SlideShare a Scribd company logo
1 of 46
Download to read offline
DATABASE
SYSTEMS
GROUP
Feature Extraction in Time Series
• Instead of directly working with the entire time series, we can also extract 
features from them
• Many feature extraction techniques exist that basically follow two different 
purposes:
– Many of them aim at representing time series in a compact way (e.g. as a “shorter” 
approximation of the original time series) with minimum loss of modelling error
=> this is mostly done for performance considerations
=> approach is closely related to dimensionality reduction/feature selection
Examples covered here: DFT, DTW, SVD, APCA, PAA, PLA
– Other model specific properties of the time series relevant to a given application
Example covered here: threshold‐based modelling
1
Knowledge Discovery in Databases II: Sequence Data
DATABASE
SYSTEMS
GROUP
Compact Representations: Overview
2
Knowledge Discovery in Databases II: Sequence Data
0 20 40 60 80 100 120 0 20 40 60 80 100120 0 20 40 60 80 100 120
0 20 40 60 80 100 120
DFT
0 20 40 60 80 100 120
DWT
0 20 40 60 80 100 120
SVD APCA PAA PLA
DATABASE
SYSTEMS
GROUP
3
Compact Representations: DFT
• Discrete Fourier Transformation (DFT)
– Idea:
• Describe a pereodical function as a weighted sum of periodical base functions with
varying frequency
• Base functions here: sin und cos
– Example:
Knowledge Discovery in Databases II: Sequence Data
DATABASE
SYSTEMS
GROUP
4
Compact Representations: DFT
– Basic foundation: Fouriers Theorem
Any periodic function can be represented by a sum of sin‐ and cos‐functions of different 
frequency
• DFT does not „change“ the function but simply finds a different equivalent representation
(and DFT can be reversed)
• Formally:
– Let x = [xt], t = 0, …, n – 1 be a time series of length n
– DFT transforms x into X = [Xf] of n complex numbers with frequencies f = 0, …, n – 1 such that
where j2 = –1.
» Realteil is the portion of cosine in frequency f
» Imaginärteil is the portion of sinus in frequency f
Knowledge Discovery in Databases II: Sequence Data















1
0
1
0
1
0
2
)
2
sin(
1
)
2
cos(
1
1
n
t t
n
t t
n
t
n
ft
j
t
f
n
ft
x
n
j
n
ft
x
n
e
x
n
X



Realteil Imaginärteil
DATABASE
SYSTEMS
GROUP
5
Compact Representations: DFT
• DFT can be interpreted as a transformation of the bais vectors (like e.g. PCA):
– The new axis represent the frequencies
• But how does that help?
– So far, we transformed an n‐dimensional time series into an n‐dimensional vector …
• Well first of all, it holds that the euclidean distance is preserved after DFT, i.e. || x – y ||2
= || X – Y ||2
tn … ti
t0
t1
t2
[xt]
fn … fj
f0
f1
f2
[Xf]
DFT
Knowledge Discovery in Databases II: Sequence Data
DATABASE
SYSTEMS
GROUP
6
Compact Representations: DFT
• This follows from Parseval‘s theorem (and the linearity of DFT) which states that the
energy of a sequence (= sum of squared amplitudes ) is preserved, i.e.:
• Now comes the important trick: in practice, the low frequencies (first components) have
the highest impact, i.e. contain the most information
• Focusing on the first c coeficients is a good choice if we want to reduce the
„dimensionality“ of a sequence
• Since || x – y ||2 = || X – Y ||2 holds, using only c components instead of n yields a lower
bounding approximation of the Euclidean Distance
• This approximation will be better when using DFT componenents instead of original time 
stamps
Knowledge Discovery in Databases II: Sequence Data







1
0
2
1
0
2 n
t f
n
t t X
x





1
0
2
2
)
(
n
t t
x
x
x
E
DATABASE
SYSTEMS
GROUP
7
Compact Representations: DWT
0 20 40 60 80 100 120 140
Haar 0
Haar 1
Haar 2
Haar 3
Haar 4
Haar 5
Haar 6
Haar 7
X
X'
DWT
• Discrete Wavelet Transformation (DWT)
– Idea:
• Represent a time series as a linear combination
of base functions (Wavelet‐functions)
• Typically, Haar‐Wavelets are used
– Properties:
• The more stationary the time series is, the better
is the approximation with fewer components
• Distance on DWT components also lower bounds
Euclidean and DTW distance on original tijme
series
• Time series are restricted to be of length 2i (for
any i)
Knowledge Discovery in Databases II: Sequence Data
DATABASE
SYSTEMS
GROUP
8
Compact Representations: DWT
X = {8, 4, 1, 3}
1
2
3
4
5
6
7
8
h1= 4 =
mean(8,4,1,3)
h2 = 2 =
mean(8,4) - h1
h3 = 2 =
(8-4)/2
h4 = -1 =
(1-3)/2
Knowledge Discovery in Databases II: Sequence Data
• Example:
– Stepwise transformation of time series x = {8,4,1,3} into Haar Wavelet 
representation H = [4,2,2,‐1]
DATABASE
SYSTEMS
GROUP
9
Compact Representations: SVD
0 20 40 60 80 100 120 140
X
X'
eigenwave 0
eigenwave 1
eigenwave 2
eigenwave 3
eigenwave 4
eigenwave 5
eigenwave 6
eigenwave 7
SVD
• Singular Value Decomposition (SVD)
– Idea:
• Instead of sinus/cosine use Eigen Waves
– Properties:
• Minimizes the quadratic approximation error (like 
PCA and SVD on high dimensional data)
• The semantics of the components of SVD depends
on the actual data while DFT (sin/cos) and DWT 
(const) are not data dependent
• In text mining and Information Retrieval, SVD as a 
feature extraction technique is also know as „Latent 
Semantic Indexing“
Knowledge Discovery in Databases II: Sequence Data
DATABASE
SYSTEMS
GROUP
10
Compact Representations: PAA
0 20 40 60 80 100 120 140
X
X'
x1
x2
x3
x4
x5
x6
x7
x8
• Piecewise Aggregate Approximation (PAA)
– Idea:
• Transform time series into a sequence of box‐
functions
• Each box has the same length and approximates the
interval by the mean.
– Properties
• Lower bounding property
• Time series may have arbitrary length
Knowledge Discovery in Databases II: Sequence Data
DATABASE
SYSTEMS
GROUP
11
Compact Representations: APCA
0 20 40 60 80 100120140
X
X
<cv1,cr1>
<cv2,cr2>
<cv3,cr3>
<cv4,cr4>
• Extension: Adaptive Piecewise Constant 
Approximation (APCA)
– Motivation
• Time series may have time intervals with a small
amount details (small amplitude) and intervals with a 
large amount of details (large amplitude)
• PAA cannot account for varying amounts of detail
– Idea
• Use boxes of variable length
• Each segment now requires 2 paramters
Knowledge Discovery in Databases II: Sequence Data
DATABASE
SYSTEMS
GROUP
12
Compact Representations: PLA
• Piecewise Linear Approximation (PLA)
– Idea
• Transform time series into a sequence of line segments
s = (length, heightstart, heightend)
• Two consectutive segments need not to be connected
– Proterties
• Good approximation dependents on #segments
• Each component (segment) is a rich approximation but 
requires more parameters
• Lower bounds Euclidean and DTW
0 20 40 60 80 100 120 140
X
X'
Knowledge Discovery in Databases II: Sequence Data
DATABASE
SYSTEMS
GROUP
13
Threshold‐based similarity
• An example of a specific feature transformation to model a special notion of
similarity of time series is „threshold‐based similarity“
[Assfalg, Kriegel, Kröger, Kunath, Pryakhin, Renz. Proc. 10th Int. Conf. on Extending Database Technology (EDBT), 2006]
• Basic Idea:
– In some applications, only significant „events“ that are defined by certain
amplitudes (or amplitude values) are interesting
– So far, the feature extraction extracts features modeling certain properties of
time intervals but not of amplitude intervals
event at
specific time
point
Aggreagtion over time
Knowledge Discovery in Databases II: Sequence Data
DATABASE
SYSTEMS
GROUP
14
Threshold‐based similarity
• Sample Applications
– Environmental Science: analyzing critical ozone concentrations?
• Find cluster of regions (time series) that exceed the allowed threshold in similar time 
intervals
– Medical diagnosis: potential for cardiac infarction?
• Find clusters of heart rates by focusing on the relevant amplitude intervals
Normal
Dangerous Ozone Concentration
Not relevant for cardic infarction
Relevant for the detection of risk factors for
cardic infarction
Knowledge Discovery in Databases II: Sequence Data
DATABASE
SYSTEMS
GROUP
15
– Similarity Model
• Time series X = (xi,ti): i = 1..N is transformed into a sequence of intervals S,X = {sj: j = 
1..M}, such that:
• Similarity of time series = similarity of sequences of intervals
.
)
(
)
.
.
:
(
: , 
 






 t
x
u
s
t
l
s
S
s
T
t j
j
X
j
time
timeseries X

S,X:
s1 s2 s3
s1.l s1.u
S,Q:
S,A:
S,B:
Knowledge Discovery in Databases II: Sequence Data
Threshold‐based similarity
DATABASE
SYSTEMS
GROUP
16
• Similarity between sequences of intervals?
• First: distance on intervals?
– Euclidean distance on l‐ and u‐values:
where s1=(l1,u1) und s2=(l2,u2)
• Use sum of minimum distance between two sequences of intervals SX und SY
Knowledge Discovery in Databases II: Sequence Data
Threshold‐based similarity
2
2
1
2
2
1
2
1
int )
(
)
(
)
,
( u
u
l
l
s
s
d 















 
  
  Y X
X Y S
t S
s
Y
S
s S
t
X
Y
X
TS s
t
d
S
t
s
d
S
S
S
d )
,
(
|
|
1
)
,
(
|
|
1
2
1
)
,
( int
int min
min
SX SY SX SY
DATABASE
SYSTEMS
GROUP
Feature Extraction from Time Series
• Round‐up:
– Feature extraction method serve the purpose of
• Finding a compact representation of the original time series (mostly for 
performance reasons)
– Compact representations can be used for approximate similarity computations
– Some have bounding properties (e.g. lower bounding the exact distance/similarity) that can be 
used for indexing/pruning
or
• Modeling a specialized notion of similarity of a time series for a given 
application
17
Knowledge Discovery in Databases II: Sequence Data
DATABASE
SYSTEMS
GROUP
Overview
1. Introduction
2. Sequence Data
3. Time Series Data
4. Spatial Temporal Data[1]
Knowledge Discovery in Databases II: Sequence Data 18
1. BOGORNY, V., and S. SHEKHAR. "Tutorial on Spatial and Spatio-Temporal Data Mining." Part ii-Trajectory.
DATABASE
SYSTEMS
GROUP
Spatial‐Temporal Data
• Spatial‐temporal data is a special case of time series where (one 
of) the information recorded at each time point is the location of 
an object
• A time series over spatial locations is also called “trajectory”
• Often, there is additional information on time slots (e.g. semantic 
information on the location such as “museum” or “airport” …)
• We review the some of the recent trends in mining spatial‐
temporal (aka: spatio‐temporal) data
19
Knowledge Discovery in Databases II: Sequence Data
DATABASE
SYSTEMS
GROUP
Spatial‐Temporal Data
• In general, there are two major approaches to trajectory mining:
– Geometry‐based methods consider only geometrical properties of 
trajectories; they focus on “location‐based” similarity
– Semantic‐based methods compute patterns based on the semantics of the 
data and are somewhat independent of the specific spatial locations
20
Knowledge Discovery in Databases II: Sequence Data
DATABASE
SYSTEMS
GROUP
Geometry‐based approach
21
Knowledge Discovery in Databases II: Sequence Data
DATABASE
SYSTEMS
GROUP
Semantic‐based approach
22
Knowledge Discovery in Databases II: Sequence Data
DATABASE
SYSTEMS
GROUP
Geometry‐based Trajectory Mining
1. Convergence: At least m entities pass 
through the same circular region of radius 
r (regardless of time)
2. Recurrence: at least m entities visit a 
circular region at least k times
23
Knowledge Discovery in Databases II: Sequence Data
T1
T2
T3
T4
T5
convergence
• Laube et al. 2004 proposed five patterns based on location, 
direction, and/or movement:
F1
F1
F1
F1
recurrence
DATABASE
SYSTEMS
GROUP
Geometry‐based Trajectory Mining
24
Knowledge Discovery in Databases II: Sequence Data
3. Flock pattern: At least m entities are within a region of radius r and move in 
the same direction during a time interval >= s (e.g. traffic jam)
4. Leadership: At least m entities are within a circular region of radius r, they 
move in the same direction, and at least one of the entities is heading in that 
direction for at least t  time steps. (e.g. bird migration)
5. Encounter: At least m entities will be concurrently inside the same circular 
region of radius r, assuming they move with the same speed and direction. 
(e.g. traffic jam at some moment if cars keep moving in the same direction)
flock
leasdership
encounter
DATABASE
SYSTEMS
GROUP
Geometry‐based Trajectory Mining
• Frequent patterns: frequent followed paths/frequent sequential 
patterns
25
Knowledge Discovery in Databases II: Sequence Data
DATABASE
SYSTEMS
GROUP
Geometry‐based Trajectory Mining
• Computing frequent sequential patterns (e.g. Cao 2005):
1. Transforms each trajectory in a line with several segments
• A distance tolerance measure is defined
• All trajectory points inside this distance are
summarized in one segment
2. Similar segments are grouped
• Similarity is based on the angle and the spatial lenght of the segment
– Segments with same angle and length have their distance checked based on a given 
distance threshold 
• From the resulting groups, a medium segment is created
– From this segment a region is created
3. Frequent sequences of regions are computed considering a minSup
threshold
26
Knowledge Discovery in Databases II: Sequence Data
DATABASE
SYSTEMS
GROUP
Geometry‐based Trajectory Mining
• Frequent mobile group patterns (Hwang 2005):
– A group pattern is a set of trajectories close to each other (with distance 
less than a given minDist)  for a minimal amount of time (minTime)
– Direction is not considered
– Use Apriori algorithm to compute frequent groups
27
Knowledge Discovery in Databases II: Sequence Data
Group pattern: time, distance, and minsup
DATABASE
SYSTEMS
GROUP
Geometry‐based Trajectory Mining
• Co‐location Patterns (Cao 2006):
– Co‐location episodes in spatio‐temporal data
– Trajectories are spatially close in a time window and move together
28
Knowledge Discovery in Databases II: Sequence Data
DATABASE
SYSTEMS
GROUP
Geometry‐based Trajectory Mining
• Trajectory Clustering (Han 2007):
– Algorithm TraClus: Group sub‐trajectories using a density based clustering 
algorithm
– 2 step approach
1. Partition each trajectory in line segments with a user defined length L
2. Cluster similar line segments based on spatial proximity of the time points
– Similarity of line segments: Euclidean distance between segments (sub‐
trajectories); in theory: could be anything else
=> however, time is not considered in this approach
29
Knowledge Discovery in Databases II: Sequence Data
DATABASE
SYSTEMS
GROUP
Geometry‐based Trajectory Mining
• Sequential Trajectory Pattern Mining (T‐Patterns; Giannotti 2007):
– Considers both space and time
– Describes frequent behavior in terms of visited regions (ROIs)
– Three‐step approach
1. Compute regions of interest (ROIs), i.e., regions with many trajectories 
(regardless of time)
2. Transform trajectory into sequence of ROIs: select trajectories intersecting at 
least two regions in a sequence and annotate the time traveled between 
regions
3. Compute T‐Patterns, i.e., sequences of regions visited during the same time 
intervals
30
Knowledge Discovery in Databases II: Sequence Data
DATABASE
SYSTEMS
GROUP
Geometry‐based Trajectory Mining
– Visualization of the idea of T‐Patterns:
• Regions of interest (ROIs)
• Transform trajectory into a sequence of ROIs
• Sample pattern:
31
Knowledge Discovery in Databases II: Sequence Data
time
A
B
C
B
A 
 
 .
min
20
DATABASE
SYSTEMS
GROUP
Geometry‐based Trajectory Mining
– Visualization of the approach
• Step 1: detection of ROIs
• Step 2: transformation
• Compute pattern:
32
Knowledge Discovery in Databases II: Sequence Data
)
,
(
)
,
( 2
2
.
min
20
1
1 y
x
around
y
x
around 
 

time
around(x1,y1)
around(x1,y1)
DATABASE
SYSTEMS
GROUP
Semantic based method
• A Conceptual View on Trajectories (Spaccapietra 2008)
– Trajectory is a spatio‐temporal object that has generic features 
(independent of the application) and semantic features (depend on the 
application
– Trajectory = travel in abstract space, e.g. 2D career space:
33
Knowledge Discovery in Databases II: Sequence Data
institution
Time
position
(Assistant, Paris VI,
1966-1972)
(Lecturer, Paris VI,
1972-1983)
(Professor, Dijon,
1983-1988)
(Professor, EPFL,
1988-2010)
begin
end
DATABASE
SYSTEMS
GROUP
Semantic based method
• Semantic trajectories = geo data + trajectory data
34
Knowledge Discovery in Databases II: Sequence Data
Geographic Data
Trajectory Samples (x,y,t)
Geographic Data +
Trajectory Data =
Semantic Trajectories
DATABASE
SYSTEMS
GROUP
Semantic based method
• Difference between stops and moves
– STOPS
• Important parts of trajectories
• Where the moving object has stayed for a minimal amount of time
• Stops are application dependent
• Tourism application: Hotels, touristic places, airport, …
• Traffic Management Application: Traffic lights, roundabouts, big events…
– MOVES
• Are the parts that are not stops
35
Knowledge Discovery in Databases II: Sequence Data
DATABASE
SYSTEMS
GROUP
Semantic based method
• Stops and moves are independent of the application
36
Knowledge Discovery in Databases II: Sequence Data
Airport
[08:00 – 08:30]
Ibis Hotel
[10:00-12:00]]
Louvre Museum
[13:00 – 17:00]
Eiffel Tower
[17:30 – 18:00]
1
2
3
Traffic Jam
[09:00 – 09:15]
Round About
[08:40 – 08:45]
Airport
[08:00 – 08:30]
Cross Road
[12:15 – 12:22]
DATABASE
SYSTEMS
GROUP
Semantic based method
• Geometric Patterns enriched by semantics (Bogorny 2008):
– Very little semantics in most trajectory mining approaches (geometry‐
based approaches)
Thus:
– Patterns are purely geometrical
– Hard to interpret
Thus:
– Enrich geometric patterns with semantic information
(stimulated many approaches on how to add semantics to trajectories)
37
Knowledge Discovery in Databases II: Sequence Data
DATABASE
SYSTEMS
GROUP
Semantic based method
• Semantic Enrichment (Example):
38
Knowledge Discovery in Databases II: Sequence Data
B
T1
T2
T3
T4
T1
T2
T3
T4
H
H
H
Hotel
R
R
R Restaurant
C
C
C Cinema
Semantic trajectory Pattern
(a) Hotel to Restaurant, passing by SC
(b) go to Cinema, passing by SC
Geometric Pattern
SC
DATABASE
SYSTEMS
GROUP
Semantic based method
• Stop and Move computation: SMoT (Alvares 2007a)
– A candidate stop C is a tuple (RC, C), where
• RC is the geometry of the candidate stop (spatial feature type)
• C is the minimal time duration
E.g. [Hotel - 3 hours]
– An application A is a finite set
A = {C1 = (RC1 , C1 ), …, CN = (RCN , CN)} of candidate stops with non-
overlapping geometries RC1, … ,RCN
E.g. [Hotel - 3 hours, Museum – 1 hour]
39
Knowledge Discovery in Databases II: Sequence Data
DATABASE
SYSTEMS
GROUP
Semantic based method
• Stop and Move computation: SMoT (Alvares 2007a)
A stop of a trajectory T with respect to an application A is a tuple (RCk, tj , tj+n),
such that a maximal subtrajectory of
T {(xi, yi, ti) | (xi, yi) intersects RCk} =
{(xj, yj, tj), (xj+1, yj+1, tj+1), ...,(xj+n, yj+n, tj+n)}
where RCk is the geometry of Ck and | tj+n – tj |  Ck
A move of T with respect to A is:
 a maximal contiguous subtrajectory of T :
 between the starting point of T and the first stop of T; OR
 between two consecutive stops of T; OR
 between the last stop of T and the ending point of T;
 or the trajectory T itself, if T has no stops.
40
Knowledge Discovery in Databases II: Sequence Data
S1
S3
S2
DATABASE
SYSTEMS
GROUP
Semantic based method
• Improvement: CB‐SMoT (Palma 2008)
– Cluster based: cluster trajectories based on speed
– Low speed => important place
– Algorithm similar to SMoT but clusters trajectory points first and adds 
semantics to clusters
41
Knowledge Discovery in Databases II: Sequence Data
DATABASE
SYSTEMS
GROUP
Semantic based method
• Comparison: SMoT vs. CB‐SMoT (Application: transportation)
42
Knowledge Discovery in Databases II: Sequence Data
SMoT
CB-SMoT
DATABASE
SYSTEMS
GROUP
Readings on Spatial‐Temporal Data
• Geometric based methods
Huiping Cao, Nikos Mamoulis, David W. Cheung: Discovery of Periodic Patterns in Spatiotemporal
Sequences. IEEE Trans. Knowl. Data Eng. 19(4): 453-467 (2007)
Panos Kalnis, Nikos Mamoulis, Spiridon Bakiras: On Discovering Moving Clusters in Spatio-temporal Data.
SSTD, 364-381 (2005)
Florian Verhein, Sanjay Chawla: Mining spatio-temporal patterns in object mobility databases. Data Min.
Knowl. Discov. 16(1): 5-38 (2008)
Florian Verhein, Sanjay Chawla: Mining Spatio-temporal Association Rules, Sources, Sinks, Stationary
Regions and Thoroughfares in Object Mobility Databases. DASFAA, 187-201 (2006)
Changqing Zhou, Dan Frankowski, Pamela J. Ludford, Shashi Shekhar, and Loren G. Terveen. Discovering
personally meaningful places: An interactive clustering approach. ACM Trans. Inf. Syst., 25(3), 2007.
Cao, H., Mamoulis, N., and Cheung, D. W. (2005). Mining frequent spatio-temporal sequential patterns. In
ICDM ’05: Proceedings of the Fifth IEEE International Conference on Data Mining, pages 82–89,
Washington, DC, USA. IEEE Computer Society.
43
Knowledge Discovery in Databases II: Sequence Data
DATABASE
SYSTEMS
GROUP
Readings on Spatial‐Temporal Data
• Geometric based methods (cont.)
Laube, P. and Imfeld, S. (2002). Analyzing relative motion within groups of trackable moving point objects.
In Egenhofer, M. J. and Mark, D. M., editors, GIScience, volume 2478 of Lecture Notes in Computer
Science, pages 132–144. Springer.
Laube, P., Imfeld, S., and Weibel, R. (2005a). Discovering relative motion patterns in groups of moving point
objects. International Journal of Geographical Information Science, 19(6):639–668.
Laube, P., van Kreveld, M., and Imfeld, S. (2005b). Finding REMO: Detecting Relative Motion Patterns in
Geospatial Lifelines. Springer.
Lee, J.-G., Han, J., and Whang, K.-Y. (2007). Trajectory clustering: a partition-and-group framework. In
Chan, C. Y., Ooi, B. C., and Zhou, A., editors, SIGMOD Conference, pages 593–604. ACM.
Li, Y., Han, J., and Yang, J. (2004). Clustering moving objects. In KDD ’04: Proceedings of the tenth ACM
SIGKDD international conference on Knowledge discovery and data mining, pages 617–622, New York,
NY, USA. ACM Press.
Nanni, M. and Pedreschi, D. (2006). Time-focused clustering of trajectories of moving objects. Journal of
Intelligent Information Systems, 27(3):267–289.
44
Knowledge Discovery in Databases II: Sequence Data
DATABASE
SYSTEMS
GROUP
Readings on Spatial‐Temporal Data
• Geometric based methods (cont.)
Verhein, F. and Chawla, S. (2006). Mining spatio-temporal association rules, sources, sinks, stationary
regions and thoroughfares in object mobility databases. In Lee, M.- L., Tan, K.-L., and Wuwongse, V.,
editors, DASFAA, volume 3882 of Lecture Notes in Computer Science, pages 187–201. Springer.
Gudmundsson, J. and van Kreveld, M. J. (2006). Computing longest duration flocks in trajectory data. In [de
By and Nittel 2006], pages 35–42.
Gudmundsson, J., van Kreveld, M. J., and Speckmann, B. (2007). Efficient detection of patterns in 2d
trajectories of moving points. GeoInformatica, 11(2):195–215.
Hwang, S.-Y., Liu, Y.-H., Chiu, J.-K., and Lim, E.-P. (2005). Mining mobile group patterns: A trajectory-based
approach. In Ho, T. B., Cheung, D. W.-L., and Liu, H., editors, PAKDD, volume 3518 of Lecture Notes in
Computer Science, pages 713–718. Springer.
Cao, H., Mamoulis, N., and Cheung, D. W. (2006). Discovery of collocation episodes in spatiotemporal data.
In ICDM, pages 823–827. IEEE Computer Society.
45
Knowledge Discovery in Databases II: Sequence Data
DATABASE
SYSTEMS
GROUP
Readings on Spatial‐Temporal Data
• Semantic based method
Bogorny, V. ; Wachowicz, M. A Framework for Context-Aware Trajectory Data Mining. In: Longbing
Cao, Philip S. Yu, Chengqi Ahang, Huaifeng Zhang. (Org.). Domain Driven Data Mining: Domain
Problems and Applications. 1 ed. : Springer, 2008a.
Bogorny, V., Kuijpers, B., and Alvares, L. O. (2008b). St-dmql: a semantic trajectory data mining query
language. International Journal of Geographical Information Science. Taylor and Francis, 2008.
Palma, A. T; Bogorny, V.; Kuijpers, B.; Alvares, L.O. A Clustering-based Approach for Discovering
Interesting Places in Trajectories. In: 23rd Annual Symposium on Applied Computing, (ACM-SAC'08),
Fortaleza, Ceara, 16-20 March (2008) Brazil. pp. 863-868.
Spaccapietra, S., Parent, C., Damiani, M. L., de Macedo, J. A., Porto, F., and Vangenot, C. (2008). A
conceptual view on trajectories. Data and Knowledge Engineering, 65(1):126–146.
Alvares, L. O., Bogorny, V., de Macedo, J. F., and Moelans, B. (2007a). Dynamic modeling of trajectory
patterns using data mining and reverse engineering. In Twenty-Sixth International Conference on
Conceptual Modeling - ER2007 - Tutorials, Posters, Panels and Industrial Contributions, volume 83,
pages 149–154. CRPIT.
Alvares, L. O., Bogorny, V., Kuijpers, B., de Macedo, J. A. F., Moelans, B., and Vaisman, A. (2007b). A
model for enriching trajectories with semantic geographical information. In ACM-GIS, pages 162–169,
New York, NY, USA. ACM Press.
46
Knowledge Discovery in Databases II: Sequence Data

More Related Content

Similar to 4-SequenceTimeSeries02.pdf

Compressed learning for time series classification
Compressed learning for time series classificationCompressed learning for time series classification
Compressed learning for time series classification學翰 施
 
SYSTOLIC ARCH IN COMPUTER OPERATING SYSTEM.pptx
SYSTOLIC ARCH IN COMPUTER OPERATING SYSTEM.pptxSYSTOLIC ARCH IN COMPUTER OPERATING SYSTEM.pptx
SYSTOLIC ARCH IN COMPUTER OPERATING SYSTEM.pptxSaiDhanushM
 
BDAS Shark study report 03 v1.1
BDAS Shark study report  03 v1.1BDAS Shark study report  03 v1.1
BDAS Shark study report 03 v1.1Stefanie Zhao
 
Enterprise Scale Topological Data Analysis Using Spark
Enterprise Scale Topological Data Analysis Using SparkEnterprise Scale Topological Data Analysis Using Spark
Enterprise Scale Topological Data Analysis Using SparkAlpine Data
 
Enterprise Scale Topological Data Analysis Using Spark
Enterprise Scale Topological Data Analysis Using SparkEnterprise Scale Topological Data Analysis Using Spark
Enterprise Scale Topological Data Analysis Using SparkSpark Summit
 
Matrix Factorization In Recommender Systems
Matrix Factorization In Recommender SystemsMatrix Factorization In Recommender Systems
Matrix Factorization In Recommender SystemsYONG ZHENG
 
Tales From The Front: An Architecture For Multi-Data Center Scalable Applicat...
Tales From The Front: An Architecture For Multi-Data Center Scalable Applicat...Tales From The Front: An Architecture For Multi-Data Center Scalable Applicat...
Tales From The Front: An Architecture For Multi-Data Center Scalable Applicat...DataStax Academy
 
R data mining-Time Series Analysis with R
R data mining-Time Series Analysis with RR data mining-Time Series Analysis with R
R data mining-Time Series Analysis with RDr. Volkan OBAN
 
A Tale of Data Pattern Discovery in Parallel
A Tale of Data Pattern Discovery in ParallelA Tale of Data Pattern Discovery in Parallel
A Tale of Data Pattern Discovery in ParallelJenny Liu
 
Alerting mechanism and algorithms introduction
Alerting mechanism and algorithms introductionAlerting mechanism and algorithms introduction
Alerting mechanism and algorithms introductionFEG
 
Low power tool paper
Low power tool paperLow power tool paper
Low power tool paperM Madan Gopal
 
[2015/2016] AADL (Architecture Analysis and Design Language)
[2015/2016] AADL (Architecture Analysis and Design Language)[2015/2016] AADL (Architecture Analysis and Design Language)
[2015/2016] AADL (Architecture Analysis and Design Language)Ivano Malavolta
 
RUCK 2017 MxNet과 R을 연동한 딥러닝 소개
RUCK 2017 MxNet과 R을 연동한 딥러닝 소개RUCK 2017 MxNet과 R을 연동한 딥러닝 소개
RUCK 2017 MxNet과 R을 연동한 딥러닝 소개r-kor
 
Times Series Feature Extraction Methods of Wearable Signal Data for Deep Lear...
Times Series Feature Extraction Methods of Wearable Signal Data for Deep Lear...Times Series Feature Extraction Methods of Wearable Signal Data for Deep Lear...
Times Series Feature Extraction Methods of Wearable Signal Data for Deep Lear...William Nadolski
 
Achitecture Aware Algorithms and Software for Peta and Exascale
Achitecture Aware Algorithms and Software for Peta and ExascaleAchitecture Aware Algorithms and Software for Peta and Exascale
Achitecture Aware Algorithms and Software for Peta and Exascaleinside-BigData.com
 

Similar to 4-SequenceTimeSeries02.pdf (20)

Compressed learning for time series classification
Compressed learning for time series classificationCompressed learning for time series classification
Compressed learning for time series classification
 
SYSTOLIC ARCH IN COMPUTER OPERATING SYSTEM.pptx
SYSTOLIC ARCH IN COMPUTER OPERATING SYSTEM.pptxSYSTOLIC ARCH IN COMPUTER OPERATING SYSTEM.pptx
SYSTOLIC ARCH IN COMPUTER OPERATING SYSTEM.pptx
 
BDAS Shark study report 03 v1.1
BDAS Shark study report  03 v1.1BDAS Shark study report  03 v1.1
BDAS Shark study report 03 v1.1
 
lecture1.ppt
lecture1.pptlecture1.ppt
lecture1.ppt
 
Enterprise Scale Topological Data Analysis Using Spark
Enterprise Scale Topological Data Analysis Using SparkEnterprise Scale Topological Data Analysis Using Spark
Enterprise Scale Topological Data Analysis Using Spark
 
Enterprise Scale Topological Data Analysis Using Spark
Enterprise Scale Topological Data Analysis Using SparkEnterprise Scale Topological Data Analysis Using Spark
Enterprise Scale Topological Data Analysis Using Spark
 
Matrix Factorization In Recommender Systems
Matrix Factorization In Recommender SystemsMatrix Factorization In Recommender Systems
Matrix Factorization In Recommender Systems
 
Tales From The Front: An Architecture For Multi-Data Center Scalable Applicat...
Tales From The Front: An Architecture For Multi-Data Center Scalable Applicat...Tales From The Front: An Architecture For Multi-Data Center Scalable Applicat...
Tales From The Front: An Architecture For Multi-Data Center Scalable Applicat...
 
R data mining-Time Series Analysis with R
R data mining-Time Series Analysis with RR data mining-Time Series Analysis with R
R data mining-Time Series Analysis with R
 
Paralell
ParalellParalell
Paralell
 
DSCmeetsRTS-CTS_v0
DSCmeetsRTS-CTS_v0DSCmeetsRTS-CTS_v0
DSCmeetsRTS-CTS_v0
 
Velocity cubes of galaxies
Velocity cubes of galaxiesVelocity cubes of galaxies
Velocity cubes of galaxies
 
A Tale of Data Pattern Discovery in Parallel
A Tale of Data Pattern Discovery in ParallelA Tale of Data Pattern Discovery in Parallel
A Tale of Data Pattern Discovery in Parallel
 
Alerting mechanism and algorithms introduction
Alerting mechanism and algorithms introductionAlerting mechanism and algorithms introduction
Alerting mechanism and algorithms introduction
 
Low power tool paper
Low power tool paperLow power tool paper
Low power tool paper
 
ARIMA
ARIMA ARIMA
ARIMA
 
[2015/2016] AADL (Architecture Analysis and Design Language)
[2015/2016] AADL (Architecture Analysis and Design Language)[2015/2016] AADL (Architecture Analysis and Design Language)
[2015/2016] AADL (Architecture Analysis and Design Language)
 
RUCK 2017 MxNet과 R을 연동한 딥러닝 소개
RUCK 2017 MxNet과 R을 연동한 딥러닝 소개RUCK 2017 MxNet과 R을 연동한 딥러닝 소개
RUCK 2017 MxNet과 R을 연동한 딥러닝 소개
 
Times Series Feature Extraction Methods of Wearable Signal Data for Deep Lear...
Times Series Feature Extraction Methods of Wearable Signal Data for Deep Lear...Times Series Feature Extraction Methods of Wearable Signal Data for Deep Lear...
Times Series Feature Extraction Methods of Wearable Signal Data for Deep Lear...
 
Achitecture Aware Algorithms and Software for Peta and Exascale
Achitecture Aware Algorithms and Software for Peta and ExascaleAchitecture Aware Algorithms and Software for Peta and Exascale
Achitecture Aware Algorithms and Software for Peta and Exascale
 

More from TadiyosHailemichael

More from TadiyosHailemichael (11)

A_review_on_outlier_detection_in_time_series_data__BCAM_1.pdf.pdf
A_review_on_outlier_detection_in_time_series_data__BCAM_1.pdf.pdfA_review_on_outlier_detection_in_time_series_data__BCAM_1.pdf.pdf
A_review_on_outlier_detection_in_time_series_data__BCAM_1.pdf.pdf
 
2006.11583.pdf
2006.11583.pdf2006.11583.pdf
2006.11583.pdf
 
KDD21_InterFusion_Li.pdf
KDD21_InterFusion_Li.pdfKDD21_InterFusion_Li.pdf
KDD21_InterFusion_Li.pdf
 
2007.02500.pdf
2007.02500.pdf2007.02500.pdf
2007.02500.pdf
 
mathematics-10-01599-v2.pdf
mathematics-10-01599-v2.pdfmathematics-10-01599-v2.pdf
mathematics-10-01599-v2.pdf
 
AUDIBERT_Julien_2021.pdf
AUDIBERT_Julien_2021.pdfAUDIBERT_Julien_2021.pdf
AUDIBERT_Julien_2021.pdf
 
Bäßler2022_Article_UnsupervisedAnomalyDetectionIn.pdf
Bäßler2022_Article_UnsupervisedAnomalyDetectionIn.pdfBäßler2022_Article_UnsupervisedAnomalyDetectionIn.pdf
Bäßler2022_Article_UnsupervisedAnomalyDetectionIn.pdf
 
5438-Article Text-8663-1-10-20200511.pdf
5438-Article Text-8663-1-10-20200511.pdf5438-Article Text-8663-1-10-20200511.pdf
5438-Article Text-8663-1-10-20200511.pdf
 
0505.pdf
0505.pdf0505.pdf
0505.pdf
 
2204.01637.pdf
2204.01637.pdf2204.01637.pdf
2204.01637.pdf
 
1notes
1notes1notes
1notes
 

Recently uploaded

MATERI MANAJEMEN OF PENYAKIT TETANUS.ppt
MATERI  MANAJEMEN OF PENYAKIT TETANUS.pptMATERI  MANAJEMEN OF PENYAKIT TETANUS.ppt
MATERI MANAJEMEN OF PENYAKIT TETANUS.pptRachmaGhifari
 
1:1原版定制伦敦政治经济学院毕业证(LSE毕业证)成绩单学位证书留信学历认证
1:1原版定制伦敦政治经济学院毕业证(LSE毕业证)成绩单学位证书留信学历认证1:1原版定制伦敦政治经济学院毕业证(LSE毕业证)成绩单学位证书留信学历认证
1:1原版定制伦敦政治经济学院毕业证(LSE毕业证)成绩单学位证书留信学历认证dq9vz1isj
 
Identify Rules that Predict Patient’s Heart Disease - An Application of Decis...
Identify Rules that Predict Patient’s Heart Disease - An Application of Decis...Identify Rules that Predict Patient’s Heart Disease - An Application of Decis...
Identify Rules that Predict Patient’s Heart Disease - An Application of Decis...ThinkInnovation
 
一比一原版(Monash毕业证书)莫纳什大学毕业证成绩单如何办理
一比一原版(Monash毕业证书)莫纳什大学毕业证成绩单如何办理一比一原版(Monash毕业证书)莫纳什大学毕业证成绩单如何办理
一比一原版(Monash毕业证书)莫纳什大学毕业证成绩单如何办理pyhepag
 
Credit Card Fraud Detection: Safeguarding Transactions in the Digital Age
Credit Card Fraud Detection: Safeguarding Transactions in the Digital AgeCredit Card Fraud Detection: Safeguarding Transactions in the Digital Age
Credit Card Fraud Detection: Safeguarding Transactions in the Digital AgeBoston Institute of Analytics
 
Audience Researchndfhcvnfgvgbhujhgfv.pptx
Audience Researchndfhcvnfgvgbhujhgfv.pptxAudience Researchndfhcvnfgvgbhujhgfv.pptx
Audience Researchndfhcvnfgvgbhujhgfv.pptxStephen266013
 
Genuine love spell caster )! ,+27834335081) Ex lover back permanently in At...
Genuine love spell caster )! ,+27834335081)   Ex lover back permanently in At...Genuine love spell caster )! ,+27834335081)   Ex lover back permanently in At...
Genuine love spell caster )! ,+27834335081) Ex lover back permanently in At...BabaJohn3
 
Seven tools of quality control.slideshare
Seven tools of quality control.slideshareSeven tools of quality control.slideshare
Seven tools of quality control.slideshareraiaryan448
 
NO1 Best Kala Jadu Expert Specialist In Germany Kala Jadu Expert Specialist I...
NO1 Best Kala Jadu Expert Specialist In Germany Kala Jadu Expert Specialist I...NO1 Best Kala Jadu Expert Specialist In Germany Kala Jadu Expert Specialist I...
NO1 Best Kala Jadu Expert Specialist In Germany Kala Jadu Expert Specialist I...Amil baba
 
Atlantic Grupa Case Study (Mintec Data AI)
Atlantic Grupa Case Study (Mintec Data AI)Atlantic Grupa Case Study (Mintec Data AI)
Atlantic Grupa Case Study (Mintec Data AI)Jon Hansen
 
1:1原版定制利物浦大学毕业证(Liverpool毕业证)成绩单学位证书留信学历认证
1:1原版定制利物浦大学毕业证(Liverpool毕业证)成绩单学位证书留信学历认证1:1原版定制利物浦大学毕业证(Liverpool毕业证)成绩单学位证书留信学历认证
1:1原版定制利物浦大学毕业证(Liverpool毕业证)成绩单学位证书留信学历认证ppy8zfkfm
 
Formulas dax para power bI de microsoft.pdf
Formulas dax para power bI de microsoft.pdfFormulas dax para power bI de microsoft.pdf
Formulas dax para power bI de microsoft.pdfRobertoOcampo24
 
社内勉強会資料  Mamba - A new era or ephemeral
社内勉強会資料   Mamba - A new era or ephemeral社内勉強会資料   Mamba - A new era or ephemeral
社内勉強会資料  Mamba - A new era or ephemeralNABLAS株式会社
 
一比一原版加利福尼亚大学尔湾分校毕业证成绩单如何办理
一比一原版加利福尼亚大学尔湾分校毕业证成绩单如何办理一比一原版加利福尼亚大学尔湾分校毕业证成绩单如何办理
一比一原版加利福尼亚大学尔湾分校毕业证成绩单如何办理pyhepag
 
How to Transform Clinical Trial Management with Advanced Data Analytics
How to Transform Clinical Trial Management with Advanced Data AnalyticsHow to Transform Clinical Trial Management with Advanced Data Analytics
How to Transform Clinical Trial Management with Advanced Data AnalyticsBrainSell Technologies
 
The Significance of Transliteration Enhancing
The Significance of Transliteration EnhancingThe Significance of Transliteration Enhancing
The Significance of Transliteration Enhancingmohamed Elzalabany
 
NOAM AAUG Adobe Summit 2024: Summit Slam Dunks
NOAM AAUG Adobe Summit 2024: Summit Slam DunksNOAM AAUG Adobe Summit 2024: Summit Slam Dunks
NOAM AAUG Adobe Summit 2024: Summit Slam Dunksgmuir1066
 
如何办理哥伦比亚大学毕业证(Columbia毕业证)成绩单原版一比一
如何办理哥伦比亚大学毕业证(Columbia毕业证)成绩单原版一比一如何办理哥伦比亚大学毕业证(Columbia毕业证)成绩单原版一比一
如何办理哥伦比亚大学毕业证(Columbia毕业证)成绩单原版一比一fztigerwe
 
Abortion Clinic in Randfontein +27791653574 Randfontein WhatsApp Abortion Cli...
Abortion Clinic in Randfontein +27791653574 Randfontein WhatsApp Abortion Cli...Abortion Clinic in Randfontein +27791653574 Randfontein WhatsApp Abortion Cli...
Abortion Clinic in Randfontein +27791653574 Randfontein WhatsApp Abortion Cli...mikehavy0
 

Recently uploaded (20)

MATERI MANAJEMEN OF PENYAKIT TETANUS.ppt
MATERI  MANAJEMEN OF PENYAKIT TETANUS.pptMATERI  MANAJEMEN OF PENYAKIT TETANUS.ppt
MATERI MANAJEMEN OF PENYAKIT TETANUS.ppt
 
1:1原版定制伦敦政治经济学院毕业证(LSE毕业证)成绩单学位证书留信学历认证
1:1原版定制伦敦政治经济学院毕业证(LSE毕业证)成绩单学位证书留信学历认证1:1原版定制伦敦政治经济学院毕业证(LSE毕业证)成绩单学位证书留信学历认证
1:1原版定制伦敦政治经济学院毕业证(LSE毕业证)成绩单学位证书留信学历认证
 
Abortion pills in Riyadh Saudi Arabia (+966572737505 buy cytotec
Abortion pills in Riyadh Saudi Arabia (+966572737505 buy cytotecAbortion pills in Riyadh Saudi Arabia (+966572737505 buy cytotec
Abortion pills in Riyadh Saudi Arabia (+966572737505 buy cytotec
 
Identify Rules that Predict Patient’s Heart Disease - An Application of Decis...
Identify Rules that Predict Patient’s Heart Disease - An Application of Decis...Identify Rules that Predict Patient’s Heart Disease - An Application of Decis...
Identify Rules that Predict Patient’s Heart Disease - An Application of Decis...
 
一比一原版(Monash毕业证书)莫纳什大学毕业证成绩单如何办理
一比一原版(Monash毕业证书)莫纳什大学毕业证成绩单如何办理一比一原版(Monash毕业证书)莫纳什大学毕业证成绩单如何办理
一比一原版(Monash毕业证书)莫纳什大学毕业证成绩单如何办理
 
Credit Card Fraud Detection: Safeguarding Transactions in the Digital Age
Credit Card Fraud Detection: Safeguarding Transactions in the Digital AgeCredit Card Fraud Detection: Safeguarding Transactions in the Digital Age
Credit Card Fraud Detection: Safeguarding Transactions in the Digital Age
 
Audience Researchndfhcvnfgvgbhujhgfv.pptx
Audience Researchndfhcvnfgvgbhujhgfv.pptxAudience Researchndfhcvnfgvgbhujhgfv.pptx
Audience Researchndfhcvnfgvgbhujhgfv.pptx
 
Genuine love spell caster )! ,+27834335081) Ex lover back permanently in At...
Genuine love spell caster )! ,+27834335081)   Ex lover back permanently in At...Genuine love spell caster )! ,+27834335081)   Ex lover back permanently in At...
Genuine love spell caster )! ,+27834335081) Ex lover back permanently in At...
 
Seven tools of quality control.slideshare
Seven tools of quality control.slideshareSeven tools of quality control.slideshare
Seven tools of quality control.slideshare
 
NO1 Best Kala Jadu Expert Specialist In Germany Kala Jadu Expert Specialist I...
NO1 Best Kala Jadu Expert Specialist In Germany Kala Jadu Expert Specialist I...NO1 Best Kala Jadu Expert Specialist In Germany Kala Jadu Expert Specialist I...
NO1 Best Kala Jadu Expert Specialist In Germany Kala Jadu Expert Specialist I...
 
Atlantic Grupa Case Study (Mintec Data AI)
Atlantic Grupa Case Study (Mintec Data AI)Atlantic Grupa Case Study (Mintec Data AI)
Atlantic Grupa Case Study (Mintec Data AI)
 
1:1原版定制利物浦大学毕业证(Liverpool毕业证)成绩单学位证书留信学历认证
1:1原版定制利物浦大学毕业证(Liverpool毕业证)成绩单学位证书留信学历认证1:1原版定制利物浦大学毕业证(Liverpool毕业证)成绩单学位证书留信学历认证
1:1原版定制利物浦大学毕业证(Liverpool毕业证)成绩单学位证书留信学历认证
 
Formulas dax para power bI de microsoft.pdf
Formulas dax para power bI de microsoft.pdfFormulas dax para power bI de microsoft.pdf
Formulas dax para power bI de microsoft.pdf
 
社内勉強会資料  Mamba - A new era or ephemeral
社内勉強会資料   Mamba - A new era or ephemeral社内勉強会資料   Mamba - A new era or ephemeral
社内勉強会資料  Mamba - A new era or ephemeral
 
一比一原版加利福尼亚大学尔湾分校毕业证成绩单如何办理
一比一原版加利福尼亚大学尔湾分校毕业证成绩单如何办理一比一原版加利福尼亚大学尔湾分校毕业证成绩单如何办理
一比一原版加利福尼亚大学尔湾分校毕业证成绩单如何办理
 
How to Transform Clinical Trial Management with Advanced Data Analytics
How to Transform Clinical Trial Management with Advanced Data AnalyticsHow to Transform Clinical Trial Management with Advanced Data Analytics
How to Transform Clinical Trial Management with Advanced Data Analytics
 
The Significance of Transliteration Enhancing
The Significance of Transliteration EnhancingThe Significance of Transliteration Enhancing
The Significance of Transliteration Enhancing
 
NOAM AAUG Adobe Summit 2024: Summit Slam Dunks
NOAM AAUG Adobe Summit 2024: Summit Slam DunksNOAM AAUG Adobe Summit 2024: Summit Slam Dunks
NOAM AAUG Adobe Summit 2024: Summit Slam Dunks
 
如何办理哥伦比亚大学毕业证(Columbia毕业证)成绩单原版一比一
如何办理哥伦比亚大学毕业证(Columbia毕业证)成绩单原版一比一如何办理哥伦比亚大学毕业证(Columbia毕业证)成绩单原版一比一
如何办理哥伦比亚大学毕业证(Columbia毕业证)成绩单原版一比一
 
Abortion Clinic in Randfontein +27791653574 Randfontein WhatsApp Abortion Cli...
Abortion Clinic in Randfontein +27791653574 Randfontein WhatsApp Abortion Cli...Abortion Clinic in Randfontein +27791653574 Randfontein WhatsApp Abortion Cli...
Abortion Clinic in Randfontein +27791653574 Randfontein WhatsApp Abortion Cli...
 

4-SequenceTimeSeries02.pdf