SlideShare a Scribd company logo
1 of 9
Download to read offline
TELKOMNIKA Telecommunication, Computing, Electronics and Control
Vol. 18, No. 5, October 2020, pp. 2362~2370
ISSN: 1693-6930, accredited First Grade by Kemenristekdikti, Decree No: 21/E/KPT/2018
DOI: 10.12928/TELKOMNIKA.v18i5.16295  2362
Journal homepage: http://journal.uad.ac.id/index.php/TELKOMNIKA
The efficient interleaving of
digital-video-broadcasting-satellite 2nd generations system
Mohammed Jabbar Mohammed Ameen1
, Hussam Jawad Kadhim2
1
College of Engineering, The University of Babylon, Iraq
2
College of Science for women, The University of Babylon, Iraq
Article Info ABSTRACT
Article history:
Received Apr 9, 2020
Revised May 1, 2020
Accepted May 11, 2020
The DVB-S2 system is designed as a toolbox to permit the execution of
the satellite programs. Interleaver is an essential part of the DVB-S2
system. The current general block interleaver in DVB-S2 is not best, which
leads to high BER and maybe not satisfy the requirements of the system.
The purpose of this paper is to study the several interleaver types and
comparative analyses are done between them to find which of these give
better performance. Simulations results obtained prove that the 2D
interleavers minimize BER more than other interleavers of DVB-S2. Further,
the performance of 2D interleaver is better on a system that required
a low SNR.
Keywords:
16-APSK
32-APSK
BCH
BER
FEC
Interleaver
LDPC
QPSK
SNR
This is an open access article under the CC BY-SA license.
Corresponding Author:
Mohammed Jabbar Mohammed Ameen,
Department of Electrical Engineering,
College of Engineering, The University of Babylon,
Najaf road, Hillah, Babel, Iraq.
Email: mohammedalsalihy@yahoo.com
1. INTRODUCTION
DVB-S2 or digital-video-broadcasting-satellite 2nd Generations provides for the broadcast and
high-definition television (HDTV), data content sharing out, internet services, and military communications
data link [1]. The DVB-S2 system determines about three mains ideas are: finest transmitting performance,
complete flexibility and complexity at the receiver acceptable. To accomplish better tradeoff between
performance and complexity, capacity can increase around 30% over first generations, DVB-S2 exploits later
improvements in forward-error-correction (FEC) and modulation schemes [2]. An example of interactive
point-to-point programs is the adaptive-coding-modulation (ACM) which permits for optimizing parameters
of the transmissions to meet the requirements of the terminal such as changes in channel conditions.
This outcomes in an additional raise in the spectrum usage efficiency for the 2nd over 1st generation, which
permit the optimizing in space part layouts, therefore capable of the decrease in the operating cost of satellite
services [3, 4].
DVB-S2 has appropriate active FEC technique use as a basis on the successive concatenation of
BCH and low-density parity check (LDPC) codes. This combination of FEC configuration with addition to
high order modulations (8PSK, 16-APSK, and 32-APSK) which gives greater spectral efficiency and
therefore high data rate to the required system [5, 6]. The first code is the BCH code, which forms a major
category of active error correction cyclic codes. This category of codes is a wonderful application of
TELKOMNIKA Telecommun Comput El Control 
The efficient interleaving of digital-video-broadcasting-... (Mohammed Jabbar Mohammed Ameen)
2363
the Hamming code when multiple error correction required. For the second LDPC code, which implies that
reasonable structure assign to be the noise threshold near to the theoretical of Shannon limits for
the symmetrical memoryless channel. Error-correcting codes theory introduced considerable code
constructions with related decoding algorithms. The applications with powerful error-correcting abilities are
required extremely complex decoder solutions [7, 8].
When data transmitted over wireless channels, it may confront extreme conditions; particularly burst
errors. Burst error control in the wireless transmission system is especially significant in numerous applications.
If the data rate increases, BER also increases. The methods that can be used to minimized or remove the burst
errors by data interleaving. There are some basic interleaving strategies like block and convolutional
interleaving which can be expressed as a one-dimensional term. The performance of these interleavers is
bounded. Thus, there is a requirement to find strong interleavers. Chaotic and zigzag mapping techniques can be
applied to construct powerful interleavers, which can be expressed as a two-dimensional term (2D).
The Chaotic interleaver technique based on chaotic Baker map, whereas, the zigzag mechanism is rearranged
the input bits in a matrix by zigzag manner. Another merit of the 2D interleaving technique is it can accomplish
a grade of encryption in the transmitted information which adds extra security to the system [9, 10].
The motivation of this paper is to improve the performance of the DVB-S2 system by minimizing
BER to fulfill the reduction in BER for a certain SNR. We investigated different interleaving data strategies
for the DVB-S2 system. We compare the bit error rate (BER) performance to show that it’s better.
To achieve this, simulation models have been made and executed utilizing MATLAB R2018b. The following
part quickly depicts the DVB-S2 system model. Section 3 presents the mechanism and kinds of interleaver.
Memory and time delay parameters present in section 4. In section 5, simulation parameters are scheduling.
Computer outcomes are introduced in section 6. Finally, conclusions are pointed out in section 7.
2. SYSTEM MODEL
DVB-S2 system model that has been implemented using Matlab is illustrated in Figure 1.
At the transmitter side, random data is chosen as an information source. Two-level of encoding BCH and
LDPC are used then interleaved by interleaving technique and finally, modulate data using QPSK, 16APSK,
and 32APSK for transmitting via AWGN channel. At the receiving side, the received data is now
demodulated and deinterleaved respectively. Therefore, can decode using LDPC and BCH decoder
respectively. Accordingly, that first information could make recouped.
Figure 1. System model
3. WORKING PRINCIPLE AND TYPES OF INTERLEAVER
Interleaving design is not only to adjust to the channel, yet to alter the channel. By interleaving
scheme, a burst error in the channel with memory is changed into an arbitrary independent error without
memory to correct the errors [11, 12]. When a burst of continuous error occurs in the signal transmission
operation, these errors will show up on a continuing segment of the code stream. After the interleaving
process, the interleaved code turns out to be moderately discrete and randomized; these continuous errors can
be transformed into somewhat separate errors. Generally, two traditional types of interleaves usually named
to as block and convolutional. Block divided into many types as follow [13, 14]:
3.1. Matrix interleaver
It’s a block type of interleaver, performs via filling a matrix with specific dimensions by the input
bits in row by row until complete the matrix and then transmitting the bits in a matrix to the output port in
form of column by column as shown in Figure 2. The row size (n) is named the span and the column size (m)
is representing the depth. Therefore, an interleaver is characterized by n and m and indicate to as (n, m)
matrix interleaver. The ability to dispersing burst error depends on both the value n and m [15].
 ISSN: 1693-6930
TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 5, October 2020: 2362 - 2370
2364
3.2. General block interleaver
The elements pattern is rearranged according to the permutation vector which must be the same
length of input elements without delete or iterating any elements. suppose that the input vector includes M
elements, thus, the permutation vector has length M, as shown in Figure 3. The deinterleaver must use
different permutation vector pattern in order to recover the original data. The scattering capability of burst
errors depend on length M.
3.3. Random interleaver
Random Interleaver rearranges the input elements with a random permutation pattern. Due to this
randomization of elements, the errors burst can be removed at the receiver and easily detected and corrected
as illustrated in Figure 4. If the interleaver randomization degree is not a good generated, the performance of
the system is degraded and the BER values obtained will be significant. Otherwise, if the interleaving
patterns are generated with more random, at that point, lower values of BER are acquired for the value of
the same parameter. IDMA system utilizes the random interleaver for users separation, so interleaver must
fulfill the design rules [16, 17].
Figure 2. Matrix interleaver pattern Figure 3. General block interleaver pattern
Figure 4. Random interleaver pattern
3.4. Chaotic interleaving
The easiest and generally famous interleaving technique is the block type. However, this type isn't
effective with 2-D error bursts [18]. Accordingly, the requirement to use developed interleavers for this
function. The discrete version of the 2-D chaotic Baker map is a perfect choice for this reason. The elements
can be rearranged into a square matrix then randomized employing the chaotic Baker map [19, 20].
The algorithm of chaotic interleaving can be summarized as follows:
− The matrix dimensions MxM is partitioned into i many perpendicular rectangle shapes with height M
and width mk. in which m1 + m2 + ….mi = M.
− These perpendicular rectangles would extend in the horizontal orientations and ordered perpendicularly
to get an mk x M horizontal rectangle.
− These rectangle shapes are accumulated as appeared in Figure 5 (a), where the base is put at left one and
the upper part placed the right one.
− Every perpendicular rectangle mk x M is split into ni boxes with dimensions
𝑀𝑀
𝑚𝑚𝑚𝑚
x mk including
M points exactly.
− Finally, these boxes are reshaped column by column to form a row of elements as illustrated in
Figure 5 (b) [21, 22].
3.5. Zigzag interleaver
Zigzag interleaving is considered appealing for maximum information rate requirements because of
low encoding and decoding complexity level and perfect performance especially with the maximum data
rate. The information symbols can be organized in a zigzag manner as shown in Figures 6 (a) and (b).
Figure 6 (c) presents the zigzag interleaving operation when a 2-D error burst takes place as a shaded area.
Figure 6 (d) indicates that this burst error becomes random. Subsequently, this burst error can be corrected
somewhat by utilizing the mechanism of a single error correction. Thus, the Zigzag interleaving technique
can remove 2D bursts of errors [17].
TELKOMNIKA Telecommun Comput El Control 
The efficient interleaving of digital-video-broadcasting-... (Mohammed Jabbar Mohammed Ameen)
2365
Figure 5. Chaotic interleaving; (a) baker map, (b) 8×8 matrix randomization
(a) (b)
(c) (d)
Figure 6. Zig-Zag Interleaving of 8×8 Matrix; (a) the 8×8 matrix, (b) zigzag randomization procedure,
(c) zigzag interleaving operation, (d) error bursts removed after deinterleaving
3.6. Odd-even interleaver
The number of columns and rows should be odd count. At first, the symbols are left un-interleaved
and encoded, but only the odd-location coded symbols are loaded. At that point, the symbols are randomized
and encoded and only the even-location coded symbols are loaded, as shown in Figure 7. This interleaver
designed for half code rate which is acquired by puncturing the two nonsystematic codes. The result has
scattering capability of the burst errors of the code [23].
Figure 7. Operation of odd even interleaver
 ISSN: 1693-6930
TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 5, October 2020: 2362 - 2370
2366
3.7. Algebraic interleaver
The Algebraic Interleaver reorganizes the symbols of its input sequence by using a permutation that is
algebraically determined. The complexity and latency effect are minor in the algebraic interleaver consequently;
it can be executed using simple blocks. The mathematical expression of algebraic interleaver is defined by
𝛱𝛱(𝑘𝑘) = 𝑘𝑘 𝑀𝑀𝑀𝑀𝑀𝑀 𝑁𝑁 where N is the interleaver length, 𝛱𝛱(𝑘𝑘) take a value between [0, 𝑁𝑁 − 1] indicates the new
placement to which index k is permuted and MOD 𝑁𝑁 represents modulo N arithmetic [24, 25].
3.8. Matrix helical interleaver
It minimizes the errors burst and increase the correction ability. In this type, the indices of
interleaver are load regularly for generating helical interleaver. At first, helical interleaver elements are
ordered column and row, and then elements can be loaded in diagonal as shown in Figure 8. The length of
interleaver can be expressed as L= kr × kc, where kr and kc are the size of rows and columns respectively.
The slope of diagonal referred to the array step-size parameter, as the amount by which the row index
increases, the column index increases by one.
Figure 8. Operation of matrix helical interleaver
3.9. Helical interleaver
It permutes the sequence of the input symbols by putting them in a helical manner and afterward
transmitting rows of the array to the output port as shown in Figure 9. The number of columns in the helical
array can represent by M, thus, the array has M columns and unbounded rows. Let refer to the group size by
N, then the block admits an input of length M·N at each time step and divisions the input into successive sets
of N bits. Checking from the earliest starting point of the implementation, the block venues the kth sets in
the array over column k mod M. The situation is helical because of the reduction modulo M and because
the first bit in the jth set is in row 1 (j-1).b, where b is the helical array step-size [26, 27].
Figure 9. Operation of helical interleaver with parameter.
Number of columns = 3, group size = 2
3.10. Convolutional interleaver
As illustrates in Figure 10, it comprises of a counts of shift registers. Each of them contains a fixed
time delay, which is multiples for a positive integer. Every new sequence to the input to the interleaver is fed to
the following shift register and the past sequence in that register turns into output part of the interleaver.
convolutional de-interleaver is accomplished by reversing the interleaver over its horizontal axis. The structure
is similar except the longest delay line becomes at the top, and the no delay line becomes last. On the other
hand, the de-interleaving process is analogous to interleaving mechanized [28].
TELKOMNIKA Telecommun Comput El Control 
The efficient interleaving of digital-video-broadcasting-... (Mohammed Jabbar Mohammed Ameen)
2367
Figure 10. Operation of convolutional interleaver
4. MEMORY AND TIME DELAY PARAMETERS
The prime disadvantage of all block interleaver types mentioned in section 3 is the time delay
resulted in each filling process of the interleaver. For array with M row by N column, interleaver/
deinterleaver end to end delay equal to 2MN-2M+2 symbol time. Memory requirements equal to 2MN
end-to-end of the system. While, in convolutional interleaver, the memory requirements equal to M (N-1)/2,
the end to end time delay is M (N-1) symbol. Therefore, it provides a reduction over block interleaver by
around one-half in memory and time delay requirements. Time delay depends on interleaver depth and
information rate. Therefore, it may be some seconds long for many transmission channels. This delay may be
inappropriate for various applications [29].
5. SIMULATION PARAMETER
Table 1 summarizes the simulation parameters used for the different scenarios considered through
simulation. These parameters were chosen based on the DVB-S2 standard. At first, the incoming original
information with packet size 1504 are buffered to become 32208 bits and then passed to BCH encoder,
the results output codeword length 32400 bits. For the LDPC encoder, the input of it is the output of
BCH then, the output codeword length 64800. After concatenated codes, the bits are randomized using one
of the types of interleaver mentioned in section 3 for each case and then modulation scheme. With respect
to the APSK modulation scheme, code identifiers are 2/3 and 3/4 for 16 and 32 modulation orders
respectively [30].
Table 1. DVB-S2 system parameter values for different interleavers and modulation schemes
Parameter Values
Modulation Techniques QPSK-16APSK-32APSK
Coding BCH(32400,32208) ,LDPC(64800,32400)
Interleaving
Matrix Number of row = 324, Number of column=200
Helical Row of shift register = 100, Register length step = 648, Helical array step size = 1
General block Random Permutation vector
Zig-Zag Number of row = 256, Number of column = 256
random Random Permutation
Matrix Helical Number of row = 324, Number of column = 200, array step size = 2
Odd-even Random even sequence of length = 32400
Chaotic Number of row = 256, Number of column = 256
Convolutional Row of shift register = 100, Register length step = 648
algebraic Number of elements = 64800, Multiplication factor = 1
Sample per frame 1504
Sample time 31.662 micro second
Channel Type AWGN (additive white Gaussian noise)
6. NUMERICAL RESULT AND DISCUSSION
The performance analysis of several interleavers for DVB-S2 will be determined in this section.
Figure 11 produces a performance comparison of all interleaver mention in section 3. At BER = 0.001,
the SNR for 2D interleaver (chaotic or zigzag) about 0.73 dB whereas other interleavers reach 0.85 dB,
the gain about 0.12 dB. Hence, the DVB-S2 system with 2D interleaver gives the best performance.
In the same manner, Figure 12, At BER = 0.001, the SNR for 2D interleaver about 18 dB whereas other
interleavers reach to 18.5 dB, the gain about 0.5 dB. Finally, in Figure 13, At BER = 0.0001, the SNR
for chaotic and zigzag interleaver are 23.35dB and 23.25dB respectively whereas other interleavers reach
to 23.85 dB, the gain about 0.5 dB. The reasons for obtaining minimum BER in 2D interleaver is due to
 ISSN: 1693-6930
TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 5, October 2020: 2362 - 2370
2368
the properties of the permutations generates by the Baker map and zig-zag algorithm that make a typical
random permutation. The percentage reduction of SNR at BER = 0.001 is 2%, 3% and 14% for 32APSK,
16APSK and QPSK respectively. Therefore, the performance of the 2D interleaver is better at low SNR.
Figure 11. BER performance of DVB-S2 using different interleavers with QPSK modulation
Figure 12. BER performance of DVB-S2 using different interleavers with 16-APSK modulation
TELKOMNIKA Telecommun Comput El Control 
The efficient interleaving of digital-video-broadcasting-... (Mohammed Jabbar Mohammed Ameen)
2369
Figure 13. BER performance of DVB-S2 using different interleavers with 32-APSK modulation
7. CONCLUSION
In this paper, investigations of three modulation techniques (QPSK, 16APSK, and 32APSK) are
achieved with several interleavers. BER is evaluated concerning the above modulation techniques over
an AWGN channel. The reason for doing this simulation is to examine the performance of these interleavers
in the DVB-S2 system. As we realize that the determination of effective interleaver is a basic issue. From
the above analysis of interleavers, the 2D interleavers surpasses in terms of BER on all other types. So, we
can claim that 2D interleaver (chaotic or zigzag) gives better performance.
REFERENCES
[1] X. Xiang and M. C. Valenti, “Improving DVB-S2 performance through constellation shaping and iterative
demapping,” 2011 - MILCOM 2011 Military Communications Conference, 2011.
[2] A. Morello and V. Mignone, “DVB-S2: The Second-Generation Standard for Satellite Broad-Band
Services,” Proceedings of the IEEE, vol. 94, no. 1, pp. 210-227, 2006.
[3] M. Gomes, G. Falcao, V. Silva, V. Ferreira, A. Sengo, and M. Falcao, “Flexible Parallel Architecture for DVB-S2
LDPC Decoders,” IEEE GLOBECOM 2007-2007 IEEE Global Telecommunications Conference, 2007.
[4] S. Bera, and N. Sur, “Performance Evaluation of DVB System for Text Transfer,” European Journal of Advances
in Engineering and Technology, vol. 2, no. 5, pp. 62-65, 2015.
[5] S. Brisken, M. Moscadelli, V. Seidel, and C. Schwark, “Passive radar imaging using DVB-S2,” 2017 IEEE Radar
Conference (RadarConf), 2017.
[6] K. El-Abbasy, B. Abdelhamid, and S. Elramly, “Performance evaluation of DVB-S2 and DVB-S2X systems,” 2015
IEEE International Conference on Communication, Networks and Satellite (COMNESTAT), 2015.
[7] L. Haering and C. Kisters, “Signalling-assisted modulation classification in wireless OFDM systems with adaptive
modulation and coding,” 2013 IEEE International Conference on Communications (ICC), 2013.
[8] G. Faria and P. Hostiou, “Application of DVB-S2 for DVB-T & DVB-T2 Transport,” The 2011 Annual Technical
Conference & Exhibition, 2011.
[9] A. Morello and V. Mignone, “DVB-S2X: extending DVB-S2 flexibility for core markets and new
applications,” International Journal of Satellite Communications and Networking, vol. 34, no. 3, pp. 327-336, Sep 2015.
[10] E. M. El-Bakary, O. Zahran, S. A. El-Dolil, and F. E. Abd El-Samie, “Chaotic Maps: A Tool to Enhance the
Performance of OFDM Systems,” International Journal of Communication Networks and Information Security,
vol. 1, no. 2, 2009
[11] V. Chaturvedi, “Performance Analysis for Different Interleavers in Various Modulation Schemes with OFDM over
an AWGN Channel,” IOSR Journal of Engineering, vol. 2, no. 4, pp. 760-767, 2012.
[12] B. Das, M. P. Sarma, K. K. Sarma, and N. Mastorakis, “Design of a few interleaver techniques used with gold
codes in faded wireless channels,” 2015 2nd International Conference on Signal Processing and Integrated
Networks (SPIN), 2015.
[13] S. Sharma, P. C. Sau, and A. Shukla, “Performance survey of IDMA with different interleavers,” 2014
International Conference on Signal Processing and Integrated Networks (SPIN), 2014.
 ISSN: 1693-6930
TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 5, October 2020: 2362 - 2370
2370
[14] J. Sharma, S. Mishra, and N. Sharma, “An analysis of interleaver types for better BER performance in linear turbo
equalizer,” 2017 International Conference on Innovations in Information, Embedded and Communication Systems
(ICIIECS), 2017.
[15] J. Jeong, Y. Jeon, and D. Yoon, “Blind Estimation of Block Interleaver Parameters using Statistical
Characteristics,” Future Generation Information Technology 2016, 2016.
[16] Y. Shen, G. Zhao, S. Zhang, Y. Li, and S. Li, “The Design of RA Code Pseudo-random Interleaver,” Journal of
Physics: Conference Series, vol. 1237, pp. 042024, 2019.
[17] B. Das, M. P. Sarma, and K. K. Sarma, “Different Aspects of Interleaving Techniques in Wireless
Communication,” Advances in Systems Analysis, Software Engineering, and High-Performance Computing
Intelligent Applications for Heterogeneous System Modeling and Design, pp. 335-374, 2015.
[18] A. Beirami, H. Nejati, and W. Ali, “Zigzag map: a variability-aware discrete-time chaotic-map truly random
number generator,” Electronics Letters, vol. 48, no. 24, pp. 1537-1538, 2012.
[19] Z. A. El-Hamid, A. El-Henawy, F. A. El-Samie, H. El-Shenawy, and M. Samir, “FFT/DWT/DCT OFDM channel
estimation using EM algorithm in the presence of chaotic interleaving,” 2012 8th International Computer
Engineering Conference (ICENCO), 2012.
[20] M. E. Elhameed Abd, M. A. M. El-Bendary and H. M. Abd Elkader, “An Efficient Chaotic Interleaving with
Convolution Encoder and Decoder for Simplicity in LTE System,” International Journal of Networks and
Communications, vol. 8, no. 1, pp. 1-9, 2018.
[21] S. Vaidyanathan, A. Sambas, S. Zhang, Y. Zeng, M. A. Mohamed, and M. Mamat, “A new two-scroll chaotic
system with two nonlinearities: dynamical analysis and circuit simulation,” TELKOMNIKA Telecommunication
Computing Electronics and Control, vol. 17, no. 5, pp. 2465-2474, Jan 2019.
[22] R. A. Mustafa, A. A. Maryoosh, D. N. George, and W. R. Humood, “Iris images encryption based on QR code and
chaotic map,” TELKOMNIKA Telecommunication Computing Electronics and Control, vol. 18, no. 1, pp. 289-300,
January 2020.
[23] K. S. Arkoudogiannis and C. E. Dimakis, “Performance analysis of the odd–even uniform interleaver for turbo
codes,” IET Communications, vol. 13, no. 16, pp. 2469-2477, Aug 2019.
[24] O. Takeshita and D. Costello, “New classes of algebraic interleavers for turbo-codes,” Proceedings. 1998 IEEE
International Symposium on Information Theory, 1998.
[25] D. Hao and P. Hoeher, “Helical interleaver set design for interleave-division multiplexing and related
techniques,” IEEE Communications Letters, vol. 12, no. 11, pp. 843-845, 2008.
[26] S. Ramabadran, A. S. Madhukumar, N. W. Teck, and C. M. S. See, “Parameter Estimation of Convolutional and
Helical Interleavers in a Noisy Environment,” IEEE Access, vol. 5, pp. 6151-6167, 2017.
[27] B. Sklar, “Digital communications: fundamentals and applications,” Upper Saddle River, NJ: Prentice Hall, 2001.
[28] J. Terry, J. Heiskala, “OFDM Wireless LANs: A Theoretical and Practical Guide,” Sams Publishing, 2002.
[29] B. Sklar, “Digital communications: fundamentals and applications. Upper Saddle River,” NJ: Prentice Hall, 2001.
[30] W. Fischer, “Digital Video and Audio Broadcasting Technology: A Practical Engineering Guide 3rd
,” Springer, 2009.
BIOGRAPHIES OF AUTHORS
Mohammed Jabbar Mohammed Ameen was born in Hillah-Iraq. He received a B. Se
degree in electrical engineering from the University of Babylon in 2007 and an MSc degree
in communications engineering from Al-Ahliyya Amman University in 2017, Jordon. He is
working as a lecturer in the college of engineering/electrical department at Babylon
University. He is currently working his Ph.D. degree at the electrical engineering department
in the college of engineering at the University of Babylon. His research interests include IoT,
MIMO, OFDM, FEC, and 5G, etc.
Email: mohammedalsalihy@yahoo.com.
Hussam Jawad Kadhim was born in Hillah-Iraq. He received the B. Se degree in electrical
engineering from University of Babylon in 2007 and M. tech degree in Communication
System Engineering in SHIATS-DU, Allahabad 2014. He is working as lecturer in college of
science of women / computer department in Babylon University. He is currently working his
PhD degree at electrical engineering department in college of engineering at University of
Babylon. His research interests include IoT, power consumption, etc.
Email: hussamjwd@yahoo.com

More Related Content

What's hot

Performance Comparison of Multi-Carrier CDMA Using QPSK and BPSK Modulation
Performance Comparison of Multi-Carrier CDMA Using QPSK and BPSK ModulationPerformance Comparison of Multi-Carrier CDMA Using QPSK and BPSK Modulation
Performance Comparison of Multi-Carrier CDMA Using QPSK and BPSK ModulationIOSR Journals
 
Performance of the MIMO-MC-CDMA System with MMSE Equalization
Performance of the MIMO-MC-CDMA System with MMSE EqualizationPerformance of the MIMO-MC-CDMA System with MMSE Equalization
Performance of the MIMO-MC-CDMA System with MMSE EqualizationTamilarasan N
 
A bi scheduler algorithm for frame aggregation in ieee 802.11 n
A bi scheduler algorithm for frame aggregation in ieee 802.11 nA bi scheduler algorithm for frame aggregation in ieee 802.11 n
A bi scheduler algorithm for frame aggregation in ieee 802.11 nijwmn
 
Implementation of Joint Network Channel Decoding Algorithm for Multiple Acces...
Implementation of Joint Network Channel Decoding Algorithm for Multiple Acces...Implementation of Joint Network Channel Decoding Algorithm for Multiple Acces...
Implementation of Joint Network Channel Decoding Algorithm for Multiple Acces...csandit
 
A COMPREHENSIVE STUDY AND PERFORMANCE COMPARISON OF M-ARY MODULATION SCHEMES ...
A COMPREHENSIVE STUDY AND PERFORMANCE COMPARISON OF M-ARY MODULATION SCHEMES ...A COMPREHENSIVE STUDY AND PERFORMANCE COMPARISON OF M-ARY MODULATION SCHEMES ...
A COMPREHENSIVE STUDY AND PERFORMANCE COMPARISON OF M-ARY MODULATION SCHEMES ...IJCSEA Journal
 
A New Approach to Linear Estimation Problem in Multiuser Massive MIMO Systems
A New Approach to Linear Estimation Problem in Multiuser Massive MIMO SystemsA New Approach to Linear Estimation Problem in Multiuser Massive MIMO Systems
A New Approach to Linear Estimation Problem in Multiuser Massive MIMO SystemsRadita Apriana
 
Performances Concatenated LDPC based STBC-OFDM System and MRC Receivers
Performances Concatenated LDPC based STBC-OFDM System and MRC Receivers  Performances Concatenated LDPC based STBC-OFDM System and MRC Receivers
Performances Concatenated LDPC based STBC-OFDM System and MRC Receivers IJECEIAES
 
IRJET- The RTL Model of a Reconfigurable Pipelined MCM
IRJET- The RTL Model of a Reconfigurable Pipelined MCMIRJET- The RTL Model of a Reconfigurable Pipelined MCM
IRJET- The RTL Model of a Reconfigurable Pipelined MCMIRJET Journal
 
A wireless precoding technique for millimetre-wave MIMO system based on SIC-MMSE
A wireless precoding technique for millimetre-wave MIMO system based on SIC-MMSEA wireless precoding technique for millimetre-wave MIMO system based on SIC-MMSE
A wireless precoding technique for millimetre-wave MIMO system based on SIC-MMSETELKOMNIKA JOURNAL
 
Partial Feedback Scheme with an Interference-Aware Subcarrier Allocation Sche...
Partial Feedback Scheme with an Interference-Aware Subcarrier Allocation Sche...Partial Feedback Scheme with an Interference-Aware Subcarrier Allocation Sche...
Partial Feedback Scheme with an Interference-Aware Subcarrier Allocation Sche...Rosdiadee Nordin
 
Buckling analysis of line continuum with new matrices of stiffness and geometry
Buckling analysis of line continuum with new matrices of stiffness and geometryBuckling analysis of line continuum with new matrices of stiffness and geometry
Buckling analysis of line continuum with new matrices of stiffness and geometryeSAT Journals
 
Estimation and design of mc ds-cdma for hybrid concatenated coding in high sp...
Estimation and design of mc ds-cdma for hybrid concatenated coding in high sp...Estimation and design of mc ds-cdma for hybrid concatenated coding in high sp...
Estimation and design of mc ds-cdma for hybrid concatenated coding in high sp...eSAT Publishing House
 

What's hot (20)

Performance Comparison of Multi-Carrier CDMA Using QPSK and BPSK Modulation
Performance Comparison of Multi-Carrier CDMA Using QPSK and BPSK ModulationPerformance Comparison of Multi-Carrier CDMA Using QPSK and BPSK Modulation
Performance Comparison of Multi-Carrier CDMA Using QPSK and BPSK Modulation
 
Os3425622565
Os3425622565Os3425622565
Os3425622565
 
Performance of the MIMO-MC-CDMA System with MMSE Equalization
Performance of the MIMO-MC-CDMA System with MMSE EqualizationPerformance of the MIMO-MC-CDMA System with MMSE Equalization
Performance of the MIMO-MC-CDMA System with MMSE Equalization
 
11 appendix M.TECH ( M S WORD FILE )
11 appendix M.TECH ( M S WORD FILE )11 appendix M.TECH ( M S WORD FILE )
11 appendix M.TECH ( M S WORD FILE )
 
11 appendix M.TECH ( PDF FILE )
11 appendix M.TECH ( PDF FILE )11 appendix M.TECH ( PDF FILE )
11 appendix M.TECH ( PDF FILE )
 
A bi scheduler algorithm for frame aggregation in ieee 802.11 n
A bi scheduler algorithm for frame aggregation in ieee 802.11 nA bi scheduler algorithm for frame aggregation in ieee 802.11 n
A bi scheduler algorithm for frame aggregation in ieee 802.11 n
 
At34278282
At34278282At34278282
At34278282
 
LTE
LTELTE
LTE
 
Implementation of Joint Network Channel Decoding Algorithm for Multiple Acces...
Implementation of Joint Network Channel Decoding Algorithm for Multiple Acces...Implementation of Joint Network Channel Decoding Algorithm for Multiple Acces...
Implementation of Joint Network Channel Decoding Algorithm for Multiple Acces...
 
A COMPREHENSIVE STUDY AND PERFORMANCE COMPARISON OF M-ARY MODULATION SCHEMES ...
A COMPREHENSIVE STUDY AND PERFORMANCE COMPARISON OF M-ARY MODULATION SCHEMES ...A COMPREHENSIVE STUDY AND PERFORMANCE COMPARISON OF M-ARY MODULATION SCHEMES ...
A COMPREHENSIVE STUDY AND PERFORMANCE COMPARISON OF M-ARY MODULATION SCHEMES ...
 
Hb3512341239
Hb3512341239Hb3512341239
Hb3512341239
 
A New Approach to Linear Estimation Problem in Multiuser Massive MIMO Systems
A New Approach to Linear Estimation Problem in Multiuser Massive MIMO SystemsA New Approach to Linear Estimation Problem in Multiuser Massive MIMO Systems
A New Approach to Linear Estimation Problem in Multiuser Massive MIMO Systems
 
THROUGHPUT ANALYSIS OF MOBILE WIMAX NETWORK UNDER MULTIPATH RICIAN FADING CHA...
THROUGHPUT ANALYSIS OF MOBILE WIMAX NETWORK UNDER MULTIPATH RICIAN FADING CHA...THROUGHPUT ANALYSIS OF MOBILE WIMAX NETWORK UNDER MULTIPATH RICIAN FADING CHA...
THROUGHPUT ANALYSIS OF MOBILE WIMAX NETWORK UNDER MULTIPATH RICIAN FADING CHA...
 
Performances Concatenated LDPC based STBC-OFDM System and MRC Receivers
Performances Concatenated LDPC based STBC-OFDM System and MRC Receivers  Performances Concatenated LDPC based STBC-OFDM System and MRC Receivers
Performances Concatenated LDPC based STBC-OFDM System and MRC Receivers
 
IRJET- The RTL Model of a Reconfigurable Pipelined MCM
IRJET- The RTL Model of a Reconfigurable Pipelined MCMIRJET- The RTL Model of a Reconfigurable Pipelined MCM
IRJET- The RTL Model of a Reconfigurable Pipelined MCM
 
A wireless precoding technique for millimetre-wave MIMO system based on SIC-MMSE
A wireless precoding technique for millimetre-wave MIMO system based on SIC-MMSEA wireless precoding technique for millimetre-wave MIMO system based on SIC-MMSE
A wireless precoding technique for millimetre-wave MIMO system based on SIC-MMSE
 
Partial Feedback Scheme with an Interference-Aware Subcarrier Allocation Sche...
Partial Feedback Scheme with an Interference-Aware Subcarrier Allocation Sche...Partial Feedback Scheme with an Interference-Aware Subcarrier Allocation Sche...
Partial Feedback Scheme with an Interference-Aware Subcarrier Allocation Sche...
 
Buckling analysis of line continuum with new matrices of stiffness and geometry
Buckling analysis of line continuum with new matrices of stiffness and geometryBuckling analysis of line continuum with new matrices of stiffness and geometry
Buckling analysis of line continuum with new matrices of stiffness and geometry
 
Estimation and design of mc ds-cdma for hybrid concatenated coding in high sp...
Estimation and design of mc ds-cdma for hybrid concatenated coding in high sp...Estimation and design of mc ds-cdma for hybrid concatenated coding in high sp...
Estimation and design of mc ds-cdma for hybrid concatenated coding in high sp...
 
MC-cdma
MC-cdmaMC-cdma
MC-cdma
 

Similar to The efficient interleaving of digital-video-broadcasting-satellite 2nd generations system

Performance analysis of negative group delay network using MIMO technique
Performance analysis of negative group delay network using MIMO techniquePerformance analysis of negative group delay network using MIMO technique
Performance analysis of negative group delay network using MIMO techniqueTELKOMNIKA JOURNAL
 
Implementation of a bit error rate tester of a wireless communication system ...
Implementation of a bit error rate tester of a wireless communication system ...Implementation of a bit error rate tester of a wireless communication system ...
Implementation of a bit error rate tester of a wireless communication system ...eSAT Publishing House
 
Performance enhancement of maximum ratio transmission in 5G system with multi...
Performance enhancement of maximum ratio transmission in 5G system with multi...Performance enhancement of maximum ratio transmission in 5G system with multi...
Performance enhancement of maximum ratio transmission in 5G system with multi...IJECEIAES
 
A New Bit Split and Interleaved Channel Coding for MIMO Decoder
A New Bit Split and Interleaved Channel Coding for MIMO DecoderA New Bit Split and Interleaved Channel Coding for MIMO Decoder
A New Bit Split and Interleaved Channel Coding for MIMO DecoderIJARBEST JOURNAL
 
Lightweight hamming product code based multiple bit error correction coding s...
Lightweight hamming product code based multiple bit error correction coding s...Lightweight hamming product code based multiple bit error correction coding s...
Lightweight hamming product code based multiple bit error correction coding s...journalBEEI
 
Evaluation of the weighted-overlap add model with massive MIMO in a 5G system
Evaluation of the weighted-overlap add model with massive MIMO in a 5G systemEvaluation of the weighted-overlap add model with massive MIMO in a 5G system
Evaluation of the weighted-overlap add model with massive MIMO in a 5G systemTELKOMNIKA JOURNAL
 
Estimation and design of mc ds-cdma for hybrid concatenated coding in high sp...
Estimation and design of mc ds-cdma for hybrid concatenated coding in high sp...Estimation and design of mc ds-cdma for hybrid concatenated coding in high sp...
Estimation and design of mc ds-cdma for hybrid concatenated coding in high sp...eSAT Journals
 
PERFORMANCE OF CONVOLUTION AND CRC CHANNEL ENCODED V-BLAST 4×4 MIMO MCCDMA WI...
PERFORMANCE OF CONVOLUTION AND CRC CHANNEL ENCODED V-BLAST 4×4 MIMO MCCDMA WI...PERFORMANCE OF CONVOLUTION AND CRC CHANNEL ENCODED V-BLAST 4×4 MIMO MCCDMA WI...
PERFORMANCE OF CONVOLUTION AND CRC CHANNEL ENCODED V-BLAST 4×4 MIMO MCCDMA WI...ijasa
 
Xevgenis_Michael_CI7110_ Data_Communications.DOC
Xevgenis_Michael_CI7110_ Data_Communications.DOCXevgenis_Michael_CI7110_ Data_Communications.DOC
Xevgenis_Michael_CI7110_ Data_Communications.DOCMichael Xevgenis
 
High Speed Low-Power Viterbi Decoder Using Trellis Code Modulation
High Speed Low-Power Viterbi Decoder Using Trellis Code ModulationHigh Speed Low-Power Viterbi Decoder Using Trellis Code Modulation
High Speed Low-Power Viterbi Decoder Using Trellis Code ModulationMangaiK4
 
High Speed Low-Power Viterbi Decoder Using Trellis Code Modulation
High Speed Low-Power Viterbi Decoder Using Trellis Code ModulationHigh Speed Low-Power Viterbi Decoder Using Trellis Code Modulation
High Speed Low-Power Viterbi Decoder Using Trellis Code ModulationMangaiK4
 
A HIGH PERFORMANCE HYBRID TWO DIMENSIONAL SPECTRAL/SPATIAL NZCC/MD CODE FOR S...
A HIGH PERFORMANCE HYBRID TWO DIMENSIONAL SPECTRAL/SPATIAL NZCC/MD CODE FOR S...A HIGH PERFORMANCE HYBRID TWO DIMENSIONAL SPECTRAL/SPATIAL NZCC/MD CODE FOR S...
A HIGH PERFORMANCE HYBRID TWO DIMENSIONAL SPECTRAL/SPATIAL NZCC/MD CODE FOR S...IJCNCJournal
 
A High Performance Hybrid Two Dimensional Spectral/Spatial NZCC/MD Code for S...
A High Performance Hybrid Two Dimensional Spectral/Spatial NZCC/MD Code for S...A High Performance Hybrid Two Dimensional Spectral/Spatial NZCC/MD Code for S...
A High Performance Hybrid Two Dimensional Spectral/Spatial NZCC/MD Code for S...IJCNCJournal
 
FPGA Implementation of Soft Output Viterbi Algorithm Using Memoryless Hybrid ...
FPGA Implementation of Soft Output Viterbi Algorithm Using Memoryless Hybrid ...FPGA Implementation of Soft Output Viterbi Algorithm Using Memoryless Hybrid ...
FPGA Implementation of Soft Output Viterbi Algorithm Using Memoryless Hybrid ...VLSICS Design
 
Automatic modulation classification ased b deep learning with mixed feature
Automatic modulation classification ased b  deep learning with  mixed feature Automatic modulation classification ased b  deep learning with  mixed feature
Automatic modulation classification ased b deep learning with mixed feature IJECEIAES
 
The improvement of end to end delays in network management system using netwo...
The improvement of end to end delays in network management system using netwo...The improvement of end to end delays in network management system using netwo...
The improvement of end to end delays in network management system using netwo...IJCNCJournal
 
Performance Analysis of BER and Throughput of Different MIMO Systems using Di...
Performance Analysis of BER and Throughput of Different MIMO Systems using Di...Performance Analysis of BER and Throughput of Different MIMO Systems using Di...
Performance Analysis of BER and Throughput of Different MIMO Systems using Di...IRJET Journal
 
RS Codes for Downlink LTE System over LTE-MIMO Channel
RS Codes for Downlink LTE System over LTE-MIMO ChannelRS Codes for Downlink LTE System over LTE-MIMO Channel
RS Codes for Downlink LTE System over LTE-MIMO ChannelTELKOMNIKA JOURNAL
 
IMPLEMENTATION OF JOINT NETWORK CHANNEL DECODING ALGORITHM FOR MULTIPLE ACCES...
IMPLEMENTATION OF JOINT NETWORK CHANNEL DECODING ALGORITHM FOR MULTIPLE ACCES...IMPLEMENTATION OF JOINT NETWORK CHANNEL DECODING ALGORITHM FOR MULTIPLE ACCES...
IMPLEMENTATION OF JOINT NETWORK CHANNEL DECODING ALGORITHM FOR MULTIPLE ACCES...cscpconf
 

Similar to The efficient interleaving of digital-video-broadcasting-satellite 2nd generations system (20)

Performance analysis of negative group delay network using MIMO technique
Performance analysis of negative group delay network using MIMO techniquePerformance analysis of negative group delay network using MIMO technique
Performance analysis of negative group delay network using MIMO technique
 
Implementation of a bit error rate tester of a wireless communication system ...
Implementation of a bit error rate tester of a wireless communication system ...Implementation of a bit error rate tester of a wireless communication system ...
Implementation of a bit error rate tester of a wireless communication system ...
 
Performance enhancement of maximum ratio transmission in 5G system with multi...
Performance enhancement of maximum ratio transmission in 5G system with multi...Performance enhancement of maximum ratio transmission in 5G system with multi...
Performance enhancement of maximum ratio transmission in 5G system with multi...
 
A New Bit Split and Interleaved Channel Coding for MIMO Decoder
A New Bit Split and Interleaved Channel Coding for MIMO DecoderA New Bit Split and Interleaved Channel Coding for MIMO Decoder
A New Bit Split and Interleaved Channel Coding for MIMO Decoder
 
Lightweight hamming product code based multiple bit error correction coding s...
Lightweight hamming product code based multiple bit error correction coding s...Lightweight hamming product code based multiple bit error correction coding s...
Lightweight hamming product code based multiple bit error correction coding s...
 
Ff34970973
Ff34970973Ff34970973
Ff34970973
 
Evaluation of the weighted-overlap add model with massive MIMO in a 5G system
Evaluation of the weighted-overlap add model with massive MIMO in a 5G systemEvaluation of the weighted-overlap add model with massive MIMO in a 5G system
Evaluation of the weighted-overlap add model with massive MIMO in a 5G system
 
Estimation and design of mc ds-cdma for hybrid concatenated coding in high sp...
Estimation and design of mc ds-cdma for hybrid concatenated coding in high sp...Estimation and design of mc ds-cdma for hybrid concatenated coding in high sp...
Estimation and design of mc ds-cdma for hybrid concatenated coding in high sp...
 
PERFORMANCE OF CONVOLUTION AND CRC CHANNEL ENCODED V-BLAST 4×4 MIMO MCCDMA WI...
PERFORMANCE OF CONVOLUTION AND CRC CHANNEL ENCODED V-BLAST 4×4 MIMO MCCDMA WI...PERFORMANCE OF CONVOLUTION AND CRC CHANNEL ENCODED V-BLAST 4×4 MIMO MCCDMA WI...
PERFORMANCE OF CONVOLUTION AND CRC CHANNEL ENCODED V-BLAST 4×4 MIMO MCCDMA WI...
 
Xevgenis_Michael_CI7110_ Data_Communications.DOC
Xevgenis_Michael_CI7110_ Data_Communications.DOCXevgenis_Michael_CI7110_ Data_Communications.DOC
Xevgenis_Michael_CI7110_ Data_Communications.DOC
 
High Speed Low-Power Viterbi Decoder Using Trellis Code Modulation
High Speed Low-Power Viterbi Decoder Using Trellis Code ModulationHigh Speed Low-Power Viterbi Decoder Using Trellis Code Modulation
High Speed Low-Power Viterbi Decoder Using Trellis Code Modulation
 
High Speed Low-Power Viterbi Decoder Using Trellis Code Modulation
High Speed Low-Power Viterbi Decoder Using Trellis Code ModulationHigh Speed Low-Power Viterbi Decoder Using Trellis Code Modulation
High Speed Low-Power Viterbi Decoder Using Trellis Code Modulation
 
A HIGH PERFORMANCE HYBRID TWO DIMENSIONAL SPECTRAL/SPATIAL NZCC/MD CODE FOR S...
A HIGH PERFORMANCE HYBRID TWO DIMENSIONAL SPECTRAL/SPATIAL NZCC/MD CODE FOR S...A HIGH PERFORMANCE HYBRID TWO DIMENSIONAL SPECTRAL/SPATIAL NZCC/MD CODE FOR S...
A HIGH PERFORMANCE HYBRID TWO DIMENSIONAL SPECTRAL/SPATIAL NZCC/MD CODE FOR S...
 
A High Performance Hybrid Two Dimensional Spectral/Spatial NZCC/MD Code for S...
A High Performance Hybrid Two Dimensional Spectral/Spatial NZCC/MD Code for S...A High Performance Hybrid Two Dimensional Spectral/Spatial NZCC/MD Code for S...
A High Performance Hybrid Two Dimensional Spectral/Spatial NZCC/MD Code for S...
 
FPGA Implementation of Soft Output Viterbi Algorithm Using Memoryless Hybrid ...
FPGA Implementation of Soft Output Viterbi Algorithm Using Memoryless Hybrid ...FPGA Implementation of Soft Output Viterbi Algorithm Using Memoryless Hybrid ...
FPGA Implementation of Soft Output Viterbi Algorithm Using Memoryless Hybrid ...
 
Automatic modulation classification ased b deep learning with mixed feature
Automatic modulation classification ased b  deep learning with  mixed feature Automatic modulation classification ased b  deep learning with  mixed feature
Automatic modulation classification ased b deep learning with mixed feature
 
The improvement of end to end delays in network management system using netwo...
The improvement of end to end delays in network management system using netwo...The improvement of end to end delays in network management system using netwo...
The improvement of end to end delays in network management system using netwo...
 
Performance Analysis of BER and Throughput of Different MIMO Systems using Di...
Performance Analysis of BER and Throughput of Different MIMO Systems using Di...Performance Analysis of BER and Throughput of Different MIMO Systems using Di...
Performance Analysis of BER and Throughput of Different MIMO Systems using Di...
 
RS Codes for Downlink LTE System over LTE-MIMO Channel
RS Codes for Downlink LTE System over LTE-MIMO ChannelRS Codes for Downlink LTE System over LTE-MIMO Channel
RS Codes for Downlink LTE System over LTE-MIMO Channel
 
IMPLEMENTATION OF JOINT NETWORK CHANNEL DECODING ALGORITHM FOR MULTIPLE ACCES...
IMPLEMENTATION OF JOINT NETWORK CHANNEL DECODING ALGORITHM FOR MULTIPLE ACCES...IMPLEMENTATION OF JOINT NETWORK CHANNEL DECODING ALGORITHM FOR MULTIPLE ACCES...
IMPLEMENTATION OF JOINT NETWORK CHANNEL DECODING ALGORITHM FOR MULTIPLE ACCES...
 

More from TELKOMNIKA JOURNAL

Amazon products reviews classification based on machine learning, deep learni...
Amazon products reviews classification based on machine learning, deep learni...Amazon products reviews classification based on machine learning, deep learni...
Amazon products reviews classification based on machine learning, deep learni...TELKOMNIKA JOURNAL
 
Design, simulation, and analysis of microstrip patch antenna for wireless app...
Design, simulation, and analysis of microstrip patch antenna for wireless app...Design, simulation, and analysis of microstrip patch antenna for wireless app...
Design, simulation, and analysis of microstrip patch antenna for wireless app...TELKOMNIKA JOURNAL
 
Design and simulation an optimal enhanced PI controller for congestion avoida...
Design and simulation an optimal enhanced PI controller for congestion avoida...Design and simulation an optimal enhanced PI controller for congestion avoida...
Design and simulation an optimal enhanced PI controller for congestion avoida...TELKOMNIKA JOURNAL
 
Improving the detection of intrusion in vehicular ad-hoc networks with modifi...
Improving the detection of intrusion in vehicular ad-hoc networks with modifi...Improving the detection of intrusion in vehicular ad-hoc networks with modifi...
Improving the detection of intrusion in vehicular ad-hoc networks with modifi...TELKOMNIKA JOURNAL
 
Conceptual model of internet banking adoption with perceived risk and trust f...
Conceptual model of internet banking adoption with perceived risk and trust f...Conceptual model of internet banking adoption with perceived risk and trust f...
Conceptual model of internet banking adoption with perceived risk and trust f...TELKOMNIKA JOURNAL
 
Efficient combined fuzzy logic and LMS algorithm for smart antenna
Efficient combined fuzzy logic and LMS algorithm for smart antennaEfficient combined fuzzy logic and LMS algorithm for smart antenna
Efficient combined fuzzy logic and LMS algorithm for smart antennaTELKOMNIKA JOURNAL
 
Design and implementation of a LoRa-based system for warning of forest fire
Design and implementation of a LoRa-based system for warning of forest fireDesign and implementation of a LoRa-based system for warning of forest fire
Design and implementation of a LoRa-based system for warning of forest fireTELKOMNIKA JOURNAL
 
Wavelet-based sensing technique in cognitive radio network
Wavelet-based sensing technique in cognitive radio networkWavelet-based sensing technique in cognitive radio network
Wavelet-based sensing technique in cognitive radio networkTELKOMNIKA JOURNAL
 
A novel compact dual-band bandstop filter with enhanced rejection bands
A novel compact dual-band bandstop filter with enhanced rejection bandsA novel compact dual-band bandstop filter with enhanced rejection bands
A novel compact dual-band bandstop filter with enhanced rejection bandsTELKOMNIKA JOURNAL
 
Deep learning approach to DDoS attack with imbalanced data at the application...
Deep learning approach to DDoS attack with imbalanced data at the application...Deep learning approach to DDoS attack with imbalanced data at the application...
Deep learning approach to DDoS attack with imbalanced data at the application...TELKOMNIKA JOURNAL
 
Brief note on match and miss-match uncertainties
Brief note on match and miss-match uncertaintiesBrief note on match and miss-match uncertainties
Brief note on match and miss-match uncertaintiesTELKOMNIKA JOURNAL
 
Implementation of FinFET technology based low power 4×4 Wallace tree multipli...
Implementation of FinFET technology based low power 4×4 Wallace tree multipli...Implementation of FinFET technology based low power 4×4 Wallace tree multipli...
Implementation of FinFET technology based low power 4×4 Wallace tree multipli...TELKOMNIKA JOURNAL
 
Reflector antenna design in different frequencies using frequency selective s...
Reflector antenna design in different frequencies using frequency selective s...Reflector antenna design in different frequencies using frequency selective s...
Reflector antenna design in different frequencies using frequency selective s...TELKOMNIKA JOURNAL
 
Reagentless iron detection in water based on unclad fiber optical sensor
Reagentless iron detection in water based on unclad fiber optical sensorReagentless iron detection in water based on unclad fiber optical sensor
Reagentless iron detection in water based on unclad fiber optical sensorTELKOMNIKA JOURNAL
 
Impact of CuS counter electrode calcination temperature on quantum dot sensit...
Impact of CuS counter electrode calcination temperature on quantum dot sensit...Impact of CuS counter electrode calcination temperature on quantum dot sensit...
Impact of CuS counter electrode calcination temperature on quantum dot sensit...TELKOMNIKA JOURNAL
 
A progressive learning for structural tolerance online sequential extreme lea...
A progressive learning for structural tolerance online sequential extreme lea...A progressive learning for structural tolerance online sequential extreme lea...
A progressive learning for structural tolerance online sequential extreme lea...TELKOMNIKA JOURNAL
 
Electroencephalography-based brain-computer interface using neural networks
Electroencephalography-based brain-computer interface using neural networksElectroencephalography-based brain-computer interface using neural networks
Electroencephalography-based brain-computer interface using neural networksTELKOMNIKA JOURNAL
 
Adaptive segmentation algorithm based on level set model in medical imaging
Adaptive segmentation algorithm based on level set model in medical imagingAdaptive segmentation algorithm based on level set model in medical imaging
Adaptive segmentation algorithm based on level set model in medical imagingTELKOMNIKA JOURNAL
 
Automatic channel selection using shuffled frog leaping algorithm for EEG bas...
Automatic channel selection using shuffled frog leaping algorithm for EEG bas...Automatic channel selection using shuffled frog leaping algorithm for EEG bas...
Automatic channel selection using shuffled frog leaping algorithm for EEG bas...TELKOMNIKA JOURNAL
 
ResNet-n/DR: Automated diagnosis of diabetic retinopathy using a residual neu...
ResNet-n/DR: Automated diagnosis of diabetic retinopathy using a residual neu...ResNet-n/DR: Automated diagnosis of diabetic retinopathy using a residual neu...
ResNet-n/DR: Automated diagnosis of diabetic retinopathy using a residual neu...TELKOMNIKA JOURNAL
 

More from TELKOMNIKA JOURNAL (20)

Amazon products reviews classification based on machine learning, deep learni...
Amazon products reviews classification based on machine learning, deep learni...Amazon products reviews classification based on machine learning, deep learni...
Amazon products reviews classification based on machine learning, deep learni...
 
Design, simulation, and analysis of microstrip patch antenna for wireless app...
Design, simulation, and analysis of microstrip patch antenna for wireless app...Design, simulation, and analysis of microstrip patch antenna for wireless app...
Design, simulation, and analysis of microstrip patch antenna for wireless app...
 
Design and simulation an optimal enhanced PI controller for congestion avoida...
Design and simulation an optimal enhanced PI controller for congestion avoida...Design and simulation an optimal enhanced PI controller for congestion avoida...
Design and simulation an optimal enhanced PI controller for congestion avoida...
 
Improving the detection of intrusion in vehicular ad-hoc networks with modifi...
Improving the detection of intrusion in vehicular ad-hoc networks with modifi...Improving the detection of intrusion in vehicular ad-hoc networks with modifi...
Improving the detection of intrusion in vehicular ad-hoc networks with modifi...
 
Conceptual model of internet banking adoption with perceived risk and trust f...
Conceptual model of internet banking adoption with perceived risk and trust f...Conceptual model of internet banking adoption with perceived risk and trust f...
Conceptual model of internet banking adoption with perceived risk and trust f...
 
Efficient combined fuzzy logic and LMS algorithm for smart antenna
Efficient combined fuzzy logic and LMS algorithm for smart antennaEfficient combined fuzzy logic and LMS algorithm for smart antenna
Efficient combined fuzzy logic and LMS algorithm for smart antenna
 
Design and implementation of a LoRa-based system for warning of forest fire
Design and implementation of a LoRa-based system for warning of forest fireDesign and implementation of a LoRa-based system for warning of forest fire
Design and implementation of a LoRa-based system for warning of forest fire
 
Wavelet-based sensing technique in cognitive radio network
Wavelet-based sensing technique in cognitive radio networkWavelet-based sensing technique in cognitive radio network
Wavelet-based sensing technique in cognitive radio network
 
A novel compact dual-band bandstop filter with enhanced rejection bands
A novel compact dual-band bandstop filter with enhanced rejection bandsA novel compact dual-band bandstop filter with enhanced rejection bands
A novel compact dual-band bandstop filter with enhanced rejection bands
 
Deep learning approach to DDoS attack with imbalanced data at the application...
Deep learning approach to DDoS attack with imbalanced data at the application...Deep learning approach to DDoS attack with imbalanced data at the application...
Deep learning approach to DDoS attack with imbalanced data at the application...
 
Brief note on match and miss-match uncertainties
Brief note on match and miss-match uncertaintiesBrief note on match and miss-match uncertainties
Brief note on match and miss-match uncertainties
 
Implementation of FinFET technology based low power 4×4 Wallace tree multipli...
Implementation of FinFET technology based low power 4×4 Wallace tree multipli...Implementation of FinFET technology based low power 4×4 Wallace tree multipli...
Implementation of FinFET technology based low power 4×4 Wallace tree multipli...
 
Reflector antenna design in different frequencies using frequency selective s...
Reflector antenna design in different frequencies using frequency selective s...Reflector antenna design in different frequencies using frequency selective s...
Reflector antenna design in different frequencies using frequency selective s...
 
Reagentless iron detection in water based on unclad fiber optical sensor
Reagentless iron detection in water based on unclad fiber optical sensorReagentless iron detection in water based on unclad fiber optical sensor
Reagentless iron detection in water based on unclad fiber optical sensor
 
Impact of CuS counter electrode calcination temperature on quantum dot sensit...
Impact of CuS counter electrode calcination temperature on quantum dot sensit...Impact of CuS counter electrode calcination temperature on quantum dot sensit...
Impact of CuS counter electrode calcination temperature on quantum dot sensit...
 
A progressive learning for structural tolerance online sequential extreme lea...
A progressive learning for structural tolerance online sequential extreme lea...A progressive learning for structural tolerance online sequential extreme lea...
A progressive learning for structural tolerance online sequential extreme lea...
 
Electroencephalography-based brain-computer interface using neural networks
Electroencephalography-based brain-computer interface using neural networksElectroencephalography-based brain-computer interface using neural networks
Electroencephalography-based brain-computer interface using neural networks
 
Adaptive segmentation algorithm based on level set model in medical imaging
Adaptive segmentation algorithm based on level set model in medical imagingAdaptive segmentation algorithm based on level set model in medical imaging
Adaptive segmentation algorithm based on level set model in medical imaging
 
Automatic channel selection using shuffled frog leaping algorithm for EEG bas...
Automatic channel selection using shuffled frog leaping algorithm for EEG bas...Automatic channel selection using shuffled frog leaping algorithm for EEG bas...
Automatic channel selection using shuffled frog leaping algorithm for EEG bas...
 
ResNet-n/DR: Automated diagnosis of diabetic retinopathy using a residual neu...
ResNet-n/DR: Automated diagnosis of diabetic retinopathy using a residual neu...ResNet-n/DR: Automated diagnosis of diabetic retinopathy using a residual neu...
ResNet-n/DR: Automated diagnosis of diabetic retinopathy using a residual neu...
 

Recently uploaded

Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineeringmalavadedarshan25
 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girlsssuser7cb4ff
 
Introduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptxIntroduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptxvipinkmenon1
 
chaitra-1.pptx fake news detection using machine learning
chaitra-1.pptx  fake news detection using machine learningchaitra-1.pptx  fake news detection using machine learning
chaitra-1.pptx fake news detection using machine learningmisbanausheenparvam
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024hassan khalil
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...VICTOR MAESTRE RAMIREZ
 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxbritheesh05
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130Suhani Kapoor
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerAnamika Sarkar
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130Suhani Kapoor
 
HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2RajaP95
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfAsst.prof M.Gokilavani
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfAsst.prof M.Gokilavani
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escortsranjana rawat
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx959SahilShah
 

Recently uploaded (20)

Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineering
 
Call Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call GirlsCall Girls Narol 7397865700 Independent Call Girls
Call Girls Narol 7397865700 Independent Call Girls
 
Introduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptxIntroduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptx
 
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
 
chaitra-1.pptx fake news detection using machine learning
chaitra-1.pptx  fake news detection using machine learningchaitra-1.pptx  fake news detection using machine learning
chaitra-1.pptx fake news detection using machine learning
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...
 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptx
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
 
HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx
 
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptxExploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
 
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Serviceyoung call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
 

The efficient interleaving of digital-video-broadcasting-satellite 2nd generations system

  • 1. TELKOMNIKA Telecommunication, Computing, Electronics and Control Vol. 18, No. 5, October 2020, pp. 2362~2370 ISSN: 1693-6930, accredited First Grade by Kemenristekdikti, Decree No: 21/E/KPT/2018 DOI: 10.12928/TELKOMNIKA.v18i5.16295  2362 Journal homepage: http://journal.uad.ac.id/index.php/TELKOMNIKA The efficient interleaving of digital-video-broadcasting-satellite 2nd generations system Mohammed Jabbar Mohammed Ameen1 , Hussam Jawad Kadhim2 1 College of Engineering, The University of Babylon, Iraq 2 College of Science for women, The University of Babylon, Iraq Article Info ABSTRACT Article history: Received Apr 9, 2020 Revised May 1, 2020 Accepted May 11, 2020 The DVB-S2 system is designed as a toolbox to permit the execution of the satellite programs. Interleaver is an essential part of the DVB-S2 system. The current general block interleaver in DVB-S2 is not best, which leads to high BER and maybe not satisfy the requirements of the system. The purpose of this paper is to study the several interleaver types and comparative analyses are done between them to find which of these give better performance. Simulations results obtained prove that the 2D interleavers minimize BER more than other interleavers of DVB-S2. Further, the performance of 2D interleaver is better on a system that required a low SNR. Keywords: 16-APSK 32-APSK BCH BER FEC Interleaver LDPC QPSK SNR This is an open access article under the CC BY-SA license. Corresponding Author: Mohammed Jabbar Mohammed Ameen, Department of Electrical Engineering, College of Engineering, The University of Babylon, Najaf road, Hillah, Babel, Iraq. Email: mohammedalsalihy@yahoo.com 1. INTRODUCTION DVB-S2 or digital-video-broadcasting-satellite 2nd Generations provides for the broadcast and high-definition television (HDTV), data content sharing out, internet services, and military communications data link [1]. The DVB-S2 system determines about three mains ideas are: finest transmitting performance, complete flexibility and complexity at the receiver acceptable. To accomplish better tradeoff between performance and complexity, capacity can increase around 30% over first generations, DVB-S2 exploits later improvements in forward-error-correction (FEC) and modulation schemes [2]. An example of interactive point-to-point programs is the adaptive-coding-modulation (ACM) which permits for optimizing parameters of the transmissions to meet the requirements of the terminal such as changes in channel conditions. This outcomes in an additional raise in the spectrum usage efficiency for the 2nd over 1st generation, which permit the optimizing in space part layouts, therefore capable of the decrease in the operating cost of satellite services [3, 4]. DVB-S2 has appropriate active FEC technique use as a basis on the successive concatenation of BCH and low-density parity check (LDPC) codes. This combination of FEC configuration with addition to high order modulations (8PSK, 16-APSK, and 32-APSK) which gives greater spectral efficiency and therefore high data rate to the required system [5, 6]. The first code is the BCH code, which forms a major category of active error correction cyclic codes. This category of codes is a wonderful application of
  • 2. TELKOMNIKA Telecommun Comput El Control  The efficient interleaving of digital-video-broadcasting-... (Mohammed Jabbar Mohammed Ameen) 2363 the Hamming code when multiple error correction required. For the second LDPC code, which implies that reasonable structure assign to be the noise threshold near to the theoretical of Shannon limits for the symmetrical memoryless channel. Error-correcting codes theory introduced considerable code constructions with related decoding algorithms. The applications with powerful error-correcting abilities are required extremely complex decoder solutions [7, 8]. When data transmitted over wireless channels, it may confront extreme conditions; particularly burst errors. Burst error control in the wireless transmission system is especially significant in numerous applications. If the data rate increases, BER also increases. The methods that can be used to minimized or remove the burst errors by data interleaving. There are some basic interleaving strategies like block and convolutional interleaving which can be expressed as a one-dimensional term. The performance of these interleavers is bounded. Thus, there is a requirement to find strong interleavers. Chaotic and zigzag mapping techniques can be applied to construct powerful interleavers, which can be expressed as a two-dimensional term (2D). The Chaotic interleaver technique based on chaotic Baker map, whereas, the zigzag mechanism is rearranged the input bits in a matrix by zigzag manner. Another merit of the 2D interleaving technique is it can accomplish a grade of encryption in the transmitted information which adds extra security to the system [9, 10]. The motivation of this paper is to improve the performance of the DVB-S2 system by minimizing BER to fulfill the reduction in BER for a certain SNR. We investigated different interleaving data strategies for the DVB-S2 system. We compare the bit error rate (BER) performance to show that it’s better. To achieve this, simulation models have been made and executed utilizing MATLAB R2018b. The following part quickly depicts the DVB-S2 system model. Section 3 presents the mechanism and kinds of interleaver. Memory and time delay parameters present in section 4. In section 5, simulation parameters are scheduling. Computer outcomes are introduced in section 6. Finally, conclusions are pointed out in section 7. 2. SYSTEM MODEL DVB-S2 system model that has been implemented using Matlab is illustrated in Figure 1. At the transmitter side, random data is chosen as an information source. Two-level of encoding BCH and LDPC are used then interleaved by interleaving technique and finally, modulate data using QPSK, 16APSK, and 32APSK for transmitting via AWGN channel. At the receiving side, the received data is now demodulated and deinterleaved respectively. Therefore, can decode using LDPC and BCH decoder respectively. Accordingly, that first information could make recouped. Figure 1. System model 3. WORKING PRINCIPLE AND TYPES OF INTERLEAVER Interleaving design is not only to adjust to the channel, yet to alter the channel. By interleaving scheme, a burst error in the channel with memory is changed into an arbitrary independent error without memory to correct the errors [11, 12]. When a burst of continuous error occurs in the signal transmission operation, these errors will show up on a continuing segment of the code stream. After the interleaving process, the interleaved code turns out to be moderately discrete and randomized; these continuous errors can be transformed into somewhat separate errors. Generally, two traditional types of interleaves usually named to as block and convolutional. Block divided into many types as follow [13, 14]: 3.1. Matrix interleaver It’s a block type of interleaver, performs via filling a matrix with specific dimensions by the input bits in row by row until complete the matrix and then transmitting the bits in a matrix to the output port in form of column by column as shown in Figure 2. The row size (n) is named the span and the column size (m) is representing the depth. Therefore, an interleaver is characterized by n and m and indicate to as (n, m) matrix interleaver. The ability to dispersing burst error depends on both the value n and m [15].
  • 3.  ISSN: 1693-6930 TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 5, October 2020: 2362 - 2370 2364 3.2. General block interleaver The elements pattern is rearranged according to the permutation vector which must be the same length of input elements without delete or iterating any elements. suppose that the input vector includes M elements, thus, the permutation vector has length M, as shown in Figure 3. The deinterleaver must use different permutation vector pattern in order to recover the original data. The scattering capability of burst errors depend on length M. 3.3. Random interleaver Random Interleaver rearranges the input elements with a random permutation pattern. Due to this randomization of elements, the errors burst can be removed at the receiver and easily detected and corrected as illustrated in Figure 4. If the interleaver randomization degree is not a good generated, the performance of the system is degraded and the BER values obtained will be significant. Otherwise, if the interleaving patterns are generated with more random, at that point, lower values of BER are acquired for the value of the same parameter. IDMA system utilizes the random interleaver for users separation, so interleaver must fulfill the design rules [16, 17]. Figure 2. Matrix interleaver pattern Figure 3. General block interleaver pattern Figure 4. Random interleaver pattern 3.4. Chaotic interleaving The easiest and generally famous interleaving technique is the block type. However, this type isn't effective with 2-D error bursts [18]. Accordingly, the requirement to use developed interleavers for this function. The discrete version of the 2-D chaotic Baker map is a perfect choice for this reason. The elements can be rearranged into a square matrix then randomized employing the chaotic Baker map [19, 20]. The algorithm of chaotic interleaving can be summarized as follows: − The matrix dimensions MxM is partitioned into i many perpendicular rectangle shapes with height M and width mk. in which m1 + m2 + ….mi = M. − These perpendicular rectangles would extend in the horizontal orientations and ordered perpendicularly to get an mk x M horizontal rectangle. − These rectangle shapes are accumulated as appeared in Figure 5 (a), where the base is put at left one and the upper part placed the right one. − Every perpendicular rectangle mk x M is split into ni boxes with dimensions 𝑀𝑀 𝑚𝑚𝑚𝑚 x mk including M points exactly. − Finally, these boxes are reshaped column by column to form a row of elements as illustrated in Figure 5 (b) [21, 22]. 3.5. Zigzag interleaver Zigzag interleaving is considered appealing for maximum information rate requirements because of low encoding and decoding complexity level and perfect performance especially with the maximum data rate. The information symbols can be organized in a zigzag manner as shown in Figures 6 (a) and (b). Figure 6 (c) presents the zigzag interleaving operation when a 2-D error burst takes place as a shaded area. Figure 6 (d) indicates that this burst error becomes random. Subsequently, this burst error can be corrected somewhat by utilizing the mechanism of a single error correction. Thus, the Zigzag interleaving technique can remove 2D bursts of errors [17].
  • 4. TELKOMNIKA Telecommun Comput El Control  The efficient interleaving of digital-video-broadcasting-... (Mohammed Jabbar Mohammed Ameen) 2365 Figure 5. Chaotic interleaving; (a) baker map, (b) 8×8 matrix randomization (a) (b) (c) (d) Figure 6. Zig-Zag Interleaving of 8×8 Matrix; (a) the 8×8 matrix, (b) zigzag randomization procedure, (c) zigzag interleaving operation, (d) error bursts removed after deinterleaving 3.6. Odd-even interleaver The number of columns and rows should be odd count. At first, the symbols are left un-interleaved and encoded, but only the odd-location coded symbols are loaded. At that point, the symbols are randomized and encoded and only the even-location coded symbols are loaded, as shown in Figure 7. This interleaver designed for half code rate which is acquired by puncturing the two nonsystematic codes. The result has scattering capability of the burst errors of the code [23]. Figure 7. Operation of odd even interleaver
  • 5.  ISSN: 1693-6930 TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 5, October 2020: 2362 - 2370 2366 3.7. Algebraic interleaver The Algebraic Interleaver reorganizes the symbols of its input sequence by using a permutation that is algebraically determined. The complexity and latency effect are minor in the algebraic interleaver consequently; it can be executed using simple blocks. The mathematical expression of algebraic interleaver is defined by 𝛱𝛱(𝑘𝑘) = 𝑘𝑘 𝑀𝑀𝑀𝑀𝑀𝑀 𝑁𝑁 where N is the interleaver length, 𝛱𝛱(𝑘𝑘) take a value between [0, 𝑁𝑁 − 1] indicates the new placement to which index k is permuted and MOD 𝑁𝑁 represents modulo N arithmetic [24, 25]. 3.8. Matrix helical interleaver It minimizes the errors burst and increase the correction ability. In this type, the indices of interleaver are load regularly for generating helical interleaver. At first, helical interleaver elements are ordered column and row, and then elements can be loaded in diagonal as shown in Figure 8. The length of interleaver can be expressed as L= kr × kc, where kr and kc are the size of rows and columns respectively. The slope of diagonal referred to the array step-size parameter, as the amount by which the row index increases, the column index increases by one. Figure 8. Operation of matrix helical interleaver 3.9. Helical interleaver It permutes the sequence of the input symbols by putting them in a helical manner and afterward transmitting rows of the array to the output port as shown in Figure 9. The number of columns in the helical array can represent by M, thus, the array has M columns and unbounded rows. Let refer to the group size by N, then the block admits an input of length M·N at each time step and divisions the input into successive sets of N bits. Checking from the earliest starting point of the implementation, the block venues the kth sets in the array over column k mod M. The situation is helical because of the reduction modulo M and because the first bit in the jth set is in row 1 (j-1).b, where b is the helical array step-size [26, 27]. Figure 9. Operation of helical interleaver with parameter. Number of columns = 3, group size = 2 3.10. Convolutional interleaver As illustrates in Figure 10, it comprises of a counts of shift registers. Each of them contains a fixed time delay, which is multiples for a positive integer. Every new sequence to the input to the interleaver is fed to the following shift register and the past sequence in that register turns into output part of the interleaver. convolutional de-interleaver is accomplished by reversing the interleaver over its horizontal axis. The structure is similar except the longest delay line becomes at the top, and the no delay line becomes last. On the other hand, the de-interleaving process is analogous to interleaving mechanized [28].
  • 6. TELKOMNIKA Telecommun Comput El Control  The efficient interleaving of digital-video-broadcasting-... (Mohammed Jabbar Mohammed Ameen) 2367 Figure 10. Operation of convolutional interleaver 4. MEMORY AND TIME DELAY PARAMETERS The prime disadvantage of all block interleaver types mentioned in section 3 is the time delay resulted in each filling process of the interleaver. For array with M row by N column, interleaver/ deinterleaver end to end delay equal to 2MN-2M+2 symbol time. Memory requirements equal to 2MN end-to-end of the system. While, in convolutional interleaver, the memory requirements equal to M (N-1)/2, the end to end time delay is M (N-1) symbol. Therefore, it provides a reduction over block interleaver by around one-half in memory and time delay requirements. Time delay depends on interleaver depth and information rate. Therefore, it may be some seconds long for many transmission channels. This delay may be inappropriate for various applications [29]. 5. SIMULATION PARAMETER Table 1 summarizes the simulation parameters used for the different scenarios considered through simulation. These parameters were chosen based on the DVB-S2 standard. At first, the incoming original information with packet size 1504 are buffered to become 32208 bits and then passed to BCH encoder, the results output codeword length 32400 bits. For the LDPC encoder, the input of it is the output of BCH then, the output codeword length 64800. After concatenated codes, the bits are randomized using one of the types of interleaver mentioned in section 3 for each case and then modulation scheme. With respect to the APSK modulation scheme, code identifiers are 2/3 and 3/4 for 16 and 32 modulation orders respectively [30]. Table 1. DVB-S2 system parameter values for different interleavers and modulation schemes Parameter Values Modulation Techniques QPSK-16APSK-32APSK Coding BCH(32400,32208) ,LDPC(64800,32400) Interleaving Matrix Number of row = 324, Number of column=200 Helical Row of shift register = 100, Register length step = 648, Helical array step size = 1 General block Random Permutation vector Zig-Zag Number of row = 256, Number of column = 256 random Random Permutation Matrix Helical Number of row = 324, Number of column = 200, array step size = 2 Odd-even Random even sequence of length = 32400 Chaotic Number of row = 256, Number of column = 256 Convolutional Row of shift register = 100, Register length step = 648 algebraic Number of elements = 64800, Multiplication factor = 1 Sample per frame 1504 Sample time 31.662 micro second Channel Type AWGN (additive white Gaussian noise) 6. NUMERICAL RESULT AND DISCUSSION The performance analysis of several interleavers for DVB-S2 will be determined in this section. Figure 11 produces a performance comparison of all interleaver mention in section 3. At BER = 0.001, the SNR for 2D interleaver (chaotic or zigzag) about 0.73 dB whereas other interleavers reach 0.85 dB, the gain about 0.12 dB. Hence, the DVB-S2 system with 2D interleaver gives the best performance. In the same manner, Figure 12, At BER = 0.001, the SNR for 2D interleaver about 18 dB whereas other interleavers reach to 18.5 dB, the gain about 0.5 dB. Finally, in Figure 13, At BER = 0.0001, the SNR for chaotic and zigzag interleaver are 23.35dB and 23.25dB respectively whereas other interleavers reach to 23.85 dB, the gain about 0.5 dB. The reasons for obtaining minimum BER in 2D interleaver is due to
  • 7.  ISSN: 1693-6930 TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 5, October 2020: 2362 - 2370 2368 the properties of the permutations generates by the Baker map and zig-zag algorithm that make a typical random permutation. The percentage reduction of SNR at BER = 0.001 is 2%, 3% and 14% for 32APSK, 16APSK and QPSK respectively. Therefore, the performance of the 2D interleaver is better at low SNR. Figure 11. BER performance of DVB-S2 using different interleavers with QPSK modulation Figure 12. BER performance of DVB-S2 using different interleavers with 16-APSK modulation
  • 8. TELKOMNIKA Telecommun Comput El Control  The efficient interleaving of digital-video-broadcasting-... (Mohammed Jabbar Mohammed Ameen) 2369 Figure 13. BER performance of DVB-S2 using different interleavers with 32-APSK modulation 7. CONCLUSION In this paper, investigations of three modulation techniques (QPSK, 16APSK, and 32APSK) are achieved with several interleavers. BER is evaluated concerning the above modulation techniques over an AWGN channel. The reason for doing this simulation is to examine the performance of these interleavers in the DVB-S2 system. As we realize that the determination of effective interleaver is a basic issue. From the above analysis of interleavers, the 2D interleavers surpasses in terms of BER on all other types. So, we can claim that 2D interleaver (chaotic or zigzag) gives better performance. REFERENCES [1] X. Xiang and M. C. Valenti, “Improving DVB-S2 performance through constellation shaping and iterative demapping,” 2011 - MILCOM 2011 Military Communications Conference, 2011. [2] A. Morello and V. Mignone, “DVB-S2: The Second-Generation Standard for Satellite Broad-Band Services,” Proceedings of the IEEE, vol. 94, no. 1, pp. 210-227, 2006. [3] M. Gomes, G. Falcao, V. Silva, V. Ferreira, A. Sengo, and M. Falcao, “Flexible Parallel Architecture for DVB-S2 LDPC Decoders,” IEEE GLOBECOM 2007-2007 IEEE Global Telecommunications Conference, 2007. [4] S. Bera, and N. Sur, “Performance Evaluation of DVB System for Text Transfer,” European Journal of Advances in Engineering and Technology, vol. 2, no. 5, pp. 62-65, 2015. [5] S. Brisken, M. Moscadelli, V. Seidel, and C. Schwark, “Passive radar imaging using DVB-S2,” 2017 IEEE Radar Conference (RadarConf), 2017. [6] K. El-Abbasy, B. Abdelhamid, and S. Elramly, “Performance evaluation of DVB-S2 and DVB-S2X systems,” 2015 IEEE International Conference on Communication, Networks and Satellite (COMNESTAT), 2015. [7] L. Haering and C. Kisters, “Signalling-assisted modulation classification in wireless OFDM systems with adaptive modulation and coding,” 2013 IEEE International Conference on Communications (ICC), 2013. [8] G. Faria and P. Hostiou, “Application of DVB-S2 for DVB-T & DVB-T2 Transport,” The 2011 Annual Technical Conference & Exhibition, 2011. [9] A. Morello and V. Mignone, “DVB-S2X: extending DVB-S2 flexibility for core markets and new applications,” International Journal of Satellite Communications and Networking, vol. 34, no. 3, pp. 327-336, Sep 2015. [10] E. M. El-Bakary, O. Zahran, S. A. El-Dolil, and F. E. Abd El-Samie, “Chaotic Maps: A Tool to Enhance the Performance of OFDM Systems,” International Journal of Communication Networks and Information Security, vol. 1, no. 2, 2009 [11] V. Chaturvedi, “Performance Analysis for Different Interleavers in Various Modulation Schemes with OFDM over an AWGN Channel,” IOSR Journal of Engineering, vol. 2, no. 4, pp. 760-767, 2012. [12] B. Das, M. P. Sarma, K. K. Sarma, and N. Mastorakis, “Design of a few interleaver techniques used with gold codes in faded wireless channels,” 2015 2nd International Conference on Signal Processing and Integrated Networks (SPIN), 2015. [13] S. Sharma, P. C. Sau, and A. Shukla, “Performance survey of IDMA with different interleavers,” 2014 International Conference on Signal Processing and Integrated Networks (SPIN), 2014.
  • 9.  ISSN: 1693-6930 TELKOMNIKA Telecommun Comput El Control, Vol. 18, No. 5, October 2020: 2362 - 2370 2370 [14] J. Sharma, S. Mishra, and N. Sharma, “An analysis of interleaver types for better BER performance in linear turbo equalizer,” 2017 International Conference on Innovations in Information, Embedded and Communication Systems (ICIIECS), 2017. [15] J. Jeong, Y. Jeon, and D. Yoon, “Blind Estimation of Block Interleaver Parameters using Statistical Characteristics,” Future Generation Information Technology 2016, 2016. [16] Y. Shen, G. Zhao, S. Zhang, Y. Li, and S. Li, “The Design of RA Code Pseudo-random Interleaver,” Journal of Physics: Conference Series, vol. 1237, pp. 042024, 2019. [17] B. Das, M. P. Sarma, and K. K. Sarma, “Different Aspects of Interleaving Techniques in Wireless Communication,” Advances in Systems Analysis, Software Engineering, and High-Performance Computing Intelligent Applications for Heterogeneous System Modeling and Design, pp. 335-374, 2015. [18] A. Beirami, H. Nejati, and W. Ali, “Zigzag map: a variability-aware discrete-time chaotic-map truly random number generator,” Electronics Letters, vol. 48, no. 24, pp. 1537-1538, 2012. [19] Z. A. El-Hamid, A. El-Henawy, F. A. El-Samie, H. El-Shenawy, and M. Samir, “FFT/DWT/DCT OFDM channel estimation using EM algorithm in the presence of chaotic interleaving,” 2012 8th International Computer Engineering Conference (ICENCO), 2012. [20] M. E. Elhameed Abd, M. A. M. El-Bendary and H. M. Abd Elkader, “An Efficient Chaotic Interleaving with Convolution Encoder and Decoder for Simplicity in LTE System,” International Journal of Networks and Communications, vol. 8, no. 1, pp. 1-9, 2018. [21] S. Vaidyanathan, A. Sambas, S. Zhang, Y. Zeng, M. A. Mohamed, and M. Mamat, “A new two-scroll chaotic system with two nonlinearities: dynamical analysis and circuit simulation,” TELKOMNIKA Telecommunication Computing Electronics and Control, vol. 17, no. 5, pp. 2465-2474, Jan 2019. [22] R. A. Mustafa, A. A. Maryoosh, D. N. George, and W. R. Humood, “Iris images encryption based on QR code and chaotic map,” TELKOMNIKA Telecommunication Computing Electronics and Control, vol. 18, no. 1, pp. 289-300, January 2020. [23] K. S. Arkoudogiannis and C. E. Dimakis, “Performance analysis of the odd–even uniform interleaver for turbo codes,” IET Communications, vol. 13, no. 16, pp. 2469-2477, Aug 2019. [24] O. Takeshita and D. Costello, “New classes of algebraic interleavers for turbo-codes,” Proceedings. 1998 IEEE International Symposium on Information Theory, 1998. [25] D. Hao and P. Hoeher, “Helical interleaver set design for interleave-division multiplexing and related techniques,” IEEE Communications Letters, vol. 12, no. 11, pp. 843-845, 2008. [26] S. Ramabadran, A. S. Madhukumar, N. W. Teck, and C. M. S. See, “Parameter Estimation of Convolutional and Helical Interleavers in a Noisy Environment,” IEEE Access, vol. 5, pp. 6151-6167, 2017. [27] B. Sklar, “Digital communications: fundamentals and applications,” Upper Saddle River, NJ: Prentice Hall, 2001. [28] J. Terry, J. Heiskala, “OFDM Wireless LANs: A Theoretical and Practical Guide,” Sams Publishing, 2002. [29] B. Sklar, “Digital communications: fundamentals and applications. Upper Saddle River,” NJ: Prentice Hall, 2001. [30] W. Fischer, “Digital Video and Audio Broadcasting Technology: A Practical Engineering Guide 3rd ,” Springer, 2009. BIOGRAPHIES OF AUTHORS Mohammed Jabbar Mohammed Ameen was born in Hillah-Iraq. He received a B. Se degree in electrical engineering from the University of Babylon in 2007 and an MSc degree in communications engineering from Al-Ahliyya Amman University in 2017, Jordon. He is working as a lecturer in the college of engineering/electrical department at Babylon University. He is currently working his Ph.D. degree at the electrical engineering department in the college of engineering at the University of Babylon. His research interests include IoT, MIMO, OFDM, FEC, and 5G, etc. Email: mohammedalsalihy@yahoo.com. Hussam Jawad Kadhim was born in Hillah-Iraq. He received the B. Se degree in electrical engineering from University of Babylon in 2007 and M. tech degree in Communication System Engineering in SHIATS-DU, Allahabad 2014. He is working as lecturer in college of science of women / computer department in Babylon University. He is currently working his PhD degree at electrical engineering department in college of engineering at University of Babylon. His research interests include IoT, power consumption, etc. Email: hussamjwd@yahoo.com