SlideShare a Scribd company logo
1 of 12
Gauss’s Theorem:
The surface integral of the electric field intensity over any closed hypothetical
surface (called Gaussian surface) in free space is equal to 1 / ε0 times the net
charge enclosed within the surface.
E . dS =
S
ΦE =
1
ε0
∑
i=1
n
qi
Proof of Gauss’s Theorem for Spherically Symmetric Surfaces:
E . dS
dΦ =
r2
1
4πε0
=
q
r . dS n
dΦ =
r2
1
4πε0
q dS
r n
.
Here, = 1 x 1 cos 0° = 1
r n
.
dΦ =
r2
1
4πε0
q dS
S
ΦE = dΦ
r2
1
4πε0
q
= 4π r2
ε0
q
=
dS
S
r2
1
4πε0
q
=
O •
r
r
dS
E
+q
O •
r
r
dS
E
+q
Deduction of Coulomb’s Law from Gauss’s Theorem:
From Gauss’s law,
E . dS =
S
ΦE =
q
ε0
E dS =
S
ΦE =
q
ε0
or dS =
S
ΦE =
q
ε0
E
E =
q
4πε0 r2
E x 4π r2
q
ε0
=
If a charge q0 is placed at a point where E
is calculated, then
Since E and dS are in the same direction,
which is Coulomb’s Law.
or
F =
qq0
4πε0 r2
Applications of Gauss’s Theorem:
1. Electric Field Intensity due to an Infinitely Long Straight Charged
Wire:
Gaussian surface is a
closed surface,
around a charge
distribution, such that
the electric field
intensity has a single
fixed value at every
point on the surface.
From Gauss’s law,
E . dS =
S
ΦE =
q
ε0
E . dS =
S
E . dS +
A
E . dS +
B
E . dS
C
E . dS =
S
E dS cos 90° +
A B
E dS cos 90° +
C
E dS cos 0° =
C
E dS = E x 2 π r l
- ∞ + ∞
B A
C
E
E E
dS
dS
dS
l
r
q
ε0
=
λ l
ε0
(where λ is the liner charge density)
E x 2 π r l =
λ l
ε0
or E =
2 πε0
1 λ
r
or E =
4 πε0
1 2λ
r
In vector form, E (r) =
4 πε0
1 2λ
r
r
The direction of the electric field intensity is radially outward from the positive
line charge. For negative line charge, it will be radially inward.
Note:
The electric field intensity is independent of the size of the Gaussian surface
constructed. It depends only on the distance of point of consideration. i.e. the
Gaussian surface should contain the point of consideration.
E
dS
C
B
A
E E
dS
dS r
l
2. Electric Field Intensity due to an Infinitely Long, Thin Plane Sheet of
Charge:
From Gauss’s law,
σ
E . dS =
S
ΦE =
q
ε0
E . dS =
S
E . dS +
A
E . dS +
B
E . dS
C
E . dS =
S
E dS cos 0° +
A B
E dS cos 0° +
C
E dS cos 90° = 2E dS = 2E x π r2
TIP:
The field lines remain
straight, parallel and
uniformly spaced.
(where σ is the surface charge density)
or E =
2 ε0
σ
In vector form, E (l) =
2 ε0
σ
l
The direction of the electric field intensity is normal to the plane and away
from the positive charge distribution. For negative charge distribution, it will
be towards the plane.
Note:
The electric field intensity is independent of the size of the Gaussian surface
constructed. It neither depends on the distance of point of consideration nor
the radius of the cylindrical surface.
q
ε0
=
σ π r2
ε0
2 E x π r2 =
σ π r2
ε0
If the plane sheet is thick, then the charge distribution will be available on
both the sides. So, the charge enclosed within the Gaussian surface will be
twice as before. Therefore, the field will be twice.
E =
ε0
σ
3. Electric Field Intensity due to Two Parallel, Infinitely Long, Thin
Plane Sheet of Charge:
σ1
σ2
E1
E1
E1
E2
E2
E2
E E E
Region I Region II Region III
E = E1 + E2
E =
2 ε0
σ1 + σ2
E = E1 - E2
E =
2 ε0
σ1 - σ2
E = E1 + E2
E =
2 ε0
σ1 + σ2
σ1 > σ2
( )
Case 1: σ1 > σ2
Case 2:
σ1
σ2
E1
E1
E1
E2
E2
E2
E E E
Region I Region II Region III
E = E1 - E2
E =
2 ε0
σ1 - σ2
E = E1 + E2
E =
2 ε0
σ1 + σ2
E = E1 - E2
E =
2 ε0
σ1 - σ2
σ1 > σ2
( )
σ1 > σ2
( )
+ σ1 & - σ2
Case 3:
σ1
σ2
E1
E1
E1
E2
E2
E2
E = 0 E ≠ 0
Region I Region II Region III
E = 0
E = E1 - E2
E =
2 ε0
σ1 - σ2
= 0
E = E1 - E2
E =
2 ε0
σ1 - σ2
= 0
E = E1 + E2
E =
2 ε0
σ1 + σ2
=
ε0
σ
+ σ & - σ
4. Electric Field Intensity due to a Uniformed Charged This Spherical
Shell:
dS
E
q
r
R
•P
From Gauss’s law,
E . dS =
S
ΦE =
q
ε0
E dS =
S
ΦE =
q
ε0
or dS =
S
ΦE =
q
ε0
E
E x 4π r2
q
ε0
=
Since E and dS are in the same direction,
or E =
q
4πε0 r2
i) At a point P outside the shell:
Since q = σ x 4π R2,
E =
ε0 r2
σ R2
Electric field due to a uniformly
charged thin spherical shell at
a point outside the shell is such
as if the whole charge were
concentrated at the centre of
the shell.
HOLLOW
……… Gaussian Surface
O •
dS
E
From Gauss’s law,
E . dS =
S
ΦE =
q
ε0
E dS =
S
ΦE =
q
ε0
or dS =
S
ΦE =
q
ε0
E
E x 4π R2
q
ε0
=
Since E and dS are in the same direction,
or E =
q
4πε0 R2
ii) At a point A on the surface of the shell:
Electric field due to a uniformly
charged thin spherical shell at
a point on the surface of the
shell is maximum.
Since q = σ x 4π R2,
E =
ε0
σ
q R
HOLLOW
O •
•
A
dS
E
r’
O
q R
HOLLOW
•
B
•
From Gauss’s law,
E . dS =
S
ΦE =
q
ε0
E dS =
S
ΦE =
q
ε0
or dS =
S
ΦE =
q
ε0
E
E x 4π r’2
q
ε0
=
Since E and dS are in the same direction,
or E =
0
4πε0 r’2
iii) At a point B inside the shell:
This property E = 0 inside a cavity is
used for electrostatic shielding.
(since q = 0 inside the Gaussian surface)
E = 0
r
E
R
O
Emax
END

More Related Content

What's hot

Application of Gauss,Green and Stokes Theorem
Application of Gauss,Green and Stokes TheoremApplication of Gauss,Green and Stokes Theorem
Application of Gauss,Green and Stokes TheoremSamiul Ehsan
 
divergence of vector and divergence theorem
divergence of vector and divergence theoremdivergence of vector and divergence theorem
divergence of vector and divergence theoremAbhishekLalkiya
 
Gauss Divergence Therom
Gauss Divergence TheromGauss Divergence Therom
Gauss Divergence TheromVC Infotech
 
Poisson’s and Laplace’s Equation
Poisson’s and Laplace’s EquationPoisson’s and Laplace’s Equation
Poisson’s and Laplace’s EquationAbhishek Choksi
 
Divergence theorem
Divergence theoremDivergence theorem
Divergence theoremFFMdeMul
 
Electric field gauss law
Electric field gauss lawElectric field gauss law
Electric field gauss lawRabia Jabeen
 
5. lec5 curl of a vector
5. lec5 curl of a vector5. lec5 curl of a vector
5. lec5 curl of a vectorshabdrang
 
Chap6 laplaces and-poissons-equations
Chap6 laplaces and-poissons-equationsChap6 laplaces and-poissons-equations
Chap6 laplaces and-poissons-equationsUmesh Kumar
 
Line integral,Strokes and Green Theorem
Line integral,Strokes and Green TheoremLine integral,Strokes and Green Theorem
Line integral,Strokes and Green TheoremHassan Ahmed
 
Laplace equation in Maple
Laplace equation in MapleLaplace equation in Maple
Laplace equation in MapleCamilo Chaves
 
Divergence,curl,gradient
Divergence,curl,gradientDivergence,curl,gradient
Divergence,curl,gradientKunj Patel
 
Lecture10 maxwells equations
Lecture10 maxwells equationsLecture10 maxwells equations
Lecture10 maxwells equationsAmit Rastogi
 
Laplace and Earnshaw
Laplace and EarnshawLaplace and Earnshaw
Laplace and EarnshawFFMdeMul
 
Capitulo 6, 7ma edición
Capitulo 6, 7ma ediciónCapitulo 6, 7ma edición
Capitulo 6, 7ma ediciónSohar Carr
 

What's hot (20)

Application of Gauss,Green and Stokes Theorem
Application of Gauss,Green and Stokes TheoremApplication of Gauss,Green and Stokes Theorem
Application of Gauss,Green and Stokes Theorem
 
divergence of vector and divergence theorem
divergence of vector and divergence theoremdivergence of vector and divergence theorem
divergence of vector and divergence theorem
 
Divrgence theorem with example
Divrgence theorem with exampleDivrgence theorem with example
Divrgence theorem with example
 
Stoke’s theorem
Stoke’s theoremStoke’s theorem
Stoke’s theorem
 
Gauss Divergence Therom
Gauss Divergence TheromGauss Divergence Therom
Gauss Divergence Therom
 
Electricity for physic
Electricity for physic Electricity for physic
Electricity for physic
 
Lecture noteschapter2
Lecture noteschapter2Lecture noteschapter2
Lecture noteschapter2
 
7
77
7
 
Poisson’s and Laplace’s Equation
Poisson’s and Laplace’s EquationPoisson’s and Laplace’s Equation
Poisson’s and Laplace’s Equation
 
Divergence theorem
Divergence theoremDivergence theorem
Divergence theorem
 
Electric field gauss law
Electric field gauss lawElectric field gauss law
Electric field gauss law
 
5. lec5 curl of a vector
5. lec5 curl of a vector5. lec5 curl of a vector
5. lec5 curl of a vector
 
Chap6 laplaces and-poissons-equations
Chap6 laplaces and-poissons-equationsChap6 laplaces and-poissons-equations
Chap6 laplaces and-poissons-equations
 
Line integral,Strokes and Green Theorem
Line integral,Strokes and Green TheoremLine integral,Strokes and Green Theorem
Line integral,Strokes and Green Theorem
 
Laplace equation in Maple
Laplace equation in MapleLaplace equation in Maple
Laplace equation in Maple
 
Divergence,curl,gradient
Divergence,curl,gradientDivergence,curl,gradient
Divergence,curl,gradient
 
Special integrations
Special integrationsSpecial integrations
Special integrations
 
Lecture10 maxwells equations
Lecture10 maxwells equationsLecture10 maxwells equations
Lecture10 maxwells equations
 
Laplace and Earnshaw
Laplace and EarnshawLaplace and Earnshaw
Laplace and Earnshaw
 
Capitulo 6, 7ma edición
Capitulo 6, 7ma ediciónCapitulo 6, 7ma edición
Capitulo 6, 7ma edición
 

Similar to Electrostatics Grade 12 Part 1 CBSE

Similar to Electrostatics Grade 12 Part 1 CBSE (20)

gauss law.ppt
gauss law.pptgauss law.ppt
gauss law.ppt
 
Meeting 3. Gauss's Law.pptx
Meeting 3. Gauss's Law.pptxMeeting 3. Gauss's Law.pptx
Meeting 3. Gauss's Law.pptx
 
Electricity slides
Electricity slidesElectricity slides
Electricity slides
 
Lecture 3
Lecture 3Lecture 3
Lecture 3
 
Gauss law 1
Gauss law 1Gauss law 1
Gauss law 1
 
Electrycity 2 p c r o 1
Electrycity 2 p c r o 1Electrycity 2 p c r o 1
Electrycity 2 p c r o 1
 
Gauss’s Law
Gauss’s LawGauss’s Law
Gauss’s Law
 
GAUSS LAW .pdf
GAUSS LAW .pdfGAUSS LAW .pdf
GAUSS LAW .pdf
 
Bab4
Bab4Bab4
Bab4
 
Why we need Gaussian surface in Gauss's law
Why we need Gaussian surface in Gauss's lawWhy we need Gaussian surface in Gauss's law
Why we need Gaussian surface in Gauss's law
 
Boundary Value Problems
Boundary Value ProblemsBoundary Value Problems
Boundary Value Problems
 
Physics about-electric-field
Physics about-electric-fieldPhysics about-electric-field
Physics about-electric-field
 
Gauss Law.pdf
Gauss Law.pdfGauss Law.pdf
Gauss Law.pdf
 
Conductors
ConductorsConductors
Conductors
 
Maxwell's equations and their derivations.
Maxwell's equations and their derivations.Maxwell's equations and their derivations.
Maxwell's equations and their derivations.
 
Electric field intensity
Electric field intensityElectric field intensity
Electric field intensity
 
Gauss's Law & its Applications
Gauss's Law & its ApplicationsGauss's Law & its Applications
Gauss's Law & its Applications
 
Ch22 ssm
Ch22 ssmCh22 ssm
Ch22 ssm
 
Fundamentals of Gauss' Law
Fundamentals of Gauss' LawFundamentals of Gauss' Law
Fundamentals of Gauss' Law
 
Electrostatics 3
Electrostatics 3Electrostatics 3
Electrostatics 3
 

Recently uploaded

Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Celine George
 
Judging the Relevance and worth of ideas part 2.pptx
Judging the Relevance  and worth of ideas part 2.pptxJudging the Relevance  and worth of ideas part 2.pptx
Judging the Relevance and worth of ideas part 2.pptxSherlyMaeNeri
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONHumphrey A Beña
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...JhezDiaz1
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxthorishapillay1
 
Q4 English4 Week3 PPT Melcnmg-based.pptx
Q4 English4 Week3 PPT Melcnmg-based.pptxQ4 English4 Week3 PPT Melcnmg-based.pptx
Q4 English4 Week3 PPT Melcnmg-based.pptxnelietumpap1
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxHumphrey A Beña
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxiammrhaywood
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...Nguyen Thanh Tu Collection
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersSabitha Banu
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for BeginnersSabitha Banu
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatYousafMalik24
 
ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4MiaBumagat1
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17Celine George
 
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...Postal Advocate Inc.
 
ACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfSpandanaRallapalli
 
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfLike-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfMr Bounab Samir
 
Choosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for ParentsChoosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for Parentsnavabharathschool99
 

Recently uploaded (20)

LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptxLEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17
 
Judging the Relevance and worth of ideas part 2.pptx
Judging the Relevance  and worth of ideas part 2.pptxJudging the Relevance  and worth of ideas part 2.pptx
Judging the Relevance and worth of ideas part 2.pptx
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptx
 
Q4 English4 Week3 PPT Melcnmg-based.pptx
Q4 English4 Week3 PPT Melcnmg-based.pptxQ4 English4 Week3 PPT Melcnmg-based.pptx
Q4 English4 Week3 PPT Melcnmg-based.pptx
 
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptxINTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
INTRODUCTION TO CATHOLIC CHRISTOLOGY.pptx
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
 
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
HỌC TỐT TIẾNG ANH 11 THEO CHƯƠNG TRÌNH GLOBAL SUCCESS ĐÁP ÁN CHI TIẾT - CẢ NĂ...
 
DATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginnersDATA STRUCTURE AND ALGORITHM for beginners
DATA STRUCTURE AND ALGORITHM for beginners
 
Full Stack Web Development Course for Beginners
Full Stack Web Development Course  for BeginnersFull Stack Web Development Course  for Beginners
Full Stack Web Development Course for Beginners
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice great
 
ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4
 
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptxYOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
 
How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17How to Add Barcode on PDF Report in Odoo 17
How to Add Barcode on PDF Report in Odoo 17
 
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
USPS® Forced Meter Migration - How to Know if Your Postage Meter Will Soon be...
 
ACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdfACC 2024 Chronicles. Cardiology. Exam.pdf
ACC 2024 Chronicles. Cardiology. Exam.pdf
 
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdfLike-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
Like-prefer-love -hate+verb+ing & silent letters & citizenship text.pdf
 
Choosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for ParentsChoosing the Right CBSE School A Comprehensive Guide for Parents
Choosing the Right CBSE School A Comprehensive Guide for Parents
 

Electrostatics Grade 12 Part 1 CBSE

  • 1. Gauss’s Theorem: The surface integral of the electric field intensity over any closed hypothetical surface (called Gaussian surface) in free space is equal to 1 / ε0 times the net charge enclosed within the surface. E . dS = S ΦE = 1 ε0 ∑ i=1 n qi Proof of Gauss’s Theorem for Spherically Symmetric Surfaces: E . dS dΦ = r2 1 4πε0 = q r . dS n dΦ = r2 1 4πε0 q dS r n . Here, = 1 x 1 cos 0° = 1 r n . dΦ = r2 1 4πε0 q dS S ΦE = dΦ r2 1 4πε0 q = 4π r2 ε0 q = dS S r2 1 4πε0 q = O • r r dS E +q
  • 2. O • r r dS E +q Deduction of Coulomb’s Law from Gauss’s Theorem: From Gauss’s law, E . dS = S ΦE = q ε0 E dS = S ΦE = q ε0 or dS = S ΦE = q ε0 E E = q 4πε0 r2 E x 4π r2 q ε0 = If a charge q0 is placed at a point where E is calculated, then Since E and dS are in the same direction, which is Coulomb’s Law. or F = qq0 4πε0 r2
  • 3. Applications of Gauss’s Theorem: 1. Electric Field Intensity due to an Infinitely Long Straight Charged Wire: Gaussian surface is a closed surface, around a charge distribution, such that the electric field intensity has a single fixed value at every point on the surface. From Gauss’s law, E . dS = S ΦE = q ε0 E . dS = S E . dS + A E . dS + B E . dS C E . dS = S E dS cos 90° + A B E dS cos 90° + C E dS cos 0° = C E dS = E x 2 π r l - ∞ + ∞ B A C E E E dS dS dS l r
  • 4. q ε0 = λ l ε0 (where λ is the liner charge density) E x 2 π r l = λ l ε0 or E = 2 πε0 1 λ r or E = 4 πε0 1 2λ r In vector form, E (r) = 4 πε0 1 2λ r r The direction of the electric field intensity is radially outward from the positive line charge. For negative line charge, it will be radially inward. Note: The electric field intensity is independent of the size of the Gaussian surface constructed. It depends only on the distance of point of consideration. i.e. the Gaussian surface should contain the point of consideration.
  • 5. E dS C B A E E dS dS r l 2. Electric Field Intensity due to an Infinitely Long, Thin Plane Sheet of Charge: From Gauss’s law, σ E . dS = S ΦE = q ε0 E . dS = S E . dS + A E . dS + B E . dS C E . dS = S E dS cos 0° + A B E dS cos 0° + C E dS cos 90° = 2E dS = 2E x π r2 TIP: The field lines remain straight, parallel and uniformly spaced.
  • 6. (where σ is the surface charge density) or E = 2 ε0 σ In vector form, E (l) = 2 ε0 σ l The direction of the electric field intensity is normal to the plane and away from the positive charge distribution. For negative charge distribution, it will be towards the plane. Note: The electric field intensity is independent of the size of the Gaussian surface constructed. It neither depends on the distance of point of consideration nor the radius of the cylindrical surface. q ε0 = σ π r2 ε0 2 E x π r2 = σ π r2 ε0 If the plane sheet is thick, then the charge distribution will be available on both the sides. So, the charge enclosed within the Gaussian surface will be twice as before. Therefore, the field will be twice. E = ε0 σ
  • 7. 3. Electric Field Intensity due to Two Parallel, Infinitely Long, Thin Plane Sheet of Charge: σ1 σ2 E1 E1 E1 E2 E2 E2 E E E Region I Region II Region III E = E1 + E2 E = 2 ε0 σ1 + σ2 E = E1 - E2 E = 2 ε0 σ1 - σ2 E = E1 + E2 E = 2 ε0 σ1 + σ2 σ1 > σ2 ( ) Case 1: σ1 > σ2
  • 8. Case 2: σ1 σ2 E1 E1 E1 E2 E2 E2 E E E Region I Region II Region III E = E1 - E2 E = 2 ε0 σ1 - σ2 E = E1 + E2 E = 2 ε0 σ1 + σ2 E = E1 - E2 E = 2 ε0 σ1 - σ2 σ1 > σ2 ( ) σ1 > σ2 ( ) + σ1 & - σ2
  • 9. Case 3: σ1 σ2 E1 E1 E1 E2 E2 E2 E = 0 E ≠ 0 Region I Region II Region III E = 0 E = E1 - E2 E = 2 ε0 σ1 - σ2 = 0 E = E1 - E2 E = 2 ε0 σ1 - σ2 = 0 E = E1 + E2 E = 2 ε0 σ1 + σ2 = ε0 σ + σ & - σ
  • 10. 4. Electric Field Intensity due to a Uniformed Charged This Spherical Shell: dS E q r R •P From Gauss’s law, E . dS = S ΦE = q ε0 E dS = S ΦE = q ε0 or dS = S ΦE = q ε0 E E x 4π r2 q ε0 = Since E and dS are in the same direction, or E = q 4πε0 r2 i) At a point P outside the shell: Since q = σ x 4π R2, E = ε0 r2 σ R2 Electric field due to a uniformly charged thin spherical shell at a point outside the shell is such as if the whole charge were concentrated at the centre of the shell. HOLLOW ……… Gaussian Surface O •
  • 11. dS E From Gauss’s law, E . dS = S ΦE = q ε0 E dS = S ΦE = q ε0 or dS = S ΦE = q ε0 E E x 4π R2 q ε0 = Since E and dS are in the same direction, or E = q 4πε0 R2 ii) At a point A on the surface of the shell: Electric field due to a uniformly charged thin spherical shell at a point on the surface of the shell is maximum. Since q = σ x 4π R2, E = ε0 σ q R HOLLOW O • • A
  • 12. dS E r’ O q R HOLLOW • B • From Gauss’s law, E . dS = S ΦE = q ε0 E dS = S ΦE = q ε0 or dS = S ΦE = q ε0 E E x 4π r’2 q ε0 = Since E and dS are in the same direction, or E = 0 4πε0 r’2 iii) At a point B inside the shell: This property E = 0 inside a cavity is used for electrostatic shielding. (since q = 0 inside the Gaussian surface) E = 0 r E R O Emax END