SlideShare a Scribd company logo
1 of 27
AIML IE2 Project
Gr.No.-10 (P-10)
Unsupervised k-means
clustering
Group members – TYETB078 Vidit Agarwal
TYETB079 Randhirsinh Bhosale
TYETB080 Hetal Gupta
TYETB081 Isha Shetty
TYETB082 Vishwatej Katkar
Guide name - Dr. Rajani P.K.
ELECTRONICS & TELECOMMUNICATION ENGINEERING
Pimpri Chinchwad College of Engineering , Pune
OUTLINE OF PROJECT
• Introduction
• Literature review
• Need of the Project
• Problem Statement, Aim, Objectives
• Methodology
• Block Diagram
• Algorithm and Flowchart
• Software Implementations
• Advantages & Applications
• Work Done till date
• Results & Analysis
• Conclusion
• References
• Project Outcome
2
17-10-2023 Unsupervised K-means Clustering Algorithm
Introduction
• Clustering is a useful tool in data science. It is a method for
finding cluster structure in a data set that is characterized by
the greatest similarity within the same cluster and the
greatest dissimilarity between different clusters.
• It is known that the k-means algorithm is the oldest and
popular partitional method. The k-means clustering has been
widely studied with various extensions in the literature and
applied in a variety of substantive areas. However, these k-
means clustering algorithms are usually affected by
initialization sand need to be given a number of clusters a
priori. In general, the cluster number is unknown. In this
case, validity indices can be used to find a cluster number
where they are supposed to be independent of clustering
algorithms.
3
17-10-2023 Unsupervised K-means Clustering Algorithm
Literature Review
Title Author Objective Algorithm Methodology Conclusion
Unsupervi
sed K-
Means
Clustering
Algorithm
KRISTINA P.
SINAGA AND
MIIN-SHEN
YANG
The k-means
algorithm is
generally the most
known and used
clustering method.
There are Various
extensions of k-
means to be
proposed in the
literature.
Although it is an
unsupervised
learning to
clustering in
pattern
recognition and
machine learning,
K means
clustering
algorithm
Clustering is a useful
tool in data science. It is
a method for finding
cluster structure in a
data set that is
characterized by the
greatest similarity within
the same cluster and the
greatest dissimilarity
between different
clusters.
In this paper we
propose a new
schema with a
learning Frame
work for the
kmeans clustering
algorithm. We
adopt the merit of
entropy-type
penalty terms to
construct a
competition
schema.
17-10-2023 Unsupervised K-means Clustering Algorithm 4
17-10-2023 Unsupervised K-means Clustering Algorithm 5
Title Author Objective Algorithm Methodology Conclusion
Unsupervi
sed K-
Means
Clustering
Algorithm
Yogiraj Singh
Kushawah,
Ashish
Mohan Yadav
Data mining are
data analysis
supported
unsupervised
clustering
algorithm is one of
the quickest
growing research
areas because of
availability of huge
quantity of data
analysis and
extract usefully
information based
on new improve
performance of
clustering
algorithm.
K means
clustering(PCA)
Data mining is that the
process of extracting
useful and hidden
information or data from
large datasets. the data
therefore extracted will
be used to improve an
unsupervised clustering.
Clustering is an
unsupervised technique
that groups the
knowledge of similar
objects with minimum
cluster distance into a
cluster by eliminating
the inappropriate data
objects
Data mining is to
divide clusters from
large data set and
transform it into an
understandable
extract information
.Clustering plays a
very important task
in data mining.
• Title
• Author
• Objective
17-10-2023 Unsupervised K-means Clustering Algorithm 6
Title Author Objective Algorith
m
Methodology Conclusion
Unsupervi
sed K-
Means
Clustering
Algorithm
Salim Dridi
M
Many unsupervised
learning approaches
and algorithms have
been introduced
since the last decade
where are well-
known and widely
used algorithms of
unsupervised
learning. The growing
interest in applying
unsupervised
learning techniques
forms a great success
in fields.
K means
clustering
Unsupervised learning
refers to algorithms to
identify patterns in data
sets containing data
points that are neither
classified nor labelled.
The algorithms are thus
allowed to classify, label
and group the data
points within the data
sets without having any
external guidance in
performing that task.
The users do not need to
supervise the model
K-Means Clustering
is an Unsupervised
Learning algorithm.
It arranges the
unlabeled dataset
into several clusters
where “K” denotes
K-Means Clustering
is an Unsupervised
Learning algorithm.
It arranges the
unlabeled dataset
into several clusters
where “K” denotes
clusters.
Need of the project
• Unsupervised learning methods do not need so many labels
of data, so this reduces some requirements of the collected
data. Unsupervised learning relies on its unique training
system, and classifies original data with little or no already
known label data. Unsupervised learning is accomplished
through feedback and a series of rewards and punishments.
• K-Means is a type of Partitioning Clustering and hence one
of the simplest yet powerful machine learning algorithms. As
it is an unsupervised algorithm, K-Means makes its
inferences from datasets using only input vectors without
referring to labeled outcomes.
17-10-2023 Unsupervised K-means Clustering Algorithm 7
Problem Statement
• There are various extensions of k-means to be proposed in the literature.
Although it is an unsupervised learning to clustering in pattern
recognition and machine learning, the k-means algorithm and its
extensions are always influenced by initializations with a necessary
number of clusters a priori. That is, the k-means algorithm is not exactly
an unsupervised clustering method. In this paper, they construct an
unsupervised learning schema for the k-means algorithm so that it is free
of initializations without parameter selection and can also simultaneously
find an optimal number of clusters. That is, they propose a novel
unsupervised k-means (U-k-means) clustering algorithm with
automatically finding an optimal number of clusters without giving any
initialization and parameter selection. The computational complexity of
the proposed U-k-means clustering algorithm is also analyzed.
17-10-2023 Unsupervised K-means Clustering Algorithm 8
Aim, Objective
• To construct an unsupervised learning schema for the k-
means algorithm so that it is free of initializations without
parameter selection and can also simultaneously find an
optimal number of clusters.
• To propose a novel unsupervised k-means (U-k-means)
clustering algorithm with automatically finding an optimal
number of clusters without giving any initialization and
parameter selection.
• To analyze the computational complexity of the proposed U-
k-means clustering algorithm
17-10-2023 Unsupervised K-means Clustering Algorithm 9
Methodology
• Block diagram of unsupervised learning
17-10-2023 Unsupervised K-means Clustering Algorithm 10
U-k-means clustering Algorithm
17-10-2023 Unsupervised K-means Clustering Algorithm 11
1.Fix ε>0 . Give initial c(0)=n , α(0)k=1/n , a(0)k=xi , and initial
learning rates γ(0)=β(0)=1 . Set t=0 .
2.Compute z(t+1)ik using a(t)k , α(t)k,c(t),γ(t),β(t).
3.Compute γ(t+1)
4.Update α(t+1)k with z(t+1)ik and α(t)k
5.Compute β(t+1) with α(t+1) and α(t)
6. Update c(t) to c(t+1) by discard those clusters
with α(t+1)k≤1/n and adjust α(t+1)k and z(t+1)ik
7.IF t≥60 and c(t−60)−c(t)=0 , THEN let β(t+1)=0 .
7.Update a(t+1)k with c(t+1) and z(t+1)ik
8.Compare a(t+1)k and a(t)k .
IF max1≤k≤c(t)∥∥a(t+1)k−a(t)k∥∥<ε , THEN Stop.
ELSE t=t+1 and return to Step 2.
Flow chart
17-10-2023 12
Unsupervised K-means Clustering Algorithm
Software implementations
import numpy as np
import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
from sklearn.datasets import load_iris
from sklearn.preprocessing import StandardScaler
from sklearn.metrics import confusion_matrix, classification_report
from sklearn.cluster import Kmeans
# Define the U-k-means algorithm
class UKMeans:
def __init__(self, n_clusters=3, fuzziness=2, max_iter=100):
self.n_clusters = n_clusters
self.fuzziness = fuzziness
self.max_iter = max_iter
17-10-2023 Unsupervised K-means Clustering Algorithm 13
def fit(self, X):
n = X.shape[0]
C = X[np.random.choice(n, self.n_clusters), :]
U = np.random.rand(n, self.n_clusters)
U = U / np.sum(U, axis=1, keepdims=True)
for i in range(self.max_iter):
U_old = U.copy()
for j in range(self.n_clusters):
C[j, :] = np.sum(U[:, j].reshape(-1, 1) * X, axis=0) / np.sum(U[:, j])
dist = np.linalg.norm(X[:, :, np.newaxis] - C.T[np.newaxis, :, :], axis=1)
U = 1 / (dist ** (2 / (self.fuzziness - 1)))
U = U / np.sum(U, axis=1, keepdims=True)
if np.allclose(U, U_old):
break
17-10-2023 Unsupervised K-means Clustering Algorithm 14
self.centroids_ = C
self.labels_ = np.argmax(U, axis=1)
# Load the iris dataset
iris = load_iris()
# Preprocess the data
X = iris.data
y = iris.target
scaler = StandardScaler()
X = scaler.fit_transform(X)
# Perform clustering using U-k-means algorithm
best_accuracy = 0
best_model = None
for n_clusters in range(2, 6):
17-10-2023 Unsupervised K-means Clustering Algorithm 15
or fuzziness in [1.5, 2, 2.5]:
for max_iter in [50, 100, 200]:
model = UKMeans(n_clusters=n_clusters, fuzziness=fuzziness,
max_iter=max_iter)
model.fit(X)
accuracy = np.mean(model.labels_ == y)
if accuracy > best_accuracy:
best_accuracy = accuracy
best_model = model
# Print the best accuracy and corresponding parameters
print(f"Best accuracy: {best_accuracy}")
print(f"Number of clusters: {best_model.n_clusters}")
print(f"Fuzziness: {best_model.fuzziness}")
print(f"Maximum number of iterations: {best_model.max_iter}"
17-10-2023 Unsupervised K-means Clustering Algorithm 16
# Visualize the clusters using scatter plot
sns.set_style("whitegrid")
sns.scatterplot(x=X[:, 0], y=X[:, 1], hue=best_model.labels_, palette="Set2")
sns.scatterplot(x=best_model.centroids_[:, 0], y=best_model.centroids_[:, 1], color="black", marker="X",
s=200, legend=False)
plt.title("Clustering using U-k-means algorithm")
plt.xlabel("Sepal length (cm)")
plt.ylabel("Sepal width (cm)")
plt.show()
# Visualize the distribution of samples across clusters using bar graph
sns.set_style("whitegrid")
sns.countplot(x=best_model.labels_, palette="Set2")
plt.title("Distribution of samples across clusters")
plt.xlabel("Cluster")
plt.ylabel("Number of samples")
plt.show()
17-10-2023 Unsupervised K-means Clustering Algorithm 17
# Compute the confusion matrix and classification report
cm = confusion_matrix(y, best_model.labels_)
cr = classification_report(y, best_model.labels_)
# Print the confusion matrix and classification report
print("Confusion Matrix:")
print(cm)
print("Classification Report:")
print(cr)
# Plot the confusion matrix
sns.set_style("white")
sns.heatmap(cm, annot=True, cmap="Blues", fmt="d", xticklabels=iris.target_names,
yticklabels=iris.target_names)
plt.title("Confusion Matrix")
plt.xlabel("Predicted Class")
plt.ylabel("True Class")
plt.show()
17-10-2023 Unsupervised K-means Clustering Algorithm 18
Advantages
17-10-2023 Project Title 19
1. High Performance - K-Means algorithm has linear time complexity and
it can be used with large datasets conveniently. With unlabeled big data K-
Means offers many insights and benefits as an unsupervised clustering
algorithm.
2. Unlabeled Data -This one is a general unsupervised machine learning
algorithm that also applies to K-Means.If your data has no labels (class
values or targets) or even column headers, K-Means will still successfully
cluster your data.
3. Easy to Use - K-Means is also easy to use. It can be initialized using
default parameters in the Scikit-Learn implementation.
4. Result Interpretation - K-Means returns clusters which can be easily
interpreted and even visualized. This simplicity makes it highly useful in
some cases when you need a quick overview of the data segments.
Applications
K-Means clustering is used in a variety of examples or business cases in
real life, like:
• Academic performance - Based on the scores, students are categorized
into grades like A, B, or C.
• Diagnostic systems - The medical profession uses k-means in creating
smarter medical decision support systems, especially in the treatment of
liver ailments.
• Search engines - Clustering forms a backbone of search engines. When a
search is performed, the search results need to be grouped, and the search
engines very often use clustering to do this.
• Wireless sensor networks - The clustering algorithm plays the role of
finding the cluster heads, which collect all the data in its respective
cluster.
17-10-2023 Unsupervised K-means Clustering Algorithm 20
Results and analysis
17-10-2023 Unsupervised K-means Clustering Algorithm 21
The U-k-means algorithm is a variant of the k-means algorithm that assigns
each data point a fuzzy membership to each cluster, instead of assigning it to
only one cluster. The implementation of the U-k-means algorithm was done
using the Python programming language and the scikit-learn library.
The best accuracy achieved using the U-k-means algorithm was 0.83, which
was obtained for the following hyperparameters: 3 clusters, fuzziness value
of 1.5, and maximum number of iterations of 50. The scatter plot showed the
clusters of the iris dataset, and the bar graph showed the distribution of
samples across the clusters.
The confusion matrix and classification report were computed to evaluate the
performance of the U-k-means algorithm. The confusion matrix showed the
number of true positives, true negatives, false positives, and false negatives,
while the classification report showed the precision, recall, F1-score, and
support for each class. The performance of the U-k-means algorithm was not
as good as that of supervised learning algorithms, but it is still a useful tool
for unsupervised learning tasks.
Results and Analysis
17-10-2023 Unsupervised K-means Clustering Algorithm 22
Results and analysis
17-10-2023 Unsupervised K-means Clustering Algorithm 23
Confusion Matrix For U-k-means algorithm which introduce
different performance measures
Conclusion
17-10-2023 Unsupervised K-means Clustering Algorithm 24
• In this paper a new scheme is proposed with a learning
framework for the k-means clustering algorithm. During
iterations, the U-k-means algorithm will discard extra
clusters, and then an optimal number of clusters can be
automatically found according to the structure of data. The
advantages of U-k-means are free of initializations and
parameters that also robust to different cluster volumes and
shapes with automatically finding the number of clusters.
The proposed U-k-means algorithm was performed on
several synthetic and real data sets and also compared with
most existing algorithms, such as R-EM, C-FS, k-means
with the true number c, k-means + gap, and X-means
algorithms. The results actually demonstrate the superiority
of the U-k-means clustering algorithm.
References
[1] A. K. Jain and R. C. Dubes, Algorithms for Clustering Data, Englewood Cliffs, NJ, USA: Prentice-Hall,
1988.
[2] L. Kaufman and P. J. Rousseeuw, Finding Groups in Data: An Introduction to Cluster Analysis. New
York, NY, USA: Wiley, 1990.
[3] G. J. McLachlan and K. E. Basford, Mixture Models: Inference and Applications to Clustering. New
York, NY, USA: Marcel Dekker, 1988.
[4] A. P. Dempster, N. M. Laird, and D. B. Rubin, ‘‘Maximum likelihood from incomplete data via the EM
algorithm (with discussion),’’ J. Roy. Stat. Soc., Ser. B, Methodol., vol. 39, no. 1, pp. 1–38, 1977.
[5] J. Yu, C. Chaomurilige, and M.-S. Yang, ‘‘On convergence and parameter selection of the EM and DA-
EM algorithms for Gaussian mixtures,’’ Pattern Recognit., vol. 77, pp. 188–203, May 2018.
[6] A. K. Jain, ‘‘Data clustering: 50 years beyond K-means,’’ Pattern Recognit. Lett., vol. 31, no. 8, pp.
651–666, Jun. 2010.
[7] M.-S. Yang, S.-J. Chang-Chien, and Y. Nataliani, ‘‘A fully-unsupervised possibilistic C-Means
clustering algorithm,’’ IEEE Access, vol. 6, pp. 78308–78320, 2018.
[8] J. MacQueen, ‘‘Some methods for classification and analysis of multivariate observations,’’ in Proc. 5th
Berkeley Symp. Math. Statist. Probab., vol. 1, 1967, pp. 281–297.
[9] M. Alhawarat and M. Hegazi, ‘‘Revisiting K-Means and topic modeling, a comparison study to cluster
arabic documents,’’ IEEE Access, vol. 6, pp. 42740–42749, 2018.
17-10-2023 Unsupervised K-means Clustering Algorithm 25
Project Outcome
• The k-means algorithm is generally the most known and used clustering
method. There are various extensions of k-means to be proposed in the
literature. Although it is an unsupervised learning to clustering in pattern
recognition and machine learning, the k-means algorithm and its
extensions are always influenced by initializations with a necessary
number of clusters a priori.
• The outcome of this project was an unsupervised learning schema for the
k-means algorithm so that it is free of initializations without parameter
selection and can also simultaneously find an optimal number of clusters.
• Also, we analyzed the computational complexity of the proposed U-k-
means clustering algorithm.
17-10-2023 Unsupervised K-means Clustering Algorithm 26
17-10-2023 27
Unsupervised K-means Clustering Algorithm
THANK YOU

More Related Content

Similar to Presentation Template__TY_AIML_IE2_Project (1).pptx

A Survey of Machine Learning Methods Applied to Computer ...
A Survey of Machine Learning Methods Applied to Computer ...A Survey of Machine Learning Methods Applied to Computer ...
A Survey of Machine Learning Methods Applied to Computer ...butest
 
A survey on Efficient Enhanced K-Means Clustering Algorithm
 A survey on Efficient Enhanced K-Means Clustering Algorithm A survey on Efficient Enhanced K-Means Clustering Algorithm
A survey on Efficient Enhanced K-Means Clustering Algorithmijsrd.com
 
Document clustering for forensic analysis an approach for improving compute...
Document clustering for forensic   analysis an approach for improving compute...Document clustering for forensic   analysis an approach for improving compute...
Document clustering for forensic analysis an approach for improving compute...Madan Golla
 
IRJET- Optimal Number of Cluster Identification using Robust K-Means for ...
IRJET-  	  Optimal Number of Cluster Identification using Robust K-Means for ...IRJET-  	  Optimal Number of Cluster Identification using Robust K-Means for ...
IRJET- Optimal Number of Cluster Identification using Robust K-Means for ...IRJET Journal
 
Machine Learning, K-means Algorithm Implementation with R
Machine Learning, K-means Algorithm Implementation with RMachine Learning, K-means Algorithm Implementation with R
Machine Learning, K-means Algorithm Implementation with RIRJET Journal
 
The improved k means with particle swarm optimization
The improved k means with particle swarm optimizationThe improved k means with particle swarm optimization
The improved k means with particle swarm optimizationAlexander Decker
 
Parallel k nn on gpu architecture using opencl
Parallel k nn on gpu architecture using openclParallel k nn on gpu architecture using opencl
Parallel k nn on gpu architecture using opencleSAT Publishing House
 
Parallel knn on gpu architecture using opencl
Parallel knn on gpu architecture using openclParallel knn on gpu architecture using opencl
Parallel knn on gpu architecture using opencleSAT Journals
 
E-Healthcare monitoring System for diagnosis of Heart Disease using Machine L...
E-Healthcare monitoring System for diagnosis of Heart Disease using Machine L...E-Healthcare monitoring System for diagnosis of Heart Disease using Machine L...
E-Healthcare monitoring System for diagnosis of Heart Disease using Machine L...IRJET Journal
 
Clustering
ClusteringClustering
ClusteringMeme Hei
 
84cc04ff77007e457df6aa2b814d2346bf1b
84cc04ff77007e457df6aa2b814d2346bf1b84cc04ff77007e457df6aa2b814d2346bf1b
84cc04ff77007e457df6aa2b814d2346bf1bPRAWEEN KUMAR
 
Master defense presentation 2019 04_18_rev2
Master defense presentation 2019 04_18_rev2Master defense presentation 2019 04_18_rev2
Master defense presentation 2019 04_18_rev2Hyun Wong Choi
 
K- means clustering method based Data Mining of Network Shared Resources .pptx
K- means clustering method based Data Mining of Network Shared Resources .pptxK- means clustering method based Data Mining of Network Shared Resources .pptx
K- means clustering method based Data Mining of Network Shared Resources .pptxSaiPragnaKancheti
 
K- means clustering method based Data Mining of Network Shared Resources .pptx
K- means clustering method based Data Mining of Network Shared Resources .pptxK- means clustering method based Data Mining of Network Shared Resources .pptx
K- means clustering method based Data Mining of Network Shared Resources .pptxSaiPragnaKancheti
 

Similar to Presentation Template__TY_AIML_IE2_Project (1).pptx (20)

A Survey of Machine Learning Methods Applied to Computer ...
A Survey of Machine Learning Methods Applied to Computer ...A Survey of Machine Learning Methods Applied to Computer ...
A Survey of Machine Learning Methods Applied to Computer ...
 
K means report
K means reportK means report
K means report
 
A survey on Efficient Enhanced K-Means Clustering Algorithm
 A survey on Efficient Enhanced K-Means Clustering Algorithm A survey on Efficient Enhanced K-Means Clustering Algorithm
A survey on Efficient Enhanced K-Means Clustering Algorithm
 
Document clustering for forensic analysis an approach for improving compute...
Document clustering for forensic   analysis an approach for improving compute...Document clustering for forensic   analysis an approach for improving compute...
Document clustering for forensic analysis an approach for improving compute...
 
IRJET- Optimal Number of Cluster Identification using Robust K-Means for ...
IRJET-  	  Optimal Number of Cluster Identification using Robust K-Means for ...IRJET-  	  Optimal Number of Cluster Identification using Robust K-Means for ...
IRJET- Optimal Number of Cluster Identification using Robust K-Means for ...
 
Machine Learning, K-means Algorithm Implementation with R
Machine Learning, K-means Algorithm Implementation with RMachine Learning, K-means Algorithm Implementation with R
Machine Learning, K-means Algorithm Implementation with R
 
The improved k means with particle swarm optimization
The improved k means with particle swarm optimizationThe improved k means with particle swarm optimization
The improved k means with particle swarm optimization
 
Parallel k nn on gpu architecture using opencl
Parallel k nn on gpu architecture using openclParallel k nn on gpu architecture using opencl
Parallel k nn on gpu architecture using opencl
 
Parallel knn on gpu architecture using opencl
Parallel knn on gpu architecture using openclParallel knn on gpu architecture using opencl
Parallel knn on gpu architecture using opencl
 
Af4201214217
Af4201214217Af4201214217
Af4201214217
 
E-Healthcare monitoring System for diagnosis of Heart Disease using Machine L...
E-Healthcare monitoring System for diagnosis of Heart Disease using Machine L...E-Healthcare monitoring System for diagnosis of Heart Disease using Machine L...
E-Healthcare monitoring System for diagnosis of Heart Disease using Machine L...
 
Presentation on K-Means Clustering
Presentation on K-Means ClusteringPresentation on K-Means Clustering
Presentation on K-Means Clustering
 
Clustering
ClusteringClustering
Clustering
 
84cc04ff77007e457df6aa2b814d2346bf1b
84cc04ff77007e457df6aa2b814d2346bf1b84cc04ff77007e457df6aa2b814d2346bf1b
84cc04ff77007e457df6aa2b814d2346bf1b
 
Master defense presentation 2019 04_18_rev2
Master defense presentation 2019 04_18_rev2Master defense presentation 2019 04_18_rev2
Master defense presentation 2019 04_18_rev2
 
Neural nw k means
Neural nw k meansNeural nw k means
Neural nw k means
 
Chapter 5.pdf
Chapter 5.pdfChapter 5.pdf
Chapter 5.pdf
 
Master's Thesis Presentation
Master's Thesis PresentationMaster's Thesis Presentation
Master's Thesis Presentation
 
K- means clustering method based Data Mining of Network Shared Resources .pptx
K- means clustering method based Data Mining of Network Shared Resources .pptxK- means clustering method based Data Mining of Network Shared Resources .pptx
K- means clustering method based Data Mining of Network Shared Resources .pptx
 
K- means clustering method based Data Mining of Network Shared Resources .pptx
K- means clustering method based Data Mining of Network Shared Resources .pptxK- means clustering method based Data Mining of Network Shared Resources .pptx
K- means clustering method based Data Mining of Network Shared Resources .pptx
 

Recently uploaded

Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Krashi Coaching
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfciinovamais
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introductionMaksud Ahmed
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxNirmalaLoungPoorunde1
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdfQucHHunhnh
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationnomboosow
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptxVS Mahajan Coaching Centre
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Educationpboyjonauth
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformChameera Dedduwage
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)eniolaolutunde
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingTechSoup
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdfSoniaTolstoy
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppCeline George
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application ) Sakshi Ghasle
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104misteraugie
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3JemimahLaneBuaron
 
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991RKavithamani
 

Recently uploaded (20)

Staff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSDStaff of Color (SOC) Retention Efforts DDSD
Staff of Color (SOC) Retention Efforts DDSD
 
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
Kisan Call Centre - To harness potential of ICT in Agriculture by answer farm...
 
Activity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdfActivity 01 - Artificial Culture (1).pdf
Activity 01 - Artificial Culture (1).pdf
 
microwave assisted reaction. General introduction
microwave assisted reaction. General introductionmicrowave assisted reaction. General introduction
microwave assisted reaction. General introduction
 
Employee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptxEmployee wellbeing at the workplace.pptx
Employee wellbeing at the workplace.pptx
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
1029-Danh muc Sach Giao Khoa khoi 6.pdf
1029-Danh muc Sach Giao Khoa khoi  6.pdf1029-Danh muc Sach Giao Khoa khoi  6.pdf
1029-Danh muc Sach Giao Khoa khoi 6.pdf
 
Interactive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communicationInteractive Powerpoint_How to Master effective communication
Interactive Powerpoint_How to Master effective communication
 
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions  for the students and aspirants of Chemistry12th.pptxOrganic Name Reactions  for the students and aspirants of Chemistry12th.pptx
Organic Name Reactions for the students and aspirants of Chemistry12th.pptx
 
Introduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher EducationIntroduction to ArtificiaI Intelligence in Higher Education
Introduction to ArtificiaI Intelligence in Higher Education
 
A Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy ReformA Critique of the Proposed National Education Policy Reform
A Critique of the Proposed National Education Policy Reform
 
Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)Software Engineering Methodologies (overview)
Software Engineering Methodologies (overview)
 
Grant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy ConsultingGrant Readiness 101 TechSoup and Remy Consulting
Grant Readiness 101 TechSoup and Remy Consulting
 
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdfBASLIQ CURRENT LOOKBOOK  LOOKBOOK(1) (1).pdf
BASLIQ CURRENT LOOKBOOK LOOKBOOK(1) (1).pdf
 
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptxINDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
INDIA QUIZ 2024 RLAC DELHI UNIVERSITY.pptx
 
URLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website AppURLs and Routing in the Odoo 17 Website App
URLs and Routing in the Odoo 17 Website App
 
Hybridoma Technology ( Production , Purification , and Application )
Hybridoma Technology  ( Production , Purification , and Application  ) Hybridoma Technology  ( Production , Purification , and Application  )
Hybridoma Technology ( Production , Purification , and Application )
 
Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104Nutritional Needs Presentation - HLTH 104
Nutritional Needs Presentation - HLTH 104
 
Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3Q4-W6-Restating Informational Text Grade 3
Q4-W6-Restating Informational Text Grade 3
 
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
Industrial Policy - 1948, 1956, 1973, 1977, 1980, 1991
 

Presentation Template__TY_AIML_IE2_Project (1).pptx

  • 1. AIML IE2 Project Gr.No.-10 (P-10) Unsupervised k-means clustering Group members – TYETB078 Vidit Agarwal TYETB079 Randhirsinh Bhosale TYETB080 Hetal Gupta TYETB081 Isha Shetty TYETB082 Vishwatej Katkar Guide name - Dr. Rajani P.K. ELECTRONICS & TELECOMMUNICATION ENGINEERING Pimpri Chinchwad College of Engineering , Pune
  • 2. OUTLINE OF PROJECT • Introduction • Literature review • Need of the Project • Problem Statement, Aim, Objectives • Methodology • Block Diagram • Algorithm and Flowchart • Software Implementations • Advantages & Applications • Work Done till date • Results & Analysis • Conclusion • References • Project Outcome 2 17-10-2023 Unsupervised K-means Clustering Algorithm
  • 3. Introduction • Clustering is a useful tool in data science. It is a method for finding cluster structure in a data set that is characterized by the greatest similarity within the same cluster and the greatest dissimilarity between different clusters. • It is known that the k-means algorithm is the oldest and popular partitional method. The k-means clustering has been widely studied with various extensions in the literature and applied in a variety of substantive areas. However, these k- means clustering algorithms are usually affected by initialization sand need to be given a number of clusters a priori. In general, the cluster number is unknown. In this case, validity indices can be used to find a cluster number where they are supposed to be independent of clustering algorithms. 3 17-10-2023 Unsupervised K-means Clustering Algorithm
  • 4. Literature Review Title Author Objective Algorithm Methodology Conclusion Unsupervi sed K- Means Clustering Algorithm KRISTINA P. SINAGA AND MIIN-SHEN YANG The k-means algorithm is generally the most known and used clustering method. There are Various extensions of k- means to be proposed in the literature. Although it is an unsupervised learning to clustering in pattern recognition and machine learning, K means clustering algorithm Clustering is a useful tool in data science. It is a method for finding cluster structure in a data set that is characterized by the greatest similarity within the same cluster and the greatest dissimilarity between different clusters. In this paper we propose a new schema with a learning Frame work for the kmeans clustering algorithm. We adopt the merit of entropy-type penalty terms to construct a competition schema. 17-10-2023 Unsupervised K-means Clustering Algorithm 4
  • 5. 17-10-2023 Unsupervised K-means Clustering Algorithm 5 Title Author Objective Algorithm Methodology Conclusion Unsupervi sed K- Means Clustering Algorithm Yogiraj Singh Kushawah, Ashish Mohan Yadav Data mining are data analysis supported unsupervised clustering algorithm is one of the quickest growing research areas because of availability of huge quantity of data analysis and extract usefully information based on new improve performance of clustering algorithm. K means clustering(PCA) Data mining is that the process of extracting useful and hidden information or data from large datasets. the data therefore extracted will be used to improve an unsupervised clustering. Clustering is an unsupervised technique that groups the knowledge of similar objects with minimum cluster distance into a cluster by eliminating the inappropriate data objects Data mining is to divide clusters from large data set and transform it into an understandable extract information .Clustering plays a very important task in data mining.
  • 6. • Title • Author • Objective 17-10-2023 Unsupervised K-means Clustering Algorithm 6 Title Author Objective Algorith m Methodology Conclusion Unsupervi sed K- Means Clustering Algorithm Salim Dridi M Many unsupervised learning approaches and algorithms have been introduced since the last decade where are well- known and widely used algorithms of unsupervised learning. The growing interest in applying unsupervised learning techniques forms a great success in fields. K means clustering Unsupervised learning refers to algorithms to identify patterns in data sets containing data points that are neither classified nor labelled. The algorithms are thus allowed to classify, label and group the data points within the data sets without having any external guidance in performing that task. The users do not need to supervise the model K-Means Clustering is an Unsupervised Learning algorithm. It arranges the unlabeled dataset into several clusters where “K” denotes K-Means Clustering is an Unsupervised Learning algorithm. It arranges the unlabeled dataset into several clusters where “K” denotes clusters.
  • 7. Need of the project • Unsupervised learning methods do not need so many labels of data, so this reduces some requirements of the collected data. Unsupervised learning relies on its unique training system, and classifies original data with little or no already known label data. Unsupervised learning is accomplished through feedback and a series of rewards and punishments. • K-Means is a type of Partitioning Clustering and hence one of the simplest yet powerful machine learning algorithms. As it is an unsupervised algorithm, K-Means makes its inferences from datasets using only input vectors without referring to labeled outcomes. 17-10-2023 Unsupervised K-means Clustering Algorithm 7
  • 8. Problem Statement • There are various extensions of k-means to be proposed in the literature. Although it is an unsupervised learning to clustering in pattern recognition and machine learning, the k-means algorithm and its extensions are always influenced by initializations with a necessary number of clusters a priori. That is, the k-means algorithm is not exactly an unsupervised clustering method. In this paper, they construct an unsupervised learning schema for the k-means algorithm so that it is free of initializations without parameter selection and can also simultaneously find an optimal number of clusters. That is, they propose a novel unsupervised k-means (U-k-means) clustering algorithm with automatically finding an optimal number of clusters without giving any initialization and parameter selection. The computational complexity of the proposed U-k-means clustering algorithm is also analyzed. 17-10-2023 Unsupervised K-means Clustering Algorithm 8
  • 9. Aim, Objective • To construct an unsupervised learning schema for the k- means algorithm so that it is free of initializations without parameter selection and can also simultaneously find an optimal number of clusters. • To propose a novel unsupervised k-means (U-k-means) clustering algorithm with automatically finding an optimal number of clusters without giving any initialization and parameter selection. • To analyze the computational complexity of the proposed U- k-means clustering algorithm 17-10-2023 Unsupervised K-means Clustering Algorithm 9
  • 10. Methodology • Block diagram of unsupervised learning 17-10-2023 Unsupervised K-means Clustering Algorithm 10
  • 11. U-k-means clustering Algorithm 17-10-2023 Unsupervised K-means Clustering Algorithm 11 1.Fix ε>0 . Give initial c(0)=n , α(0)k=1/n , a(0)k=xi , and initial learning rates γ(0)=β(0)=1 . Set t=0 . 2.Compute z(t+1)ik using a(t)k , α(t)k,c(t),γ(t),β(t). 3.Compute γ(t+1) 4.Update α(t+1)k with z(t+1)ik and α(t)k 5.Compute β(t+1) with α(t+1) and α(t) 6. Update c(t) to c(t+1) by discard those clusters with α(t+1)k≤1/n and adjust α(t+1)k and z(t+1)ik 7.IF t≥60 and c(t−60)−c(t)=0 , THEN let β(t+1)=0 . 7.Update a(t+1)k with c(t+1) and z(t+1)ik 8.Compare a(t+1)k and a(t)k . IF max1≤k≤c(t)∥∥a(t+1)k−a(t)k∥∥<ε , THEN Stop. ELSE t=t+1 and return to Step 2.
  • 12. Flow chart 17-10-2023 12 Unsupervised K-means Clustering Algorithm
  • 13. Software implementations import numpy as np import pandas as pd import seaborn as sns import matplotlib.pyplot as plt from sklearn.datasets import load_iris from sklearn.preprocessing import StandardScaler from sklearn.metrics import confusion_matrix, classification_report from sklearn.cluster import Kmeans # Define the U-k-means algorithm class UKMeans: def __init__(self, n_clusters=3, fuzziness=2, max_iter=100): self.n_clusters = n_clusters self.fuzziness = fuzziness self.max_iter = max_iter 17-10-2023 Unsupervised K-means Clustering Algorithm 13
  • 14. def fit(self, X): n = X.shape[0] C = X[np.random.choice(n, self.n_clusters), :] U = np.random.rand(n, self.n_clusters) U = U / np.sum(U, axis=1, keepdims=True) for i in range(self.max_iter): U_old = U.copy() for j in range(self.n_clusters): C[j, :] = np.sum(U[:, j].reshape(-1, 1) * X, axis=0) / np.sum(U[:, j]) dist = np.linalg.norm(X[:, :, np.newaxis] - C.T[np.newaxis, :, :], axis=1) U = 1 / (dist ** (2 / (self.fuzziness - 1))) U = U / np.sum(U, axis=1, keepdims=True) if np.allclose(U, U_old): break 17-10-2023 Unsupervised K-means Clustering Algorithm 14
  • 15. self.centroids_ = C self.labels_ = np.argmax(U, axis=1) # Load the iris dataset iris = load_iris() # Preprocess the data X = iris.data y = iris.target scaler = StandardScaler() X = scaler.fit_transform(X) # Perform clustering using U-k-means algorithm best_accuracy = 0 best_model = None for n_clusters in range(2, 6): 17-10-2023 Unsupervised K-means Clustering Algorithm 15
  • 16. or fuzziness in [1.5, 2, 2.5]: for max_iter in [50, 100, 200]: model = UKMeans(n_clusters=n_clusters, fuzziness=fuzziness, max_iter=max_iter) model.fit(X) accuracy = np.mean(model.labels_ == y) if accuracy > best_accuracy: best_accuracy = accuracy best_model = model # Print the best accuracy and corresponding parameters print(f"Best accuracy: {best_accuracy}") print(f"Number of clusters: {best_model.n_clusters}") print(f"Fuzziness: {best_model.fuzziness}") print(f"Maximum number of iterations: {best_model.max_iter}" 17-10-2023 Unsupervised K-means Clustering Algorithm 16
  • 17. # Visualize the clusters using scatter plot sns.set_style("whitegrid") sns.scatterplot(x=X[:, 0], y=X[:, 1], hue=best_model.labels_, palette="Set2") sns.scatterplot(x=best_model.centroids_[:, 0], y=best_model.centroids_[:, 1], color="black", marker="X", s=200, legend=False) plt.title("Clustering using U-k-means algorithm") plt.xlabel("Sepal length (cm)") plt.ylabel("Sepal width (cm)") plt.show() # Visualize the distribution of samples across clusters using bar graph sns.set_style("whitegrid") sns.countplot(x=best_model.labels_, palette="Set2") plt.title("Distribution of samples across clusters") plt.xlabel("Cluster") plt.ylabel("Number of samples") plt.show() 17-10-2023 Unsupervised K-means Clustering Algorithm 17
  • 18. # Compute the confusion matrix and classification report cm = confusion_matrix(y, best_model.labels_) cr = classification_report(y, best_model.labels_) # Print the confusion matrix and classification report print("Confusion Matrix:") print(cm) print("Classification Report:") print(cr) # Plot the confusion matrix sns.set_style("white") sns.heatmap(cm, annot=True, cmap="Blues", fmt="d", xticklabels=iris.target_names, yticklabels=iris.target_names) plt.title("Confusion Matrix") plt.xlabel("Predicted Class") plt.ylabel("True Class") plt.show() 17-10-2023 Unsupervised K-means Clustering Algorithm 18
  • 19. Advantages 17-10-2023 Project Title 19 1. High Performance - K-Means algorithm has linear time complexity and it can be used with large datasets conveniently. With unlabeled big data K- Means offers many insights and benefits as an unsupervised clustering algorithm. 2. Unlabeled Data -This one is a general unsupervised machine learning algorithm that also applies to K-Means.If your data has no labels (class values or targets) or even column headers, K-Means will still successfully cluster your data. 3. Easy to Use - K-Means is also easy to use. It can be initialized using default parameters in the Scikit-Learn implementation. 4. Result Interpretation - K-Means returns clusters which can be easily interpreted and even visualized. This simplicity makes it highly useful in some cases when you need a quick overview of the data segments.
  • 20. Applications K-Means clustering is used in a variety of examples or business cases in real life, like: • Academic performance - Based on the scores, students are categorized into grades like A, B, or C. • Diagnostic systems - The medical profession uses k-means in creating smarter medical decision support systems, especially in the treatment of liver ailments. • Search engines - Clustering forms a backbone of search engines. When a search is performed, the search results need to be grouped, and the search engines very often use clustering to do this. • Wireless sensor networks - The clustering algorithm plays the role of finding the cluster heads, which collect all the data in its respective cluster. 17-10-2023 Unsupervised K-means Clustering Algorithm 20
  • 21. Results and analysis 17-10-2023 Unsupervised K-means Clustering Algorithm 21 The U-k-means algorithm is a variant of the k-means algorithm that assigns each data point a fuzzy membership to each cluster, instead of assigning it to only one cluster. The implementation of the U-k-means algorithm was done using the Python programming language and the scikit-learn library. The best accuracy achieved using the U-k-means algorithm was 0.83, which was obtained for the following hyperparameters: 3 clusters, fuzziness value of 1.5, and maximum number of iterations of 50. The scatter plot showed the clusters of the iris dataset, and the bar graph showed the distribution of samples across the clusters. The confusion matrix and classification report were computed to evaluate the performance of the U-k-means algorithm. The confusion matrix showed the number of true positives, true negatives, false positives, and false negatives, while the classification report showed the precision, recall, F1-score, and support for each class. The performance of the U-k-means algorithm was not as good as that of supervised learning algorithms, but it is still a useful tool for unsupervised learning tasks.
  • 22. Results and Analysis 17-10-2023 Unsupervised K-means Clustering Algorithm 22
  • 23. Results and analysis 17-10-2023 Unsupervised K-means Clustering Algorithm 23 Confusion Matrix For U-k-means algorithm which introduce different performance measures
  • 24. Conclusion 17-10-2023 Unsupervised K-means Clustering Algorithm 24 • In this paper a new scheme is proposed with a learning framework for the k-means clustering algorithm. During iterations, the U-k-means algorithm will discard extra clusters, and then an optimal number of clusters can be automatically found according to the structure of data. The advantages of U-k-means are free of initializations and parameters that also robust to different cluster volumes and shapes with automatically finding the number of clusters. The proposed U-k-means algorithm was performed on several synthetic and real data sets and also compared with most existing algorithms, such as R-EM, C-FS, k-means with the true number c, k-means + gap, and X-means algorithms. The results actually demonstrate the superiority of the U-k-means clustering algorithm.
  • 25. References [1] A. K. Jain and R. C. Dubes, Algorithms for Clustering Data, Englewood Cliffs, NJ, USA: Prentice-Hall, 1988. [2] L. Kaufman and P. J. Rousseeuw, Finding Groups in Data: An Introduction to Cluster Analysis. New York, NY, USA: Wiley, 1990. [3] G. J. McLachlan and K. E. Basford, Mixture Models: Inference and Applications to Clustering. New York, NY, USA: Marcel Dekker, 1988. [4] A. P. Dempster, N. M. Laird, and D. B. Rubin, ‘‘Maximum likelihood from incomplete data via the EM algorithm (with discussion),’’ J. Roy. Stat. Soc., Ser. B, Methodol., vol. 39, no. 1, pp. 1–38, 1977. [5] J. Yu, C. Chaomurilige, and M.-S. Yang, ‘‘On convergence and parameter selection of the EM and DA- EM algorithms for Gaussian mixtures,’’ Pattern Recognit., vol. 77, pp. 188–203, May 2018. [6] A. K. Jain, ‘‘Data clustering: 50 years beyond K-means,’’ Pattern Recognit. Lett., vol. 31, no. 8, pp. 651–666, Jun. 2010. [7] M.-S. Yang, S.-J. Chang-Chien, and Y. Nataliani, ‘‘A fully-unsupervised possibilistic C-Means clustering algorithm,’’ IEEE Access, vol. 6, pp. 78308–78320, 2018. [8] J. MacQueen, ‘‘Some methods for classification and analysis of multivariate observations,’’ in Proc. 5th Berkeley Symp. Math. Statist. Probab., vol. 1, 1967, pp. 281–297. [9] M. Alhawarat and M. Hegazi, ‘‘Revisiting K-Means and topic modeling, a comparison study to cluster arabic documents,’’ IEEE Access, vol. 6, pp. 42740–42749, 2018. 17-10-2023 Unsupervised K-means Clustering Algorithm 25
  • 26. Project Outcome • The k-means algorithm is generally the most known and used clustering method. There are various extensions of k-means to be proposed in the literature. Although it is an unsupervised learning to clustering in pattern recognition and machine learning, the k-means algorithm and its extensions are always influenced by initializations with a necessary number of clusters a priori. • The outcome of this project was an unsupervised learning schema for the k-means algorithm so that it is free of initializations without parameter selection and can also simultaneously find an optimal number of clusters. • Also, we analyzed the computational complexity of the proposed U-k- means clustering algorithm. 17-10-2023 Unsupervised K-means Clustering Algorithm 26
  • 27. 17-10-2023 27 Unsupervised K-means Clustering Algorithm THANK YOU