2019/11/30 @
1.
2.
3.
4.
1.
2.
3.
4.
x ∈ ℝN
y = Ax ∈ ℝM
(A ∈ ℝM×N
)
ç
y A x=M = N M N
M < N y A x=M N
̂x = A−1
y
̂x = ✓ 

✦ 

✦
x
1/24
[1]
✦ MRI [2]
✦ [3]
2/24
xAy = + v
̂x
x =
0
0
0
1.4
0
0
[1] D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory, vol. 52, no. 4, pp. 1289–1306, Apr. 2006.
[2] M. Lustig, D. L. Donoho, J. M. Santos, and J. M. Pauly, “Compressed sensing MRI,” IEEE Signal Process. Mag.,
vol. 25, no. 2, pp. 72–82, Mar. 2008.
[3] K. Hayashi, M. Nagahara, and T. Tanaka, “A user’s guide to compressed sensing for communications systems,”
IEICE Trans. Commun., vol. E96-B, no. 3, pp. 685–712, Mar. 2013.
✦ MIMO [4]
✦ [5]
✦ FTN Faster-than-Nyquist [6]
[4] K. K. Wong, A. Paulraj, and R. D. Murch, “Efficient high-performance decoding for overloaded MIMO antenna
systems,” IEEE Trans. Wireless Commun., vol. 6, no. 5, pp. 1833–1843, May 2007.
[5] H. Zhu and G. B. Giannakis, ‘’Exploiting sparse user activity in multiuser detection,’’ IEEE Trans. Commun., vol. 59,
no. 2, pp. 454–465, Feb. 2011.
[6] J. E. Mazo, ‘‘Faster-than-Nyquist signaling,’’ Bell Syst. Tech. J., vol. 54, no. 8, pp. 1451–1462, 1975.
3/24
xAy = + v
̂x
x =
1
1
−1
1
−1
−1
MIMO
4/24
MIMO (Multiple-Input Multiple-Output)
MIMO






MIMO
MIMO
5/24
MIMO


MIMO
✓ 

-
MIMO
6/24
˜x1
✦
✦
✦
✦
˜x = [˜x1 ⋯ ˜xNT
] 𝖳
∈ 𝒜NT
˜A =
˜a1,1 ⋯ ˜a1,NT
⋮ ⋱ ⋮
˜aNR,1 ⋯ ˜aNR,NT
∈ ℂNR×NT
˜v = [˜v1 ⋯ ˜vNR
] 𝖳
∈ ℂNR
˜y = [˜y1 ⋯ ˜yNR
] 𝖳
∈ ℂNR
˜xNT
˜a1,1
˜aNR,1
˜a1,NT
˜aNR,NT
˜v1
˜vNR
˜y1
˜yNR
˜y = ˜A˜x + ˜v
QPSK
(Quadrature Phase Shift Keying)
𝒜
Re
Im
𝒜 = {1 + j, − 1 + j,
−1 − j, 1 − j}
MIMO
7/24
MIMO
˜y = ˜A˜x + ˜v ˜x ∈ 𝒜NT
˜y = ˜A˜x + ˜v (˜x ∈ 𝒜NT)
y = Ax + v (x ∈ {1, − 1}2NT)
y =
[
Re{˜y}
Im{˜y}]
∈ ℝ2NR,
(𝒜 = {1 + j, − 1 + j, − 1 − j, 1 − j})
A =
[
Re{ ˜A} −Im{ ˜A}
Im{ ˜A} Re{ ˜A} ]
∈ ℝ2NR×2NT, v =
[
Re{˜v}
Im{˜v}]
∈ ℝ2NR
x =
[
Re{˜x}
Im{˜x}]
∈ {1, − 1}2NT
MIMO =(NR < NT)
1/3
8/24
minimize
s∈{1,−1}N
1
2
∥y − As∥2
2
✦
x ∈ {1, − 1}N
✓
-
✦ MMSE Minimum Mean-Square-Error
✓
-
2/3
9/24
✦
• AMP (Approximate Message Passing) [7]
• EP (Expectation Propagation) [8]
• OAMP (Orthogonal AMP) [9]
• VAMP (Vector AMP) [10]
[7] D. L. Donoho, A. Maleki, and A. Montanari, “Message-passing algorithms for compressed sensing,” Proc. Nat. Acad.
Sci., vol. 106, no. 45, pp. 18914–18919, Nov. 2009.
[8] J. Céspedes, P. M. Olmos, M. Sánchez-Fernández, and F. Perez-Cruz, ‘‘Expectation propagation detection for
high-order high-dimensional MIMO systems,’’ IEEE Trans. Commun., vol. 62, no. 8, pp. 2840–2849, Aug. 2014.
[9] J. Ma and L. Ping, ‘‘Orthogonal AMP,’’ IEEE Access, vol. 5, pp. 2020–2033, 2017.
[10] S. Rangan, P. Schniter, and A. K. Fletcher, ‘’Vector approximate message passing,’’ in Proc. IEEE ISIT, Jun. 2017.
✓
✓
-
-
3/3
10/24
✦
• Box [11]
• regularization-based method [12]
• transform-based method [12]
• SOAV Sum of Absolute Values [13]
[11] P. H. Tan, L. K. Rasmussen, and T. J. Lim, “Constrained maximum-likelihood detection in CDMA,” IEEE Trans.
Commun., vol. 49, no. 1, pp. 142–153, Jan. 2001.
[12] A. Aïssa-El-Bey, D. Pastor, S. M. A. Sbaï, and Y. Fadlallah, “Sparsity-based recovery of finite alphabet solutions to
underdetermined linear systems,” IEEE Trans. Inf. Theory, vol. 61, no. 4, pp. 2008–2018, Apr. 2015.
[13] M. Nagahara, “Discrete signal reconstruction by sum of absolute values,” IEEE Signal Process. Lett., vol. 22, no. 10,
pp. 1575–1579, Oct. 2015.
✓
✓
- 

1.
2.
3.
4.
f : ℝN
→ ℝ C ⊂ ℝN
minimize
s∈C
f(s) f(s)
s* sC
11/24
f
f(s)
s* s
minimize
s∈C
f(s)


= x f
12/24
s* f C
f(s)
s* sx
✦ [16]
✦ FISTA Fast Iterative Shrinkage-Thresholding Algorithm [17]
✦ ADMM Alternating Direction Method of Multipliers [18]
✦ PDS Primal-Dual Splitting [19]
[14] P. L. Combettes and J.-C. Pesquet, “Proximal splitting methods in signal processing,” in Fixed-point algorithms for
inverse problems in science and engineering. Springer, 2011.
[15] , “ ,” ,
vol. 64, no. 6, pp. 316–325, 2019 6 .
[16] P. L. Combettes and V. Wajs, “Signal recovery by proximal forward-backward splitting,” SIAM J. Multi. Model.
Simul., vol. 4, no. 4, pp. 1168–1200, 2005.
[17] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algorithm for linear inverse problems,” SIAM J.
Imag. Sci., vol. 2, no. 1, pp. 183–202, Mar. 2009.
[18] D. Gabay and B. Mercier, “A dual algorithm for the solution of nonlinear variational problems via finite element
approximation,” Comput. Math. Appl., vol. 2, no. 1, pp. 17–40, 1976.
[19] A. Chambolle and T. Pock, “A first-order primal-dual algorithm for convex problems with applications to imaging,”
J. Math. Imaging Vision, vol. 40, no. 1, pp. 120–145, May 2011.
ϕ : ℝN
→ ℝ
proxϕ(s) := arg min
u∈ℝN {
ϕ(u) +
1
2
∥u − s∥2
2}
: ℝN
→ ℝ
13/24
FISTA


prox
proxγϕ2
(z) (γ > 0)
+
FISTA
14/24
✓ 

→
✓ prox [14]
ϕ2(s)
minimize
s∈ℝN
ϕ1(s) + ϕ2(s)
[14] P. L. Combettes and J.-C. Pesquet, “Proximal splitting methods in signal processing,” in Fixed-point algorithms for
inverse problems in science and engineering. Springer, 2011.
x ∈ ℝN
y = Ax + v ∈ ℝM
(M < N)
15/24
prox
y − As
∥s∥1 =
N
∑
n=1
|sn|{
✓ = 

minimize
s∈ℝN
α
2
∥y − As∥2
2 + ∥s∥1
LASSO (Least Absolute Shrinkage and Selection Operator):


16/24
1. 

2. 1. 

3. 2. prox
ℓ1
1.
2.
3.
4.
✦
✦
✦
✦
x ∈ {1, − 1}N
A ∈ ℝM×N
(M < N)
v ∈ ℝM
y = Ax + v ∈ ℝM
xAy = + v
̂x
17/24
Box [11]
[11] P. H. Tan, L. K. Rasmussen, and T. J. Lim, “Constrained maximum-likelihood detection in CDMA,” IEEE Trans.
Commun., vol. 49, no. 1, pp. 142–153, Jan. 2001.
18/24
Box s ∈ [−1, 1]N
minimize
1−1 s
y − As
s [−1, 1]{
1
2
∥y − As∥2
2
s ∈ [−1, 1]N
x ∈ {1, − 1}N
⊂ [−1, 1]N
SOAV [13]
19/24
[13] M. Nagahara, “Discrete signal reconstruction by sum of absolute values,” IEEE Signal Process. Lett., vol. 22, no. 10,
pp. 1575–1579, Oct. 2015.

x ∈ {1, − 1}N
x − 1, x + 1
y − As
∥s − 1∥1, ∥s + 1∥1{
SOAV Sum of Absolute Values
1
2
∥s − 1∥1 +
1
2
∥s + 1∥1 =
N
∑
n=1
(
1
2
|sn − 1| +
1
2
|sn + 1|
)
prox
minimize
s∈ℝN
α
2
∥y − As∥2
2 +
N
∑
n=1
(
1
2
|sn − 1| +
1
2
|sn + 1|
)
1.
2.
3.
4.
[20]
20/24
minimize
s∈ℝN
α
2
∥y − As∥2
2 +
1
2
∥s − 1∥1 +
1
2
∥s + 1∥1
SOAV
SSR Sum of Sparse Regularizers
✦
✦
ℓp (0 ≤ p < 1)
ℓ1 − ℓ2
[20] R. Hayakawa and K. Hayashi, ”Discrete-valued vector reconstruction by optimization with sum of sparse
regularizers,” in Proc. EUSIPCO, Sept. 2019.
minimize
s∈ℝN
α
2
∥y − As∥2
2 +
1
2
h(s − 1) +
1
2
h(s + 1)
✓ ADMM PDS
[21]
21/24
[21] R. Hayakawa and K. Hayashi, “Reconstruction of complex discrete-valued vector via convex optimization with
sparse regularizers” IEEE Access, vol. 6, pp. 66499–66512, Dec. 2018.
minimize
s∈ℂN
α∥y − As∥2
2 +
L
∑
ℓ=1
qℓhℓ(s − rℓ1)
SCSR Sum of Complex Sparse Regularizers
✦
✦
✦
✦
x ∈ {c1, …, cL}N
⊂ ℂN
A ∈ ℂM×N
(M < N)
v ∈ ℂM
y = Ax + v ∈ ℂM
✓ ADMM
Re
Im
cℓ
Re
Im
cℓ
[22] C. Thrampoulidis, E. Abbasi, and B. Hassibi, “Precise error analysis of regularized M-estimators in high dimensions,”
IEEE Trans. Inf. Theory, vol. 64, no. 8, pp. 5592–5628, Aug. 2018.
[23] C. Thrampoulidis, W. Xu, and B. Hassibi, “Symbol error rate performance of box-relaxation decoders in massive
MIMO,” IEEE Trans. Signal Process., vol. 66, no. 13, pp. 3377–3392, Jul. 2018.
22/24
SER
1
N
∥sign( ̂xBox) − x∥0
CGMT Convex Gaussian Min-max Theorem [22, 23]
Box SER Symbol Error Rate
M, N → ∞ (M/N = Δ)
1 − P
(
1
τ* )
SER
Boxx ∈ {1, − 1}N
✦ 0 i.i.d.
✦ 0 i.i.d.
A
v
[24] K. Gregor, and Y. LeCun, “Learning fast approximations of sparse coding,” in Proc. ICML, 2010.
[25] S. Takabe, M. Imanishi, T. Wadayama, R. Hayakawa, and K. Hayashi, "Trainable projected gradient detector for
massive overloaded MIMO channels: Data-driven tuning approach,” IEEE Access, vol. 7, pp. 93326-93338, Jul.
2019.
23/24


✦ [24]


MIMO [25]
A
B
C
A B C A B C
✦
✦
✦
24/24

離散値ベクトル再構成手法とその通信応用

  • 1.
  • 2.
  • 3.
  • 4.
    x ∈ ℝN y= Ax ∈ ℝM (A ∈ ℝM×N ) ç y A x=M = N M N M < N y A x=M N ̂x = A−1 y ̂x = ✓ ✦ ✦ x 1/24
  • 5.
    [1] ✦ MRI [2] ✦[3] 2/24 xAy = + v ̂x x = 0 0 0 1.4 0 0 [1] D. L. Donoho, “Compressed sensing,” IEEE Trans. Inf. Theory, vol. 52, no. 4, pp. 1289–1306, Apr. 2006. [2] M. Lustig, D. L. Donoho, J. M. Santos, and J. M. Pauly, “Compressed sensing MRI,” IEEE Signal Process. Mag., vol. 25, no. 2, pp. 72–82, Mar. 2008. [3] K. Hayashi, M. Nagahara, and T. Tanaka, “A user’s guide to compressed sensing for communications systems,” IEICE Trans. Commun., vol. E96-B, no. 3, pp. 685–712, Mar. 2013.
  • 6.
    ✦ MIMO [4] ✦[5] ✦ FTN Faster-than-Nyquist [6] [4] K. K. Wong, A. Paulraj, and R. D. Murch, “Efficient high-performance decoding for overloaded MIMO antenna systems,” IEEE Trans. Wireless Commun., vol. 6, no. 5, pp. 1833–1843, May 2007. [5] H. Zhu and G. B. Giannakis, ‘’Exploiting sparse user activity in multiuser detection,’’ IEEE Trans. Commun., vol. 59, no. 2, pp. 454–465, Feb. 2011. [6] J. E. Mazo, ‘‘Faster-than-Nyquist signaling,’’ Bell Syst. Tech. J., vol. 54, no. 8, pp. 1451–1462, 1975. 3/24 xAy = + v ̂x x = 1 1 −1 1 −1 −1
  • 7.
  • 8.
  • 9.
    MIMO 6/24 ˜x1 ✦ ✦ ✦ ✦ ˜x = [˜x1⋯ ˜xNT ] 𝖳 ∈ 𝒜NT ˜A = ˜a1,1 ⋯ ˜a1,NT ⋮ ⋱ ⋮ ˜aNR,1 ⋯ ˜aNR,NT ∈ ℂNR×NT ˜v = [˜v1 ⋯ ˜vNR ] 𝖳 ∈ ℂNR ˜y = [˜y1 ⋯ ˜yNR ] 𝖳 ∈ ℂNR ˜xNT ˜a1,1 ˜aNR,1 ˜a1,NT ˜aNR,NT ˜v1 ˜vNR ˜y1 ˜yNR ˜y = ˜A˜x + ˜v QPSK (Quadrature Phase Shift Keying) 𝒜 Re Im 𝒜 = {1 + j, − 1 + j, −1 − j, 1 − j}
  • 10.
    MIMO 7/24 MIMO ˜y = ˜A˜x+ ˜v ˜x ∈ 𝒜NT ˜y = ˜A˜x + ˜v (˜x ∈ 𝒜NT) y = Ax + v (x ∈ {1, − 1}2NT) y = [ Re{˜y} Im{˜y}] ∈ ℝ2NR, (𝒜 = {1 + j, − 1 + j, − 1 − j, 1 − j}) A = [ Re{ ˜A} −Im{ ˜A} Im{ ˜A} Re{ ˜A} ] ∈ ℝ2NR×2NT, v = [ Re{˜v} Im{˜v}] ∈ ℝ2NR x = [ Re{˜x} Im{˜x}] ∈ {1, − 1}2NT MIMO =(NR < NT)
  • 11.
    1/3 8/24 minimize s∈{1,−1}N 1 2 ∥y − As∥2 2 ✦ x∈ {1, − 1}N ✓ - ✦ MMSE Minimum Mean-Square-Error ✓ -
  • 12.
    2/3 9/24 ✦ • AMP (ApproximateMessage Passing) [7] • EP (Expectation Propagation) [8] • OAMP (Orthogonal AMP) [9] • VAMP (Vector AMP) [10] [7] D. L. Donoho, A. Maleki, and A. Montanari, “Message-passing algorithms for compressed sensing,” Proc. Nat. Acad. Sci., vol. 106, no. 45, pp. 18914–18919, Nov. 2009. [8] J. Céspedes, P. M. Olmos, M. Sánchez-Fernández, and F. Perez-Cruz, ‘‘Expectation propagation detection for high-order high-dimensional MIMO systems,’’ IEEE Trans. Commun., vol. 62, no. 8, pp. 2840–2849, Aug. 2014. [9] J. Ma and L. Ping, ‘‘Orthogonal AMP,’’ IEEE Access, vol. 5, pp. 2020–2033, 2017. [10] S. Rangan, P. Schniter, and A. K. Fletcher, ‘’Vector approximate message passing,’’ in Proc. IEEE ISIT, Jun. 2017. ✓ ✓ - -
  • 13.
    3/3 10/24 ✦ • Box [11] •regularization-based method [12] • transform-based method [12] • SOAV Sum of Absolute Values [13] [11] P. H. Tan, L. K. Rasmussen, and T. J. Lim, “Constrained maximum-likelihood detection in CDMA,” IEEE Trans. Commun., vol. 49, no. 1, pp. 142–153, Jan. 2001. [12] A. Aïssa-El-Bey, D. Pastor, S. M. A. Sbaï, and Y. Fadlallah, “Sparsity-based recovery of finite alphabet solutions to underdetermined linear systems,” IEEE Trans. Inf. Theory, vol. 61, no. 4, pp. 2008–2018, Apr. 2015. [13] M. Nagahara, “Discrete signal reconstruction by sum of absolute values,” IEEE Signal Process. Lett., vol. 22, no. 10, pp. 1575–1579, Oct. 2015. ✓ ✓ - 

  • 14.
  • 15.
    f : ℝN →ℝ C ⊂ ℝN minimize s∈C f(s) f(s) s* sC 11/24 f f(s) s* s
  • 16.
  • 17.
    ✦ [16] ✦ FISTAFast Iterative Shrinkage-Thresholding Algorithm [17] ✦ ADMM Alternating Direction Method of Multipliers [18] ✦ PDS Primal-Dual Splitting [19] [14] P. L. Combettes and J.-C. Pesquet, “Proximal splitting methods in signal processing,” in Fixed-point algorithms for inverse problems in science and engineering. Springer, 2011. [15] , “ ,” , vol. 64, no. 6, pp. 316–325, 2019 6 . [16] P. L. Combettes and V. Wajs, “Signal recovery by proximal forward-backward splitting,” SIAM J. Multi. Model. Simul., vol. 4, no. 4, pp. 1168–1200, 2005. [17] A. Beck and M. Teboulle, “A fast iterative shrinkage-thresholding algorithm for linear inverse problems,” SIAM J. Imag. Sci., vol. 2, no. 1, pp. 183–202, Mar. 2009. [18] D. Gabay and B. Mercier, “A dual algorithm for the solution of nonlinear variational problems via finite element approximation,” Comput. Math. Appl., vol. 2, no. 1, pp. 17–40, 1976. [19] A. Chambolle and T. Pock, “A first-order primal-dual algorithm for convex problems with applications to imaging,” J. Math. Imaging Vision, vol. 40, no. 1, pp. 120–145, May 2011. ϕ : ℝN → ℝ proxϕ(s) := arg min u∈ℝN { ϕ(u) + 1 2 ∥u − s∥2 2} : ℝN → ℝ 13/24
  • 18.
    FISTA 
 prox proxγϕ2 (z) (γ >0) + FISTA 14/24 ✓ 
 → ✓ prox [14] ϕ2(s) minimize s∈ℝN ϕ1(s) + ϕ2(s) [14] P. L. Combettes and J.-C. Pesquet, “Proximal splitting methods in signal processing,” in Fixed-point algorithms for inverse problems in science and engineering. Springer, 2011.
  • 19.
    x ∈ ℝN y= Ax + v ∈ ℝM (M < N) 15/24 prox y − As ∥s∥1 = N ∑ n=1 |sn|{ ✓ = 
 minimize s∈ℝN α 2 ∥y − As∥2 2 + ∥s∥1 LASSO (Least Absolute Shrinkage and Selection Operator):
  • 20.
    
 16/24 1. 
 2. 1.
 3. 2. prox ℓ1
  • 21.
  • 22.
    ✦ ✦ ✦ ✦ x ∈ {1,− 1}N A ∈ ℝM×N (M < N) v ∈ ℝM y = Ax + v ∈ ℝM xAy = + v ̂x 17/24
  • 23.
    Box [11] [11] P.H. Tan, L. K. Rasmussen, and T. J. Lim, “Constrained maximum-likelihood detection in CDMA,” IEEE Trans. Commun., vol. 49, no. 1, pp. 142–153, Jan. 2001. 18/24 Box s ∈ [−1, 1]N minimize 1−1 s y − As s [−1, 1]{ 1 2 ∥y − As∥2 2 s ∈ [−1, 1]N x ∈ {1, − 1}N ⊂ [−1, 1]N
  • 24.
    SOAV [13] 19/24 [13] M.Nagahara, “Discrete signal reconstruction by sum of absolute values,” IEEE Signal Process. Lett., vol. 22, no. 10, pp. 1575–1579, Oct. 2015. 
x ∈ {1, − 1}N x − 1, x + 1 y − As ∥s − 1∥1, ∥s + 1∥1{ SOAV Sum of Absolute Values 1 2 ∥s − 1∥1 + 1 2 ∥s + 1∥1 = N ∑ n=1 ( 1 2 |sn − 1| + 1 2 |sn + 1| ) prox minimize s∈ℝN α 2 ∥y − As∥2 2 + N ∑ n=1 ( 1 2 |sn − 1| + 1 2 |sn + 1| )
  • 25.
  • 26.
    [20] 20/24 minimize s∈ℝN α 2 ∥y − As∥2 2+ 1 2 ∥s − 1∥1 + 1 2 ∥s + 1∥1 SOAV SSR Sum of Sparse Regularizers ✦ ✦ ℓp (0 ≤ p < 1) ℓ1 − ℓ2 [20] R. Hayakawa and K. Hayashi, ”Discrete-valued vector reconstruction by optimization with sum of sparse regularizers,” in Proc. EUSIPCO, Sept. 2019. minimize s∈ℝN α 2 ∥y − As∥2 2 + 1 2 h(s − 1) + 1 2 h(s + 1) ✓ ADMM PDS
  • 27.
    [21] 21/24 [21] R. Hayakawaand K. Hayashi, “Reconstruction of complex discrete-valued vector via convex optimization with sparse regularizers” IEEE Access, vol. 6, pp. 66499–66512, Dec. 2018. minimize s∈ℂN α∥y − As∥2 2 + L ∑ ℓ=1 qℓhℓ(s − rℓ1) SCSR Sum of Complex Sparse Regularizers ✦ ✦ ✦ ✦ x ∈ {c1, …, cL}N ⊂ ℂN A ∈ ℂM×N (M < N) v ∈ ℂM y = Ax + v ∈ ℂM ✓ ADMM Re Im cℓ Re Im cℓ
  • 28.
    [22] C. Thrampoulidis,E. Abbasi, and B. Hassibi, “Precise error analysis of regularized M-estimators in high dimensions,” IEEE Trans. Inf. Theory, vol. 64, no. 8, pp. 5592–5628, Aug. 2018. [23] C. Thrampoulidis, W. Xu, and B. Hassibi, “Symbol error rate performance of box-relaxation decoders in massive MIMO,” IEEE Trans. Signal Process., vol. 66, no. 13, pp. 3377–3392, Jul. 2018. 22/24 SER 1 N ∥sign( ̂xBox) − x∥0 CGMT Convex Gaussian Min-max Theorem [22, 23] Box SER Symbol Error Rate M, N → ∞ (M/N = Δ) 1 − P ( 1 τ* ) SER Boxx ∈ {1, − 1}N ✦ 0 i.i.d. ✦ 0 i.i.d. A v
  • 29.
    [24] K. Gregor,and Y. LeCun, “Learning fast approximations of sparse coding,” in Proc. ICML, 2010. [25] S. Takabe, M. Imanishi, T. Wadayama, R. Hayakawa, and K. Hayashi, "Trainable projected gradient detector for massive overloaded MIMO channels: Data-driven tuning approach,” IEEE Access, vol. 7, pp. 93326-93338, Jul. 2019. 23/24 
 ✦ [24] 
 MIMO [25] A B C A B C A B C
  • 30.