SlideShare a Scribd company logo
1 of 76
Download to read offline
SOME MODERN TRENDS
IN CONTROL THEORY
Dmitry A. Novikov
dan@ipu.ru, www.ipu.ru, www.mtas.ru
Institute of Control Sciences RAS
Moscow
Institute of Physics and Technology
Moscow
1. HISTORY AND TRENDS OF CONTROL THEORY
2. HIERARCHICAL AND NETWORKED MODELS
3. INTERDISCIPLINARY CONTROL MODELS
4. EMPHASIS OF RECENT CONFERENCES
5. MULTIAGENT SYSTEMS: SPECIFICITY AND ARCHITECTURE OF AN
AGENT
6. HIERARCHICAL MODELS (EXAMLES):
- Diffusive bomb
- Social networks
- Combat modeling
7. SOME TRENDS IN NETWORKED AND HIERARCHICAL MODELING
8. CONTROL THEORY: ANTI-INTUITIVE RESULTS (EXAMPLES)
- Optimization of hierarchies
- Labor supply
- Ecology VS Economy
- Is truthtelling profitable?
- Hierarchical automatization
9. PAST, PRESENT AND FUTURE OF CONTROL THEORY
PLAN
1. HISTORY AND TRENDS OF CONTROL THEORY
2. HIERARCHICAL AND NETWORKED MODELS
3. INTERDISCIPLINARY CONTROL MODELS
4. EMPHASIS OF RECENT CONFERENCES
5. MULTIAGENT SYSTEMS: SPECIFICITY AND ARCHITECTURE OF AN
AGENT
6. HIERARCHICAL MODELS (EXAMLES):
- Diffusive bomb
- Social networks
- Combat modeling
7. SOME TRENDS IN NETWORKED AND HIERARCHICAL MODELING
8. CONTROL THEORY: ANTI-INTUITIVE RESULTS (EXAMPLES)
- Optimization of hierarchies
- Labor supply
- Ecology VS Economy
- Is truthtelling profitable?
- Hierarchical automatization
9. PAST, PRESENT AND FUTURE OF CONTROL THEORY
PLAN
STRUCTURE OF CONTROL SYSTEM
…
Control is “the process of checking to make certain that
rules or standards being applied” (Macmillan Dictionary).
Control is “the act or activity of looking after and making
decisions about something” (Merriam-Webster Dictionary).
Control is “an influence on a controlled system with the
aim of providing the required behavior of the latter” (Theory of
Organizations Control)
CONTROL SYSTEM
CONTROLLED OBJECT
State
of
controlled
object
Control
External disturbances
OBJECTS, METHODS AND MEANS OF CONTROL
CONTROL
OBJECTS METHODS
MEANS
Measuring,
transformative,
actuating
Informational,
computational
…
Control is “the process of checking to make certain that
rules or standards being applied” (Macmillan Dictionary).
Control is “the act or activity of looking after and making
decisions about something” (Merriam-Webster Dictionary).
Control is “an influence on a controlled system with the
aim of providing the required behavior of the latter” (Theory of
Organizations Control)
Scientific knowledge
about the object of control
Control theory
Applications
Technologies of control …
…
t
Typical time of development
CYCLE OF THEORY DEVELOPMENT
t
1860-е 1900 1930 1940 1950 1960 1970 1980 1990 2000 2010
Конец
XVIII
века
150 YEARS OF CONTROL THEORY (Technics)
Scientific knowledge
about the object of control
Control theory
Applications
Technologies of control …
…
t
Typical time of development
Institute of Control Sciences (ICS RAS, Moscow):
- System Theory and General Control Theory;
- Techniques of Control in Complicated Engineering and Man-Machine
Systems;
- Theory of Control in Inter-Disciplinary Models of Organizational, Social,
Economic, Medical and Biological and Environment Protection Systems;
- Theory and Techniques in Development of Software-and-Hardware and
Engineering Tools of Control and Complicated Data Processing and Control
Systems;
- Scientific Fundamentals of Technologies in Vehicle Control and Navigation;
- Scientific Fundamentals of Integrated Control Systems and Automation of
Technological Industrial Processes.
USA: CalTech, Harvard Univ., MIT, Stanford Univ.,
Univ. of California, etc.
UK: Imperial College, Oxford Univ., Cambridge
Univ., etc.
Germany: Univ. of Stutgard, Techn. Univ. of
Darmstadt , etc.
Italy: University of Rome, Politecnico di Torino,
Politecnico di Milano, etc.
France: SUPELEC Paris, Univ. of Grenoble, LAAS-
SNRS Toulose,etc.
Australia: Univ. of New-castle, Australian Nat. Univ., etc.
Sweden: University of Linkoping, Lund University.
Japan: Japan Advanced Inst. of Science and Techn.,
Kyoto Univ., etc.
CONTROL THEORY IN RUSSIA
… and in the World
…
SCIENTIFIC RESEARCHES
AND APPLIED PROJECTS OF ICS RAS. I
Classical linear
control theory
Control of
mechanical
systems
Nonlinear
systems
Control in quantum
systems
Control of
systems with
distributed
parameters
Theory of stability
and stabilization
Control of moving
objects
Robust and
adaptive
control
General
control
theory
)(),,(
.
twtuxfx +=
Study of control problems for a multi-
mode submarine in the case of
emergency. The intelligent control level
is based on production rules for
current and predicted situations
Full-scale multi-mode computer
training complex for Russian Navy
General view of the training complex
SCIENTIFIC RESEARCHES
AND APPLIED PROJECTS OF ICS RAS. II
Integrated solutions for upper level control systems in nuclear power
engineering with application in Russia and abroad
ØProgramming language
ØOperating system
ØEngineering equipment (in
cooperation with the Nizhny Novgorod
Scientific Research Institute for
Engineering Systems)
ØApplied software
SCIENTIFIC RESEARCHES
AND APPLIED PROJECTS OF ICS RAS. III
Equipment for automation devices and computers
New effects in nanostructures
Modern jet devices
(operable up to 500˚ C, in vibration and
radiation environment)
Multi-channel sensors
SCIENTIFIC RESEARCHES
AND APPLIED PROJECTS OF ICS RAS. IV
Aviation maps
Navigation maps
Digital topographic mapsLarge-scale plans
Digital relief matrix
3D-modeling
3D-modeling
Map making by field survey
Map updating by air survey
Map updating by space survey
Geographic Information Systems
SCIENTIFIC RESEARCHES
AND APPLIED PROJECTS OF ICS RAS. V
3D-Modeling in control
SCIENTIFIC RESEARCHES
AND APPLIED PROJECTS OF ICS RAS. VI
APPLICATIONS OF CONTROL THEORY
1. HISTORY AND TRENDS OF CONTROL THEORY
2. HIERARCHICAL AND NETWORKED MODELS
3. INTERDISCIPLINARY CONTROL MODELS
4. EMPHASIS OF RECENT CONFERENCES
5. MULTIAGENT SYSTEMS: SPECIFICITY AND ARCHITECTURE OF AN
AGENT
6. HIERARCHICAL MODELS (EXAMLES):
- Diffusive bomb
- Social networks
- Combat modeling
7. SOME TRENDS IN NETWORKED AND HIERARCHICAL MODELING
8. CONTROL THEORY: ANTI-INTUITIVE RESULTS (EXAMPLES)
- Optimization of hierarchies
- Labor supply
- Ecology VS Economy
- Is truthtelling profitable?
- Hierarchical automatization
9. PAST, PRESENT AND FUTURE OF CONTROL THEORY
PLAN
USA (NSF) priorities:
Group control. Combat control. Control
in financial and economic systems.
Control in biological and ecological
systems. Man and team in a control loop.
Unified theory of control, computation
and communication (С3). …
European priorities:
Man-machine symbiosis (modeling a man
in a control loop and as a controlled
subject).
Distributed and networked systems.
Production, safety and strategies of
heterogeneous control. New principles
of interdisciplinary coordination and
control. …
Russian Academy of Sciences:
Methods and means of communicational and networked
control of multi-level and distributed dynamic systems
under uncertainty; intellectual control.
HETEROGENEOUS =
DIVERSIVE(NETWORKED)
+ DISTRIBUTED
+ HIERARCHICAL
(controlled object, control system and communications).
HETEROGENEOUS CONTROL MODELS
HIERARCHIES AND NETWORKES:
CONTROLLED OBLECT, CONTROL SYSTEM
AND COMMUNICATIONS
(example: Project Management)
FROM NETWORKES AND HIERARCHIES
TO HIERARCHIES OF NETWORKES
AND NETWORKES OF HIERARCHIES
Пакет работ
Уровень
WBS
Уровень
WBS
Уровень
WBS
Пакет
работ
Пакет
работ
Пакет
работ
Пакет
работ
Пакет
работ
Пакет
работ
. . . . . .
Центр
Центр
Центр
OBS
Руководство проекта
Пакет
работ
План
y * A'Î
Результат
деятельности
z A0Î
Действие)
y А'Î
ЦентрЦентр Центр
АЭ АЭ АЭ АЭ АЭ АЭ
RBS
Функциональная структура предприятия
Стимулирующее воздействие
Группа
проектов
ПроектПроектПроект
Уровень проектов
NETWORK
SHEDULE
WBS OBS
RBS
Responsibility
allocation
Resources
allocation
Authority
allocation
Степеньдостиженияпоставленныхцелей
Время реализации
Исходное
состояние
Целевое
состояние
Оценка
состояния
Планируемое
состояние
Реальное
состояние
Плановая
траектория
Реализуемая
траектория
Прогноз
реализуемой
траектория
Возможная
траектория в рамках
существующей
стратегии (работа над
ошибками)
Оценка затрат для
возврата на плановую
траекторию развития
1. HISTORY AND TRENDS OF CONTROL THEORY
2. HIERARCHICAL AND NETWORKED MODELS
3. INTERDISCIPLINARY CONTROL MODELS
4. EMPHASIS OF RECENT CONFERENCES
5. MULTIAGENT SYSTEMS: SPECIFICITY AND ARCHITECTURE OF AN
AGENT
6. HIERARCHICAL MODELS (EXAMLES):
- Diffusive bomb
- Social networks
- Combat modeling
7. SOME TRENDS IN NETWORKED AND HIERARCHICAL MODELING
8. CONTROL THEORY: ANTI-INTUITIVE RESULTS (EXAMPLES)
- Optimization of hierarchies
- Labor supply
- Ecology VS Economy
- Is truthtelling profitable?
- Hierarchical automatization
9. PAST, PRESENT AND FUTURE OF CONTROL THEORY
PLAN
200019501940 1960 1970 1980 1990
Theory of automatic control
Game theory, operations research
Cybernetics
Decision-making, ;public choice theory
Mechanism design (MD)
Multiagent systems(DAI)
Discrete optimization, optimal control
2010
Network structures (С3
)
Organizational
systems
(MAN)
Social
systems
(SOCIETY)
Ecological
systems
(NATURE)
Technico-organizational
and man-machine
systems Ecologo-
economical
systems
Economical
systems
PRODUCTION
Regulatory-
axiological
systems
Noospheric
systems
Socio-ecological
systems
Technical
systems
Socio-
economical
systems
INTERDISCIPLINARY SYSTEMS
Optimization of hierarchical
and network structures
Territory
Government
Industry
Enterprise
Coordination of interaction and
decision-making in multiagent systems
Interests concordance in ecologo-
economical systems
Reflexive control
Mechanisms of organizations control
Temporal network
organization
А
Б В
Г
2 12 121А В ВА ВАВ
EXAMPLES OF INTERDISCIPLINARY SYSTEMS
Confrontation
Hierarchies
Collective
Decision-making
Cooperative
Control
Interaction.
Distributed
Optimization (e.g.
Task Assignment)
Mission Planning
“Implementation”.
Formation Control
Stabilization.
Consensus Problem
Operational level
Action
Tactical level
Strategic level
(decision-making,
adaptation, learning,
reflexion)
Level of goal-setting and
choice of functioning
mechanisms
Externalinformation
Dynamicsystems
Artificial
Intelligence
Modelsof
CollectiveBehavior
GameTheory
1. HISTORY AND TRENDS OF CONTROL THEORY
2. HIERARCHICAL AND NETWORKED MODELS
3. INTERDISCIPLINARY CONTROL MODELS
4. EMPHASIS OF RECENT CONFERENCES
5. MULTIAGENT SYSTEMS: SPECIFICITY AND ARCHITECTURE OF AN
AGENT
6. HIERARCHICAL MODELS (EXAMLES):
- Diffusive bomb
- Social networks
- Combat modeling
7. SOME TRENDS IN NETWORKED AND HIERARCHICAL MODELING
8. CONTROL THEORY: ANTI-INTUITIVE RESULTS (EXAMPLES)
- Optimization of hierarchies
- Labor supply
- Ecology VS Economy
- Is truthtelling profitable?
- Hierarchical automatization
9. PAST, PRESENT AND FUTURE OF CONTROL THEORY
PLAN
GENERAL TOPICS
ACC-2011***
*CDC – Conference on Decision and Control
ECC – European Control Conference
12-15 December 2011
Organized by IEEE, Orlando, Florida
> 1500 papers
**IFAC World Congress
28 Aug – 2 Sept., 2011
> 1500 papers
***ACC – American Control Conference
29-30 June 2011
Organized by IEEE, San Francisco, USA
> 900 papers
CDC-ECC-2011*
Математи-
ческая
теория
9%
Приложения
19%
"Cредства"
4%
"Классика"
49%
"Сетевизм"
19%
Applications
19%
Mathematical
theory
9%
Technical means
4% “Networks”
19%
Classic
49%
"Сетевизм"
11%
"Классика"
32%
Cредства
5%
Приложения
44%
Математи-
ческая теория
9%
IFAC-2011**
Applications
44%
“Networks”
11%
Classic
32%
Mathematical
theory
9%
Technical means
5%
Математи-
ческая теория
5%
Приложения
33%
Cредства
5%
"Классика"
42%
"Сетевизм"
14%
Technical means
5%
Applications
33%
Mathematical
theory
5%
Classic
42%
“Networks”
14%
МАС и
консенсус
35%
Кооператив-
ное
управление
21%
Коммуникации
в МАС
35%
Верхние
уровни
управления
4%
Другое
4%
Highest
control levels
4%
Communi-
cations in MAS
35%
Cooperative
control
21%
Consensus
problems
35%
Others
4%
Другое
8%Верхние
уровни
управления
10%
Коммуникации
в МАС
26%
Кооператив-
ное
управление
10%
МАС и
консенсус
46%
Highest
control levels
10%
Communi-
cations in MAS
26%
Cooperative
control
10%
Consensus
problems
46%
Others
8%
МАС и
консенсус
33%
Кооперативное
управление
15%
Коммуникации в
МАС
31%
Верхние уровни
управления
13%
Другое
8%
Highest
control levels
13%
Communications
in MAS
31%
Cooperative
control
15%
Consensus
problems
31%
Others
8%
«NETWORKS»
II
I III
IV
ACC-2011
СDС-ECCC-2011 IFAC-2011
II
I
III
IV
I
II
III
IV
Другие
19%
Морские
подвижные
объекты
2%
Автомобили и
автотрафик
11%
Биология и
медицина
13%
Мехатроника и
роботы
11%
Производство
2%
Авиация и
космос
9%
Энергетика
33%
Others
19%
Energetics
33%
Aero-Space
9%
Production
2%Mechatronics
and robots
11%
Maritime
mobile
objects
2%
Avto-vehicles
and traffic
11%
Bio-Med
13%
Энергетика
17%
Авиация и
космос
7%
Производство
18%
Мехатроника и
роботы
13%
Биология и
медицина
13%
Автомобили и
автотрафик
13%
Морские
подвижные
объекты
3%
Другие
16%
Others
16%
Energetics
17%
Aero-Space
7%
Production
18%
Mechatronics
and robots
13%
Bio-Med
13%
Avto-vehicles
and traffic
13%
Maritime
mobile
objects
3%
Другие
8%Морские
подвижные
объекты
11%
Автомобили и
автотрафик
8%
Биология и
медицина
17%
Мехатроника и
роботы
18%
Производство
8%
Авиация и
космос
8%
Энергетика
22%
Others
8% Energetics
22%
Aero-Space
8%
Production
8%
Mechatronics
and robots
18%
Bio-Med
17%
Avto-vehicles
and traffic
8%
Maritime
mobile
objects
11%
APPLICATIONS
ACC-2011
СDС-ECCC-2011 IFAC-2011
1. HISTORY AND TRENDS OF CONTROL THEORY
2. HIERARCHICAL AND NETWORKED MODELS
3. INTERDISCIPLINARY CONTROL MODELS
4. EMPHASIS OF RECENT CONFERENCES
5. MULTIAGENT SYSTEMS: SPECIFICITY AND ARCHITECTURE OF AN
AGENT
6. HIERARCHICAL MODELS (EXAMLES):
- Diffusive bomb
- Social networks
- Combat modeling
7. SOME TRENDS IN NETWORKED AND HIERARCHICAL MODELING
8. CONTROL THEORY: ANTI-INTUITIVE RESULTS (EXAMPLES)
- Optimization of hierarchies
- Labor supply
- Ecology VS Economy
- Is truthtelling profitable?
- Hierarchical automatization
9. PAST, PRESENT AND FUTURE OF CONTROL THEORY
PLAN
MULTIAGENT SYSTEMS (MAS)
«… a rat or individual locusts
are not too clever, and almost
harmless. However, flocks of
rats or swarms of locusts can
have a devastating impact».
Modern trends:
- decentralization
- miniaturization
- intellectualization
Centralized control
Decentralized (group) control
NETWORK
MAS
Material MAS
Virtual MAS
(softbots)
Wheeled UAVs AUVs…
Specificity of MAS:
üMultiple components;
üDistributed, networked
communications;
üHierarchy;
üIntelligence (autonomy):
• rationality (decision-making under
uncertainty and cognitive restrictions);
• autonomous goal-setting, goal-
oriented behavior;
• reflection;
• cooperative and/or competitive
interactions (the formation of
coalitions, information, and other
confrontation).
MULTIAGENT SYSTEMS: SPECIFICITY
MULTIAGENT SYSTEMS: ARCHITECTURE OF AN AGENT
Confrontation
Hierarchies
Collective
Decision-making
Cooperative
Control
Interaction.
Distributed
Optimization (e.g.
Task Assignment)
Mission Planning
“Implementation”.
Formation Control
Stabilization.
Consensus Problem
Operational level
Action
Tactical level
Strategic level
(decision-making,
adaptation, learning,
reflexion)
Level of goal-setting and
choice of functioning
mechanisms
Externalinformation
Dynamicsystems
Artificial
Intelligence
Modelsof
CollectiveBehavior
GameTheory
Confrontation
Hierarchies
Collective
Decision-making
Cooperative
Control
Interaction.
Distributed
Optimization (e.g.
Task Assignment)
Mission Planning
“Implementation”.
Formation Control
Stabilization.
Consensus Problem
Operational level
Action
Tactical level
Strategic level
(decision-making,
adaptation, learning,
reflexion)
Level of goal-setting and
choice of functioning
mechanisms
Externalinformation
Dynamicsystems
Artificial
Intelligence
Modelsof
CollectiveBehavior
GameTheory
MULTIAGENT SYSTEMS: CONSENSUS
Multi-agent system
( ) nitxtxatx
n
j
jiiji ...,,1,)()()(
1
=--= å
=
& – characteristic of agent i,)(txi,
),()( txLtx -=& ( ) ,)(...,),()(
T
1 txtxtx n=
[ ] ,ij n nL ´= l
ïî
ï
í
ì
=
¹-
=
å¹
.,
,,
)( ija
ija
t
ik
ik
ij
ijl
Theorem*
Consensus is reachable iff the communication graph is “connected”.
CONSENSUS PROBLEM
*Agaev R., Chebotarev P. (A&RC. 9. 2000)
Confrontation
Hierarchies
Collective
Decision-making
Cooperative
Control
Interaction.
Distributed
Optimization (e.g.
Task Assignment)
Mission Planning
“Implementation”.
Formation Control
Stabilization.
Consensus Problem
Operational level
Action
Tactical level
Strategic level
(decision-making,
adaptation, learning,
reflexion)
Level of goal-setting and
choice of functioning
mechanisms
Externalinformation
Dynamicsystems
Artificial
Intelligence
Modelsof
CollectiveBehavior
GameTheory
MULTIAGENT SYSTEMS: FORMATION CONTROL
С3 & FORMATIONS CONTROL
Basic consensus problem
( )ix t& =
1
( ( ) ( ))
n
ij j i
j
a x t x t
=
-å
Communications & computations
( )ix t& =
1
( )( ( ) ( ))
n
c
ij j ij i ij
j
a t x t x tt t
=
- - -å
Model of the controlled object
Autonomous Underwater Vehicles. Edited by N. Cruz. – Rijeka: InTech, 2011.
+ nonlinearity
+ observability
+ adaptivity
+ switching communication matrix
…
Formation control
( )ix t& = vi(t),
( )iv t& =
1
( ( ) ( ))
n
ij j i
j
b x t x t
=
-å +
1
( ( ) ( ))
n
ij j i
j
b v t v t
=
-å + ci(V(t) – vi(t))
x(t), v(t)V(t)
Confrontation
Hierarchies
Collective
Decision-making
Cooperative
Control
Interaction.
Distributed
Optimization (e.g.
Task Assignment)
Mission Planning
“Implementation”.
Formation Control
Stabilization.
Consensus Problem
Operational level
Action
Tactical level
Strategic level
(decision-making,
adaptation, learning,
reflexion)
Level of goal-setting and
choice of functioning
mechanisms
Externalinformation
Dynamicsystems
Artificial
Intelligence
Modelsof
CollectiveBehavior
GameTheory
MULTIAGENT SYSTEMS: PLANNING
Confrontation
Hierarchies
Collective
Decision-making
Cooperative
Control
Interaction.
Distributed
Optimization (e.g.
Task Assignment)
Mission Planning
“Implementation”.
Formation Control
Stabilization.
Consensus Problem
Operational level
Action
Tactical level
Strategic level
(decision-making,
adaptation, learning,
reflexion)
Level of goal-setting and
choice of functioning
mechanisms
Externalinformation
Dynamicsystems
Artificial
Intelligence
Modelsof
CollectiveBehavior
GameTheory
MULTIAGENT SYSTEMS: COOPERATIVE CONTROL
1. HISTORY AND TRENDS OF CONTROL THEORY
2. HIERARCHICAL AND NETWORKED MODELS
3. INTERDISCIPLINARY CONTROL MODELS
4. EMPHASIS OF RECENT CONFERENCES
5. MULTIAGENT SYSTEMS: SPECIFICITY AND ARCHITECTURE OF AN
AGENT
6. HIERARCHICAL MODELS (EXAMLES):
- Diffusive bomb
- Social networks
- Combat modeling
7. SOME TRENDS IN NETWORKED AND HIERARCHICAL MODELING
8. CONTROL THEORY: ANTI-INTUITIVE RESULTS (EXAMPLES)
- Optimization of hierarchies
- Labor supply
- Ecology VS Economy
- Is truthtelling profitable?
- Hierarchical automatization
9. PAST, PRESENT AND FUTURE OF CONTROL THEORY
PLAN
).,...,,,,...,,(maxArg *
,
*
1,
*
1,
*
1
*
niiiiiiiii
Xx
i xxxxxfx
ii
ssssss q +-
Î
Î
Informational equilibrium
Information control problem
.max),(min
)(
¾¾®¾F ÁÎYÎ IIx
Ix
X
YX (I) Í X' – the set of real agents
actions, which are stable under
information structure I;
F(x, I) – control efficiency criterion;
Á – set of feasible information
structures.
Taking into account the nontrivial mutual beliefs
of agents allows:
1. (normative point of view) to enlarge the set of
game’s outcomes, which in its turn increases
the efficiency of information control;
2. (descriptive point of view) to describe many
practically observed situations, which can not
be interpreted as a Nash equilibrium under
common knowledge, as informational
equilibriums under proper information
structure.
ГI = {N, (Xi)i Î N, (fi(×))i Î N, W, I} – reflexive game;
W – set of feasible states of nature;
I – information structure;
N – set of players (agents);
fi: W ´ X’ ® Â1
– goal function of the i-th agent.
Information (beliefs) structure
q1 qi qn
qi1 qij qin
… …
… …
I1
Ii1
Real agent
Phantom
agent
Reflexion
. . . . . .
. . .
. . .
INFORMATIONAL REFLEXION AND CONTROL
Reflexive model of group aircraft battle
Strategic behavior in collective decision-making. Suppose, that the
principal is interested in the result x0Î[d;D] of expert examination. Let the
opinions of n experts {riÎ[d;D]}iÎN, be known by the principal only, who is able
to form second-order beliefs of the experts. Collective decision x = p(s),
where s Î [d;D]n is the vector of opinions, revealed by experts. Denote:
x0i(a,ri) is the solution of the following equation:
p(a, …, x0, …, a) = ri , di(ri) = max {d; x0i(D, ri)}, Di(ri) = min {D; x0i(d, ri)},
d(r) = (d1(r1), d2(r2), …, dn(rn)), D(r) = (D1(r1), D2(r2), …, Dn(rn)).
Statement 15. Any result x0Î[p(d(r));p(D(r))] may be implemented as the
collective decision by means of information control with the second rank of
reflexion.
SOME APPLICATIONS OF INFORMATIONAL CONTROL
INFORMATIONAL AND STRATEGIC REFLEXION
«Optimizational models
of collective behavior
Models of games
Game theory
Models of
collective
behavior
Informational
structures
Concept of equilibrium
Informational
equilibrium
Nash
equilibrium
Control problems
Informational
control
MODELS OF STRATEGIC REFLEXION
Reflexive structures
k-level models;
cognitive
hierarchies
models, etc
Models of
reflexion in
bimatrix
games
Informational
reflexion
Strategic
reflexion
Prognostical
Reflexive
equilibrium
Reflexive
control
“Reflexive”
models
Level
Phenomenological
(descriptive)
Normative
Models of reflexive
decision-making
Game theory
(super-intelligent players)
Theory of collective
behavior
(rational agents)
LEVEL OF “INTELLIGENCE”
REFLEXION
«Probability» of target destruction:
ü Direct attack of 40 “simple” agents: 0,125
ü 8 «investigators» + 32 «reflexive» agents: 0,985
ü 40 «investigators»: 0,999
Level of
hierarchy
Modelled processes Modelling tools
6 Choice of agents and
their characteristics
Discrete and
multicriteria
optimization
5 Choice of agents’
trajectories and
velocities
Optimal control
4 Forecasting by the
agent opponents’
behavior
Reflexive games
3 Minimization of the
probability
of detection
Optimization and
heuristics of choosing
the direction of
motion
2 Collision and
obstacle avoidance
Algorithms of “local”
trajectories’ choice
1 Motion toward the
target
Equations of
dynamics
DIFFUSIVE BOMB MODEL: STRATEGIC REFLEXION
1. HISTORY AND TRENDS OF CONTROL THEORY
2. HIERARCHICAL AND NETWORKED MODELS
3. INTERDISCIPLINARY CONTROL MODELS
4. EMPHASIS OF RECENT CONFERENCES
5. MULTIAGENT SYSTEMS: SPECIFICITY AND ARCHITECTURE OF AN
AGENT
6. HIERARCHICAL MODELS (EXAMLES):
- Diffusive bomb
- Social networks
- Combat modeling
7. SOME TRENDS IN NETWORKED AND HIERARCHICAL MODELING
8. CONTROL THEORY: ANTI-INTUITIVE RESULTS (EXAMPLES)
- Optimization of hierarchies
- Labor supply
- Ecology VS Economy
- Is truthtelling profitable?
- Hierarchical automatization
9. PAST, PRESENT AND FUTURE OF CONTROL THEORY
PLAN
Confrontation
Hierarchies
Collective
Decision-making
Cooperative
Control
Interaction.
Distributed
Optimization (e.g.
Task Assignment)
Mission Planning
“Implementation”.
Formation Control
Stabilization.
Consensus Problem
Operational level
Action
Tactical level
Strategic level
(decision-making,
adaptation, learning,
reflexion)
Level of goal-setting and
choice of functioning
mechanisms
Externalinformation
Dynamicsystems
Artificial
Intelligence
Modelsof
CollectiveBehavior
GameTheory
MULTIAGENT SYSTEMS: CONFRONTATION
MODELS OF SOCIAL NETWORKS
The set M of
principals
The set of agents
N
…
Problem – find a control vector u, s.t.
F(X, u) = H(X) – c(u) ®
UuÎ
max ,
H(×) – “gain”, с(×) – control costs.
Each principal (from set M) is able to influence on the
initial opinions of the agents uij and is interested in
forming the final opinions XM.
Problem – find equilibrium of the game:
Г = (M, {Uj}j Î M, {Gj(×)}j Î M).
A set N of agents form social network G = (N, E).
x – vector of initial opinions, X – final opinions.
aij ³0 – the trust of i-th agent to j-th,
k-th agent indirectly influences
on i-th agent: xk+1
= A [xk
+ B uk
].
Problem – find total influence
of one agents on another,
find the agents, that form
the final opinions
3. Informational interaction (dynamics)
4. Informational control
5. Information warfare
Facebook
Twitter
Newsvine
Habr
2. Structural analysis
1. «Statistical» analysis
ANALYSIS AND MODELING
OF INFORMATIONAL PROCESSES IN SOCIAL MEDIA
11.11.11 06.12.11 31.12.11 25.01.12 19.02.12 15.03.12 09.04.12 04.05.12 29.05.12 23.06.12 18.07.12
0
5000
10000
15000
Суточное количество сообщений : Политики A и B
0 10 20 30 40 50 60 70
?0.4
?0.2
0.0
0.2
0.4
0.6
0.8
1.0
Автокорреляционная функция по сообщениям : Политики A и B
0 20 40 60 80 100 120 140
?0.2
?0.1
0.0
0.1
0.2
0.3
0.4
0.5
Парная корреляционная функция по сообщениям
Политик A Политик B
11.11.11 06.12.11 31.12.11 25.01.12 19.02.12 15.03.12 09.04.12 04.05.12 29.05.12 23.06.12
11
10
9
8
7
6
5
4
3
2
1
Вейвлет скалограмма ?объём сообщений ?: Политик A
11.11.11 06.12.11 31.12.11 25.01.12 19.02.12 15.03.12 09.04.12 04.05.12 29.05.12 23.06.12
11
10
9
8
7
6
5
4
3
2
1
Вейвлет скалограмма ?объём сообщений ?: Политик B
Политическая жизнь России
Политик A Политик B
Общество / Блогосфера / СМИ
Активность
блоггеров
Активность
блоггеров
11.11 .11 06.12 .11 31.12.11 25.01 .12 19.02 .12 15.03 .12 09.04 .12 04.05.12 29.05 .12 23.06.12
0
20
40
60
80
100
Точки статистической разладки: Политик A
11.11.11 06.12 .11 31.12.11 25.01.12 19.02.12 15.03.12 09.04 .12 04.05.12 29.05.12 23.06.12
0
100
200
300
400
Точки статистической разладки: Политик B
Political activity
Person A Person B
Society / Blogoshere / Media
Blogers’ activity Blogers’ activity
Daily mentioned: persons A and B
Autocorrelation by persons
Autocorrelation by messages
Person BPerson A
Statistical discord: person A
Statistical discord: person B
Scalogramma: person B
Scalogramma: person A
Characteristics of maximal component
• Number of agents – 362.000,
• Number of “connections”– 802.000 (12.000.000 comments)
Structure of components
1 – Discussing component (25%).
2 - Un-popular component (45%).
3 – Popular component (8%).
4 - Others (22%).
The structure is time-stable:
• May 2011
• November 2011
• December 2011
45
The rate of information (average) spread
- 5.3 steps to receive information FROM any agent;
- 5.3 steps to transmit information TO any agent.
THE STRUCTURE OF MAXIMAL
WEAKLY CONNECTED COMPONENT
1
2
3
4
Number of removed nodes
Sizeofmaximalcluster(%)
Number of removed nodes
Numberofclasters
CONTROL IN SOCIAL NETWORKS
CONTROL:
- OPINIONS,
- BELIEFS (TRUST),
- REPUTATION,
- …
- MEMBERSHIP and STRUCTURE.
The removal of small number of the most
significant nodes leads to the appearance of a
great number of unconnected groups (А).
But this groups are small, and the largest
group is still connected (B).
ЧислоавторовЧислоавторов
64.000 – cumulative estimate of politically active blogers in
Russian LiveJournal
A
B
BACKGROUND: CONSENSUS PROBLEM
French J.R. A Formal Theory of Social Power // Psychological
Review. 1956. № 63. P. 181 – 194.
Harary F. A Criterion for Unanimity in French’s Theory of Social
Power / Studies in Social Power. – Michigan: Institute of Sociological
Research. 1959. P. 168 – 182.
De Groot M.H. Reaching a Consensus // Journal of American
Statistical Association. 1974. № 69. P. 118 – 121.
Roberts F. Discrete Mathematical Models with Applications to Social,
Biological, and Environmental Problems. – Prentice: Prentice Hall, 1976.
Jackson M. Social and Economic Networks. – Princeton: Princeton
University Press, 2008.
BACKGROUND: GAME THEORY
Network games
Network formation games Network-based games
Networking games
Cognitive games
Social networks games
Games over theproject network-schedules
Network – is a result of game-
theoretical interaction
Network isfixed and determines the
dependence of players gains fromtheir
actions
SOCIAL NETWORKS AND LINEAR DYNAMIC SYSTEMS
xk+1
= A [xk
+ B uk
], k = 0, 1, …
MULTIAGENT
SYSTEMS
SOCIAL NETWORKS COGNITIVE MAPS
PageRank Problem
ui
xi
F(X, u)
1. HISTORY AND TRENDS OF CONTROL THEORY
2. HIERARCHICAL AND NETWORKED MODELS
3. INTERDISCIPLINARY CONTROL MODELS
4. EMPHASIS OF RECENT CONFERENCES
5. MULTIAGENT SYSTEMS: SPECIFICITY AND ARCHITECTURE OF AN
AGENT
6. HIERARCHICAL MODELS (EXAMLES):
- Diffusive bomb
- Social networks
- Combat modeling
7. SOME TRENDS IN NETWORKED AND HIERARCHICAL MODELING
8. CONTROL THEORY: ANTI-INTUITIVE RESULTS (EXAMPLES)
- Optimization of hierarchies
- Labor supply
- Ecology VS Economy
- Is truthtelling profitable?
- Hierarchical automatization
9. PAST, PRESENT AND FUTURE OF CONTROL THEORY
PLAN
Level of
hierarchy
Modeled phenomena
and processes
Technique of modeling
5 Allocation of forces
and means in space
Game theory
(Colonel Blotto game,
etc.)
4 Allocation of forces
and means in time
Optimal control,
repeated games, etc.
3 Number of troops
dynamics
Lanchester’s equations
and its modifications
2 «Local»
interactions
of squads
Markovian and other
stochastic models
1 Interaction
of separate
battle units
Dynamic systems.
Finite state automata.
Simulation.
HIERARCHICAL COMBAT MODELS
20 40 60 80 100
Номер ИПБ
500
1000
1500
2000
МЦРMRRR
REFLEXIVE COLONEL BLOTTO GAME
Average maximal rational rank of
reflexion (MRRR) ~ 230 (nonsense!)
Denote by N = [1, …, n] the set of objects, x = (x1, …, xn) – first player’s action, y = (y1, …, yn) – second player’s
action, where xi ³ 0 (yi ³ 0) – amount of resources, allocated by the first (second) player to i-th object, i = 1,n .
Resources are limited
(1) i
i N
x
Î
å £ Rx, i
i N
y
Î
å £ Ry.
In probabilistic Colonel Blotto Model (CBM) the probability px(xi, yi) of the first player win on the i-th object
does not depend on other objects and is “proportional” to the amount or resources, allocated on this object.:
(2) px(xi, yi) =
( )
( ) ( )
i
i i
r
i i
r r
i i i
x
x y
a
a +
, py(xi, yi) = 1 – px(xi, yi), где ri Î (0; 1], ai > 0, px(xi = 0, yi = 0) =
1
i
i
a
a +
.
Let BRx(y) = (u1 y1 + e, …, un yn + e) denote the best response of first player, where n-dimentional vector u = (u1,…, un) is a solution of the
following knapsack problem: (3)
{0;1}
1
1
max,
,
i
n
i i
u
i
n
i i x
i
uV
u y R
Î
=
=
ì
®ï
ï
í
ï £
ïî
å
å
, e =
1
1
( )
n
x i i
i
R u y
n =
- å , i.e. let’s assume that the player tries to win on the most valuable set of
objects, and the rest of resources are equally divided among other objects.
Let BRy(x) = (v1 x1 + d, …, vn xn + d) denote the best response of first player, where n-dimentional vector v = (v1,…, vn) is a solution of the
following knapsack problem: (4)
{0;1}
1
1
max,
,
i
n
i i
v
i
n
i i y
i
vV
v x R
Î
=
=
ì
®ï
ï
í
ï £
ïî
å
å
, d =
1
1
( )
n
y i i
i
R u x
n =
- å .
Rank game
exploration
MRRR
1. HISTORY AND TRENDS OF CONTROL THEORY
2. HIERARCHICAL AND NETWORKED MODELS
3. INTERDISCIPLINARY CONTROL MODELS
4. EMPHASIS OF RECENT CONFERENCES
5. MULTIAGENT SYSTEMS: SPECIFICITY AND ARCHITECTURE OF AN
AGENT
6. HIERARCHICAL MODELS (EXAMLES):
- Diffusive bomb
- Social networks
- Combat modeling
7. SOME TRENDS IN NETWORKED AND HIERARCHICAL MODELING
8. CONTROL THEORY: ANTI-INTUITIVE RESULTS (EXAMPLES)
- Optimization of hierarchies
- Labor supply
- Ecology VS Economy
- Is truthtelling profitable?
- Hierarchical automation
9. PAST, PRESENT AND FUTURE OF CONTROL THEORY
PLAN
MODERN TRENDS IN MAS
1) Strategic
decision-making
2) Increasing role
of game-theory
3) Benchmark scenarios
and problems
Confrontation
Hierarchies
Collective
Decision-making
Cooperative
Control
Interaction.
Distributed
Optimization (e.g.
Task Assignment)
Mission Planning
“Implementation”.
Formation Control
Stabilization.
Consensus Problem
Operational level
Action
Tactical level
Strategic level
(decision-making,
adaptation, learning,
reflexion)
Level of goal-setting and
choice of functioning
mechanisms
Externalinformation
Dynamicsystems
Artificial
Intelligence
Modelsof
CollectiveBehavior
GameTheory
MAS & STRATEGIC BEHAVIOR: As Is
Game theory
MAS, group
control
Distributed
optimization
Game theory
MAS, group
control
Algorithmic game
theory
Distributed
optimization
Models of collective
behavior, bounded
rationality
MAS & STRATEGIC BEHAVIOR: As Is
Game theory,
mechanism design
MAS, group
control
Algorithmic game
theory
Distributed
optimization
Models of collective
behavior, bounded
rationality
Experimental
economics, Behavioral
Game Theory
MAS & STRATEGIC BEHAVIOR: To Be
«MAXIMAL INTELLECTUALIZATION»
Intention to maximize the
“intellectualization” is limited
not only by “costs”
(computational, cognitive,
economical, etc), but by the
inefficient “over-complexity”.
«Intellectualization»
«Costs»
«Result»
«Effect»
MAS: SOME QUALITATIVE RESULTS
1) The level of MAS’ “intellectualization” should
be adequate to the problem in hand (taking
into account various “costs”).
2) The intention to maximize the
“intellectualization” at the higher levels of
agent’s architecture leads to a centralized
scheme.
3) Trend to the integration of networked
MAS, game theory and artificial intelligence.
GENERAL TRENDS
1) Inter-disciplinary: control objects, methods and means of control.
2) Network/hierarchical structure of controlled object, control system and
communications.
3) Intra-paradigmal problems: «linearity» of development, desire to reduce the
problem to well-known, i.e. «internal» problems of any subject field. Self-
isolation of different braches of control science. The demand for the creation of
new adequate mathematical technique.
4) «Heuristical» applications: the concept of bounded rationality (under the lack
of time, ability or necessity) – instead of optimal pseudo-optimal solutions are
heuristically searched.
5) Unification:
5C = Control + Computation + Communication + Cost + Cycle.
6) Heterogeneous (hierarchical, complex, integrated) modeling. Problems of
models «coupling», search for common language. Generating and replicating
typical solutions of control problems.
1. HISTORY AND TRENDS OF CONTROL THEORY
2. HIERARCHICAL AND NETWORKED MODELS
3. INTERDISCIPLINARY CONTROL MODELS
4. EMPHASIS OF RECENT CONFERENCES
5. MULTIAGENT SYSTEMS: SPECIFICITY AND ARCHITECTURE OF AN
AGENT
6. HIERARCHICAL MODELS (EXAMLES):
- Diffusive bomb
- Social networks
- Combat modeling
7. SOME TRENDS IN NETWORKED AND HIERARCHICAL MODELING
8. CONTROL THEORY: ANTI-INTUITIVE RESULTS (EXAMPLES)
- Optimization of hierarchies
- Labor supply
- Ecology VS Economy
- Is truthtelling profitable?
- Hierarchical automatization
9. PAST, PRESENT AND FUTURE OF CONTROL THEORY
PLAN
K(rm) =
)(
max
mEy rÎ
f0(y) ®
ÃÎmr
max .
Вертикальные
связи
Горизонтальные
связи
А
Б В
Г
Временная
сетевая
организация
CNetwork
organization
Network organization -
a structure, where temporal
connections between the
elements are actualized for the
period of solving certain problem.
The problem of structural
synthesis: find the number of
levels of hierarchy m and
distribution of agents among the
levels (feasible structure rm), which
maximize the efficiency f0(y), given
that the agents in corresponding
hierarchical game choose their
equilibrium actions:
Examles:
- distributed production;
- IT-projects;
- group control, etc.
HIERARCHICAL AND NETWORK ORGANIZATIONS
Statement. For any technological structure and any
equilibrium x Î E1
N(rm) there exist the set of decision-
making strategies
in a game Г2(rm
0), which guarantees to all the
decision-makers the same levels of utilities, as in the
initial game.
OPTIMIZATION OF HIERARCHIES
Development of the organization
management structure
Data collection and processing
algorithms
Design of assembly plant Task management in network
structures
…
Optimization of
control hierarchy
1. HISTORY AND TRENDS OF CONTROL THEORY
2. HIERARCHICAL AND NETWORKED MODELS
3. INTERDISCIPLINARY CONTROL MODELS
4. EMPHASIS OF RECENT CONFERENCES
5. MULTIAGENT SYSTEMS: SPECIFICITY AND ARCHITECTURE OF AN
AGENT
6. HIERARCHICAL MODELS (EXAMLES):
- Diffusive bomb
- Social networks
- Combat modeling
7. SOME TRENDS IN NETWORKED AND HIERARCHICAL MODELING
8. CONTROL THEORY: ANTI-INTUITIVE RESULTS (EXAMPLES)
- Optimization of hierarchies
- Labor supply
- Ecology VS Economy
- Is truthtelling profitable?
- Hierarchical automatization
9. PAST, PRESENT AND FUTURE OF CONTROL THEORY
PLAN
LABOR SUPPLY (theory)
a
a0
t(a)
0
I = 1
a
a0
t(a)
0
I = 2
a
a0
t(a)
0
I = 3
a
a0
t(a)
0 amax
I = 4
a
a0
t(a)
0 amax
I = 5
t(a) – desired working time (hours/day), a – wage rate
Индекс (1999)
I
25%
II
53%
III
6%
IV
16%
Индекс (2009)
I
25%
II
41%
III
16%
IV
8%
V
10%
Sample volume
> 500
Sample volume
> 5000
LABOR SUPPLY (“practice”)
a
a0
t(a)
0
I = 1
a
a0
t(a)
0
I = 2
a
a0
t(a)
0
I = 3
a
a0
t(a)
0 amax
I = 4
a
a0
t(a)
0 amax
I = 5
t(a) – desired working time (hours/day), a – wage rate
1. HISTORY AND TRENDS OF CONTROL THEORY
2. HIERARCHICAL AND NETWORKED MODELS
3. INTERDISCIPLINARY CONTROL MODELS
4. EMPHASIS OF RECENT CONFERENCES
5. MULTIAGENT SYSTEMS: SPECIFICITY AND ARCHITECTURE OF AN
AGENT
6. HIERARCHICAL MODELS (EXAMLES):
- Diffusive bomb
- Social networks
- Combat modeling
7. SOME TRENDS IN NETWORKED AND HIERARCHICAL MODELING
8. CONTROL THEORY: ANTI-INTUITIVE RESULTS (EXAMPLES)
- Optimization of hierarchies
- Labor supply
- Ecology VS Economy
- Is truthtelling profitable?
- Hierarchical automatization
9. PAST, PRESENT AND FUTURE OF CONTROL THEORY
PLAN
Economic agents
(enterprises)
Environment
(NATURE)
Control Center
(principal)
Interaction with
environment
Results
of
activity
Control
State
of nature
ECOLOGO-ECONOMICAL SYSTEM
Model:
u ³ 0 – production level;
y ³ 0 – security level;
z(u), j(y) – enterprise’s costs;
Hi(u, y) – principal’s income;
si(u¢, u, x, y) =
î
í
ì
¹¹
==
'
'
или,0
,,
uuxy
uuxyVi
;
K = {1, 2, …, k} – the set of principals.
Goal function of i-th principal:
Fi(si(×), u, y) = Hi(u, y) – si(u, y), i Î K,
Goal function of the enterprise:
f({si(×)}, u, y) = c u + å
Î
s
Ki
i yu ),( – z(u) – j(y).
u*
= arg
0
max
³u
[c u – z(u)];
F*
i =
0,
max
³yu
[Hi(u, y) – c (u*
– u) + [z(u*
) – z(u)] – j(y)], i Î K;
S = {u ³ 0, y ³ 0 | $ V Î k
+Â : Hi(u, y) – Vi ³ F*
i, i Î K,
å
ÎKi
iV = c (u*
– u) – [z(u*
) – z(u)] + j(y)};
L = {u ³ 0, y ³ 0, V Î k
+Â | Hi(u, y) – Vi ³ F*
i, i Î K,
å
ÎKi
iV = c (u*
– u) – [z(u*
) – z(u)] + j(y)}.
F*
0 =
0,
max
³yu
[ å
ÎKi
i yuH ),( – c (u*
– u) + [z(u*
) – z(u)] – j(y)].
Theorem. The compromise set is not empty iff
F*
0 ³ å
Î
F
Ki
i
*
.
ECOLOGY VS ECONOMY
Territory
Government
Industry
Enterprise
1. HISTORY AND TRENDS OF CONTROL THEORY
2. HIERARCHICAL AND NETWORKED MODELS
3. INTERDISCIPLINARY CONTROL MODELS
4. EMPHASIS OF RECENT CONFERENCES
5. MULTIAGENT SYSTEMS: SPECIFICITY AND ARCHITECTURE OF AN
AGENT
6. HIERARCHICAL MODELS (EXAMLES):
- Diffusive bomb
- Social networks
- Combat modeling
7. SOME TRENDS IN NETWORKED AND HIERARCHICAL MODELING
8. CONTROL THEORY: ANTI-INTUITIVE RESULTS (EXAMPLES)
- Optimization of hierarchies
- Labor supply
- Ecology VS Economy
- Is truthtelling profitable?
- Hierarchical automatization
9. PAST, PRESENT AND FUTURE OF CONTROL THEORY
PLAN
The problem of project’s duration reduction
Model:
D – the required reduction of project duration;
yi – the required reduction of i-th operation duration;
xi – plan of reduction of i- th operation duration;
ri – «efficiency» of i-th agent;
N – set of agents (operations);
ci (yi, ri) = ri j (yi / ri) – costs function of i-th agent;
l – rate of payment for the reduction of project duration;
fi (yi, ri) = l yi – ci (yi, ri) – agent’s goal function;
s = (s1, s2, ..., sn) – agents’ message;
Theorem. The procedure of decision-making xi (D, s) =
V
si
D,
l (D, s) = j' (D / V), where V = å
ÎNi
is , is straightforward, minimizes
total costs and allows any decentralization.
Procedures of decision-making (examples):
manipulable non-manipulable
IS TRUTH-TELLING PROFITABLE?
1. HISTORY AND TRENDS OF CONTROL THEORY
2. HIERARCHICAL AND NETWORKED MODELS
3. INTERDISCIPLINARY CONTROL MODELS
4. EMPHASIS OF RECENT CONFERENCES
5. MULTIAGENT SYSTEMS: SPECIFICITY AND ARCHITECTURE OF AN
AGENT
6. HIERARCHICAL MODELS (EXAMLES):
- Diffusive bomb
- Social networks
- Combat modeling
7. SOME TRENDS IN NETWORKED AND HIERARCHICAL MODELING
8. CONTROL THEORY: ANTI-INTUITIVE RESULTS (EXAMPLES)
- Optimization of hierarchies
- Labor supply
- Ecology VS Economy
- Is truthtelling profitable?
- Hierarchical automatization
9. PAST, PRESENT AND FUTURE OF CONTROL THEORY
PLAN
HIERARCHICAL AUTOMATIZATION
INFORMATIONAL
SYSTEMS
OLAP, BSC, DSS
ERP
MES
SCM, CRM, PMS
MRP2
MRP, CRP
SCADA, DCS
PLC, MicroPC
Finances,
material
resources,
personnel
MRP2
MRP, CRP
SCADA,DCS
PLC, MicroPC
INFORMATIONAL
SYSTEMS
Control of
TS
«Optimization » Control of OS
OLAP, BSC, DSS
ERP
MES
SCM, CRM, PMS
? ?…
1. HISTORY AND TRENDS OF CONTROL THEORY
2. HIERARCHICAL AND NETWORKED MODELS
3. INTERDISCIPLINARY CONTROL MODELS
4. EMPHASIS OF RECENT CONFERENCES
5. MULTIAGENT SYSTEMS: SPECIFICITY AND ARCHITECTURE OF AN
AGENT
6. HIERARCHICAL MODELS (EXAMLES):
- Diffusive bomb
- Social networks
- Combat modeling
7. SOME TRENDS IN NETWORKED AND HIERARCHICAL MODELING
8. CONTROL THEORY: ANTI-INTUITIVE RESULTS (EXAMPLES)
- Optimization of hierarchies
- Labor supply
- Ecology VS Economy
- Is truthtelling profitable?
- Hierarchical automatization
9. PAST, PRESENT AND FUTURE OF CONTROL THEORY
PLAN
PAST, PRESENT AND FUTURE OF CONTROL THEORY
(objects of control)
1860-е 1900 1930 1940 1950 1960 1970 1980 1990 2000 2010 2020 …
Mechanical
systems
Technical systems Organizational and
informational systems
Decentralized intellectual
systems
t
- Technical systems
- Economical systems
- Ecological systems
- Live systems
- Social systems
???
Степеньдостиженияпоставленныхцелей
«Relevancy»
“Application field”
«UNCERTAINTY» PRINCIPLE
(«Application field») x («Relevancy») £ Const
Mathematics
Psyghology,
Sociology,
Pedagogy
Economics
Biology
Chemesrty
Physics
“Weak” sciences
“Strong” sciences
CONTROL
THEORY
LIMITS OF SCIENCE
Thank you !

More Related Content

Similar to HN-Models in Control

THE SYSTEM FOR ORGANIZATIONAL MANAGEMENT OF THE IMPLEMENTATION OF THE PROGRAM...
THE SYSTEM FOR ORGANIZATIONAL MANAGEMENT OF THE IMPLEMENTATION OF THE PROGRAM...THE SYSTEM FOR ORGANIZATIONAL MANAGEMENT OF THE IMPLEMENTATION OF THE PROGRAM...
THE SYSTEM FOR ORGANIZATIONAL MANAGEMENT OF THE IMPLEMENTATION OF THE PROGRAM...
Andrey Shabarov
 
Advances in-the-theory-of-control-signals-and-systems-with-physical-modeling-...
Advances in-the-theory-of-control-signals-and-systems-with-physical-modeling-...Advances in-the-theory-of-control-signals-and-systems-with-physical-modeling-...
Advances in-the-theory-of-control-signals-and-systems-with-physical-modeling-...
Nick Carter
 

Similar to HN-Models in Control (20)

THE SYSTEM FOR ORGANIZATIONAL MANAGEMENT OF THE IMPLEMENTATION OF THE PROGRAM...
THE SYSTEM FOR ORGANIZATIONAL MANAGEMENT OF THE IMPLEMENTATION OF THE PROGRAM...THE SYSTEM FOR ORGANIZATIONAL MANAGEMENT OF THE IMPLEMENTATION OF THE PROGRAM...
THE SYSTEM FOR ORGANIZATIONAL MANAGEMENT OF THE IMPLEMENTATION OF THE PROGRAM...
 
Shabarov
ShabarovShabarov
Shabarov
 
System Engineering Unit-1
System Engineering Unit-1System Engineering Unit-1
System Engineering Unit-1
 
ULg-Skywin - Multibody & mechatronic systems laboratory - MMS
ULg-Skywin - Multibody & mechatronic systems laboratory - MMSULg-Skywin - Multibody & mechatronic systems laboratory - MMS
ULg-Skywin - Multibody & mechatronic systems laboratory - MMS
 
Network Software
Network SoftwareNetwork Software
Network Software
 
General Problems of Social System Modelling & Problems and Models of Sustaina...
General Problems of Social System Modelling & Problems and Models of Sustaina...General Problems of Social System Modelling & Problems and Models of Sustaina...
General Problems of Social System Modelling & Problems and Models of Sustaina...
 
A Survey Of Applications Of Wireless Sensors And Wireless Sensor Networks
A Survey Of Applications Of Wireless Sensors And Wireless Sensor NetworksA Survey Of Applications Of Wireless Sensors And Wireless Sensor Networks
A Survey Of Applications Of Wireless Sensors And Wireless Sensor Networks
 
International Journal of Chaos, Control, Modelling and Simulation
International Journal of Chaos, Control, Modelling and SimulationInternational Journal of Chaos, Control, Modelling and Simulation
International Journal of Chaos, Control, Modelling and Simulation
 
International Journal of Chaos, Control, Modeling and Simulation (IJCCMS)
International Journal of Chaos, Control, Modeling and Simulation (IJCCMS)International Journal of Chaos, Control, Modeling and Simulation (IJCCMS)
International Journal of Chaos, Control, Modeling and Simulation (IJCCMS)
 
Call for Papers - International Journal of Chaos, Control, Modelling and Simu...
Call for Papers - International Journal of Chaos, Control, Modelling and Simu...Call for Papers - International Journal of Chaos, Control, Modelling and Simu...
Call for Papers - International Journal of Chaos, Control, Modelling and Simu...
 
Advances in-the-theory-of-control-signals-and-systems-with-physical-modeling-...
Advances in-the-theory-of-control-signals-and-systems-with-physical-modeling-...Advances in-the-theory-of-control-signals-and-systems-with-physical-modeling-...
Advances in-the-theory-of-control-signals-and-systems-with-physical-modeling-...
 
ΕΛΙΣΜΕ 20181108 Νικήτας Νικητάκος «Επαναστατικές Τεχνολογίες στις Ε.Δ. και Νέ...
ΕΛΙΣΜΕ 20181108 Νικήτας Νικητάκος «Επαναστατικές Τεχνολογίες στις Ε.Δ. και Νέ...ΕΛΙΣΜΕ 20181108 Νικήτας Νικητάκος «Επαναστατικές Τεχνολογίες στις Ε.Δ. και Νέ...
ΕΛΙΣΜΕ 20181108 Νικήτας Νικητάκος «Επαναστατικές Τεχνολογίες στις Ε.Δ. και Νέ...
 
Dr.PSP ME8791- Mechatronics Material- SSMIET.pptx
Dr.PSP ME8791- Mechatronics Material- SSMIET.pptxDr.PSP ME8791- Mechatronics Material- SSMIET.pptx
Dr.PSP ME8791- Mechatronics Material- SSMIET.pptx
 
Automation and control_theory_and_practice
Automation and control_theory_and_practiceAutomation and control_theory_and_practice
Automation and control_theory_and_practice
 
Call for Papers- Volume 7, Issue 5, October 2022, International Journal of Ad...
Call for Papers- Volume 7, Issue 5, October 2022, International Journal of Ad...Call for Papers- Volume 7, Issue 5, October 2022, International Journal of Ad...
Call for Papers- Volume 7, Issue 5, October 2022, International Journal of Ad...
 
AHM 2014: Governance and Cyberinfrastructure in the Earth System Sciences
AHM 2014: Governance and Cyberinfrastructure in the Earth System SciencesAHM 2014: Governance and Cyberinfrastructure in the Earth System Sciences
AHM 2014: Governance and Cyberinfrastructure in the Earth System Sciences
 
Call for Papers- Volume 7, Issue 6, December 2022, International Journal of A...
Call for Papers- Volume 7, Issue 6, December 2022, International Journal of A...Call for Papers- Volume 7, Issue 6, December 2022, International Journal of A...
Call for Papers- Volume 7, Issue 6, December 2022, International Journal of A...
 
Artificial intelligence in civil engineering
Artificial intelligence in civil engineering Artificial intelligence in civil engineering
Artificial intelligence in civil engineering
 
Psychophysiological aspects of Human-System Integration i C4 and operation sa...
Psychophysiological aspects of Human-System Integration i C4 and operation sa...Psychophysiological aspects of Human-System Integration i C4 and operation sa...
Psychophysiological aspects of Human-System Integration i C4 and operation sa...
 
Quo vadis, provenancer?  Cui prodest?  our own trajectory: provenance of data...
Quo vadis, provenancer? Cui prodest? our own trajectory: provenance of data...Quo vadis, provenancer? Cui prodest? our own trajectory: provenance of data...
Quo vadis, provenancer?  Cui prodest?  our own trajectory: provenance of data...
 

More from RnD_SM

Механизмы управления
Механизмы управленияМеханизмы управления
Механизмы управления
RnD_SM
 
Моделирование организаций при помощи цепочек матричных проекций иерархически...
Моделирование  организаций при помощи цепочек матричных проекций иерархически...Моделирование  организаций при помощи цепочек матричных проекций иерархически...
Моделирование организаций при помощи цепочек матричных проекций иерархически...
RnD_SM
 
Инжиниринг цикла операционного управления
Инжиниринг цикла операционного управленияИнжиниринг цикла операционного управления
Инжиниринг цикла операционного управления
RnD_SM
 
Инжиниринг бизнес процессов и корпоративная архитектура энергетической компан...
Инжиниринг бизнес процессов и корпоративная архитектура энергетической компан...Инжиниринг бизнес процессов и корпоративная архитектура энергетической компан...
Инжиниринг бизнес процессов и корпоративная архитектура энергетической компан...
RnD_SM
 
Введение в операционный менеджментр
Введение в операционный менеджментрВведение в операционный менеджментр
Введение в операционный менеджментр
RnD_SM
 
Операционное планирование и контроллинг
Операционное планирование и контроллингОперационное планирование и контроллинг
Операционное планирование и контроллинг
RnD_SM
 
Дизайн системы операционного управления
Дизайн системы операционного управленияДизайн системы операционного управления
Дизайн системы операционного управления
RnD_SM
 
Целеполагание (март 2014)
Целеполагание (март 2014)Целеполагание (март 2014)
Целеполагание (март 2014)
RnD_SM
 
3. Бизнес процессы
3. Бизнес процессы3. Бизнес процессы
3. Бизнес процессы
RnD_SM
 
3. Организационный дизайн
3. Организационный дизайн3. Организационный дизайн
3. Организационный дизайн
RnD_SM
 
SMART grid 2012
SMART grid 2012SMART grid 2012
SMART grid 2012
RnD_SM
 
Онтологии и архитектуры
Онтологии и архитектурыОнтологии и архитектуры
Онтологии и архитектуры
RnD_SM
 
Устройство бизнес деятельности
Устройство бизнес деятельностиУстройство бизнес деятельности
Устройство бизнес деятельности
RnD_SM
 
Ключевые процессы экономической деятельности
Ключевые процессы экономической деятельностиКлючевые процессы экономической деятельности
Ключевые процессы экономической деятельности
RnD_SM
 
Системы управления и инжиниринг циклов управления
Системы управления и инжиниринг циклов управленияСистемы управления и инжиниринг циклов управления
Системы управления и инжиниринг циклов управления
RnD_SM
 
Деятельность. Бизнес-деятельность. Ценность и стоимость
Деятельность. Бизнес-деятельность. Ценность и стоимостьДеятельность. Бизнес-деятельность. Ценность и стоимость
Деятельность. Бизнес-деятельность. Ценность и стоимость
RnD_SM
 
Конструктор КАСКАД-НТ для решения задач электроэнергети
Конструктор КАСКАД-НТ для решения задач электроэнергетиКонструктор КАСКАД-НТ для решения задач электроэнергети
Конструктор КАСКАД-НТ для решения задач электроэнергети
RnD_SM
 

More from RnD_SM (20)

Механизмы управления
Механизмы управленияМеханизмы управления
Механизмы управления
 
Презентация курса ИБПиСУ
Презентация курса ИБПиСУПрезентация курса ИБПиСУ
Презентация курса ИБПиСУ
 
Моделирование организаций при помощи цепочек матричных проекций иерархически...
Моделирование  организаций при помощи цепочек матричных проекций иерархически...Моделирование  организаций при помощи цепочек матричных проекций иерархически...
Моделирование организаций при помощи цепочек матричных проекций иерархически...
 
Инжиниринг цикла операционного управления
Инжиниринг цикла операционного управленияИнжиниринг цикла операционного управления
Инжиниринг цикла операционного управления
 
Инжиниринг бизнес процессов и корпоративная архитектура энергетической компан...
Инжиниринг бизнес процессов и корпоративная архитектура энергетической компан...Инжиниринг бизнес процессов и корпоративная архитектура энергетической компан...
Инжиниринг бизнес процессов и корпоративная архитектура энергетической компан...
 
Введение в операционный менеджментр
Введение в операционный менеджментрВведение в операционный менеджментр
Введение в операционный менеджментр
 
Операционное планирование и контроллинг
Операционное планирование и контроллингОперационное планирование и контроллинг
Операционное планирование и контроллинг
 
Дизайн системы операционного управления
Дизайн системы операционного управленияДизайн системы операционного управления
Дизайн системы операционного управления
 
Целеполагание (март 2014)
Целеполагание (март 2014)Целеполагание (март 2014)
Целеполагание (март 2014)
 
3. Бизнес процессы
3. Бизнес процессы3. Бизнес процессы
3. Бизнес процессы
 
3. Организационный дизайн
3. Организационный дизайн3. Организационный дизайн
3. Организационный дизайн
 
SMART grid 2012
SMART grid 2012SMART grid 2012
SMART grid 2012
 
Онтологии и архитектуры
Онтологии и архитектурыОнтологии и архитектуры
Онтологии и архитектуры
 
Устройство бизнес деятельности
Устройство бизнес деятельностиУстройство бизнес деятельности
Устройство бизнес деятельности
 
Ключевые процессы экономической деятельности
Ключевые процессы экономической деятельностиКлючевые процессы экономической деятельности
Ключевые процессы экономической деятельности
 
Системы управления и инжиниринг циклов управления
Системы управления и инжиниринг циклов управленияСистемы управления и инжиниринг циклов управления
Системы управления и инжиниринг циклов управления
 
HR-инжиниринг. Введение в методологию
HR-инжиниринг. Введение в методологиюHR-инжиниринг. Введение в методологию
HR-инжиниринг. Введение в методологию
 
HR поддержка проектов
HR поддержка проектовHR поддержка проектов
HR поддержка проектов
 
Деятельность. Бизнес-деятельность. Ценность и стоимость
Деятельность. Бизнес-деятельность. Ценность и стоимостьДеятельность. Бизнес-деятельность. Ценность и стоимость
Деятельность. Бизнес-деятельность. Ценность и стоимость
 
Конструктор КАСКАД-НТ для решения задач электроэнергети
Конструктор КАСКАД-НТ для решения задач электроэнергетиКонструктор КАСКАД-НТ для решения задач электроэнергети
Конструктор КАСКАД-НТ для решения задач электроэнергети
 

Recently uploaded

Spellings Wk 4 and Wk 5 for Grade 4 at CAPS
Spellings Wk 4 and Wk 5 for Grade 4 at CAPSSpellings Wk 4 and Wk 5 for Grade 4 at CAPS
Spellings Wk 4 and Wk 5 for Grade 4 at CAPS
AnaAcapella
 

Recently uploaded (20)

FICTIONAL SALESMAN/SALESMAN SNSW 2024.pdf
FICTIONAL SALESMAN/SALESMAN SNSW 2024.pdfFICTIONAL SALESMAN/SALESMAN SNSW 2024.pdf
FICTIONAL SALESMAN/SALESMAN SNSW 2024.pdf
 
REMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptxREMIFENTANIL: An Ultra short acting opioid.pptx
REMIFENTANIL: An Ultra short acting opioid.pptx
 
How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17How to Add New Custom Addons Path in Odoo 17
How to Add New Custom Addons Path in Odoo 17
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptx
 
Spellings Wk 4 and Wk 5 for Grade 4 at CAPS
Spellings Wk 4 and Wk 5 for Grade 4 at CAPSSpellings Wk 4 and Wk 5 for Grade 4 at CAPS
Spellings Wk 4 and Wk 5 for Grade 4 at CAPS
 
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
Sensory_Experience_and_Emotional_Resonance_in_Gabriel_Okaras_The_Piano_and_Th...
 
Model Attribute _rec_name in the Odoo 17
Model Attribute _rec_name in the Odoo 17Model Attribute _rec_name in the Odoo 17
Model Attribute _rec_name in the Odoo 17
 
Interdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptxInterdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptx
 
21st_Century_Skills_Framework_Final_Presentation_2.pptx
21st_Century_Skills_Framework_Final_Presentation_2.pptx21st_Century_Skills_Framework_Final_Presentation_2.pptx
21st_Century_Skills_Framework_Final_Presentation_2.pptx
 
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptxOn_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
 
Tatlong Kwento ni Lola basyang-1.pdf arts
Tatlong Kwento ni Lola basyang-1.pdf artsTatlong Kwento ni Lola basyang-1.pdf arts
Tatlong Kwento ni Lola basyang-1.pdf arts
 
How to Manage Call for Tendor in Odoo 17
How to Manage Call for Tendor in Odoo 17How to Manage Call for Tendor in Odoo 17
How to Manage Call for Tendor in Odoo 17
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
OS-operating systems- ch05 (CPU Scheduling) ...
OS-operating systems- ch05 (CPU Scheduling) ...OS-operating systems- ch05 (CPU Scheduling) ...
OS-operating systems- ch05 (CPU Scheduling) ...
 
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptxHMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
HMCS Vancouver Pre-Deployment Brief - May 2024 (Web Version).pptx
 
How to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POSHow to Manage Global Discount in Odoo 17 POS
How to Manage Global Discount in Odoo 17 POS
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - English
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and Modifications
 

HN-Models in Control

  • 1. SOME MODERN TRENDS IN CONTROL THEORY Dmitry A. Novikov dan@ipu.ru, www.ipu.ru, www.mtas.ru Institute of Control Sciences RAS Moscow Institute of Physics and Technology Moscow
  • 2. 1. HISTORY AND TRENDS OF CONTROL THEORY 2. HIERARCHICAL AND NETWORKED MODELS 3. INTERDISCIPLINARY CONTROL MODELS 4. EMPHASIS OF RECENT CONFERENCES 5. MULTIAGENT SYSTEMS: SPECIFICITY AND ARCHITECTURE OF AN AGENT 6. HIERARCHICAL MODELS (EXAMLES): - Diffusive bomb - Social networks - Combat modeling 7. SOME TRENDS IN NETWORKED AND HIERARCHICAL MODELING 8. CONTROL THEORY: ANTI-INTUITIVE RESULTS (EXAMPLES) - Optimization of hierarchies - Labor supply - Ecology VS Economy - Is truthtelling profitable? - Hierarchical automatization 9. PAST, PRESENT AND FUTURE OF CONTROL THEORY PLAN
  • 3. 1. HISTORY AND TRENDS OF CONTROL THEORY 2. HIERARCHICAL AND NETWORKED MODELS 3. INTERDISCIPLINARY CONTROL MODELS 4. EMPHASIS OF RECENT CONFERENCES 5. MULTIAGENT SYSTEMS: SPECIFICITY AND ARCHITECTURE OF AN AGENT 6. HIERARCHICAL MODELS (EXAMLES): - Diffusive bomb - Social networks - Combat modeling 7. SOME TRENDS IN NETWORKED AND HIERARCHICAL MODELING 8. CONTROL THEORY: ANTI-INTUITIVE RESULTS (EXAMPLES) - Optimization of hierarchies - Labor supply - Ecology VS Economy - Is truthtelling profitable? - Hierarchical automatization 9. PAST, PRESENT AND FUTURE OF CONTROL THEORY PLAN
  • 4. STRUCTURE OF CONTROL SYSTEM … Control is “the process of checking to make certain that rules or standards being applied” (Macmillan Dictionary). Control is “the act or activity of looking after and making decisions about something” (Merriam-Webster Dictionary). Control is “an influence on a controlled system with the aim of providing the required behavior of the latter” (Theory of Organizations Control) CONTROL SYSTEM CONTROLLED OBJECT State of controlled object Control External disturbances
  • 5. OBJECTS, METHODS AND MEANS OF CONTROL CONTROL OBJECTS METHODS MEANS Measuring, transformative, actuating Informational, computational … Control is “the process of checking to make certain that rules or standards being applied” (Macmillan Dictionary). Control is “the act or activity of looking after and making decisions about something” (Merriam-Webster Dictionary). Control is “an influence on a controlled system with the aim of providing the required behavior of the latter” (Theory of Organizations Control)
  • 6. Scientific knowledge about the object of control Control theory Applications Technologies of control … … t Typical time of development CYCLE OF THEORY DEVELOPMENT
  • 7. t 1860-е 1900 1930 1940 1950 1960 1970 1980 1990 2000 2010 Конец XVIII века 150 YEARS OF CONTROL THEORY (Technics) Scientific knowledge about the object of control Control theory Applications Technologies of control … … t Typical time of development
  • 8. Institute of Control Sciences (ICS RAS, Moscow): - System Theory and General Control Theory; - Techniques of Control in Complicated Engineering and Man-Machine Systems; - Theory of Control in Inter-Disciplinary Models of Organizational, Social, Economic, Medical and Biological and Environment Protection Systems; - Theory and Techniques in Development of Software-and-Hardware and Engineering Tools of Control and Complicated Data Processing and Control Systems; - Scientific Fundamentals of Technologies in Vehicle Control and Navigation; - Scientific Fundamentals of Integrated Control Systems and Automation of Technological Industrial Processes. USA: CalTech, Harvard Univ., MIT, Stanford Univ., Univ. of California, etc. UK: Imperial College, Oxford Univ., Cambridge Univ., etc. Germany: Univ. of Stutgard, Techn. Univ. of Darmstadt , etc. Italy: University of Rome, Politecnico di Torino, Politecnico di Milano, etc. France: SUPELEC Paris, Univ. of Grenoble, LAAS- SNRS Toulose,etc. Australia: Univ. of New-castle, Australian Nat. Univ., etc. Sweden: University of Linkoping, Lund University. Japan: Japan Advanced Inst. of Science and Techn., Kyoto Univ., etc. CONTROL THEORY IN RUSSIA … and in the World …
  • 9. SCIENTIFIC RESEARCHES AND APPLIED PROJECTS OF ICS RAS. I Classical linear control theory Control of mechanical systems Nonlinear systems Control in quantum systems Control of systems with distributed parameters Theory of stability and stabilization Control of moving objects Robust and adaptive control General control theory )(),,( . twtuxfx +=
  • 10. Study of control problems for a multi- mode submarine in the case of emergency. The intelligent control level is based on production rules for current and predicted situations Full-scale multi-mode computer training complex for Russian Navy General view of the training complex SCIENTIFIC RESEARCHES AND APPLIED PROJECTS OF ICS RAS. II
  • 11. Integrated solutions for upper level control systems in nuclear power engineering with application in Russia and abroad ØProgramming language ØOperating system ØEngineering equipment (in cooperation with the Nizhny Novgorod Scientific Research Institute for Engineering Systems) ØApplied software SCIENTIFIC RESEARCHES AND APPLIED PROJECTS OF ICS RAS. III
  • 12. Equipment for automation devices and computers New effects in nanostructures Modern jet devices (operable up to 500˚ C, in vibration and radiation environment) Multi-channel sensors SCIENTIFIC RESEARCHES AND APPLIED PROJECTS OF ICS RAS. IV
  • 13. Aviation maps Navigation maps Digital topographic mapsLarge-scale plans Digital relief matrix 3D-modeling 3D-modeling Map making by field survey Map updating by air survey Map updating by space survey Geographic Information Systems SCIENTIFIC RESEARCHES AND APPLIED PROJECTS OF ICS RAS. V
  • 14. 3D-Modeling in control SCIENTIFIC RESEARCHES AND APPLIED PROJECTS OF ICS RAS. VI
  • 16. 1. HISTORY AND TRENDS OF CONTROL THEORY 2. HIERARCHICAL AND NETWORKED MODELS 3. INTERDISCIPLINARY CONTROL MODELS 4. EMPHASIS OF RECENT CONFERENCES 5. MULTIAGENT SYSTEMS: SPECIFICITY AND ARCHITECTURE OF AN AGENT 6. HIERARCHICAL MODELS (EXAMLES): - Diffusive bomb - Social networks - Combat modeling 7. SOME TRENDS IN NETWORKED AND HIERARCHICAL MODELING 8. CONTROL THEORY: ANTI-INTUITIVE RESULTS (EXAMPLES) - Optimization of hierarchies - Labor supply - Ecology VS Economy - Is truthtelling profitable? - Hierarchical automatization 9. PAST, PRESENT AND FUTURE OF CONTROL THEORY PLAN
  • 17. USA (NSF) priorities: Group control. Combat control. Control in financial and economic systems. Control in biological and ecological systems. Man and team in a control loop. Unified theory of control, computation and communication (С3). … European priorities: Man-machine symbiosis (modeling a man in a control loop and as a controlled subject). Distributed and networked systems. Production, safety and strategies of heterogeneous control. New principles of interdisciplinary coordination and control. … Russian Academy of Sciences: Methods and means of communicational and networked control of multi-level and distributed dynamic systems under uncertainty; intellectual control. HETEROGENEOUS = DIVERSIVE(NETWORKED) + DISTRIBUTED + HIERARCHICAL (controlled object, control system and communications). HETEROGENEOUS CONTROL MODELS
  • 18. HIERARCHIES AND NETWORKES: CONTROLLED OBLECT, CONTROL SYSTEM AND COMMUNICATIONS (example: Project Management) FROM NETWORKES AND HIERARCHIES TO HIERARCHIES OF NETWORKES AND NETWORKES OF HIERARCHIES Пакет работ Уровень WBS Уровень WBS Уровень WBS Пакет работ Пакет работ Пакет работ Пакет работ Пакет работ Пакет работ . . . . . . Центр Центр Центр OBS Руководство проекта Пакет работ План y * A'Î Результат деятельности z A0Î Действие) y А'Î ЦентрЦентр Центр АЭ АЭ АЭ АЭ АЭ АЭ RBS Функциональная структура предприятия Стимулирующее воздействие Группа проектов ПроектПроектПроект Уровень проектов NETWORK SHEDULE WBS OBS RBS Responsibility allocation Resources allocation Authority allocation Степеньдостиженияпоставленныхцелей Время реализации Исходное состояние Целевое состояние Оценка состояния Планируемое состояние Реальное состояние Плановая траектория Реализуемая траектория Прогноз реализуемой траектория Возможная траектория в рамках существующей стратегии (работа над ошибками) Оценка затрат для возврата на плановую траекторию развития
  • 19. 1. HISTORY AND TRENDS OF CONTROL THEORY 2. HIERARCHICAL AND NETWORKED MODELS 3. INTERDISCIPLINARY CONTROL MODELS 4. EMPHASIS OF RECENT CONFERENCES 5. MULTIAGENT SYSTEMS: SPECIFICITY AND ARCHITECTURE OF AN AGENT 6. HIERARCHICAL MODELS (EXAMLES): - Diffusive bomb - Social networks - Combat modeling 7. SOME TRENDS IN NETWORKED AND HIERARCHICAL MODELING 8. CONTROL THEORY: ANTI-INTUITIVE RESULTS (EXAMPLES) - Optimization of hierarchies - Labor supply - Ecology VS Economy - Is truthtelling profitable? - Hierarchical automatization 9. PAST, PRESENT AND FUTURE OF CONTROL THEORY PLAN
  • 20. 200019501940 1960 1970 1980 1990 Theory of automatic control Game theory, operations research Cybernetics Decision-making, ;public choice theory Mechanism design (MD) Multiagent systems(DAI) Discrete optimization, optimal control 2010 Network structures (С3 ) Organizational systems (MAN) Social systems (SOCIETY) Ecological systems (NATURE) Technico-organizational and man-machine systems Ecologo- economical systems Economical systems PRODUCTION Regulatory- axiological systems Noospheric systems Socio-ecological systems Technical systems Socio- economical systems INTERDISCIPLINARY SYSTEMS
  • 21. Optimization of hierarchical and network structures Territory Government Industry Enterprise Coordination of interaction and decision-making in multiagent systems Interests concordance in ecologo- economical systems Reflexive control Mechanisms of organizations control Temporal network organization А Б В Г 2 12 121А В ВА ВАВ EXAMPLES OF INTERDISCIPLINARY SYSTEMS Confrontation Hierarchies Collective Decision-making Cooperative Control Interaction. Distributed Optimization (e.g. Task Assignment) Mission Planning “Implementation”. Formation Control Stabilization. Consensus Problem Operational level Action Tactical level Strategic level (decision-making, adaptation, learning, reflexion) Level of goal-setting and choice of functioning mechanisms Externalinformation Dynamicsystems Artificial Intelligence Modelsof CollectiveBehavior GameTheory
  • 22. 1. HISTORY AND TRENDS OF CONTROL THEORY 2. HIERARCHICAL AND NETWORKED MODELS 3. INTERDISCIPLINARY CONTROL MODELS 4. EMPHASIS OF RECENT CONFERENCES 5. MULTIAGENT SYSTEMS: SPECIFICITY AND ARCHITECTURE OF AN AGENT 6. HIERARCHICAL MODELS (EXAMLES): - Diffusive bomb - Social networks - Combat modeling 7. SOME TRENDS IN NETWORKED AND HIERARCHICAL MODELING 8. CONTROL THEORY: ANTI-INTUITIVE RESULTS (EXAMPLES) - Optimization of hierarchies - Labor supply - Ecology VS Economy - Is truthtelling profitable? - Hierarchical automatization 9. PAST, PRESENT AND FUTURE OF CONTROL THEORY PLAN
  • 23. GENERAL TOPICS ACC-2011*** *CDC – Conference on Decision and Control ECC – European Control Conference 12-15 December 2011 Organized by IEEE, Orlando, Florida > 1500 papers **IFAC World Congress 28 Aug – 2 Sept., 2011 > 1500 papers ***ACC – American Control Conference 29-30 June 2011 Organized by IEEE, San Francisco, USA > 900 papers CDC-ECC-2011* Математи- ческая теория 9% Приложения 19% "Cредства" 4% "Классика" 49% "Сетевизм" 19% Applications 19% Mathematical theory 9% Technical means 4% “Networks” 19% Classic 49% "Сетевизм" 11% "Классика" 32% Cредства 5% Приложения 44% Математи- ческая теория 9% IFAC-2011** Applications 44% “Networks” 11% Classic 32% Mathematical theory 9% Technical means 5% Математи- ческая теория 5% Приложения 33% Cредства 5% "Классика" 42% "Сетевизм" 14% Technical means 5% Applications 33% Mathematical theory 5% Classic 42% “Networks” 14%
  • 24. МАС и консенсус 35% Кооператив- ное управление 21% Коммуникации в МАС 35% Верхние уровни управления 4% Другое 4% Highest control levels 4% Communi- cations in MAS 35% Cooperative control 21% Consensus problems 35% Others 4% Другое 8%Верхние уровни управления 10% Коммуникации в МАС 26% Кооператив- ное управление 10% МАС и консенсус 46% Highest control levels 10% Communi- cations in MAS 26% Cooperative control 10% Consensus problems 46% Others 8% МАС и консенсус 33% Кооперативное управление 15% Коммуникации в МАС 31% Верхние уровни управления 13% Другое 8% Highest control levels 13% Communications in MAS 31% Cooperative control 15% Consensus problems 31% Others 8% «NETWORKS» II I III IV ACC-2011 СDС-ECCC-2011 IFAC-2011 II I III IV I II III IV
  • 25. Другие 19% Морские подвижные объекты 2% Автомобили и автотрафик 11% Биология и медицина 13% Мехатроника и роботы 11% Производство 2% Авиация и космос 9% Энергетика 33% Others 19% Energetics 33% Aero-Space 9% Production 2%Mechatronics and robots 11% Maritime mobile objects 2% Avto-vehicles and traffic 11% Bio-Med 13% Энергетика 17% Авиация и космос 7% Производство 18% Мехатроника и роботы 13% Биология и медицина 13% Автомобили и автотрафик 13% Морские подвижные объекты 3% Другие 16% Others 16% Energetics 17% Aero-Space 7% Production 18% Mechatronics and robots 13% Bio-Med 13% Avto-vehicles and traffic 13% Maritime mobile objects 3% Другие 8%Морские подвижные объекты 11% Автомобили и автотрафик 8% Биология и медицина 17% Мехатроника и роботы 18% Производство 8% Авиация и космос 8% Энергетика 22% Others 8% Energetics 22% Aero-Space 8% Production 8% Mechatronics and robots 18% Bio-Med 17% Avto-vehicles and traffic 8% Maritime mobile objects 11% APPLICATIONS ACC-2011 СDС-ECCC-2011 IFAC-2011
  • 26. 1. HISTORY AND TRENDS OF CONTROL THEORY 2. HIERARCHICAL AND NETWORKED MODELS 3. INTERDISCIPLINARY CONTROL MODELS 4. EMPHASIS OF RECENT CONFERENCES 5. MULTIAGENT SYSTEMS: SPECIFICITY AND ARCHITECTURE OF AN AGENT 6. HIERARCHICAL MODELS (EXAMLES): - Diffusive bomb - Social networks - Combat modeling 7. SOME TRENDS IN NETWORKED AND HIERARCHICAL MODELING 8. CONTROL THEORY: ANTI-INTUITIVE RESULTS (EXAMPLES) - Optimization of hierarchies - Labor supply - Ecology VS Economy - Is truthtelling profitable? - Hierarchical automatization 9. PAST, PRESENT AND FUTURE OF CONTROL THEORY PLAN
  • 27. MULTIAGENT SYSTEMS (MAS) «… a rat or individual locusts are not too clever, and almost harmless. However, flocks of rats or swarms of locusts can have a devastating impact». Modern trends: - decentralization - miniaturization - intellectualization
  • 28. Centralized control Decentralized (group) control NETWORK MAS Material MAS Virtual MAS (softbots) Wheeled UAVs AUVs… Specificity of MAS: üMultiple components; üDistributed, networked communications; üHierarchy; üIntelligence (autonomy): • rationality (decision-making under uncertainty and cognitive restrictions); • autonomous goal-setting, goal- oriented behavior; • reflection; • cooperative and/or competitive interactions (the formation of coalitions, information, and other confrontation). MULTIAGENT SYSTEMS: SPECIFICITY
  • 29. MULTIAGENT SYSTEMS: ARCHITECTURE OF AN AGENT Confrontation Hierarchies Collective Decision-making Cooperative Control Interaction. Distributed Optimization (e.g. Task Assignment) Mission Planning “Implementation”. Formation Control Stabilization. Consensus Problem Operational level Action Tactical level Strategic level (decision-making, adaptation, learning, reflexion) Level of goal-setting and choice of functioning mechanisms Externalinformation Dynamicsystems Artificial Intelligence Modelsof CollectiveBehavior GameTheory
  • 30. Confrontation Hierarchies Collective Decision-making Cooperative Control Interaction. Distributed Optimization (e.g. Task Assignment) Mission Planning “Implementation”. Formation Control Stabilization. Consensus Problem Operational level Action Tactical level Strategic level (decision-making, adaptation, learning, reflexion) Level of goal-setting and choice of functioning mechanisms Externalinformation Dynamicsystems Artificial Intelligence Modelsof CollectiveBehavior GameTheory MULTIAGENT SYSTEMS: CONSENSUS
  • 31. Multi-agent system ( ) nitxtxatx n j jiiji ...,,1,)()()( 1 =--= å = & – characteristic of agent i,)(txi, ),()( txLtx -=& ( ) ,)(...,),()( T 1 txtxtx n= [ ] ,ij n nL ´= l ïî ï í ì = ¹- = å¹ ., ,, )( ija ija t ik ik ij ijl Theorem* Consensus is reachable iff the communication graph is “connected”. CONSENSUS PROBLEM *Agaev R., Chebotarev P. (A&RC. 9. 2000)
  • 32. Confrontation Hierarchies Collective Decision-making Cooperative Control Interaction. Distributed Optimization (e.g. Task Assignment) Mission Planning “Implementation”. Formation Control Stabilization. Consensus Problem Operational level Action Tactical level Strategic level (decision-making, adaptation, learning, reflexion) Level of goal-setting and choice of functioning mechanisms Externalinformation Dynamicsystems Artificial Intelligence Modelsof CollectiveBehavior GameTheory MULTIAGENT SYSTEMS: FORMATION CONTROL
  • 33. С3 & FORMATIONS CONTROL Basic consensus problem ( )ix t& = 1 ( ( ) ( )) n ij j i j a x t x t = -å Communications & computations ( )ix t& = 1 ( )( ( ) ( )) n c ij j ij i ij j a t x t x tt t = - - -å Model of the controlled object Autonomous Underwater Vehicles. Edited by N. Cruz. – Rijeka: InTech, 2011. + nonlinearity + observability + adaptivity + switching communication matrix … Formation control ( )ix t& = vi(t), ( )iv t& = 1 ( ( ) ( )) n ij j i j b x t x t = -å + 1 ( ( ) ( )) n ij j i j b v t v t = -å + ci(V(t) – vi(t)) x(t), v(t)V(t)
  • 34. Confrontation Hierarchies Collective Decision-making Cooperative Control Interaction. Distributed Optimization (e.g. Task Assignment) Mission Planning “Implementation”. Formation Control Stabilization. Consensus Problem Operational level Action Tactical level Strategic level (decision-making, adaptation, learning, reflexion) Level of goal-setting and choice of functioning mechanisms Externalinformation Dynamicsystems Artificial Intelligence Modelsof CollectiveBehavior GameTheory MULTIAGENT SYSTEMS: PLANNING
  • 35. Confrontation Hierarchies Collective Decision-making Cooperative Control Interaction. Distributed Optimization (e.g. Task Assignment) Mission Planning “Implementation”. Formation Control Stabilization. Consensus Problem Operational level Action Tactical level Strategic level (decision-making, adaptation, learning, reflexion) Level of goal-setting and choice of functioning mechanisms Externalinformation Dynamicsystems Artificial Intelligence Modelsof CollectiveBehavior GameTheory MULTIAGENT SYSTEMS: COOPERATIVE CONTROL
  • 36. 1. HISTORY AND TRENDS OF CONTROL THEORY 2. HIERARCHICAL AND NETWORKED MODELS 3. INTERDISCIPLINARY CONTROL MODELS 4. EMPHASIS OF RECENT CONFERENCES 5. MULTIAGENT SYSTEMS: SPECIFICITY AND ARCHITECTURE OF AN AGENT 6. HIERARCHICAL MODELS (EXAMLES): - Diffusive bomb - Social networks - Combat modeling 7. SOME TRENDS IN NETWORKED AND HIERARCHICAL MODELING 8. CONTROL THEORY: ANTI-INTUITIVE RESULTS (EXAMPLES) - Optimization of hierarchies - Labor supply - Ecology VS Economy - Is truthtelling profitable? - Hierarchical automatization 9. PAST, PRESENT AND FUTURE OF CONTROL THEORY PLAN
  • 37. ).,...,,,,...,,(maxArg * , * 1, * 1, * 1 * niiiiiiiii Xx i xxxxxfx ii ssssss q +- Î Î Informational equilibrium Information control problem .max),(min )( ¾¾®¾F ÁÎYÎ IIx Ix X YX (I) Í X' – the set of real agents actions, which are stable under information structure I; F(x, I) – control efficiency criterion; Á – set of feasible information structures. Taking into account the nontrivial mutual beliefs of agents allows: 1. (normative point of view) to enlarge the set of game’s outcomes, which in its turn increases the efficiency of information control; 2. (descriptive point of view) to describe many practically observed situations, which can not be interpreted as a Nash equilibrium under common knowledge, as informational equilibriums under proper information structure. ГI = {N, (Xi)i Î N, (fi(×))i Î N, W, I} – reflexive game; W – set of feasible states of nature; I – information structure; N – set of players (agents); fi: W ´ X’ ® Â1 – goal function of the i-th agent. Information (beliefs) structure q1 qi qn qi1 qij qin … … … … I1 Ii1 Real agent Phantom agent Reflexion . . . . . . . . . . . . INFORMATIONAL REFLEXION AND CONTROL
  • 38. Reflexive model of group aircraft battle Strategic behavior in collective decision-making. Suppose, that the principal is interested in the result x0Î[d;D] of expert examination. Let the opinions of n experts {riÎ[d;D]}iÎN, be known by the principal only, who is able to form second-order beliefs of the experts. Collective decision x = p(s), where s Î [d;D]n is the vector of opinions, revealed by experts. Denote: x0i(a,ri) is the solution of the following equation: p(a, …, x0, …, a) = ri , di(ri) = max {d; x0i(D, ri)}, Di(ri) = min {D; x0i(d, ri)}, d(r) = (d1(r1), d2(r2), …, dn(rn)), D(r) = (D1(r1), D2(r2), …, Dn(rn)). Statement 15. Any result x0Î[p(d(r));p(D(r))] may be implemented as the collective decision by means of information control with the second rank of reflexion. SOME APPLICATIONS OF INFORMATIONAL CONTROL
  • 39. INFORMATIONAL AND STRATEGIC REFLEXION «Optimizational models of collective behavior Models of games Game theory Models of collective behavior Informational structures Concept of equilibrium Informational equilibrium Nash equilibrium Control problems Informational control MODELS OF STRATEGIC REFLEXION Reflexive structures k-level models; cognitive hierarchies models, etc Models of reflexion in bimatrix games Informational reflexion Strategic reflexion Prognostical Reflexive equilibrium Reflexive control “Reflexive” models Level Phenomenological (descriptive) Normative Models of reflexive decision-making Game theory (super-intelligent players) Theory of collective behavior (rational agents) LEVEL OF “INTELLIGENCE” REFLEXION
  • 40. «Probability» of target destruction: ü Direct attack of 40 “simple” agents: 0,125 ü 8 «investigators» + 32 «reflexive» agents: 0,985 ü 40 «investigators»: 0,999 Level of hierarchy Modelled processes Modelling tools 6 Choice of agents and their characteristics Discrete and multicriteria optimization 5 Choice of agents’ trajectories and velocities Optimal control 4 Forecasting by the agent opponents’ behavior Reflexive games 3 Minimization of the probability of detection Optimization and heuristics of choosing the direction of motion 2 Collision and obstacle avoidance Algorithms of “local” trajectories’ choice 1 Motion toward the target Equations of dynamics DIFFUSIVE BOMB MODEL: STRATEGIC REFLEXION
  • 41. 1. HISTORY AND TRENDS OF CONTROL THEORY 2. HIERARCHICAL AND NETWORKED MODELS 3. INTERDISCIPLINARY CONTROL MODELS 4. EMPHASIS OF RECENT CONFERENCES 5. MULTIAGENT SYSTEMS: SPECIFICITY AND ARCHITECTURE OF AN AGENT 6. HIERARCHICAL MODELS (EXAMLES): - Diffusive bomb - Social networks - Combat modeling 7. SOME TRENDS IN NETWORKED AND HIERARCHICAL MODELING 8. CONTROL THEORY: ANTI-INTUITIVE RESULTS (EXAMPLES) - Optimization of hierarchies - Labor supply - Ecology VS Economy - Is truthtelling profitable? - Hierarchical automatization 9. PAST, PRESENT AND FUTURE OF CONTROL THEORY PLAN
  • 42. Confrontation Hierarchies Collective Decision-making Cooperative Control Interaction. Distributed Optimization (e.g. Task Assignment) Mission Planning “Implementation”. Formation Control Stabilization. Consensus Problem Operational level Action Tactical level Strategic level (decision-making, adaptation, learning, reflexion) Level of goal-setting and choice of functioning mechanisms Externalinformation Dynamicsystems Artificial Intelligence Modelsof CollectiveBehavior GameTheory MULTIAGENT SYSTEMS: CONFRONTATION
  • 43. MODELS OF SOCIAL NETWORKS The set M of principals The set of agents N … Problem – find a control vector u, s.t. F(X, u) = H(X) – c(u) ® UuÎ max , H(×) – “gain”, с(×) – control costs. Each principal (from set M) is able to influence on the initial opinions of the agents uij and is interested in forming the final opinions XM. Problem – find equilibrium of the game: Г = (M, {Uj}j Î M, {Gj(×)}j Î M). A set N of agents form social network G = (N, E). x – vector of initial opinions, X – final opinions. aij ³0 – the trust of i-th agent to j-th, k-th agent indirectly influences on i-th agent: xk+1 = A [xk + B uk ]. Problem – find total influence of one agents on another, find the agents, that form the final opinions 3. Informational interaction (dynamics) 4. Informational control 5. Information warfare Facebook Twitter Newsvine Habr 2. Structural analysis 1. «Statistical» analysis
  • 44. ANALYSIS AND MODELING OF INFORMATIONAL PROCESSES IN SOCIAL MEDIA 11.11.11 06.12.11 31.12.11 25.01.12 19.02.12 15.03.12 09.04.12 04.05.12 29.05.12 23.06.12 18.07.12 0 5000 10000 15000 Суточное количество сообщений : Политики A и B 0 10 20 30 40 50 60 70 ?0.4 ?0.2 0.0 0.2 0.4 0.6 0.8 1.0 Автокорреляционная функция по сообщениям : Политики A и B 0 20 40 60 80 100 120 140 ?0.2 ?0.1 0.0 0.1 0.2 0.3 0.4 0.5 Парная корреляционная функция по сообщениям Политик A Политик B 11.11.11 06.12.11 31.12.11 25.01.12 19.02.12 15.03.12 09.04.12 04.05.12 29.05.12 23.06.12 11 10 9 8 7 6 5 4 3 2 1 Вейвлет скалограмма ?объём сообщений ?: Политик A 11.11.11 06.12.11 31.12.11 25.01.12 19.02.12 15.03.12 09.04.12 04.05.12 29.05.12 23.06.12 11 10 9 8 7 6 5 4 3 2 1 Вейвлет скалограмма ?объём сообщений ?: Политик B Политическая жизнь России Политик A Политик B Общество / Блогосфера / СМИ Активность блоггеров Активность блоггеров 11.11 .11 06.12 .11 31.12.11 25.01 .12 19.02 .12 15.03 .12 09.04 .12 04.05.12 29.05 .12 23.06.12 0 20 40 60 80 100 Точки статистической разладки: Политик A 11.11.11 06.12 .11 31.12.11 25.01.12 19.02.12 15.03.12 09.04 .12 04.05.12 29.05.12 23.06.12 0 100 200 300 400 Точки статистической разладки: Политик B Political activity Person A Person B Society / Blogoshere / Media Blogers’ activity Blogers’ activity Daily mentioned: persons A and B Autocorrelation by persons Autocorrelation by messages Person BPerson A Statistical discord: person A Statistical discord: person B Scalogramma: person B Scalogramma: person A
  • 45. Characteristics of maximal component • Number of agents – 362.000, • Number of “connections”– 802.000 (12.000.000 comments) Structure of components 1 – Discussing component (25%). 2 - Un-popular component (45%). 3 – Popular component (8%). 4 - Others (22%). The structure is time-stable: • May 2011 • November 2011 • December 2011 45 The rate of information (average) spread - 5.3 steps to receive information FROM any agent; - 5.3 steps to transmit information TO any agent. THE STRUCTURE OF MAXIMAL WEAKLY CONNECTED COMPONENT 1 2 3 4
  • 46. Number of removed nodes Sizeofmaximalcluster(%) Number of removed nodes Numberofclasters CONTROL IN SOCIAL NETWORKS CONTROL: - OPINIONS, - BELIEFS (TRUST), - REPUTATION, - … - MEMBERSHIP and STRUCTURE. The removal of small number of the most significant nodes leads to the appearance of a great number of unconnected groups (А). But this groups are small, and the largest group is still connected (B). ЧислоавторовЧислоавторов 64.000 – cumulative estimate of politically active blogers in Russian LiveJournal A B
  • 47. BACKGROUND: CONSENSUS PROBLEM French J.R. A Formal Theory of Social Power // Psychological Review. 1956. № 63. P. 181 – 194. Harary F. A Criterion for Unanimity in French’s Theory of Social Power / Studies in Social Power. – Michigan: Institute of Sociological Research. 1959. P. 168 – 182. De Groot M.H. Reaching a Consensus // Journal of American Statistical Association. 1974. № 69. P. 118 – 121. Roberts F. Discrete Mathematical Models with Applications to Social, Biological, and Environmental Problems. – Prentice: Prentice Hall, 1976. Jackson M. Social and Economic Networks. – Princeton: Princeton University Press, 2008.
  • 48. BACKGROUND: GAME THEORY Network games Network formation games Network-based games Networking games Cognitive games Social networks games Games over theproject network-schedules Network – is a result of game- theoretical interaction Network isfixed and determines the dependence of players gains fromtheir actions
  • 49. SOCIAL NETWORKS AND LINEAR DYNAMIC SYSTEMS xk+1 = A [xk + B uk ], k = 0, 1, … MULTIAGENT SYSTEMS SOCIAL NETWORKS COGNITIVE MAPS PageRank Problem ui xi F(X, u)
  • 50. 1. HISTORY AND TRENDS OF CONTROL THEORY 2. HIERARCHICAL AND NETWORKED MODELS 3. INTERDISCIPLINARY CONTROL MODELS 4. EMPHASIS OF RECENT CONFERENCES 5. MULTIAGENT SYSTEMS: SPECIFICITY AND ARCHITECTURE OF AN AGENT 6. HIERARCHICAL MODELS (EXAMLES): - Diffusive bomb - Social networks - Combat modeling 7. SOME TRENDS IN NETWORKED AND HIERARCHICAL MODELING 8. CONTROL THEORY: ANTI-INTUITIVE RESULTS (EXAMPLES) - Optimization of hierarchies - Labor supply - Ecology VS Economy - Is truthtelling profitable? - Hierarchical automatization 9. PAST, PRESENT AND FUTURE OF CONTROL THEORY PLAN
  • 51. Level of hierarchy Modeled phenomena and processes Technique of modeling 5 Allocation of forces and means in space Game theory (Colonel Blotto game, etc.) 4 Allocation of forces and means in time Optimal control, repeated games, etc. 3 Number of troops dynamics Lanchester’s equations and its modifications 2 «Local» interactions of squads Markovian and other stochastic models 1 Interaction of separate battle units Dynamic systems. Finite state automata. Simulation. HIERARCHICAL COMBAT MODELS
  • 52. 20 40 60 80 100 Номер ИПБ 500 1000 1500 2000 МЦРMRRR REFLEXIVE COLONEL BLOTTO GAME Average maximal rational rank of reflexion (MRRR) ~ 230 (nonsense!) Denote by N = [1, …, n] the set of objects, x = (x1, …, xn) – first player’s action, y = (y1, …, yn) – second player’s action, where xi ³ 0 (yi ³ 0) – amount of resources, allocated by the first (second) player to i-th object, i = 1,n . Resources are limited (1) i i N x Î å £ Rx, i i N y Î å £ Ry. In probabilistic Colonel Blotto Model (CBM) the probability px(xi, yi) of the first player win on the i-th object does not depend on other objects and is “proportional” to the amount or resources, allocated on this object.: (2) px(xi, yi) = ( ) ( ) ( ) i i i r i i r r i i i x x y a a + , py(xi, yi) = 1 – px(xi, yi), где ri Î (0; 1], ai > 0, px(xi = 0, yi = 0) = 1 i i a a + . Let BRx(y) = (u1 y1 + e, …, un yn + e) denote the best response of first player, where n-dimentional vector u = (u1,…, un) is a solution of the following knapsack problem: (3) {0;1} 1 1 max, , i n i i u i n i i x i uV u y R Î = = ì ®ï ï í ï £ ïî å å , e = 1 1 ( ) n x i i i R u y n = - å , i.e. let’s assume that the player tries to win on the most valuable set of objects, and the rest of resources are equally divided among other objects. Let BRy(x) = (v1 x1 + d, …, vn xn + d) denote the best response of first player, where n-dimentional vector v = (v1,…, vn) is a solution of the following knapsack problem: (4) {0;1} 1 1 max, , i n i i v i n i i y i vV v x R Î = = ì ®ï ï í ï £ ïî å å , d = 1 1 ( ) n y i i i R u x n = - å . Rank game exploration MRRR
  • 53. 1. HISTORY AND TRENDS OF CONTROL THEORY 2. HIERARCHICAL AND NETWORKED MODELS 3. INTERDISCIPLINARY CONTROL MODELS 4. EMPHASIS OF RECENT CONFERENCES 5. MULTIAGENT SYSTEMS: SPECIFICITY AND ARCHITECTURE OF AN AGENT 6. HIERARCHICAL MODELS (EXAMLES): - Diffusive bomb - Social networks - Combat modeling 7. SOME TRENDS IN NETWORKED AND HIERARCHICAL MODELING 8. CONTROL THEORY: ANTI-INTUITIVE RESULTS (EXAMPLES) - Optimization of hierarchies - Labor supply - Ecology VS Economy - Is truthtelling profitable? - Hierarchical automation 9. PAST, PRESENT AND FUTURE OF CONTROL THEORY PLAN
  • 54. MODERN TRENDS IN MAS 1) Strategic decision-making 2) Increasing role of game-theory 3) Benchmark scenarios and problems Confrontation Hierarchies Collective Decision-making Cooperative Control Interaction. Distributed Optimization (e.g. Task Assignment) Mission Planning “Implementation”. Formation Control Stabilization. Consensus Problem Operational level Action Tactical level Strategic level (decision-making, adaptation, learning, reflexion) Level of goal-setting and choice of functioning mechanisms Externalinformation Dynamicsystems Artificial Intelligence Modelsof CollectiveBehavior GameTheory
  • 55. MAS & STRATEGIC BEHAVIOR: As Is Game theory MAS, group control Distributed optimization
  • 56. Game theory MAS, group control Algorithmic game theory Distributed optimization Models of collective behavior, bounded rationality MAS & STRATEGIC BEHAVIOR: As Is
  • 57. Game theory, mechanism design MAS, group control Algorithmic game theory Distributed optimization Models of collective behavior, bounded rationality Experimental economics, Behavioral Game Theory MAS & STRATEGIC BEHAVIOR: To Be
  • 58. «MAXIMAL INTELLECTUALIZATION» Intention to maximize the “intellectualization” is limited not only by “costs” (computational, cognitive, economical, etc), but by the inefficient “over-complexity”. «Intellectualization» «Costs» «Result» «Effect»
  • 59. MAS: SOME QUALITATIVE RESULTS 1) The level of MAS’ “intellectualization” should be adequate to the problem in hand (taking into account various “costs”). 2) The intention to maximize the “intellectualization” at the higher levels of agent’s architecture leads to a centralized scheme. 3) Trend to the integration of networked MAS, game theory and artificial intelligence.
  • 60. GENERAL TRENDS 1) Inter-disciplinary: control objects, methods and means of control. 2) Network/hierarchical structure of controlled object, control system and communications. 3) Intra-paradigmal problems: «linearity» of development, desire to reduce the problem to well-known, i.e. «internal» problems of any subject field. Self- isolation of different braches of control science. The demand for the creation of new adequate mathematical technique. 4) «Heuristical» applications: the concept of bounded rationality (under the lack of time, ability or necessity) – instead of optimal pseudo-optimal solutions are heuristically searched. 5) Unification: 5C = Control + Computation + Communication + Cost + Cycle. 6) Heterogeneous (hierarchical, complex, integrated) modeling. Problems of models «coupling», search for common language. Generating and replicating typical solutions of control problems.
  • 61. 1. HISTORY AND TRENDS OF CONTROL THEORY 2. HIERARCHICAL AND NETWORKED MODELS 3. INTERDISCIPLINARY CONTROL MODELS 4. EMPHASIS OF RECENT CONFERENCES 5. MULTIAGENT SYSTEMS: SPECIFICITY AND ARCHITECTURE OF AN AGENT 6. HIERARCHICAL MODELS (EXAMLES): - Diffusive bomb - Social networks - Combat modeling 7. SOME TRENDS IN NETWORKED AND HIERARCHICAL MODELING 8. CONTROL THEORY: ANTI-INTUITIVE RESULTS (EXAMPLES) - Optimization of hierarchies - Labor supply - Ecology VS Economy - Is truthtelling profitable? - Hierarchical automatization 9. PAST, PRESENT AND FUTURE OF CONTROL THEORY PLAN
  • 62. K(rm) = )( max mEy rÎ f0(y) ® ÃÎmr max . Вертикальные связи Горизонтальные связи А Б В Г Временная сетевая организация CNetwork organization Network organization - a structure, where temporal connections between the elements are actualized for the period of solving certain problem. The problem of structural synthesis: find the number of levels of hierarchy m and distribution of agents among the levels (feasible structure rm), which maximize the efficiency f0(y), given that the agents in corresponding hierarchical game choose their equilibrium actions: Examles: - distributed production; - IT-projects; - group control, etc. HIERARCHICAL AND NETWORK ORGANIZATIONS Statement. For any technological structure and any equilibrium x Î E1 N(rm) there exist the set of decision- making strategies in a game Г2(rm 0), which guarantees to all the decision-makers the same levels of utilities, as in the initial game.
  • 63. OPTIMIZATION OF HIERARCHIES Development of the organization management structure Data collection and processing algorithms Design of assembly plant Task management in network structures … Optimization of control hierarchy
  • 64. 1. HISTORY AND TRENDS OF CONTROL THEORY 2. HIERARCHICAL AND NETWORKED MODELS 3. INTERDISCIPLINARY CONTROL MODELS 4. EMPHASIS OF RECENT CONFERENCES 5. MULTIAGENT SYSTEMS: SPECIFICITY AND ARCHITECTURE OF AN AGENT 6. HIERARCHICAL MODELS (EXAMLES): - Diffusive bomb - Social networks - Combat modeling 7. SOME TRENDS IN NETWORKED AND HIERARCHICAL MODELING 8. CONTROL THEORY: ANTI-INTUITIVE RESULTS (EXAMPLES) - Optimization of hierarchies - Labor supply - Ecology VS Economy - Is truthtelling profitable? - Hierarchical automatization 9. PAST, PRESENT AND FUTURE OF CONTROL THEORY PLAN
  • 65. LABOR SUPPLY (theory) a a0 t(a) 0 I = 1 a a0 t(a) 0 I = 2 a a0 t(a) 0 I = 3 a a0 t(a) 0 amax I = 4 a a0 t(a) 0 amax I = 5 t(a) – desired working time (hours/day), a – wage rate
  • 66. Индекс (1999) I 25% II 53% III 6% IV 16% Индекс (2009) I 25% II 41% III 16% IV 8% V 10% Sample volume > 500 Sample volume > 5000 LABOR SUPPLY (“practice”) a a0 t(a) 0 I = 1 a a0 t(a) 0 I = 2 a a0 t(a) 0 I = 3 a a0 t(a) 0 amax I = 4 a a0 t(a) 0 amax I = 5 t(a) – desired working time (hours/day), a – wage rate
  • 67. 1. HISTORY AND TRENDS OF CONTROL THEORY 2. HIERARCHICAL AND NETWORKED MODELS 3. INTERDISCIPLINARY CONTROL MODELS 4. EMPHASIS OF RECENT CONFERENCES 5. MULTIAGENT SYSTEMS: SPECIFICITY AND ARCHITECTURE OF AN AGENT 6. HIERARCHICAL MODELS (EXAMLES): - Diffusive bomb - Social networks - Combat modeling 7. SOME TRENDS IN NETWORKED AND HIERARCHICAL MODELING 8. CONTROL THEORY: ANTI-INTUITIVE RESULTS (EXAMPLES) - Optimization of hierarchies - Labor supply - Ecology VS Economy - Is truthtelling profitable? - Hierarchical automatization 9. PAST, PRESENT AND FUTURE OF CONTROL THEORY PLAN
  • 68. Economic agents (enterprises) Environment (NATURE) Control Center (principal) Interaction with environment Results of activity Control State of nature ECOLOGO-ECONOMICAL SYSTEM Model: u ³ 0 – production level; y ³ 0 – security level; z(u), j(y) – enterprise’s costs; Hi(u, y) – principal’s income; si(u¢, u, x, y) = î í ì ¹¹ == ' ' или,0 ,, uuxy uuxyVi ; K = {1, 2, …, k} – the set of principals. Goal function of i-th principal: Fi(si(×), u, y) = Hi(u, y) – si(u, y), i Î K, Goal function of the enterprise: f({si(×)}, u, y) = c u + å Î s Ki i yu ),( – z(u) – j(y). u* = arg 0 max ³u [c u – z(u)]; F* i = 0, max ³yu [Hi(u, y) – c (u* – u) + [z(u* ) – z(u)] – j(y)], i Î K; S = {u ³ 0, y ³ 0 | $ V Î k +Â : Hi(u, y) – Vi ³ F* i, i Î K, å ÎKi iV = c (u* – u) – [z(u* ) – z(u)] + j(y)}; L = {u ³ 0, y ³ 0, V Î k +Â | Hi(u, y) – Vi ³ F* i, i Î K, å ÎKi iV = c (u* – u) – [z(u* ) – z(u)] + j(y)}. F* 0 = 0, max ³yu [ å ÎKi i yuH ),( – c (u* – u) + [z(u* ) – z(u)] – j(y)]. Theorem. The compromise set is not empty iff F* 0 ³ å Î F Ki i * . ECOLOGY VS ECONOMY Territory Government Industry Enterprise
  • 69. 1. HISTORY AND TRENDS OF CONTROL THEORY 2. HIERARCHICAL AND NETWORKED MODELS 3. INTERDISCIPLINARY CONTROL MODELS 4. EMPHASIS OF RECENT CONFERENCES 5. MULTIAGENT SYSTEMS: SPECIFICITY AND ARCHITECTURE OF AN AGENT 6. HIERARCHICAL MODELS (EXAMLES): - Diffusive bomb - Social networks - Combat modeling 7. SOME TRENDS IN NETWORKED AND HIERARCHICAL MODELING 8. CONTROL THEORY: ANTI-INTUITIVE RESULTS (EXAMPLES) - Optimization of hierarchies - Labor supply - Ecology VS Economy - Is truthtelling profitable? - Hierarchical automatization 9. PAST, PRESENT AND FUTURE OF CONTROL THEORY PLAN
  • 70. The problem of project’s duration reduction Model: D – the required reduction of project duration; yi – the required reduction of i-th operation duration; xi – plan of reduction of i- th operation duration; ri – «efficiency» of i-th agent; N – set of agents (operations); ci (yi, ri) = ri j (yi / ri) – costs function of i-th agent; l – rate of payment for the reduction of project duration; fi (yi, ri) = l yi – ci (yi, ri) – agent’s goal function; s = (s1, s2, ..., sn) – agents’ message; Theorem. The procedure of decision-making xi (D, s) = V si D, l (D, s) = j' (D / V), where V = å ÎNi is , is straightforward, minimizes total costs and allows any decentralization. Procedures of decision-making (examples): manipulable non-manipulable IS TRUTH-TELLING PROFITABLE?
  • 71. 1. HISTORY AND TRENDS OF CONTROL THEORY 2. HIERARCHICAL AND NETWORKED MODELS 3. INTERDISCIPLINARY CONTROL MODELS 4. EMPHASIS OF RECENT CONFERENCES 5. MULTIAGENT SYSTEMS: SPECIFICITY AND ARCHITECTURE OF AN AGENT 6. HIERARCHICAL MODELS (EXAMLES): - Diffusive bomb - Social networks - Combat modeling 7. SOME TRENDS IN NETWORKED AND HIERARCHICAL MODELING 8. CONTROL THEORY: ANTI-INTUITIVE RESULTS (EXAMPLES) - Optimization of hierarchies - Labor supply - Ecology VS Economy - Is truthtelling profitable? - Hierarchical automatization 9. PAST, PRESENT AND FUTURE OF CONTROL THEORY PLAN
  • 72. HIERARCHICAL AUTOMATIZATION INFORMATIONAL SYSTEMS OLAP, BSC, DSS ERP MES SCM, CRM, PMS MRP2 MRP, CRP SCADA, DCS PLC, MicroPC Finances, material resources, personnel MRP2 MRP, CRP SCADA,DCS PLC, MicroPC INFORMATIONAL SYSTEMS Control of TS «Optimization » Control of OS OLAP, BSC, DSS ERP MES SCM, CRM, PMS ? ?…
  • 73. 1. HISTORY AND TRENDS OF CONTROL THEORY 2. HIERARCHICAL AND NETWORKED MODELS 3. INTERDISCIPLINARY CONTROL MODELS 4. EMPHASIS OF RECENT CONFERENCES 5. MULTIAGENT SYSTEMS: SPECIFICITY AND ARCHITECTURE OF AN AGENT 6. HIERARCHICAL MODELS (EXAMLES): - Diffusive bomb - Social networks - Combat modeling 7. SOME TRENDS IN NETWORKED AND HIERARCHICAL MODELING 8. CONTROL THEORY: ANTI-INTUITIVE RESULTS (EXAMPLES) - Optimization of hierarchies - Labor supply - Ecology VS Economy - Is truthtelling profitable? - Hierarchical automatization 9. PAST, PRESENT AND FUTURE OF CONTROL THEORY PLAN
  • 74. PAST, PRESENT AND FUTURE OF CONTROL THEORY (objects of control) 1860-е 1900 1930 1940 1950 1960 1970 1980 1990 2000 2010 2020 … Mechanical systems Technical systems Organizational and informational systems Decentralized intellectual systems t - Technical systems - Economical systems - Ecological systems - Live systems - Social systems ??? Степеньдостиженияпоставленныхцелей
  • 75. «Relevancy» “Application field” «UNCERTAINTY» PRINCIPLE («Application field») x («Relevancy») £ Const Mathematics Psyghology, Sociology, Pedagogy Economics Biology Chemesrty Physics “Weak” sciences “Strong” sciences CONTROL THEORY LIMITS OF SCIENCE