofstool-170326170848.pptx
 
sterilizationanddisinfection-150310121804-conversion-gate01.pptx
sterilizationanddisinfection-150310121804-conversion-gate01.pptxsterilizationanddisinfection-150310121804-conversion-gate01.pptx
sterilizationanddisinfection-150310121804-conversion-gate01.pptx
 
hypersensitivity-161227093835.pptx
hypersensitivity-161227093835.pptxhypersensitivity-161227093835.pptx
hypersensitivity-161227093835.pptx
 
Enzymology-ppt.pptx
Enzymology-ppt.pptxEnzymology-ppt.pptx
Enzymology-ppt.pptx
 
precipitationreaction-210503085019 (1).pdf
precipitationreaction-210503085019 (1).pdfprecipitationreaction-210503085019 (1).pdf
precipitationreaction-210503085019 (1).pdf
 
antigen-antibodyreactions-150217111243-conversion-gate01.pptx
antigen-antibodyreactions-150217111243-conversion-gate01.pptxantigen-antibodyreactions-150217111243-conversion-gate01.pptx
antigen-antibodyreactions-150217111243-conversion-gate01.pptx
 
SBL100-Immunology lectures 1-3.pptx
SBL100-Immunology lectures 1-3.pptxSBL100-Immunology lectures 1-3.pptx
SBL100-Immunology lectures 1-3.pptx
 
Introduction to Microbiology (1).pptx
Introduction to Microbiology (1).pptxIntroduction to Microbiology (1).pptx
Introduction to Microbiology (1).pptx
 

Recently uploaded

Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
kauryashika82
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
heathfieldcps1
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
ciinovamais
 
Making and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfMaking and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdf
Chris Hunter
 

Recently uploaded (20)

Class 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdfClass 11th Physics NEET formula sheet pdf
Class 11th Physics NEET formula sheet pdf
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
Web & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdfWeb & Social Media Analytics Previous Year Question Paper.pdf
Web & Social Media Analytics Previous Year Question Paper.pdf
 
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in DelhiRussian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
Russian Escort Service in Delhi 11k Hotel Foreigner Russian Call Girls in Delhi
 
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
Explore beautiful and ugly buildings. Mathematics helps us create beautiful d...
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptx
 
Role Of Transgenic Animal In Target Validation-1.pptx
Role Of Transgenic Animal In Target Validation-1.pptxRole Of Transgenic Animal In Target Validation-1.pptx
Role Of Transgenic Animal In Target Validation-1.pptx
 
Key note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdfKey note speaker Neum_Admir Softic_ENG.pdf
Key note speaker Neum_Admir Softic_ENG.pdf
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17Advanced Views - Calendar View in Odoo 17
Advanced Views - Calendar View in Odoo 17
 
General Principles of Intellectual Property: Concepts of Intellectual Proper...
General Principles of Intellectual Property: Concepts of Intellectual  Proper...General Principles of Intellectual Property: Concepts of Intellectual  Proper...
General Principles of Intellectual Property: Concepts of Intellectual Proper...
 
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
Ecological Succession. ( ECOSYSTEM, B. Pharmacy, 1st Year, Sem-II, Environmen...
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701ComPTIA Overview | Comptia Security+ Book SY0-701
ComPTIA Overview | Comptia Security+ Book SY0-701
 
Making and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdfMaking and Justifying Mathematical Decisions.pdf
Making and Justifying Mathematical Decisions.pdf
 
PROCESS RECORDING FORMAT.docx
PROCESS      RECORDING        FORMAT.docxPROCESS      RECORDING        FORMAT.docx
PROCESS RECORDING FORMAT.docx
 
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural ResourcesEnergy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
Energy Resources. ( B. Pharmacy, 1st Year, Sem-II) Natural Resources
 

specificity.ppt

  • 2. ENZYMES Definitions--  A biomolecule either Protein or RNA, that catalyse a specific chemical reaction, enhance the rate of a reaction by providing a reaction path with a lower activation energy
  • 3. Fundamental Properties 1) Catalytic power-speeding up reactions 108 to 1020 fold. They speed up reactions without being used up. 2) Specificity a) for substrate - ranges from absolute to relative b) for reaction catalyzed 3) Regulated-- some enzymes can sense metabolic signals.
  • 4. Catalytic Power Catalytic Power is defined as the Ratio of the Enzyme-Catalyzed Rate of a Reaction to the Uncatalyzed Rate e.g. Urease-  At 20°C, the rate constant for the enzyme- catalyzed reaction is 3 X 104/sec  the rate constant for the uncatalyzed hydrolysis of urea is 3 X 1010/sec  1014 is the ratio of the catalyzed rate to the uncatalyzed rate of reaction
  • 5. Specificity Defined as the Selectivity of Enzymes for the Reactants Upon which They Act  In an enzyme-catalyzed reaction, none of the substrate is diverted into nonproductive side reactions, so no wasteful by-products are produced.
  • 6. The substances upon which an enzyme acts are traditionally called- substrates The selective qualities of an enzyme are collectively recognized- specificity The specific site on the enzyme where substrate binds and catalysis occurs is called- active site
  • 7. Regulation Regulation of Enzyme Activity Ensures That the Rate of Metabolic Reactions Is Appropriate to Cellular Requirements  essential to the integration and regulation of metabolism Achieved by various ways  Inhibitor  Activator  Hormonal  Rate of synthesis
  • 8. 2. Names bearing little resemblance to their activity e.g. catalase - the peroxide-decomposing enzyme Proteolytic enzymes (proteases) of the digestive tract Trypsin- Gr. Word Tryein means to wear down Pepsin- Pepsis means digestion
  • 9. IUB nomemclature 1956 - to create a systematic basis for enzyme nomenclature  4 digit numbered code  first digit - major class  Second digit - sub class  third digit - sub sub class  final digit - specific enzyme
  • 10. 2.7.1.1 ATP: glucose phosphotransferase 2- class name (transferase) 7- subclass name (phosphotransferase) 1- sub sub class (hydroxyl group as acceptor) 1- specific enzyme (D- glucose as phosphoryl group acceptor)
  • 11. Enzyme classification  Six classes 1. Oxidoreductase- transfer of reducing equivalents from one redox system to another e.g. Alcohol Dehydrogenase Lactate dehydrogenase cytochrome oxidase
  • 12. 2. Transferase functional group is transferred from one compound to another e.g. kinases transaminase phosphorylase
  • 13. 3. Hydrolase cleave C-O, C-N, C-S or P-O etc bonds by adding water across the bond e.g. lipase acid phosphatase (important in digestive process)
  • 14. 4. Lyases cleave C-O, C-N, or C-S bonds but do so without addition of water and without oxidizing or reducing the substrates e.g. aldolase fumarase Carbonic anhydrase
  • 15. 5. Isomerase catalyze intramolecular rearrangements of functional groups that reversibly interconvert to optical or geometric isomers e.g. Triose isomerase phosphohexose isomerase mutase
  • 16. 6. Ligase catalyze biosynthetic reactions that form a covalent bond between two substrates utilizing ATP-ADP interconversion e.g. glutamine synthetase DNA- ligase
  • 17. Specificity  highly specific compared to other catalyst  catalyzes only specific reaction 3 types 1. Stereospecificity/ optical specificity 2. Reaction specificity 3. Substrate specificity
  • 18. Optical specificity  able to recognise optical isomers of the substrate  Act only on one isomer e.g. enzymes of amino acid metabolism (D & L Amino acid oxidase) Isomerase do not exhibit stereospecificity
  • 19. Reaction Specificity  catalyze only one specific reaction over substrate e.g. amino acid can undergo deamination, transamination, decarboxylation and each is catalysed by separate enzyme
  • 20. Substrate specificity specific towards their substrates e.g. glucokinase and galactokinase- both transfer phophoryl group from ATP to different molecule 3 types a. Absolute b. Relative substrate c. broad
  • 21. Absolute substrate specificity  Act only on one substrate e.g. urease
  • 22. Relative substrate specificity  act on structurally related substrates  Further divide into i. Group dependent- act on specific group e.g. trypsin- break peptide bond between lysine and arginine, Chymotripsin act on aromatic AA ii. Bond specificity- act on specific bond e.g. proteolytic enzyme, glycosidase
  • 23. Broad specificity  Act on closely related substrates e.g. hexokinase- act on many hexoses
  • 24. Chemical Nature & Properties of Enzyme  Protein or RNA  Tertiary structure and specific conformation- essential for catalytic power  Holoenzyme- functional unit  Apoenzyme & coenzyme
  • 25. Prosthetic group Coenzyme/cofactor Non protein molecule Non protein molecule Tightly (covalently) bound Loosely bound Stable incorporation Dissociable Cannot be dissociated Seperable by dialysis etc
  • 26.  Monomeric Enzyme- made of a single polypeptide e.g. ribonuclease, trypsin  Oligomeric Enzyme- more than one polypeptide e.g. LDH, aspartate carbamoylase  Multienzyme complex- specific sites to catalyse different reactions in sequence. Only native conformation is active not individual e.g. pyruvate dehydrogenase
  • 27. Multienzyme Complexes and Multifunctional Enzymes  In a number of metabolic pathways, several enzymes which catalyze different stages of the process have been found to be associated noncovalently, giving a multienzyme complex.  Examples: Pyruvate Dehydrogenase Complex; Electron Respiratory Chain  In other cases, different activities may be found on a single multifunctional polypeptide chain. The presence of multiple activities is on a single polypeptide chain is usually the result of a gene fusion event