SlideShare a Scribd company logo
1 of 7
Download to read offline
B.Sc.III, Sem-VI:Unit-I
Biotechnology: Types, Examples and Applications
Authored By: Dr. Rajendra Chavhan, Department of Zoology, RMG College Nagbhid
WHAT IS BIOTECHNOLOGY?
Biotechnology is the use of biological systems found in organisms or the use of the living
organisms themselves to make technological advances and adapt those technologies to various
fields. These include applications in multiple fields, from agricultural practice to the medical
sector. It does not only include applications in fields that involve the living but also any other
field where the information obtained from the biological aspect of an organism can be applied.
Biotechnology is particularly vital when it comes to the development of minuscule and
chemical tools, as many of the tools biotechnology uses exist at the cellular level. In a bid to
understand more regarding biotechnology, here are its types, examples, and applications.
According to the Biotechnology Innovation Organization,
“Biotechnology is technology based on biology – biotechnology harnesses cellular and
biomolecular processes to develop technologies and products that help improve our lives and
the health of our planet. We have used the biological processes of microorganisms for more
than 6,000 years to make useful food products, such as bread and cheese, and to preserve dairy
products.”
TYPES OF BIOTECHNOLOGY
1. MEDICAL BIOTECHNOLOGY
Medical biotechnology is the use of living cells and other cell materials to better the health of
humans. Primarily, it is used for finding cures as well as getting rid of and preventing diseases.
The science involved includes the use of these tools for research to find different or more
efficient ways of maintaining human health, understanding pathogens, and understanding
human cell biology.
Here, the technique is used to produce pharmaceutical drugs as well as other chemicals to
combat diseases. It involves the study of bacteria, plant & animal cells, to first understand the
way they function at a fundamental level.
It heavily involves the study of DNA (Deoxyribonucleic acid) to get to know how to manipulate
the genetic makeup of cells to increase the production of beneficial characteristics that humans
might find useful, such as the production of insulin.
The field usually leads to the development of new drugs and treatments, novel to the field.
EXAMPLES OF MEDICAL BIOTECHNOLOGY
Vaccines
Vaccines are chemicals that stimulate the body’s immune system to better fight pathogens
when they attack the body. They achieve this by inserting attenuated (weakened) versions of
the disease into the body’s bloodstream.
It causes the body to react as if it was under attack from the non-attenuated version of the
disease. The body combats the weakened pathogens and, through the process, takes note of the
cell structure of the pathogens and has some cells that ‘remember’ the disease and store away
the information within the body.
When the individual becomes exposed to the actual disease, the body of the individual
immediately recognizes it and quickly forms a defense against it since it already has some
information on it. This translates to quicker healing and less time being symptomatic.
The attenuated disease pathogens are extracted using biotechnological techniques such as
growing the antigenic proteins in genetically engineered crops. An example is the development
of an anti-lymphoma vaccine using genetically engineered tobacco plants made to exhibit RNA
(a similar chemical to DNA) from malignant (actively cancerous) B-cells.
Antibiotics
Strides have been made in the development of antibiotics that combat pathogens for humans.
Many plants are grown and genetically engineered to produce the antibodies.
The method is more cost-effective than using cells or extracting these antibodies from animals
as the plants can produce these antibodies in larger quantities.
2. AGRICULTURAL BIOTECHNOLOGY
Agricultural biotechnology focuses on developing genetically modified plants to increase crop
yields or introduce characteristics to those plants that provide them with an advantage growing
in regions that place some kind of stress factor on the plant, namely weather, and pests.
In some of the cases, the practice involves scientists identifying a characteristic, finding the
gene that causes it, and then putting that gene within another plant so that it gains that desirable
characteristic, making it more durable or having it produce larger yields than it previously did.
Examples of Agricultural Biotechnology
Pest Resistant Crops
Biotechnology has provided techniques for the creation of crops that express anti-pest
characteristics naturally, making them very resistant to pests, as opposed to having to keep
dusting them and spraying them with pesticides. An example of this would be the
fungus Bacillus thuringiensis genes being transferred to crops.
The reason for this is that the fungus produces a protein (Bt), which is very effective against
pests such as the European corn borer. The Bt protein is the desired characteristic scientist
would like the plants to have, and for this reason, they identified the gene causing Bt protein to
express in the fungus and transferred it to corn.
The corn then produces the protein toxin naturally, lowering the cost of production by
eliminating the cost of dusting the crop with pesticide.
Plant and Animal Breeding
Selective breeding has been a practice humans have engaged in since farming began. The
practice involves choosing the animals with the most desirable characteristics to breed with
each other so that the resulting offspring would also express these traits.
Desirable characteristics included larger animals, animals more resistant to disease, and more
domicile animals, all geared to making the process of farming as profitable as possible.
This practice has been transferred to the molecular level with the same purpose. Different traits
are selected among the animals, and once the genetic markers have been pointed out, animals
and plants with those traits are selected and bred for those traits to be transferred.
A genomic understanding of those traits is what informs the decisions on whether the desired
traits will express or get lost as recessive traits that do not show.
Such information provides the basis for making informed decisions enhancing the capability
of the scientists to predict the expression of those genes. An example is its use in flower
production, where traits such as color and smell potency are enhanced.
3. INDUSTRIAL BIOTECHNOLOGY
Industrial biotechnology is the application of biotechnology for industrial purposes that also
include industrial fermentation. Applying the techniques of modern molecular biology, it
improves efficiency and reduces the multifaceted environmental impacts of industrial
processes including paper and pulp, chemical manufacturing, and textile.
It includes the practice of using cells such as microorganisms, or components of cells
like enzymes, to generate products in sectors that are industrially useful, such as food and feed,
chemicals, detergents, paper and pulp, textiles, biofuels, and biogas.
In the current decade, significant progress has been made in creating genetically modified
organisms (GMOs) that enhance the diversity of applications and the economic viability of
industrial biotechnology.
It is also actively advancing towards lowering greenhouse gas emissions by using renewable
raw materials to produce a variety of chemicals and fuels and moving away from a
petrochemical-based economy.
Examples of Industrial Biotechnology
Biocatalysts
Biocatalysts have been developed by the industrial biotechnology companies such as enzymes,
to synthesize chemicals. Enzymes are proteins produced by all organisms. The desired enzyme
can be manufactured in commercial quantities using biotechnology.
Fermentation
The crop’s sugar can be fermented to acid, which can then be used as an intermediate to produce
other chemical feedstocks for various products. Some plants, such as corn, can be used in place
of petroleum to produce chemicals.
Microorganisms
Microorganisms find their use in chemical production for the design and manufacture of new
plastics/textiles and the development of new sustainable energy sources such as biofuels.
4. ENVIRONMENTAL BIOTECHNOLOGY
Environmental biotechnology is the technology used in waste treatment and pollution
prevention that can more efficiently clean up many wastes compared to conventional methods
and significantly reduce our dependence on methods for land-based disposal.
Every organism ingests nutrients to live and produces byproducts as a result. But, different
organisms need different types of nutrients. Some bacteria also thrive on the chemical
components of waste products.
Environmental engineers introduce nutrients to stimulate the activity of bacteria that already
exists in the soil at a waste site or add new bacteria to the soil. The bacteria help in digesting
the waste right at the site, thereby turning it into harmless byproducts.
After consuming the waste materials, the bacteria either die off or return to their normal
population levels in the environment. There are cases where the byproducts of the pollution-
fighting microorganisms are themselves useful.
Examples of Environmental Biotechnology
Bioremediation
Bioremediation refers to the application of biotechnical methods which help in developing
enzyme bioreactors that will not only pretreat some industrial and food waste components but
also allow their efficient removal via sewage system without using solid waste
disposal mechanisms.
COLOR CLASSIFICATION OF BRANCHES OF BIOTECHNOLOGY
Gold biotechnology or Bioinformatics referred to as computational biology and can be
defined as “conceptualizing biology” to address biological problems using computational
techniques and makes the rapid organization as well as analysis of biological data possible.
Red Biotechnology (Biopharma) relates to medicine and veterinary products. It can help
developing new drugs, regenerative therapies, produce vaccines and antibiotics, molecular
diagnostics techniques, and genetic engineering techniques to cure diseases applying genetic
manipulation.
White Biotechnology draws inspiration from industrial biotech to design more energy-
efficient, less polluting, and low resource-consuming processes and products that can beat
traditional ones.
Yellow Biotechnology relates to the use of biotechnology in food production, for example, in
making wine, cheese, and beer by fermentation.
Grey Biotechnology refers to environmental applications to maintain biodiversity and the
removal of pollutants or contaminants using microorganisms and plants to isolate and dispose
of many kinds of substances such as heavy metals and hydrocarbons.
Green Biotechnology emphasizes on agriculture that involves creating new plant varieties of
agricultural interest, biopesticides, and biofertilizers.
This area of biotech is exclusively based on transgenics (genetic modification), i.e., an extra
gene or genes inserted into their DNA. The additional gene may come from the same species
or a different species.
Blue Biotechnology is based on the use of marine resources to create products and applications
in the potentially huge range of sectors to benefit from the use of this kind of biotechnology.
Violet Biotechnology deals with the law, ethical and philosophical issues around
biotechnology.
Dark Biotechnology is associated with bioterrorism or biological weapons and biowarfare
using microorganisms, and toxins to cause diseases and death in humans, domestic animals,
and crops.
1. Nutrient Supplementation
One of the most important uses of biotechnology is the infusion of nutrients into food in
situations such as aid. Therefore, it provides food with heavy nutrients that are necessary for
such circumstances.
An example of this application is the production Golden Rice where the rice is infused with
beta-carotene. The rice has Vitamin A, which the body can quickly synthesize.
2. Abiotic Stress Resistance
There is actually very little land on earth that is arable, with some estimates that place it at
around 20 percent. With an increase in the world’s population, there is a need for the food
sources available to be as effective as possible to produce as much food in as little space as
possible. There is also a need to have the crops grown to be able to make use of the less arable
regions of the world.
It means that there is a need to develop crops that can handle these abiotic stresses such as
salinity, drought, and frost from cold.
In Africa and the Middle East, for instance, where the climate can be unforgiving, the practice
has played a significant role in the development of crops that can withstand the prevailing harsh
climates.
3. Industrial Biotechnology
Industrial biotechnology is the application of biotechnology that ranges from the production of
cellular structures to the production of biological elements for numerous uses.
Examples include the creation of new materials in the construction industry, and the
manufacture of beer and wine, washing detergents, and personal care products.
4. Strength Fibres
One of the materials with the strongest tensile strength is spider webs. Amongst other materials
with the same cross-sectional width, spider webs can take more tensional force before breaking
than even steel.
This silk has created much interest in the possible production of materials made from silk,
including body armor such as bulletproof jackets. Silk is used because it is stronger than Kevlar
(the material most commonly used to make body armor).
Biotechnology is allowing this to happen with advances such as using corn to produce
combustible fuel for running car engines. These fuels are good for the environment as they do
not produce greenhouse gases.
6. Healthcare
Biotechnology is applied in the healthcare sector in the development of pharmaceuticals that
have proven problematic to produce through other conventional means because of purity
concerns.
7. Food Processing
The method of fermentation using the microbial organisms and their derivatives is applied by
which raw materials that are non-palatable and easily perishable are converted to edible and
potable foods and beverages, which have a longer shelf life.
8. Fuel from Waste
Applying bioremediation waste can be converted to biofuel to run generators. Microbes can be
induced to produce enzymes required to turn plant and vegetable materials into building blocks
for biodegradable plastics.
Methane can be derived from a type of bacteria that degrades sulfur liquor, which is a waste
product of the paper manufacturing industry. The resultant methane can be utilized in other
industrial processes or as fuel.
9. Commodity Chemicals and Specialty Chemicals
These can be produced using biotech applications. Traditional chemical synthesis uses often-
undesirable products, such as HCl, and involves large amounts of energy.
The production of the same chemicals can be done more economically and made more
environmentally friendly using biocatalysts. E.g., Polymer-grade acrylamide.
10. Hi-Tech Finishing Fabrics
Biotechnology is used in the textile industry for the finishing of fabrics and garments. It
produces biotech-derived cotton, which is warmer, stronger, wrinkle & shrink-resistant and has
improved dye uptake and retention, enhanced absorbency.
11. Detergent Proteases
These are essential components of modern detergents that remove protein impurities and are
used for breaking down starch, protein, and fatty acids present on items being washed. The
production of protease results in biomass that, in turn, yields a useful byproduct, an organic
fertilizer.
12. Wound Dressings
It is also applied to the use of wound dressings coated with Chitosan, which is a sugar that is
typically obtained from shrimp and crab shells.

More Related Content

What's hot

Genetically modified organisms(gmo's)
Genetically modified organisms(gmo's)Genetically modified organisms(gmo's)
Genetically modified organisms(gmo's)
jeffrey
 

What's hot (20)

Bt cotton
Bt cottonBt cotton
Bt cotton
 
Niranjay,,,microial pest
Niranjay,,,microial pestNiranjay,,,microial pest
Niranjay,,,microial pest
 
Transgenesis by Dr.Ashwini J. Patel-Gujarat
Transgenesis by Dr.Ashwini J. Patel-GujaratTransgenesis by Dr.Ashwini J. Patel-Gujarat
Transgenesis by Dr.Ashwini J. Patel-Gujarat
 
Genetic engineering- Vincent
Genetic engineering- VincentGenetic engineering- Vincent
Genetic engineering- Vincent
 
Bio-control agents: Insecticidal toxins of Bacillus thuringiensis
Bio-control agents:Insecticidal toxins of Bacillus thuringiensisBio-control agents:Insecticidal toxins of Bacillus thuringiensis
Bio-control agents: Insecticidal toxins of Bacillus thuringiensis
 
Ecological impact of genetic crops
Ecological impact of genetic cropsEcological impact of genetic crops
Ecological impact of genetic crops
 
Bt brinjal controversy
Bt brinjal controversyBt brinjal controversy
Bt brinjal controversy
 
Agriculture microbiology
Agriculture microbiologyAgriculture microbiology
Agriculture microbiology
 
HERBICIDES RESISTANCE PLANTS
HERBICIDES RESISTANCE PLANTSHERBICIDES RESISTANCE PLANTS
HERBICIDES RESISTANCE PLANTS
 
Plant Breeding Systems
Plant Breeding SystemsPlant Breeding Systems
Plant Breeding Systems
 
MAJOR BIO-FUEL CROPS AND THEIR USES
 MAJOR BIO-FUEL CROPS AND THEIR USES  MAJOR BIO-FUEL CROPS AND THEIR USES
MAJOR BIO-FUEL CROPS AND THEIR USES
 
Biopesticides
BiopesticidesBiopesticides
Biopesticides
 
Water Pollution and its control through biotechnology
Water Pollution and its control through biotechnologyWater Pollution and its control through biotechnology
Water Pollution and its control through biotechnology
 
Application of Genetic Engineering in Crop Improvement through Transgenesis
Application of Genetic Engineering in Crop Improvement through TransgenesisApplication of Genetic Engineering in Crop Improvement through Transgenesis
Application of Genetic Engineering in Crop Improvement through Transgenesis
 
Biofertilizer vp
Biofertilizer vpBiofertilizer vp
Biofertilizer vp
 
How Golden Rice is Made.
How Golden Rice is Made.How Golden Rice is Made.
How Golden Rice is Made.
 
Genetically modified organisms(gmo's)
Genetically modified organisms(gmo's)Genetically modified organisms(gmo's)
Genetically modified organisms(gmo's)
 
genetically modified organism (GMO)
 genetically modified organism (GMO) genetically modified organism (GMO)
genetically modified organism (GMO)
 
07 基因工程產品
07 基因工程產品07 基因工程產品
07 基因工程產品
 
Bt cotton
Bt cottonBt cotton
Bt cotton
 

Similar to What is Biotechnology.pdf

What's Biotechnology Anyway?
What's Biotechnology Anyway?What's Biotechnology Anyway?
What's Biotechnology Anyway?
priceocean25
 
Applications of biotechnology
Applications of biotechnologyApplications of biotechnology
Applications of biotechnology
Fyzah Bashir
 

Similar to What is Biotechnology.pdf (20)

Biotechnology
BiotechnologyBiotechnology
Biotechnology
 
Biotechnology
BiotechnologyBiotechnology
Biotechnology
 
Biotechnology
BiotechnologyBiotechnology
Biotechnology
 
Biotechnology
BiotechnologyBiotechnology
Biotechnology
 
Applications of Biotechnology
Applications of BiotechnologyApplications of Biotechnology
Applications of Biotechnology
 
Biotechnology
Biotechnology Biotechnology
Biotechnology
 
unit 1 SCOPE OF BIOTECHNOLOGY .pdf
unit 1 SCOPE OF BIOTECHNOLOGY .pdfunit 1 SCOPE OF BIOTECHNOLOGY .pdf
unit 1 SCOPE OF BIOTECHNOLOGY .pdf
 
Biotechnology and its types
Biotechnology and its typesBiotechnology and its types
Biotechnology and its types
 
Biotechnology a multidisciplinary field
Biotechnology a multidisciplinary fieldBiotechnology a multidisciplinary field
Biotechnology a multidisciplinary field
 
1. Introduction about biotechnology.pptx
1. Introduction about biotechnology.pptx1. Introduction about biotechnology.pptx
1. Introduction about biotechnology.pptx
 
What's Biotechnology Anyway?
What's Biotechnology Anyway?What's Biotechnology Anyway?
What's Biotechnology Anyway?
 
Applications of environmental biotechnology by Hameer Khan
Applications of environmental biotechnology by Hameer KhanApplications of environmental biotechnology by Hameer Khan
Applications of environmental biotechnology by Hameer Khan
 
Biotechnology and its history and scope.pptx
Biotechnology and its history and scope.pptxBiotechnology and its history and scope.pptx
Biotechnology and its history and scope.pptx
 
EMERGING TRENDS IN BIOTECHNOLOGY.pptx
EMERGING TRENDS IN BIOTECHNOLOGY.pptxEMERGING TRENDS IN BIOTECHNOLOGY.pptx
EMERGING TRENDS IN BIOTECHNOLOGY.pptx
 
Biotechnology.docx
Biotechnology.docxBiotechnology.docx
Biotechnology.docx
 
Lecture for biotech and uses
Lecture for biotech and usesLecture for biotech and uses
Lecture for biotech and uses
 
Applications of biotechnology
Applications of biotechnologyApplications of biotechnology
Applications of biotechnology
 
Introduction to Biotechnology.ppt
Introduction to Biotechnology.pptIntroduction to Biotechnology.ppt
Introduction to Biotechnology.ppt
 
Bio project.pdf
Bio project.pdfBio project.pdf
Bio project.pdf
 
Applications of Environmental biotechnology.pptx
Applications of Environmental biotechnology.pptxApplications of Environmental biotechnology.pptx
Applications of Environmental biotechnology.pptx
 

More from RajendraChavhan3

More from RajendraChavhan3 (18)

DNA Sequencing.pdf
DNA Sequencing.pdfDNA Sequencing.pdf
DNA Sequencing.pdf
 
-DNA Sequencing Notes.pdf
-DNA Sequencing Notes.pdf-DNA Sequencing Notes.pdf
-DNA Sequencing Notes.pdf
 
DNA Microarray notes.pdf
DNA Microarray notes.pdfDNA Microarray notes.pdf
DNA Microarray notes.pdf
 
Western Blotting.pdf
Western Blotting.pdfWestern Blotting.pdf
Western Blotting.pdf
 
Southern, Western & Northern Bloting.pdf
Southern, Western & Northern Bloting.pdfSouthern, Western & Northern Bloting.pdf
Southern, Western & Northern Bloting.pdf
 
Southern Blotting.pdf
Southern Blotting.pdfSouthern Blotting.pdf
Southern Blotting.pdf
 
animal Tissue culture.pdf
animal Tissue culture.pdfanimal Tissue culture.pdf
animal Tissue culture.pdf
 
Animal Cell Culture.pdf
Animal Cell Culture.pdfAnimal Cell Culture.pdf
Animal Cell Culture.pdf
 
Biotecnology.pdf
 Biotecnology.pdf Biotecnology.pdf
Biotecnology.pdf
 
Notes on ART.pdf
Notes on ART.pdfNotes on ART.pdf
Notes on ART.pdf
 
MCQs on Techniques.pdf
MCQs on Techniques.pdfMCQs on Techniques.pdf
MCQs on Techniques.pdf
 
MCQs on DNA MicroArray.pdf
MCQs on DNA MicroArray.pdfMCQs on DNA MicroArray.pdf
MCQs on DNA MicroArray.pdf
 
MCQs on DNA Fingerprinting.pdf
MCQs on DNA Fingerprinting.pdfMCQs on DNA Fingerprinting.pdf
MCQs on DNA Fingerprinting.pdf
 
MCQs on Biotechnology.pdf
MCQs on Biotechnology.pdfMCQs on Biotechnology.pdf
MCQs on Biotechnology.pdf
 
-DNA Sequencing Notes.pdf
-DNA Sequencing Notes.pdf-DNA Sequencing Notes.pdf
-DNA Sequencing Notes.pdf
 
DNA Microarray notes.pdf
DNA Microarray notes.pdfDNA Microarray notes.pdf
DNA Microarray notes.pdf
 
linkage.pptx
linkage.pptxlinkage.pptx
linkage.pptx
 
EPISTASIS.pptx
EPISTASIS.pptxEPISTASIS.pptx
EPISTASIS.pptx
 

Recently uploaded

Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
ZurliaSoop
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
heathfieldcps1
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please Practise
AnaAcapella
 

Recently uploaded (20)

Interdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptxInterdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptx
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
 
The basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptxThe basics of sentences session 3pptx.pptx
The basics of sentences session 3pptx.pptx
 
How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17How to Give a Domain for a Field in Odoo 17
How to Give a Domain for a Field in Odoo 17
 
Micro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdfMicro-Scholarship, What it is, How can it help me.pdf
Micro-Scholarship, What it is, How can it help me.pdf
 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdf
 
Understanding Accommodations and Modifications
Understanding  Accommodations and ModificationsUnderstanding  Accommodations and Modifications
Understanding Accommodations and Modifications
 
On National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan FellowsOn National Teacher Day, meet the 2024-25 Kenan Fellows
On National Teacher Day, meet the 2024-25 Kenan Fellows
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptx
 
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...Kodo Millet  PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
Kodo Millet PPT made by Ghanshyam bairwa college of Agriculture kumher bhara...
 
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
 
Single or Multiple melodic lines structure
Single or Multiple melodic lines structureSingle or Multiple melodic lines structure
Single or Multiple melodic lines structure
 
Unit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptxUnit-V; Pricing (Pharma Marketing Management).pptx
Unit-V; Pricing (Pharma Marketing Management).pptx
 
Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024Mehran University Newsletter Vol-X, Issue-I, 2024
Mehran University Newsletter Vol-X, Issue-I, 2024
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
 
How to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxHow to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptx
 
FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024FSB Advising Checklist - Orientation 2024
FSB Advising Checklist - Orientation 2024
 
ICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptxICT Role in 21st Century Education & its Challenges.pptx
ICT Role in 21st Century Education & its Challenges.pptx
 
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdfUnit 3 Emotional Intelligence and Spiritual Intelligence.pdf
Unit 3 Emotional Intelligence and Spiritual Intelligence.pdf
 
Spellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please PractiseSpellings Wk 3 English CAPS CARES Please Practise
Spellings Wk 3 English CAPS CARES Please Practise
 

What is Biotechnology.pdf

  • 1. B.Sc.III, Sem-VI:Unit-I Biotechnology: Types, Examples and Applications Authored By: Dr. Rajendra Chavhan, Department of Zoology, RMG College Nagbhid WHAT IS BIOTECHNOLOGY? Biotechnology is the use of biological systems found in organisms or the use of the living organisms themselves to make technological advances and adapt those technologies to various fields. These include applications in multiple fields, from agricultural practice to the medical sector. It does not only include applications in fields that involve the living but also any other field where the information obtained from the biological aspect of an organism can be applied. Biotechnology is particularly vital when it comes to the development of minuscule and chemical tools, as many of the tools biotechnology uses exist at the cellular level. In a bid to understand more regarding biotechnology, here are its types, examples, and applications. According to the Biotechnology Innovation Organization, “Biotechnology is technology based on biology – biotechnology harnesses cellular and biomolecular processes to develop technologies and products that help improve our lives and the health of our planet. We have used the biological processes of microorganisms for more than 6,000 years to make useful food products, such as bread and cheese, and to preserve dairy products.” TYPES OF BIOTECHNOLOGY 1. MEDICAL BIOTECHNOLOGY Medical biotechnology is the use of living cells and other cell materials to better the health of humans. Primarily, it is used for finding cures as well as getting rid of and preventing diseases. The science involved includes the use of these tools for research to find different or more efficient ways of maintaining human health, understanding pathogens, and understanding human cell biology. Here, the technique is used to produce pharmaceutical drugs as well as other chemicals to combat diseases. It involves the study of bacteria, plant & animal cells, to first understand the way they function at a fundamental level. It heavily involves the study of DNA (Deoxyribonucleic acid) to get to know how to manipulate the genetic makeup of cells to increase the production of beneficial characteristics that humans might find useful, such as the production of insulin. The field usually leads to the development of new drugs and treatments, novel to the field.
  • 2. EXAMPLES OF MEDICAL BIOTECHNOLOGY Vaccines Vaccines are chemicals that stimulate the body’s immune system to better fight pathogens when they attack the body. They achieve this by inserting attenuated (weakened) versions of the disease into the body’s bloodstream. It causes the body to react as if it was under attack from the non-attenuated version of the disease. The body combats the weakened pathogens and, through the process, takes note of the cell structure of the pathogens and has some cells that ‘remember’ the disease and store away the information within the body. When the individual becomes exposed to the actual disease, the body of the individual immediately recognizes it and quickly forms a defense against it since it already has some information on it. This translates to quicker healing and less time being symptomatic. The attenuated disease pathogens are extracted using biotechnological techniques such as growing the antigenic proteins in genetically engineered crops. An example is the development of an anti-lymphoma vaccine using genetically engineered tobacco plants made to exhibit RNA (a similar chemical to DNA) from malignant (actively cancerous) B-cells. Antibiotics Strides have been made in the development of antibiotics that combat pathogens for humans. Many plants are grown and genetically engineered to produce the antibodies. The method is more cost-effective than using cells or extracting these antibodies from animals as the plants can produce these antibodies in larger quantities. 2. AGRICULTURAL BIOTECHNOLOGY Agricultural biotechnology focuses on developing genetically modified plants to increase crop yields or introduce characteristics to those plants that provide them with an advantage growing in regions that place some kind of stress factor on the plant, namely weather, and pests. In some of the cases, the practice involves scientists identifying a characteristic, finding the gene that causes it, and then putting that gene within another plant so that it gains that desirable characteristic, making it more durable or having it produce larger yields than it previously did. Examples of Agricultural Biotechnology Pest Resistant Crops Biotechnology has provided techniques for the creation of crops that express anti-pest characteristics naturally, making them very resistant to pests, as opposed to having to keep
  • 3. dusting them and spraying them with pesticides. An example of this would be the fungus Bacillus thuringiensis genes being transferred to crops. The reason for this is that the fungus produces a protein (Bt), which is very effective against pests such as the European corn borer. The Bt protein is the desired characteristic scientist would like the plants to have, and for this reason, they identified the gene causing Bt protein to express in the fungus and transferred it to corn. The corn then produces the protein toxin naturally, lowering the cost of production by eliminating the cost of dusting the crop with pesticide. Plant and Animal Breeding Selective breeding has been a practice humans have engaged in since farming began. The practice involves choosing the animals with the most desirable characteristics to breed with each other so that the resulting offspring would also express these traits. Desirable characteristics included larger animals, animals more resistant to disease, and more domicile animals, all geared to making the process of farming as profitable as possible. This practice has been transferred to the molecular level with the same purpose. Different traits are selected among the animals, and once the genetic markers have been pointed out, animals and plants with those traits are selected and bred for those traits to be transferred. A genomic understanding of those traits is what informs the decisions on whether the desired traits will express or get lost as recessive traits that do not show. Such information provides the basis for making informed decisions enhancing the capability of the scientists to predict the expression of those genes. An example is its use in flower production, where traits such as color and smell potency are enhanced. 3. INDUSTRIAL BIOTECHNOLOGY Industrial biotechnology is the application of biotechnology for industrial purposes that also include industrial fermentation. Applying the techniques of modern molecular biology, it improves efficiency and reduces the multifaceted environmental impacts of industrial processes including paper and pulp, chemical manufacturing, and textile. It includes the practice of using cells such as microorganisms, or components of cells like enzymes, to generate products in sectors that are industrially useful, such as food and feed, chemicals, detergents, paper and pulp, textiles, biofuels, and biogas. In the current decade, significant progress has been made in creating genetically modified organisms (GMOs) that enhance the diversity of applications and the economic viability of industrial biotechnology.
  • 4. It is also actively advancing towards lowering greenhouse gas emissions by using renewable raw materials to produce a variety of chemicals and fuels and moving away from a petrochemical-based economy. Examples of Industrial Biotechnology Biocatalysts Biocatalysts have been developed by the industrial biotechnology companies such as enzymes, to synthesize chemicals. Enzymes are proteins produced by all organisms. The desired enzyme can be manufactured in commercial quantities using biotechnology. Fermentation The crop’s sugar can be fermented to acid, which can then be used as an intermediate to produce other chemical feedstocks for various products. Some plants, such as corn, can be used in place of petroleum to produce chemicals. Microorganisms Microorganisms find their use in chemical production for the design and manufacture of new plastics/textiles and the development of new sustainable energy sources such as biofuels. 4. ENVIRONMENTAL BIOTECHNOLOGY Environmental biotechnology is the technology used in waste treatment and pollution prevention that can more efficiently clean up many wastes compared to conventional methods and significantly reduce our dependence on methods for land-based disposal. Every organism ingests nutrients to live and produces byproducts as a result. But, different organisms need different types of nutrients. Some bacteria also thrive on the chemical components of waste products. Environmental engineers introduce nutrients to stimulate the activity of bacteria that already exists in the soil at a waste site or add new bacteria to the soil. The bacteria help in digesting the waste right at the site, thereby turning it into harmless byproducts. After consuming the waste materials, the bacteria either die off or return to their normal population levels in the environment. There are cases where the byproducts of the pollution- fighting microorganisms are themselves useful. Examples of Environmental Biotechnology Bioremediation Bioremediation refers to the application of biotechnical methods which help in developing enzyme bioreactors that will not only pretreat some industrial and food waste components but
  • 5. also allow their efficient removal via sewage system without using solid waste disposal mechanisms. COLOR CLASSIFICATION OF BRANCHES OF BIOTECHNOLOGY Gold biotechnology or Bioinformatics referred to as computational biology and can be defined as “conceptualizing biology” to address biological problems using computational techniques and makes the rapid organization as well as analysis of biological data possible. Red Biotechnology (Biopharma) relates to medicine and veterinary products. It can help developing new drugs, regenerative therapies, produce vaccines and antibiotics, molecular diagnostics techniques, and genetic engineering techniques to cure diseases applying genetic manipulation. White Biotechnology draws inspiration from industrial biotech to design more energy- efficient, less polluting, and low resource-consuming processes and products that can beat traditional ones. Yellow Biotechnology relates to the use of biotechnology in food production, for example, in making wine, cheese, and beer by fermentation. Grey Biotechnology refers to environmental applications to maintain biodiversity and the removal of pollutants or contaminants using microorganisms and plants to isolate and dispose of many kinds of substances such as heavy metals and hydrocarbons. Green Biotechnology emphasizes on agriculture that involves creating new plant varieties of agricultural interest, biopesticides, and biofertilizers. This area of biotech is exclusively based on transgenics (genetic modification), i.e., an extra gene or genes inserted into their DNA. The additional gene may come from the same species or a different species. Blue Biotechnology is based on the use of marine resources to create products and applications in the potentially huge range of sectors to benefit from the use of this kind of biotechnology. Violet Biotechnology deals with the law, ethical and philosophical issues around biotechnology. Dark Biotechnology is associated with bioterrorism or biological weapons and biowarfare using microorganisms, and toxins to cause diseases and death in humans, domestic animals, and crops. 1. Nutrient Supplementation One of the most important uses of biotechnology is the infusion of nutrients into food in situations such as aid. Therefore, it provides food with heavy nutrients that are necessary for such circumstances.
  • 6. An example of this application is the production Golden Rice where the rice is infused with beta-carotene. The rice has Vitamin A, which the body can quickly synthesize. 2. Abiotic Stress Resistance There is actually very little land on earth that is arable, with some estimates that place it at around 20 percent. With an increase in the world’s population, there is a need for the food sources available to be as effective as possible to produce as much food in as little space as possible. There is also a need to have the crops grown to be able to make use of the less arable regions of the world. It means that there is a need to develop crops that can handle these abiotic stresses such as salinity, drought, and frost from cold. In Africa and the Middle East, for instance, where the climate can be unforgiving, the practice has played a significant role in the development of crops that can withstand the prevailing harsh climates. 3. Industrial Biotechnology Industrial biotechnology is the application of biotechnology that ranges from the production of cellular structures to the production of biological elements for numerous uses. Examples include the creation of new materials in the construction industry, and the manufacture of beer and wine, washing detergents, and personal care products. 4. Strength Fibres One of the materials with the strongest tensile strength is spider webs. Amongst other materials with the same cross-sectional width, spider webs can take more tensional force before breaking than even steel. This silk has created much interest in the possible production of materials made from silk, including body armor such as bulletproof jackets. Silk is used because it is stronger than Kevlar (the material most commonly used to make body armor). Biotechnology is allowing this to happen with advances such as using corn to produce combustible fuel for running car engines. These fuels are good for the environment as they do not produce greenhouse gases. 6. Healthcare Biotechnology is applied in the healthcare sector in the development of pharmaceuticals that have proven problematic to produce through other conventional means because of purity concerns.
  • 7. 7. Food Processing The method of fermentation using the microbial organisms and their derivatives is applied by which raw materials that are non-palatable and easily perishable are converted to edible and potable foods and beverages, which have a longer shelf life. 8. Fuel from Waste Applying bioremediation waste can be converted to biofuel to run generators. Microbes can be induced to produce enzymes required to turn plant and vegetable materials into building blocks for biodegradable plastics. Methane can be derived from a type of bacteria that degrades sulfur liquor, which is a waste product of the paper manufacturing industry. The resultant methane can be utilized in other industrial processes or as fuel. 9. Commodity Chemicals and Specialty Chemicals These can be produced using biotech applications. Traditional chemical synthesis uses often- undesirable products, such as HCl, and involves large amounts of energy. The production of the same chemicals can be done more economically and made more environmentally friendly using biocatalysts. E.g., Polymer-grade acrylamide. 10. Hi-Tech Finishing Fabrics Biotechnology is used in the textile industry for the finishing of fabrics and garments. It produces biotech-derived cotton, which is warmer, stronger, wrinkle & shrink-resistant and has improved dye uptake and retention, enhanced absorbency. 11. Detergent Proteases These are essential components of modern detergents that remove protein impurities and are used for breaking down starch, protein, and fatty acids present on items being washed. The production of protease results in biomass that, in turn, yields a useful byproduct, an organic fertilizer. 12. Wound Dressings It is also applied to the use of wound dressings coated with Chitosan, which is a sugar that is typically obtained from shrimp and crab shells.