SlideShare a Scribd company logo
1 of 76
Download to read offline
Constrained DFT
(CDFT) in CP2K
CP2K UK User Meeting 2018, January 12
Nico Holmberg
Contents
• Introduction: what is CDFT and why use it?
• Theoretical basis of CDFT in brief
• CDFT implementation in CP2K
o Algorithmic framework
o Overview of features using examples
• Summary
12.1.2018
2
Introduction
• CDFT allows creation of charge and spin localized states
12.1.2018
3
Introduction
• CDFT allows creation of charge and spin localized states
• Why are such states needed?
12.1.2018
3
Introduction
• CDFT allows creation of charge and spin localized states
• Why are such states needed?
o Charge transfer phenomena
12.1.2018
3
Introduction
• CDFT allows creation of charge and spin localized states
• Why are such states needed?
o Charge transfer phenomena
o Electronic couplings (key role in charge transfer kinetics)
12.1.2018
3
Introduction
• CDFT allows creation of charge and spin localized states
• Why are such states needed?
o Charge transfer phenomena
o Electronic couplings (key role in charge transfer kinetics)
o Treating self-interaction error due to spurious electron delocalization
12.1.2018
3
Introduction
• CDFT allows creation of charge and spin localized states
• Why are such states needed?
o Charge transfer phenomena
o Electronic couplings (key role in charge transfer kinetics)
o Treating self-interaction error due to spurious electron delocalization
o Parametrizing model Hamiltonians (e.g. Heisenberg spin Hamiltonian)
12.1.2018
3
Introduction
• CDFT allows creation of charge and spin localized states
• Why are such states needed?
o Charge transfer phenomena
o Electronic couplings (key role in charge transfer kinetics)
o Treating self-interaction error due to spurious electron delocalization
o Parametrizing model Hamiltonians (e.g. Heisenberg spin Hamiltonian)
o And more… [1]
1. Kaduk, B.; Kowalczyk, T.; van Voorhis, T., Chem. Rev., 2012, 112, 321−370.
12.1.2018
3
Introduction
• CDFT allows creation of charge and spin localized states
• Why are such states needed?
o Charge transfer phenomena
o Electronic couplings (key role in charge transfer kinetics)
o Treating self-interaction error due to spurious electron delocalization
o Parametrizing model Hamiltonians (e.g. Heisenberg spin Hamiltonian)
o And more… [1]
• CDFT in CP2K [2] requires version 5.1 or newer
1. Kaduk, B.; Kowalczyk, T.; van Voorhis, T., Chem. Rev., 2012, 112, 321−370.
2. Holmberg, N.; Laasonen, K., J. Chem. Theory Comput., 2017, 13, 587−601. 12.1.2018
3
Generation of constrained states
• Enforce density localization in atom-centered regions with constraint
potential(s) [3,4]
𝐸𝐸CDFT 𝝀𝝀, 𝜌𝜌 = max
𝝀𝝀
min
𝜌𝜌
𝐸𝐸KS 𝜌𝜌 + �
𝑐𝑐
𝜆𝜆𝑐𝑐 �
𝑖𝑖=↑,↓
� 𝑤𝑤𝑐𝑐
𝑖𝑖
𝒓𝒓 𝜌𝜌𝑖𝑖
𝒓𝒓 𝑑𝑑𝒓𝒓 − 𝑁𝑁𝑐𝑐
10.1.2018
4
3. Wu, Q.; van Voorhis, T., Phys. Rev. A: At., Mol., Opt. Phys., 2005, 72, 024502.
4. Wu, Q.; van Voorhis, T., J. Chem. Theory Comput., 2006, 2, 765−774.
Generation of constrained states
• Enforce density localization in atom-centered regions with constraint
potential(s) [3,4]
𝐸𝐸CDFT 𝝀𝝀, 𝜌𝜌 = max
𝝀𝝀
min
𝜌𝜌
𝐸𝐸KS 𝜌𝜌 + �
𝑐𝑐
𝜆𝜆𝑐𝑐 �
𝑖𝑖=↑,↓
� 𝑤𝑤𝑐𝑐
𝑖𝑖
𝒓𝒓 𝜌𝜌𝑖𝑖
𝒓𝒓 𝑑𝑑𝒓𝒓 − 𝑁𝑁𝑐𝑐
10.1.2018
4
Weight
function
Lagrange multiplier (potential strength)
Target
value
3. Wu, Q.; van Voorhis, T., Phys. Rev. A: At., Mol., Opt. Phys., 2005, 72, 024502.
4. Wu, Q.; van Voorhis, T., J. Chem. Theory Comput., 2006, 2, 765−774.
Generation of constrained states
• Enforce density localization in atom-centered regions with constraint
potential(s) [3,4]
𝐸𝐸CDFT 𝝀𝝀, 𝜌𝜌 = max
𝝀𝝀
min
𝜌𝜌
𝐸𝐸KS 𝜌𝜌 + �
𝑐𝑐
𝜆𝜆𝑐𝑐 �
𝑖𝑖=↑,↓
� 𝑤𝑤𝑐𝑐
𝑖𝑖
𝒓𝒓 𝜌𝜌𝑖𝑖
𝒓𝒓 𝑑𝑑𝒓𝒓 − 𝑁𝑁𝑐𝑐
• Weight function defines the type of constraint
10.1.2018
4
Weight
function
Lagrange multiplier (potential strength)
Target
value
3. Wu, Q.; van Voorhis, T., Phys. Rev. A: At., Mol., Opt. Phys., 2005, 72, 024502.
4. Wu, Q.; van Voorhis, T., J. Chem. Theory Comput., 2006, 2, 765−774.
Generation of constrained states
• Enforce density localization in atom-centered regions with constraint
potential(s) [3,4]
𝐸𝐸CDFT 𝝀𝝀, 𝜌𝜌 = max
𝝀𝝀
min
𝜌𝜌
𝐸𝐸KS 𝜌𝜌 + �
𝑐𝑐
𝜆𝜆𝑐𝑐 �
𝑖𝑖=↑,↓
� 𝑤𝑤𝑐𝑐
𝑖𝑖
𝒓𝒓 𝜌𝜌𝑖𝑖
𝒓𝒓 𝑑𝑑𝒓𝒓 − 𝑁𝑁𝑐𝑐
• Weight function defines the type of constraint
o Total density constraint (𝜌𝜌↑
+ 𝜌𝜌↓
): 𝑤𝑤↑
= 𝑤𝑤↓
= 𝑤𝑤
10.1.2018
4
Weight
function
Lagrange multiplier (potential strength)
Target
value
3. Wu, Q.; van Voorhis, T., Phys. Rev. A: At., Mol., Opt. Phys., 2005, 72, 024502.
4. Wu, Q.; van Voorhis, T., J. Chem. Theory Comput., 2006, 2, 765−774.
Generation of constrained states
• Enforce density localization in atom-centered regions with constraint
potential(s) [3,4]
𝐸𝐸CDFT 𝝀𝝀, 𝜌𝜌 = max
𝝀𝝀
min
𝜌𝜌
𝐸𝐸KS 𝜌𝜌 + �
𝑐𝑐
𝜆𝜆𝑐𝑐 �
𝑖𝑖=↑,↓
� 𝑤𝑤𝑐𝑐
𝑖𝑖
𝒓𝒓 𝜌𝜌𝑖𝑖
𝒓𝒓 𝑑𝑑𝒓𝒓 − 𝑁𝑁𝑐𝑐
• Weight function defines the type of constraint
o Total density constraint (𝜌𝜌↑
+ 𝜌𝜌↓
): 𝑤𝑤↑
= 𝑤𝑤↓
= 𝑤𝑤
o Magnetization density constraint (𝜌𝜌↑
− 𝜌𝜌↓
): 𝑤𝑤↑
= −𝑤𝑤↓
= 𝑤𝑤
10.1.2018
4
Weight
function
Lagrange multiplier (potential strength)
Target
value
3. Wu, Q.; van Voorhis, T., Phys. Rev. A: At., Mol., Opt. Phys., 2005, 72, 024502.
4. Wu, Q.; van Voorhis, T., J. Chem. Theory Comput., 2006, 2, 765−774.
Generation of constrained states
• Enforce density localization in atom-centered regions with constraint
potential(s) [3,4]
𝐸𝐸CDFT 𝝀𝝀, 𝜌𝜌 = max
𝝀𝝀
min
𝜌𝜌
𝐸𝐸KS 𝜌𝜌 + �
𝑐𝑐
𝜆𝜆𝑐𝑐 �
𝑖𝑖=↑,↓
� 𝑤𝑤𝑐𝑐
𝑖𝑖
𝒓𝒓 𝜌𝜌𝑖𝑖
𝒓𝒓 𝑑𝑑𝒓𝒓 − 𝑁𝑁𝑐𝑐
• Weight function defines the type of constraint
o Total density constraint (𝜌𝜌↑
+ 𝜌𝜌↓
): 𝑤𝑤↑
= 𝑤𝑤↓
= 𝑤𝑤
o Magnetization density constraint (𝜌𝜌↑
− 𝜌𝜌↓
): 𝑤𝑤↑
= −𝑤𝑤↓
= 𝑤𝑤
o Spin specific constraint (𝜌𝜌↑): 𝑤𝑤↑ = 𝑤𝑤, 𝑤𝑤↓ = 0
10.1.2018
4
Weight
function
Lagrange multiplier (potential strength)
Target
value
3. Wu, Q.; van Voorhis, T., Phys. Rev. A: At., Mol., Opt. Phys., 2005, 72, 024502.
4. Wu, Q.; van Voorhis, T., J. Chem. Theory Comput., 2006, 2, 765−774.
CDFT weight function
• Constructed as sum of normalized
atomic weight functions
𝑤𝑤𝑐𝑐
𝑖𝑖
𝒓𝒓 = ��
𝑖𝑖∈𝒞𝒞
𝑐𝑐𝑖𝑖 𝑃𝑃𝑖𝑖(𝒓𝒓) �
𝑖𝑖
𝑁𝑁
𝑃𝑃𝑖𝑖(𝒓𝒓)
10.1.2018
5
CDFT weight function
• Constructed as sum of normalized
atomic weight functions
𝑤𝑤𝑐𝑐
𝑖𝑖
𝒓𝒓 = ��
𝑖𝑖∈𝒞𝒞
𝑐𝑐𝑖𝑖 𝑃𝑃𝑖𝑖(𝒓𝒓) �
𝑖𝑖
𝑁𝑁
𝑃𝑃𝑖𝑖(𝒓𝒓)
• CP2K uses Becke partitioning
o Smoothed Voronoi-like scheme
10.1.2018
5
CDFT weight function
• Constructed as sum of normalized
atomic weight functions
𝑤𝑤𝑐𝑐
𝑖𝑖
𝒓𝒓 = ��
𝑖𝑖∈𝒞𝒞
𝑐𝑐𝑖𝑖 𝑃𝑃𝑖𝑖(𝒓𝒓) �
𝑖𝑖
𝑁𝑁
𝑃𝑃𝑖𝑖(𝒓𝒓)
• CP2K uses Becke partitioning
o Smoothed Voronoi-like scheme
o Atomic sizes can be taken into account
(recommended)
10.1.2018
5
CDFT weight function
• Constructed as sum of normalized
atomic weight functions
𝑤𝑤𝑐𝑐
𝑖𝑖
𝒓𝒓 = ��
𝑖𝑖∈𝒞𝒞
𝑐𝑐𝑖𝑖 𝑃𝑃𝑖𝑖(𝒓𝒓) �
𝑖𝑖
𝑁𝑁
𝑃𝑃𝑖𝑖(𝒓𝒓)
• CP2K uses Becke partitioning
o Smoothed Voronoi-like scheme
o Atomic sizes can be taken into account
(recommended)
− E.g. oxygen has positive charge in water
without adjustment
10.1.2018
5
Optimization of the CDFT energy (1/2)
• Constraints are satisfied when
𝒄𝒄 𝝀𝝀 =
�
𝑖𝑖=↑,↓
� 𝑤𝑤1
𝑖𝑖
𝒓𝒓 𝜌𝜌𝑖𝑖
𝒓𝒓 𝑑𝑑𝑑𝑑 − 𝑁𝑁1
⋮
= 𝟎𝟎
10.1.2018
6
Optimization of the CDFT energy (1/2)
• Constraints are satisfied when
𝒄𝒄 𝝀𝝀 =
�
𝑖𝑖=↑,↓
� 𝑤𝑤1
𝑖𝑖
𝒓𝒓 𝜌𝜌𝑖𝑖
𝒓𝒓 𝑑𝑑𝑑𝑑 − 𝑁𝑁1
⋮
= 𝟎𝟎
• In practice, 𝝀𝝀 iteratively optimized until 𝐦𝐦𝐚𝐚𝐚𝐚 𝒄𝒄 𝝀𝝀 ≤ 𝝐𝝐
10.1.2018
6
Optimization of the CDFT energy (1/2)
• Constraints are satisfied when
𝒄𝒄 𝝀𝝀 =
�
𝑖𝑖=↑,↓
� 𝑤𝑤1
𝑖𝑖
𝒓𝒓 𝜌𝜌𝑖𝑖
𝒓𝒓 𝑑𝑑𝑑𝑑 − 𝑁𝑁1
⋮
= 𝟎𝟎
• In practice, 𝝀𝝀 iteratively optimized until 𝐦𝐦𝐚𝐚𝐚𝐚 𝒄𝒄 𝝀𝝀 ≤ 𝝐𝝐
o Uses root-finding algorithms, e.g., Newton’s method
𝝀𝝀𝑛𝑛+1 = 𝝀𝝀𝑛𝑛 − 𝛼𝛼𝑱𝑱𝑛𝑛
−1
𝒄𝒄 𝝀𝝀𝑛𝑛
10.1.2018
6
Optimization of the CDFT energy (1/2)
• Constraints are satisfied when
𝒄𝒄 𝝀𝝀 =
�
𝑖𝑖=↑,↓
� 𝑤𝑤1
𝑖𝑖
𝒓𝒓 𝜌𝜌𝑖𝑖
𝒓𝒓 𝑑𝑑𝑑𝑑 − 𝑁𝑁1
⋮
= 𝟎𝟎
• In practice, 𝝀𝝀 iteratively optimized until 𝐦𝐦𝐚𝐚𝐚𝐚 𝒄𝒄 𝝀𝝀 ≤ 𝝐𝝐
o Uses root-finding algorithms, e.g., Newton’s method
𝝀𝝀𝑛𝑛+1 = 𝝀𝝀𝑛𝑛 − 𝛼𝛼𝑱𝑱𝑛𝑛
−1
𝒄𝒄 𝝀𝝀𝑛𝑛
10.1.2018
6
Jacobian matrix,
approximated by
finite differences
Step size ∈ [−1, 0)
𝑱𝑱𝑖𝑖𝑖𝑖 =
𝜕𝜕𝒄𝒄𝑖𝑖
𝜕𝜕𝝀𝝀𝑗𝑗
≈
𝒄𝒄𝑖𝑖 𝝀𝝀 + 𝜹𝜹𝑗𝑗 − 𝒄𝒄𝑖𝑖(𝝀𝝀)
𝜹𝜹𝑗𝑗
Optimization of the CDFT energy (2/2)
10.1.2018
7
Input
Constraints
converged
or max steps
reached?
Yes
New guess
for 𝝀𝝀
Output
CDFT loop
Store data for
mixed CDFT
Build Jacobian
(optional)
Optimize step
size?
Standard
CP2K SCF
Reduce
step size
No/Done
Yes
Yes
No
Defining constraints (1/2)
10.1.2018
7
&QS
...
&CDFT
TYPE_OF_CONSTRAINT BECKE
&OUTER_SCF ON
TYPE BECKE_CONSTRAINT
EXTRAPOLATION_ORDER 2
MAX_SCF 10
! Convergence threshold
EPS_SCF 1.0E-3
! Optimizer selection: now Newton's method with backtracking line search
OPTIMIZER NEWTON_LS
! Optimizer step size
STEP_SIZE -1.0
! Line search settings
MAX_LS 5
CONTINUE_LS
FACTOR_LS 0.5
! Finite difference settings for calculation of Jacobian matrix
JACOBIAN_STEP 1.0E-2
JACOBIAN_FREQ 1 1
JACOBIAN_TYPE FD1
JACOBIAN_RESTART FALSE
&END OUTER_SCF
&END CDFT Full example files at https://www.cp2k.org/howto:cdft
Defining constraints (2/2)
12.1.2018
8
&QS ! Constraint definitions
... ! Each repetition defines a constraint
&CDFT &ATOM_GROUP
... ATOMS 1
&END CDFT COEFF 1
&BECKE_CONSTRAINT CONSTRAINT_TYPE CHARGE
! Take atomic radii into account? &END ATOM_GROUP
ADJUST_SIZE FALSE ! No constraint but calculate charges
ATOMIC_RADII 0.63 0.32 &DUMMY_ATOMS
! Compute Becke charges? ATOMS 2
ATOMIC_CHARGES TRUE &END DUMMY_ATOMS
! Constraint strength and target values ! Print info about CDFT calculation
! Give one value per constraint &PROGRAM_RUN_INFO ON
STRENGTH ${BECKE_STR} &EACH
TARGET ${BECKE_TARGET} QS_SCF 1
! Cutoff scheme &END EACH
CUTOFF_TYPE ELEMENT COMMON_ITERATION_LEVELS 2
ELEMENT_CUTOFF 7.0 ADD_LAST NUMERIC
! Perform Becke partitioning only within the space FILENAME ./${NAME}
! spanned by constraint atom centered spherical Gaussians &END PROGRAM_RUN_INFO
! (reduces cost for solvated systems) &END BECKE_CONSTRAINT
CAVITY_CONFINE TRUE &END QS
CAVITY_SHAPE VDW
EPS_CAVITY 1.0E-7
IN_MEMORY TRUE
SHOULD_SKIP TRUE
Defining constraints (2/2)
12.1.2018
8
&QS ! Constraint definitions
... ! Each repetition defines a constraint
&CDFT &ATOM_GROUP
... ATOMS 1
&END CDFT COEFF 1
&BECKE_CONSTRAINT CONSTRAINT_TYPE CHARGE
! Take atomic radii into account? &END ATOM_GROUP
ADJUST_SIZE FALSE ! No constraint but calculate charges
ATOMIC_RADII 0.63 0.32 &DUMMY_ATOMS
! Compute Becke charges? ATOMS 2
ATOMIC_CHARGES TRUE &END DUMMY_ATOMS
! Constraint strength and target values ! Print info about CDFT calculation
! Give one value per constraint &PROGRAM_RUN_INFO ON
STRENGTH ${BECKE_STR} &EACH
TARGET ${BECKE_TARGET} QS_SCF 1
! Cutoff scheme &END EACH
CUTOFF_TYPE ELEMENT COMMON_ITERATION_LEVELS 2
ELEMENT_CUTOFF 7.0 ADD_LAST NUMERIC
! Perform Becke partitioning only within the space FILENAME ./${NAME}
! spanned by constraint atom centered spherical Gaussians &END PROGRAM_RUN_INFO
! (reduces cost for solvated systems) &END BECKE_CONSTRAINT
CAVITY_CONFINE TRUE &END QS
CAVITY_SHAPE VDW
EPS_CAVITY 1.0E-7
IN_MEMORY TRUE
SHOULD_SKIP TRUE
Use e.g. covalent radii
Defining constraints (2/2)
12.1.2018
8
&QS ! Constraint definitions
... ! Each repetition defines a constraint
&CDFT &ATOM_GROUP
... ATOMS 1
&END CDFT COEFF 1
&BECKE_CONSTRAINT CONSTRAINT_TYPE CHARGE
! Take atomic radii into account? &END ATOM_GROUP
ADJUST_SIZE FALSE ! No constraint but calculate charges
ATOMIC_RADII 0.63 0.32 &DUMMY_ATOMS
! Compute Becke charges? ATOMS 2
ATOMIC_CHARGES TRUE &END DUMMY_ATOMS
! Constraint strength and target values ! Print info about CDFT calculation
! Give one value per constraint &PROGRAM_RUN_INFO ON
STRENGTH ${BECKE_STR} &EACH
TARGET ${BECKE_TARGET} QS_SCF 1
! Cutoff scheme &END EACH
CUTOFF_TYPE ELEMENT COMMON_ITERATION_LEVELS 2
ELEMENT_CUTOFF 7.0 ADD_LAST NUMERIC
! Perform Becke partitioning only within the space FILENAME ./${NAME}
! spanned by constraint atom centered spherical Gaussians &END PROGRAM_RUN_INFO
! (reduces cost for solvated systems) &END BECKE_CONSTRAINT
CAVITY_CONFINE TRUE &END QS
CAVITY_SHAPE VDW
EPS_CAVITY 1.0E-7
IN_MEMORY TRUE
SHOULD_SKIP TRUE
Use e.g. covalent radii
Example: 𝐙𝐙𝐧𝐧𝟐𝟐
+
(1/2)
• When 𝑹𝑹𝐙𝐙𝐙𝐙−𝐙𝐙𝐙𝐙 grows, charge should localize onto one Zn atom
10.1.2018
9
Example: 𝐙𝐙𝐧𝐧𝟐𝟐
+
(1/2)
• When 𝑹𝑹𝐙𝐙𝐙𝐙−𝐙𝐙𝐙𝐙 grows, charge should localize onto one Zn atom
• Standard GGA/hybrid functionals place +0.5 charge on both atoms
10.1.2018
9
Example: 𝐙𝐙𝐧𝐧𝟐𝟐
+
(1/2)
• When 𝑹𝑹𝐙𝐙𝐙𝐙−𝐙𝐙𝐙𝐙 grows, charge should localize onto one Zn atom
• Standard GGA/hybrid functionals place +0.5 charge on both atoms
• Force charge localization on first atom
10.1.2018
9
! Set initial constraint strength to 0 (restarting from DFT)
STRENGTH 0.0
! Constraint target is the number of valence electrons – 1
TARGET 11.0
&ATOM_GROUP
ATOMS 1
COEFF 1
CONSTRAINT_TYPE CHARGE
&END ATOM_GROUP
Example: 𝐙𝐙𝐧𝐧𝟐𝟐
+
(2/2)
• The default output file contains the CDFT SCF iterations
10.1.2018
10
New guess
for 𝝀𝝀
CDFT loop
Build Jacobian
(optional)
Optimize step
size?
Standard
CP2K SCF
Reduce
step size
No/Done
Yes
Example: 𝐙𝐙𝐧𝐧𝟐𝟐
+
(2/2)
• The default output file contains the CDFT SCF iterations
o Each iteration corresponds to standard CP2K energy optimization
10.1.2018
10
New guess
for 𝝀𝝀
CDFT loop
Build Jacobian
(optional)
Optimize step
size?
Standard
CP2K SCF
Reduce
step size
No/Done
Yes
Example: 𝐙𝐙𝐧𝐧𝟐𝟐
+
(2/2)
• The default output file contains the CDFT SCF iterations
o Each iteration corresponds to standard CP2K energy optimization
o Uses optimized solution from line search as restart if available
• The following files are created with (quasi-)Newton optimizers
o *.LineSearch.out: Electronic structure SCF and optimization of step size
10.1.2018
10
New guess
for 𝝀𝝀
CDFT loop
Build Jacobian
(optional)
Optimize step
size?
Standard
CP2K SCF
Reduce
step size
No/Done
Yes
Example: 𝐙𝐙𝐧𝐧𝟐𝟐
+
(2/2)
• The default output file contains the CDFT SCF iterations
o Each iteration corresponds to standard CP2K energy optimization
o Uses optimized solution from line search as restart if available
• The following files are created with (quasi-)Newton optimizers
o *.LineSearch.out: Electronic structure SCF and optimization of step size
o *.cdftLog: Summary of CDFT parameters and computed partial charges
10.1.2018
10
Example: 𝐙𝐙𝐧𝐧𝟐𝟐
+
(2/2)
• The default output file contains the CDFT SCF iterations
o Each iteration corresponds to standard CP2K energy optimization
o Uses optimized solution from line search as restart if available
• The following files are created with (quasi-)Newton optimizers
o *.LineSearch.out: Electronic structure SCF and optimization of step size
o *.cdftLog: Summary of CDFT parameters and computed partial charges
o *.JacobianInfo.out: Calculation of Jacobian matrix with perturbed 𝝀𝝀
10.1.2018
10
Example: 𝐙𝐙𝐧𝐧𝟐𝟐
+
(2/2)
• The default output file contains the CDFT SCF iterations
o Each iteration corresponds to standard CP2K energy optimization
o Uses optimized solution from line search as restart if available
• The following files are created with (quasi-)Newton optimizers
o *.LineSearch.out: Electronic structure SCF and optimization of step size
o *.cdftLog: Summary of CDFT parameters and computed partial charges
o *.JacobianInfo.out: Calculation of Jacobian matrix with perturbed 𝝀𝝀
o *.inverseJacobian: Restart file for inverse Jacobian matrix
10.1.2018
10
Standard CP2K SCF with
fixed values of constraint
strength and step size
CDFT SCF iteration
information
Constraint
information
Restarted from converged
density obtained during
line search
Fragment constraints (1/2)
• Number of valence electrons per
molecule not necessarily well
defined
12.1.2018
12
Fragment constraints (1/2)
• Number of valence electrons per
molecule not necessarily well
defined
o Case for overlapping, strongly
interacting molecules
12.1.2018
12
Fragment constraints (1/2)
• Number of valence electrons per
molecule not necessarily well
defined
o Case for overlapping, strongly
interacting molecules
o How to set constraint target value?
12.1.2018
12
Fragment constraints (1/2)
• Number of valence electrons per
molecule not necessarily well
defined
o Case for overlapping, strongly
interacting molecules
o How to set constraint target value?
• Use a fragment based constraint
12.1.2018
12
�𝜌𝜌A(𝒓𝒓) �𝜌𝜌B(𝒓𝒓)
�𝑁𝑁𝑐𝑐 = �
𝑖𝑖=↑,↓
�𝑤𝑤𝑖𝑖
𝒓𝒓 �𝜌𝜌A
𝑖𝑖
𝒓𝒓 + �𝜌𝜌B
𝑖𝑖
𝒓𝒓 𝑑𝑑𝒓𝒓
Fragment constraints (1/2)
• Number of valence electrons per
molecule not necessarily well
defined
o Case for overlapping, strongly
interacting molecules
o How to set constraint target value?
• Use a fragment based constraint
o Only single-point calculations
12.1.2018
12
�𝜌𝜌A(𝒓𝒓) �𝜌𝜌B(𝒓𝒓)
�𝑁𝑁𝑐𝑐 = �
𝑖𝑖=↑,↓
�𝑤𝑤𝑖𝑖
𝒓𝒓 �𝜌𝜌A
𝑖𝑖
𝒓𝒓 + �𝜌𝜌B
𝑖𝑖
𝒓𝒓 𝑑𝑑𝒓𝒓
Fragment constraints (1/2)
• Number of valence electrons per
molecule not necessarily well
defined
o Case for overlapping, strongly
interacting molecules
o How to set constraint target value?
• Use a fragment based constraint
o Only single-point calculations
• Cube read/write accelerated with
MPI I/O since r18131
12.1.2018
12
�𝜌𝜌A(𝒓𝒓) �𝜌𝜌B(𝒓𝒓)
�𝑁𝑁𝑐𝑐 = �
𝑖𝑖=↑,↓
�𝑤𝑤𝑖𝑖
𝒓𝒓 �𝜌𝜌A
𝑖𝑖
𝒓𝒓 + �𝜌𝜌B
𝑖𝑖
𝒓𝒓 𝑑𝑑𝒓𝒓
Fragment constraints (2/2)
• Charge transfer energies of
strongly interacting complexes
−Δ𝐸𝐸CT = 𝐸𝐸CDFT − 𝐸𝐸DFT
10.1.2018
13
Fragment constraints (2/2)
• Charge transfer energies of
strongly interacting complexes
−Δ𝐸𝐸CT = 𝐸𝐸CDFT − 𝐸𝐸DFT
10.1.2018
13
Energy of system with
charge transfer prevented
Fragment constraints (2/2)
• Charge transfer energies of
strongly interacting complexes
−Δ𝐸𝐸CT = 𝐸𝐸CDFT − 𝐸𝐸DFT
10.1.2018
13
Energy of system with
charge transfer prevented
Fragment Becke with atomic size adjustments
Becke
Becke with atomic size adjustments
BW:
BW+A:
FBB+A:
Fragment constraints (2/2)
• Charge transfer energies of
strongly interacting complexes
−Δ𝐸𝐸CT = 𝐸𝐸CDFT − 𝐸𝐸DFT
• Magnitude of charge transferred,
Δ𝑞𝑞 , overestimated by non-
fragment constraints
10.1.2018
13
Energy of system with
charge transfer prevented
Fragment Becke with atomic size adjustments
Becke
Becke with atomic size adjustments
BW:
BW+A:
FBB+A:
Combining multiple CDFT states
• Additional properties can be computed from the interactions between
CDFT states
10.1.2018
14
Combining multiple CDFT states
• Additional properties can be computed from the interactions between
CDFT states
o Charge transfer kinetics (Marcus theory)
𝑘𝑘ab =
2𝜋𝜋
ℏ
𝑯𝑯ab
2
𝑇𝑇
4𝜋𝜋𝜋𝜋𝜋𝜋𝜉𝜉
exp −
𝜉𝜉 + Δ𝐴𝐴 2
4𝜋𝜋𝑘𝑘𝑇𝑇𝜉𝜉
10.1.2018
14
Combining multiple CDFT states
• Additional properties can be computed from the interactions between
CDFT states
o Charge transfer kinetics (Marcus theory)
𝑘𝑘ab =
2𝜋𝜋
ℏ
𝑯𝑯ab
2
𝑇𝑇
4𝜋𝜋𝜋𝜋𝜋𝜋𝜉𝜉
exp −
𝜉𝜉 + Δ𝐴𝐴 2
4𝜋𝜋𝑘𝑘𝑇𝑇𝜉𝜉
10.1.2018
14
Electronic coupling
Solvent reorganization energy
Reaction free energy
Combining multiple CDFT states
• Additional properties can be computed from the interactions between
CDFT states
o Charge transfer kinetics (Marcus theory)
𝑘𝑘ab =
2𝜋𝜋
ℏ
𝑯𝑯ab
2
𝑇𝑇
4𝜋𝜋𝜋𝜋𝜋𝜋𝜉𝜉
exp −
𝜉𝜉 + Δ𝐴𝐴 2
4𝜋𝜋𝑘𝑘𝑇𝑇𝜉𝜉
o Configuration interaction within the basis of CDFT states
10.1.2018
14
Electronic coupling
Solvent reorganization energy
Reaction free energy
Combining multiple CDFT states
• Additional properties can be computed from the interactions between
CDFT states
o Charge transfer kinetics (Marcus theory)
𝑘𝑘ab =
2𝜋𝜋
ℏ
𝑯𝑯ab
2
𝑇𝑇
4𝜋𝜋𝜋𝜋𝜋𝜋𝜉𝜉
exp −
𝜉𝜉 + Δ𝐴𝐴 2
4𝜋𝜋𝑘𝑘𝑇𝑇𝜉𝜉
o Configuration interaction within the basis of CDFT states
• Approximate electronic coupling with CDFT Kohn-Sham determinants
after orthogonalization [5]
𝑯𝑯ij ≈ 𝚽𝚽CDFT
i �𝐻𝐻KS 𝚽𝚽CDFT
j
=
𝐸𝐸CDFT
i
+ 𝐸𝐸CDFT
j
2
𝑺𝑺𝑖𝑖𝑖𝑖 − �
𝑐𝑐
𝚽𝚽CDFT
i 𝜆𝜆𝑐𝑐
i
𝑤𝑤𝑐𝑐
i
(𝒓𝒓) + 𝜆𝜆𝑐𝑐
j
𝑤𝑤𝑐𝑐
j
(𝒓𝒓)
2 𝚽𝚽CDFT
j
10.1.2018
14
Electronic coupling
Solvent reorganization energy
Reaction free energy
5. Wu, Q.; van Voorhis, T., J. Chem. Phys., 2006, 125, 164105.
The mixed CDFT module&MULTIPLE_FORCE_EVALS # Zn+ Zn
FORCE_EVAL_ORDER 2 3 &FORCE_EVAL
MULTIPLE_SUBSYS FALSE @SET WFN_FILE ${WFN_FILE_1}
&END @SET RESTART ${RESTART_1}
&FORCE_EVAL @SET NAME ${PROJECT_NAME}-state1
METHOD MIXED @SET BECKE_TARGET ${BECKE_TARGET_1}
&MIXED @SET BECKE_STR ${BECKE_STR_1}
MIXING_TYPE MIXED_CDFT METHOD QS
NGROUPS 1 @include ${DFT_FILE}
&MIXED_CDFT &END FORCE_EVAL
! Calculate mixed CDFT properties every COUPLING step # Zn Zn+
COUPLING 1 &FORCE_EVAL
! Settings determining how forces are mixed @SET WFN_FILE ${WFN_FILE_2}
FORCE_STATES 1 2 @SET RESTART ${RESTART_2}
LAMBDA 1.0 @SET NAME ${PROJECT_NAME}-state2
! Orthogonalize CDFT states with Lowdin's method @SET BECKE_TARGET ${BECKE_TARGET_2}
LOWDIN TRUE @SET BECKE_STR ${BECKE_STR_2}
! Configuration interaction? METHOD QS
CI FALSE @include ${DFT_FILE}
&PRINT &END FORCE_EVAL
&PROGRAM_RUN_INFO ON
&END
&END PRINT
&END MIXED_CDFT
&END MIXED
@include subsys.inc
&END FORCE_EVAL
10.1.2018
15
Additional settings available and
explained in the manual
Electronic coupling in 𝐙𝐙𝐧𝐧𝟐𝟐
+
10.1.2018
16
Zn+
Zn �𝐻𝐻 ZnZn+
Electronic coupling in 𝐙𝐙𝐧𝐧𝟐𝟐
+
10.1.2018
16
Zn+
Zn �𝐻𝐻 ZnZn+
Electronic coupling in 𝐙𝐙𝐧𝐧𝟐𝟐
+
10.1.2018
16
Zn+
Zn �𝐻𝐻 ZnZn+
Different
orthogonalization
algorithms
Electronic coupling in 𝐙𝐙𝐧𝐧𝟐𝟐
+
10.1.2018
17
Zn+
Zn �𝐻𝐻 ZnZn+
Different
orthogonalization
algorithms
Agrees with 5.49 mHartree
estimate from more expensive
wavefunction based method
CASSCF/MRCI+Q
CDFT in solvated systems
• Computational efficiency of
GPW/OT allows study of solvated
charge transfer processes at full
DFT level
12.1.2018
18
CDFT in solvated systems
• Computational efficiency of
GPW/OT allows study of solvated
charge transfer processes at full
DFT level
• Evaluating intramolecular charge
transfer kinetics in QTTFQ–
• 258 water, 12 ps (0.5 fs timestep)
• 48 s/timestep @ 384 MPI cores
(~120k core hours)
12.1.2018
18
List of CDFT capabilities in CP2K
• GPW and GAPW (no fragment constraint)
12.1.2018
19
List of CDFT capabilities in CP2K
• GPW and GAPW (no fragment constraint)
• Full DFT or QM/MM
12.1.2018
19
List of CDFT capabilities in CP2K
• GPW and GAPW (no fragment constraint)
• Full DFT or QM/MM
• Primarily for OT, diagonalization is supported but difficult to converge
12.1.2018
19
List of CDFT capabilities in CP2K
• GPW and GAPW (no fragment constraint)
• Full DFT or QM/MM
• Primarily for OT, diagonalization is supported but difficult to converge
• Energies and forces for an unlimited number of constraints (any type)
12.1.2018
19
List of CDFT capabilities in CP2K
• GPW and GAPW (no fragment constraint)
• Full DFT or QM/MM
• Primarily for OT, diagonalization is supported but difficult to converge
• Energies and forces for an unlimited number of constraints (any type)
• Mixed CDFT module supports
12.1.2018
19
List of CDFT capabilities in CP2K
• GPW and GAPW (no fragment constraint)
• Full DFT or QM/MM
• Primarily for OT, diagonalization is supported but difficult to converge
• Energies and forces for an unlimited number of constraints (any type)
• Mixed CDFT module supports
o Electronic couplings with various orthogonalization methods
12.1.2018
19
List of CDFT capabilities in CP2K
• GPW and GAPW (no fragment constraint)
• Full DFT or QM/MM
• Primarily for OT, diagonalization is supported but difficult to converge
• Energies and forces for an unlimited number of constraints (any type)
• Mixed CDFT module supports
o Electronic couplings with various orthogonalization methods
o Configuration interaction
12.1.2018
19
List of CDFT capabilities in CP2K
• GPW and GAPW (no fragment constraint)
• Full DFT or QM/MM
• Primarily for OT, diagonalization is supported but difficult to converge
• Energies and forces for an unlimited number of constraints (any type)
• Mixed CDFT module supports
o Electronic couplings with various orthogonalization methods
o Configuration interaction
o Removal of linearly-dependent MOs via SVD decomposition
12.1.2018
19
List of CDFT capabilities in CP2K
• GPW and GAPW (no fragment constraint)
• Full DFT or QM/MM
• Primarily for OT, diagonalization is supported but difficult to converge
• Energies and forces for an unlimited number of constraints (any type)
• Mixed CDFT module supports
o Electronic couplings with various orthogonalization methods
o Configuration interaction
o Removal of linearly-dependent MOs via SVD decomposition
o Electronic coupling reliability metrics
12.1.2018
19
Summary
• CDFT is a tool to study charge transfer phenomena
12.1.2018
20
Summary
• CDFT is a tool to study charge transfer phenomena
• Available in latest release version
12.1.2018
20
Summary
• CDFT is a tool to study charge transfer phenomena
• Available in latest release version
• Tutorial at https://www.cp2k.org/howto:cdft that complements regtests
12.1.2018
20
Summary
• CDFT is a tool to study charge transfer phenomena
• Available in latest release version
• Tutorial at https://www.cp2k.org/howto:cdft that complements regtests
o Summaries of CDFT theory and the CP2K implementation
o Walk throughs of example calculations
12.1.2018
20
Summary
• CDFT is a tool to study charge transfer phenomena
• Available in latest release version
• Tutorial at https://www.cp2k.org/howto:cdft that complements regtests
o Summaries of CDFT theory and the CP2K implementation
o Walk throughs of example calculations
• Help provided on Google groups if you encounter issues with CDFT
features
12.1.2018
20
Questions?

More Related Content

What's hot

Material Science Chapter 4
Material Science Chapter 4Material Science Chapter 4
Material Science Chapter 4
amzar17
 
Chapter Atomic Structure and Interatomic Bonds (Jif 104 Chpter 1
Chapter Atomic Structure and Interatomic Bonds (Jif 104 Chpter 1Chapter Atomic Structure and Interatomic Bonds (Jif 104 Chpter 1
Chapter Atomic Structure and Interatomic Bonds (Jif 104 Chpter 1
Kurenai Ryu
 

What's hot (20)

Symmetry and group theory
Symmetry and group theorySymmetry and group theory
Symmetry and group theory
 
Inorganic materials 1/2
Inorganic materials 1/2Inorganic materials 1/2
Inorganic materials 1/2
 
MSc Chemistry Paper-IX Unit-1.pdf
MSc Chemistry Paper-IX Unit-1.pdfMSc Chemistry Paper-IX Unit-1.pdf
MSc Chemistry Paper-IX Unit-1.pdf
 
Bonding in Tranisiton Metal Compounds - Part 2
Bonding in Tranisiton Metal Compounds - Part 2Bonding in Tranisiton Metal Compounds - Part 2
Bonding in Tranisiton Metal Compounds - Part 2
 
Molecular symmetry
Molecular symmetryMolecular symmetry
Molecular symmetry
 
05 - Stereochemistry - Wade 7th
05 - Stereochemistry - Wade 7th05 - Stereochemistry - Wade 7th
05 - Stereochemistry - Wade 7th
 
Optical activity in helicines
Optical activity in helicinesOptical activity in helicines
Optical activity in helicines
 
Octahedral Substitution reaction way.ppt
Octahedral Substitution reaction way.pptOctahedral Substitution reaction way.ppt
Octahedral Substitution reaction way.ppt
 
Nonclassical Carbocation
Nonclassical CarbocationNonclassical Carbocation
Nonclassical Carbocation
 
group thoery and character table
group thoery and character table group thoery and character table
group thoery and character table
 
Redox flow battery - Power Sector
Redox flow battery - Power SectorRedox flow battery - Power Sector
Redox flow battery - Power Sector
 
Material Science Chapter 4
Material Science Chapter 4Material Science Chapter 4
Material Science Chapter 4
 
Alkenes part 3 polymerization
Alkenes part 3   polymerizationAlkenes part 3   polymerization
Alkenes part 3 polymerization
 
Ch06
Ch06Ch06
Ch06
 
IB Chemistry on Mole Concept
IB Chemistry on Mole ConceptIB Chemistry on Mole Concept
IB Chemistry on Mole Concept
 
Crystallographic points directions and planes.pdf
Crystallographic points directions and planes.pdfCrystallographic points directions and planes.pdf
Crystallographic points directions and planes.pdf
 
Inert and labile complexes and substitution reactions
Inert and labile complexes and substitution reactionsInert and labile complexes and substitution reactions
Inert and labile complexes and substitution reactions
 
Curvas De Energia Livre
Curvas De Energia LivreCurvas De Energia Livre
Curvas De Energia Livre
 
Chapter Atomic Structure and Interatomic Bonds (Jif 104 Chpter 1
Chapter Atomic Structure and Interatomic Bonds (Jif 104 Chpter 1Chapter Atomic Structure and Interatomic Bonds (Jif 104 Chpter 1
Chapter Atomic Structure and Interatomic Bonds (Jif 104 Chpter 1
 
CAN catalyst in Organic Chemistry
CAN catalyst in Organic ChemistryCAN catalyst in Organic Chemistry
CAN catalyst in Organic Chemistry
 

Similar to CP2K: How to use the constrained DFT module

Similar to CP2K: How to use the constrained DFT module (20)

IRJET- A New Approach to Economic Load Dispatch by using Improved QEMA ba...
IRJET-  	  A New Approach to Economic Load Dispatch by using Improved QEMA ba...IRJET-  	  A New Approach to Economic Load Dispatch by using Improved QEMA ba...
IRJET- A New Approach to Economic Load Dispatch by using Improved QEMA ba...
 
NREL PV seminar
NREL PV seminarNREL PV seminar
NREL PV seminar
 
APPLICATION OF PARTICLE SWARM OPTIMIZATION TO MICROWAVE TAPERED MICROSTRIP LINES
APPLICATION OF PARTICLE SWARM OPTIMIZATION TO MICROWAVE TAPERED MICROSTRIP LINESAPPLICATION OF PARTICLE SWARM OPTIMIZATION TO MICROWAVE TAPERED MICROSTRIP LINES
APPLICATION OF PARTICLE SWARM OPTIMIZATION TO MICROWAVE TAPERED MICROSTRIP LINES
 
Application of particle swarm optimization to microwave tapered microstrip lines
Application of particle swarm optimization to microwave tapered microstrip linesApplication of particle swarm optimization to microwave tapered microstrip lines
Application of particle swarm optimization to microwave tapered microstrip lines
 
IRJET- Optimal Generation Scheduling for Thermal Units
IRJET-  	  Optimal Generation Scheduling for Thermal UnitsIRJET-  	  Optimal Generation Scheduling for Thermal Units
IRJET- Optimal Generation Scheduling for Thermal Units
 
IRJET- Optimal Generation Scheduling for Thermal Units
IRJET- Optimal Generation Scheduling for Thermal UnitsIRJET- Optimal Generation Scheduling for Thermal Units
IRJET- Optimal Generation Scheduling for Thermal Units
 
Scalable trust-region method for deep reinforcement learning using Kronecker-...
Scalable trust-region method for deep reinforcement learning using Kronecker-...Scalable trust-region method for deep reinforcement learning using Kronecker-...
Scalable trust-region method for deep reinforcement learning using Kronecker-...
 
QTPIE and water (Part 1)
QTPIE and water (Part 1)QTPIE and water (Part 1)
QTPIE and water (Part 1)
 
27.docking protein-protein and protein-ligand
27.docking protein-protein and protein-ligand27.docking protein-protein and protein-ligand
27.docking protein-protein and protein-ligand
 
7926563mocskoff pack method k sampling.ppt
7926563mocskoff pack method k sampling.ppt7926563mocskoff pack method k sampling.ppt
7926563mocskoff pack method k sampling.ppt
 
Molecular docking
Molecular dockingMolecular docking
Molecular docking
 
Advanced SOM & K Mean Method for Load Curve Clustering
Advanced SOM & K Mean Method for Load Curve Clustering Advanced SOM & K Mean Method for Load Curve Clustering
Advanced SOM & K Mean Method for Load Curve Clustering
 
Insight from energy surfaces: structure prediction by lattice energy explora...
Insight from energy surfaces:  structure prediction by lattice energy explora...Insight from energy surfaces:  structure prediction by lattice energy explora...
Insight from energy surfaces: structure prediction by lattice energy explora...
 
CDAC 2018 Pellegrini clustering ppi networks
CDAC 2018 Pellegrini clustering ppi networksCDAC 2018 Pellegrini clustering ppi networks
CDAC 2018 Pellegrini clustering ppi networks
 
Nucleon electromagnetic form factors at high-momentum transfer from Lattice QCD
Nucleon electromagnetic form factors at high-momentum transfer from Lattice QCDNucleon electromagnetic form factors at high-momentum transfer from Lattice QCD
Nucleon electromagnetic form factors at high-momentum transfer from Lattice QCD
 
Optimal control of electrodynamic tether orbit transfers
Optimal control of electrodynamic tether orbit transfersOptimal control of electrodynamic tether orbit transfers
Optimal control of electrodynamic tether orbit transfers
 
Automated Generation of High-accuracy Interatomic Potentials Using Quantum Data
Automated Generation of High-accuracy Interatomic Potentials Using Quantum DataAutomated Generation of High-accuracy Interatomic Potentials Using Quantum Data
Automated Generation of High-accuracy Interatomic Potentials Using Quantum Data
 
Phonons & Phonopy: Pro Tips (2014)
Phonons & Phonopy: Pro Tips (2014)Phonons & Phonopy: Pro Tips (2014)
Phonons & Phonopy: Pro Tips (2014)
 
Pattern recognition binoy k means clustering
Pattern recognition binoy  k means clusteringPattern recognition binoy  k means clustering
Pattern recognition binoy k means clustering
 
Bu31485490
Bu31485490Bu31485490
Bu31485490
 

Recently uploaded

development of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virusdevelopment of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virus
NazaninKarimi6
 
Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Cyathodium bryophyte: morphology, anatomy, reproduction etc.Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Cherry
 
CYTOGENETIC MAP................ ppt.pptx
CYTOGENETIC MAP................ ppt.pptxCYTOGENETIC MAP................ ppt.pptx
CYTOGENETIC MAP................ ppt.pptx
Cherry
 
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsBiogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Sérgio Sacani
 
PODOCARPUS...........................pptx
PODOCARPUS...........................pptxPODOCARPUS...........................pptx
PODOCARPUS...........................pptx
Cherry
 
Digital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptxDigital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptx
MohamedFarag457087
 
Module for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learningModule for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learning
levieagacer
 
Reboulia: features, anatomy, morphology etc.
Reboulia: features, anatomy, morphology etc.Reboulia: features, anatomy, morphology etc.
Reboulia: features, anatomy, morphology etc.
Cherry
 

Recently uploaded (20)

Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS ESCORT SERVICE In Bhiwan...
Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS  ESCORT SERVICE In Bhiwan...Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS  ESCORT SERVICE In Bhiwan...
Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS ESCORT SERVICE In Bhiwan...
 
X-rays from a Central “Exhaust Vent” of the Galactic Center Chimney
X-rays from a Central “Exhaust Vent” of the Galactic Center ChimneyX-rays from a Central “Exhaust Vent” of the Galactic Center Chimney
X-rays from a Central “Exhaust Vent” of the Galactic Center Chimney
 
development of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virusdevelopment of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virus
 
Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Cyathodium bryophyte: morphology, anatomy, reproduction etc.Cyathodium bryophyte: morphology, anatomy, reproduction etc.
Cyathodium bryophyte: morphology, anatomy, reproduction etc.
 
Dr. E. Muralinath_ Blood indices_clinical aspects
Dr. E. Muralinath_ Blood indices_clinical  aspectsDr. E. Muralinath_ Blood indices_clinical  aspects
Dr. E. Muralinath_ Blood indices_clinical aspects
 
CYTOGENETIC MAP................ ppt.pptx
CYTOGENETIC MAP................ ppt.pptxCYTOGENETIC MAP................ ppt.pptx
CYTOGENETIC MAP................ ppt.pptx
 
Site specific recombination and transposition.........pdf
Site specific recombination and transposition.........pdfSite specific recombination and transposition.........pdf
Site specific recombination and transposition.........pdf
 
module for grade 9 for distance learning
module for grade 9 for distance learningmodule for grade 9 for distance learning
module for grade 9 for distance learning
 
Efficient spin-up of Earth System Models usingsequence acceleration
Efficient spin-up of Earth System Models usingsequence accelerationEfficient spin-up of Earth System Models usingsequence acceleration
Efficient spin-up of Earth System Models usingsequence acceleration
 
Clean In Place(CIP).pptx .
Clean In Place(CIP).pptx                 .Clean In Place(CIP).pptx                 .
Clean In Place(CIP).pptx .
 
TransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRings
TransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRingsTransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRings
TransientOffsetin14CAftertheCarringtonEventRecordedbyPolarTreeRings
 
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune WaterworldsBiogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
Biogenic Sulfur Gases as Biosignatures on Temperate Sub-Neptune Waterworlds
 
Thyroid Physiology_Dr.E. Muralinath_ Associate Professor
Thyroid Physiology_Dr.E. Muralinath_ Associate ProfessorThyroid Physiology_Dr.E. Muralinath_ Associate Professor
Thyroid Physiology_Dr.E. Muralinath_ Associate Professor
 
PODOCARPUS...........................pptx
PODOCARPUS...........................pptxPODOCARPUS...........................pptx
PODOCARPUS...........................pptx
 
GBSN - Biochemistry (Unit 2) Basic concept of organic chemistry
GBSN - Biochemistry (Unit 2) Basic concept of organic chemistry GBSN - Biochemistry (Unit 2) Basic concept of organic chemistry
GBSN - Biochemistry (Unit 2) Basic concept of organic chemistry
 
Cyanide resistant respiration pathway.pptx
Cyanide resistant respiration pathway.pptxCyanide resistant respiration pathway.pptx
Cyanide resistant respiration pathway.pptx
 
Digital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptxDigital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptx
 
Module for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learningModule for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learning
 
Reboulia: features, anatomy, morphology etc.
Reboulia: features, anatomy, morphology etc.Reboulia: features, anatomy, morphology etc.
Reboulia: features, anatomy, morphology etc.
 
ABHISHEK ANTIBIOTICS PPT MICROBIOLOGY // USES OF ANTIOBIOTICS TYPES OF ANTIB...
ABHISHEK ANTIBIOTICS PPT MICROBIOLOGY  // USES OF ANTIOBIOTICS TYPES OF ANTIB...ABHISHEK ANTIBIOTICS PPT MICROBIOLOGY  // USES OF ANTIOBIOTICS TYPES OF ANTIB...
ABHISHEK ANTIBIOTICS PPT MICROBIOLOGY // USES OF ANTIOBIOTICS TYPES OF ANTIB...
 

CP2K: How to use the constrained DFT module

  • 1. Constrained DFT (CDFT) in CP2K CP2K UK User Meeting 2018, January 12 Nico Holmberg
  • 2. Contents • Introduction: what is CDFT and why use it? • Theoretical basis of CDFT in brief • CDFT implementation in CP2K o Algorithmic framework o Overview of features using examples • Summary 12.1.2018 2
  • 3. Introduction • CDFT allows creation of charge and spin localized states 12.1.2018 3
  • 4. Introduction • CDFT allows creation of charge and spin localized states • Why are such states needed? 12.1.2018 3
  • 5. Introduction • CDFT allows creation of charge and spin localized states • Why are such states needed? o Charge transfer phenomena 12.1.2018 3
  • 6. Introduction • CDFT allows creation of charge and spin localized states • Why are such states needed? o Charge transfer phenomena o Electronic couplings (key role in charge transfer kinetics) 12.1.2018 3
  • 7. Introduction • CDFT allows creation of charge and spin localized states • Why are such states needed? o Charge transfer phenomena o Electronic couplings (key role in charge transfer kinetics) o Treating self-interaction error due to spurious electron delocalization 12.1.2018 3
  • 8. Introduction • CDFT allows creation of charge and spin localized states • Why are such states needed? o Charge transfer phenomena o Electronic couplings (key role in charge transfer kinetics) o Treating self-interaction error due to spurious electron delocalization o Parametrizing model Hamiltonians (e.g. Heisenberg spin Hamiltonian) 12.1.2018 3
  • 9. Introduction • CDFT allows creation of charge and spin localized states • Why are such states needed? o Charge transfer phenomena o Electronic couplings (key role in charge transfer kinetics) o Treating self-interaction error due to spurious electron delocalization o Parametrizing model Hamiltonians (e.g. Heisenberg spin Hamiltonian) o And more… [1] 1. Kaduk, B.; Kowalczyk, T.; van Voorhis, T., Chem. Rev., 2012, 112, 321−370. 12.1.2018 3
  • 10. Introduction • CDFT allows creation of charge and spin localized states • Why are such states needed? o Charge transfer phenomena o Electronic couplings (key role in charge transfer kinetics) o Treating self-interaction error due to spurious electron delocalization o Parametrizing model Hamiltonians (e.g. Heisenberg spin Hamiltonian) o And more… [1] • CDFT in CP2K [2] requires version 5.1 or newer 1. Kaduk, B.; Kowalczyk, T.; van Voorhis, T., Chem. Rev., 2012, 112, 321−370. 2. Holmberg, N.; Laasonen, K., J. Chem. Theory Comput., 2017, 13, 587−601. 12.1.2018 3
  • 11. Generation of constrained states • Enforce density localization in atom-centered regions with constraint potential(s) [3,4] 𝐸𝐸CDFT 𝝀𝝀, 𝜌𝜌 = max 𝝀𝝀 min 𝜌𝜌 𝐸𝐸KS 𝜌𝜌 + � 𝑐𝑐 𝜆𝜆𝑐𝑐 � 𝑖𝑖=↑,↓ � 𝑤𝑤𝑐𝑐 𝑖𝑖 𝒓𝒓 𝜌𝜌𝑖𝑖 𝒓𝒓 𝑑𝑑𝒓𝒓 − 𝑁𝑁𝑐𝑐 10.1.2018 4 3. Wu, Q.; van Voorhis, T., Phys. Rev. A: At., Mol., Opt. Phys., 2005, 72, 024502. 4. Wu, Q.; van Voorhis, T., J. Chem. Theory Comput., 2006, 2, 765−774.
  • 12. Generation of constrained states • Enforce density localization in atom-centered regions with constraint potential(s) [3,4] 𝐸𝐸CDFT 𝝀𝝀, 𝜌𝜌 = max 𝝀𝝀 min 𝜌𝜌 𝐸𝐸KS 𝜌𝜌 + � 𝑐𝑐 𝜆𝜆𝑐𝑐 � 𝑖𝑖=↑,↓ � 𝑤𝑤𝑐𝑐 𝑖𝑖 𝒓𝒓 𝜌𝜌𝑖𝑖 𝒓𝒓 𝑑𝑑𝒓𝒓 − 𝑁𝑁𝑐𝑐 10.1.2018 4 Weight function Lagrange multiplier (potential strength) Target value 3. Wu, Q.; van Voorhis, T., Phys. Rev. A: At., Mol., Opt. Phys., 2005, 72, 024502. 4. Wu, Q.; van Voorhis, T., J. Chem. Theory Comput., 2006, 2, 765−774.
  • 13. Generation of constrained states • Enforce density localization in atom-centered regions with constraint potential(s) [3,4] 𝐸𝐸CDFT 𝝀𝝀, 𝜌𝜌 = max 𝝀𝝀 min 𝜌𝜌 𝐸𝐸KS 𝜌𝜌 + � 𝑐𝑐 𝜆𝜆𝑐𝑐 � 𝑖𝑖=↑,↓ � 𝑤𝑤𝑐𝑐 𝑖𝑖 𝒓𝒓 𝜌𝜌𝑖𝑖 𝒓𝒓 𝑑𝑑𝒓𝒓 − 𝑁𝑁𝑐𝑐 • Weight function defines the type of constraint 10.1.2018 4 Weight function Lagrange multiplier (potential strength) Target value 3. Wu, Q.; van Voorhis, T., Phys. Rev. A: At., Mol., Opt. Phys., 2005, 72, 024502. 4. Wu, Q.; van Voorhis, T., J. Chem. Theory Comput., 2006, 2, 765−774.
  • 14. Generation of constrained states • Enforce density localization in atom-centered regions with constraint potential(s) [3,4] 𝐸𝐸CDFT 𝝀𝝀, 𝜌𝜌 = max 𝝀𝝀 min 𝜌𝜌 𝐸𝐸KS 𝜌𝜌 + � 𝑐𝑐 𝜆𝜆𝑐𝑐 � 𝑖𝑖=↑,↓ � 𝑤𝑤𝑐𝑐 𝑖𝑖 𝒓𝒓 𝜌𝜌𝑖𝑖 𝒓𝒓 𝑑𝑑𝒓𝒓 − 𝑁𝑁𝑐𝑐 • Weight function defines the type of constraint o Total density constraint (𝜌𝜌↑ + 𝜌𝜌↓ ): 𝑤𝑤↑ = 𝑤𝑤↓ = 𝑤𝑤 10.1.2018 4 Weight function Lagrange multiplier (potential strength) Target value 3. Wu, Q.; van Voorhis, T., Phys. Rev. A: At., Mol., Opt. Phys., 2005, 72, 024502. 4. Wu, Q.; van Voorhis, T., J. Chem. Theory Comput., 2006, 2, 765−774.
  • 15. Generation of constrained states • Enforce density localization in atom-centered regions with constraint potential(s) [3,4] 𝐸𝐸CDFT 𝝀𝝀, 𝜌𝜌 = max 𝝀𝝀 min 𝜌𝜌 𝐸𝐸KS 𝜌𝜌 + � 𝑐𝑐 𝜆𝜆𝑐𝑐 � 𝑖𝑖=↑,↓ � 𝑤𝑤𝑐𝑐 𝑖𝑖 𝒓𝒓 𝜌𝜌𝑖𝑖 𝒓𝒓 𝑑𝑑𝒓𝒓 − 𝑁𝑁𝑐𝑐 • Weight function defines the type of constraint o Total density constraint (𝜌𝜌↑ + 𝜌𝜌↓ ): 𝑤𝑤↑ = 𝑤𝑤↓ = 𝑤𝑤 o Magnetization density constraint (𝜌𝜌↑ − 𝜌𝜌↓ ): 𝑤𝑤↑ = −𝑤𝑤↓ = 𝑤𝑤 10.1.2018 4 Weight function Lagrange multiplier (potential strength) Target value 3. Wu, Q.; van Voorhis, T., Phys. Rev. A: At., Mol., Opt. Phys., 2005, 72, 024502. 4. Wu, Q.; van Voorhis, T., J. Chem. Theory Comput., 2006, 2, 765−774.
  • 16. Generation of constrained states • Enforce density localization in atom-centered regions with constraint potential(s) [3,4] 𝐸𝐸CDFT 𝝀𝝀, 𝜌𝜌 = max 𝝀𝝀 min 𝜌𝜌 𝐸𝐸KS 𝜌𝜌 + � 𝑐𝑐 𝜆𝜆𝑐𝑐 � 𝑖𝑖=↑,↓ � 𝑤𝑤𝑐𝑐 𝑖𝑖 𝒓𝒓 𝜌𝜌𝑖𝑖 𝒓𝒓 𝑑𝑑𝒓𝒓 − 𝑁𝑁𝑐𝑐 • Weight function defines the type of constraint o Total density constraint (𝜌𝜌↑ + 𝜌𝜌↓ ): 𝑤𝑤↑ = 𝑤𝑤↓ = 𝑤𝑤 o Magnetization density constraint (𝜌𝜌↑ − 𝜌𝜌↓ ): 𝑤𝑤↑ = −𝑤𝑤↓ = 𝑤𝑤 o Spin specific constraint (𝜌𝜌↑): 𝑤𝑤↑ = 𝑤𝑤, 𝑤𝑤↓ = 0 10.1.2018 4 Weight function Lagrange multiplier (potential strength) Target value 3. Wu, Q.; van Voorhis, T., Phys. Rev. A: At., Mol., Opt. Phys., 2005, 72, 024502. 4. Wu, Q.; van Voorhis, T., J. Chem. Theory Comput., 2006, 2, 765−774.
  • 17. CDFT weight function • Constructed as sum of normalized atomic weight functions 𝑤𝑤𝑐𝑐 𝑖𝑖 𝒓𝒓 = �� 𝑖𝑖∈𝒞𝒞 𝑐𝑐𝑖𝑖 𝑃𝑃𝑖𝑖(𝒓𝒓) � 𝑖𝑖 𝑁𝑁 𝑃𝑃𝑖𝑖(𝒓𝒓) 10.1.2018 5
  • 18. CDFT weight function • Constructed as sum of normalized atomic weight functions 𝑤𝑤𝑐𝑐 𝑖𝑖 𝒓𝒓 = �� 𝑖𝑖∈𝒞𝒞 𝑐𝑐𝑖𝑖 𝑃𝑃𝑖𝑖(𝒓𝒓) � 𝑖𝑖 𝑁𝑁 𝑃𝑃𝑖𝑖(𝒓𝒓) • CP2K uses Becke partitioning o Smoothed Voronoi-like scheme 10.1.2018 5
  • 19. CDFT weight function • Constructed as sum of normalized atomic weight functions 𝑤𝑤𝑐𝑐 𝑖𝑖 𝒓𝒓 = �� 𝑖𝑖∈𝒞𝒞 𝑐𝑐𝑖𝑖 𝑃𝑃𝑖𝑖(𝒓𝒓) � 𝑖𝑖 𝑁𝑁 𝑃𝑃𝑖𝑖(𝒓𝒓) • CP2K uses Becke partitioning o Smoothed Voronoi-like scheme o Atomic sizes can be taken into account (recommended) 10.1.2018 5
  • 20. CDFT weight function • Constructed as sum of normalized atomic weight functions 𝑤𝑤𝑐𝑐 𝑖𝑖 𝒓𝒓 = �� 𝑖𝑖∈𝒞𝒞 𝑐𝑐𝑖𝑖 𝑃𝑃𝑖𝑖(𝒓𝒓) � 𝑖𝑖 𝑁𝑁 𝑃𝑃𝑖𝑖(𝒓𝒓) • CP2K uses Becke partitioning o Smoothed Voronoi-like scheme o Atomic sizes can be taken into account (recommended) − E.g. oxygen has positive charge in water without adjustment 10.1.2018 5
  • 21. Optimization of the CDFT energy (1/2) • Constraints are satisfied when 𝒄𝒄 𝝀𝝀 = � 𝑖𝑖=↑,↓ � 𝑤𝑤1 𝑖𝑖 𝒓𝒓 𝜌𝜌𝑖𝑖 𝒓𝒓 𝑑𝑑𝑑𝑑 − 𝑁𝑁1 ⋮ = 𝟎𝟎 10.1.2018 6
  • 22. Optimization of the CDFT energy (1/2) • Constraints are satisfied when 𝒄𝒄 𝝀𝝀 = � 𝑖𝑖=↑,↓ � 𝑤𝑤1 𝑖𝑖 𝒓𝒓 𝜌𝜌𝑖𝑖 𝒓𝒓 𝑑𝑑𝑑𝑑 − 𝑁𝑁1 ⋮ = 𝟎𝟎 • In practice, 𝝀𝝀 iteratively optimized until 𝐦𝐦𝐚𝐚𝐚𝐚 𝒄𝒄 𝝀𝝀 ≤ 𝝐𝝐 10.1.2018 6
  • 23. Optimization of the CDFT energy (1/2) • Constraints are satisfied when 𝒄𝒄 𝝀𝝀 = � 𝑖𝑖=↑,↓ � 𝑤𝑤1 𝑖𝑖 𝒓𝒓 𝜌𝜌𝑖𝑖 𝒓𝒓 𝑑𝑑𝑑𝑑 − 𝑁𝑁1 ⋮ = 𝟎𝟎 • In practice, 𝝀𝝀 iteratively optimized until 𝐦𝐦𝐚𝐚𝐚𝐚 𝒄𝒄 𝝀𝝀 ≤ 𝝐𝝐 o Uses root-finding algorithms, e.g., Newton’s method 𝝀𝝀𝑛𝑛+1 = 𝝀𝝀𝑛𝑛 − 𝛼𝛼𝑱𝑱𝑛𝑛 −1 𝒄𝒄 𝝀𝝀𝑛𝑛 10.1.2018 6
  • 24. Optimization of the CDFT energy (1/2) • Constraints are satisfied when 𝒄𝒄 𝝀𝝀 = � 𝑖𝑖=↑,↓ � 𝑤𝑤1 𝑖𝑖 𝒓𝒓 𝜌𝜌𝑖𝑖 𝒓𝒓 𝑑𝑑𝑑𝑑 − 𝑁𝑁1 ⋮ = 𝟎𝟎 • In practice, 𝝀𝝀 iteratively optimized until 𝐦𝐦𝐚𝐚𝐚𝐚 𝒄𝒄 𝝀𝝀 ≤ 𝝐𝝐 o Uses root-finding algorithms, e.g., Newton’s method 𝝀𝝀𝑛𝑛+1 = 𝝀𝝀𝑛𝑛 − 𝛼𝛼𝑱𝑱𝑛𝑛 −1 𝒄𝒄 𝝀𝝀𝑛𝑛 10.1.2018 6 Jacobian matrix, approximated by finite differences Step size ∈ [−1, 0) 𝑱𝑱𝑖𝑖𝑖𝑖 = 𝜕𝜕𝒄𝒄𝑖𝑖 𝜕𝜕𝝀𝝀𝑗𝑗 ≈ 𝒄𝒄𝑖𝑖 𝝀𝝀 + 𝜹𝜹𝑗𝑗 − 𝒄𝒄𝑖𝑖(𝝀𝝀) 𝜹𝜹𝑗𝑗
  • 25. Optimization of the CDFT energy (2/2) 10.1.2018 7 Input Constraints converged or max steps reached? Yes New guess for 𝝀𝝀 Output CDFT loop Store data for mixed CDFT Build Jacobian (optional) Optimize step size? Standard CP2K SCF Reduce step size No/Done Yes Yes No
  • 26. Defining constraints (1/2) 10.1.2018 7 &QS ... &CDFT TYPE_OF_CONSTRAINT BECKE &OUTER_SCF ON TYPE BECKE_CONSTRAINT EXTRAPOLATION_ORDER 2 MAX_SCF 10 ! Convergence threshold EPS_SCF 1.0E-3 ! Optimizer selection: now Newton's method with backtracking line search OPTIMIZER NEWTON_LS ! Optimizer step size STEP_SIZE -1.0 ! Line search settings MAX_LS 5 CONTINUE_LS FACTOR_LS 0.5 ! Finite difference settings for calculation of Jacobian matrix JACOBIAN_STEP 1.0E-2 JACOBIAN_FREQ 1 1 JACOBIAN_TYPE FD1 JACOBIAN_RESTART FALSE &END OUTER_SCF &END CDFT Full example files at https://www.cp2k.org/howto:cdft
  • 27. Defining constraints (2/2) 12.1.2018 8 &QS ! Constraint definitions ... ! Each repetition defines a constraint &CDFT &ATOM_GROUP ... ATOMS 1 &END CDFT COEFF 1 &BECKE_CONSTRAINT CONSTRAINT_TYPE CHARGE ! Take atomic radii into account? &END ATOM_GROUP ADJUST_SIZE FALSE ! No constraint but calculate charges ATOMIC_RADII 0.63 0.32 &DUMMY_ATOMS ! Compute Becke charges? ATOMS 2 ATOMIC_CHARGES TRUE &END DUMMY_ATOMS ! Constraint strength and target values ! Print info about CDFT calculation ! Give one value per constraint &PROGRAM_RUN_INFO ON STRENGTH ${BECKE_STR} &EACH TARGET ${BECKE_TARGET} QS_SCF 1 ! Cutoff scheme &END EACH CUTOFF_TYPE ELEMENT COMMON_ITERATION_LEVELS 2 ELEMENT_CUTOFF 7.0 ADD_LAST NUMERIC ! Perform Becke partitioning only within the space FILENAME ./${NAME} ! spanned by constraint atom centered spherical Gaussians &END PROGRAM_RUN_INFO ! (reduces cost for solvated systems) &END BECKE_CONSTRAINT CAVITY_CONFINE TRUE &END QS CAVITY_SHAPE VDW EPS_CAVITY 1.0E-7 IN_MEMORY TRUE SHOULD_SKIP TRUE
  • 28. Defining constraints (2/2) 12.1.2018 8 &QS ! Constraint definitions ... ! Each repetition defines a constraint &CDFT &ATOM_GROUP ... ATOMS 1 &END CDFT COEFF 1 &BECKE_CONSTRAINT CONSTRAINT_TYPE CHARGE ! Take atomic radii into account? &END ATOM_GROUP ADJUST_SIZE FALSE ! No constraint but calculate charges ATOMIC_RADII 0.63 0.32 &DUMMY_ATOMS ! Compute Becke charges? ATOMS 2 ATOMIC_CHARGES TRUE &END DUMMY_ATOMS ! Constraint strength and target values ! Print info about CDFT calculation ! Give one value per constraint &PROGRAM_RUN_INFO ON STRENGTH ${BECKE_STR} &EACH TARGET ${BECKE_TARGET} QS_SCF 1 ! Cutoff scheme &END EACH CUTOFF_TYPE ELEMENT COMMON_ITERATION_LEVELS 2 ELEMENT_CUTOFF 7.0 ADD_LAST NUMERIC ! Perform Becke partitioning only within the space FILENAME ./${NAME} ! spanned by constraint atom centered spherical Gaussians &END PROGRAM_RUN_INFO ! (reduces cost for solvated systems) &END BECKE_CONSTRAINT CAVITY_CONFINE TRUE &END QS CAVITY_SHAPE VDW EPS_CAVITY 1.0E-7 IN_MEMORY TRUE SHOULD_SKIP TRUE Use e.g. covalent radii
  • 29. Defining constraints (2/2) 12.1.2018 8 &QS ! Constraint definitions ... ! Each repetition defines a constraint &CDFT &ATOM_GROUP ... ATOMS 1 &END CDFT COEFF 1 &BECKE_CONSTRAINT CONSTRAINT_TYPE CHARGE ! Take atomic radii into account? &END ATOM_GROUP ADJUST_SIZE FALSE ! No constraint but calculate charges ATOMIC_RADII 0.63 0.32 &DUMMY_ATOMS ! Compute Becke charges? ATOMS 2 ATOMIC_CHARGES TRUE &END DUMMY_ATOMS ! Constraint strength and target values ! Print info about CDFT calculation ! Give one value per constraint &PROGRAM_RUN_INFO ON STRENGTH ${BECKE_STR} &EACH TARGET ${BECKE_TARGET} QS_SCF 1 ! Cutoff scheme &END EACH CUTOFF_TYPE ELEMENT COMMON_ITERATION_LEVELS 2 ELEMENT_CUTOFF 7.0 ADD_LAST NUMERIC ! Perform Becke partitioning only within the space FILENAME ./${NAME} ! spanned by constraint atom centered spherical Gaussians &END PROGRAM_RUN_INFO ! (reduces cost for solvated systems) &END BECKE_CONSTRAINT CAVITY_CONFINE TRUE &END QS CAVITY_SHAPE VDW EPS_CAVITY 1.0E-7 IN_MEMORY TRUE SHOULD_SKIP TRUE Use e.g. covalent radii
  • 30. Example: 𝐙𝐙𝐧𝐧𝟐𝟐 + (1/2) • When 𝑹𝑹𝐙𝐙𝐙𝐙−𝐙𝐙𝐙𝐙 grows, charge should localize onto one Zn atom 10.1.2018 9
  • 31. Example: 𝐙𝐙𝐧𝐧𝟐𝟐 + (1/2) • When 𝑹𝑹𝐙𝐙𝐙𝐙−𝐙𝐙𝐙𝐙 grows, charge should localize onto one Zn atom • Standard GGA/hybrid functionals place +0.5 charge on both atoms 10.1.2018 9
  • 32. Example: 𝐙𝐙𝐧𝐧𝟐𝟐 + (1/2) • When 𝑹𝑹𝐙𝐙𝐙𝐙−𝐙𝐙𝐙𝐙 grows, charge should localize onto one Zn atom • Standard GGA/hybrid functionals place +0.5 charge on both atoms • Force charge localization on first atom 10.1.2018 9 ! Set initial constraint strength to 0 (restarting from DFT) STRENGTH 0.0 ! Constraint target is the number of valence electrons – 1 TARGET 11.0 &ATOM_GROUP ATOMS 1 COEFF 1 CONSTRAINT_TYPE CHARGE &END ATOM_GROUP
  • 33. Example: 𝐙𝐙𝐧𝐧𝟐𝟐 + (2/2) • The default output file contains the CDFT SCF iterations 10.1.2018 10 New guess for 𝝀𝝀 CDFT loop Build Jacobian (optional) Optimize step size? Standard CP2K SCF Reduce step size No/Done Yes
  • 34. Example: 𝐙𝐙𝐧𝐧𝟐𝟐 + (2/2) • The default output file contains the CDFT SCF iterations o Each iteration corresponds to standard CP2K energy optimization 10.1.2018 10 New guess for 𝝀𝝀 CDFT loop Build Jacobian (optional) Optimize step size? Standard CP2K SCF Reduce step size No/Done Yes
  • 35. Example: 𝐙𝐙𝐧𝐧𝟐𝟐 + (2/2) • The default output file contains the CDFT SCF iterations o Each iteration corresponds to standard CP2K energy optimization o Uses optimized solution from line search as restart if available • The following files are created with (quasi-)Newton optimizers o *.LineSearch.out: Electronic structure SCF and optimization of step size 10.1.2018 10 New guess for 𝝀𝝀 CDFT loop Build Jacobian (optional) Optimize step size? Standard CP2K SCF Reduce step size No/Done Yes
  • 36. Example: 𝐙𝐙𝐧𝐧𝟐𝟐 + (2/2) • The default output file contains the CDFT SCF iterations o Each iteration corresponds to standard CP2K energy optimization o Uses optimized solution from line search as restart if available • The following files are created with (quasi-)Newton optimizers o *.LineSearch.out: Electronic structure SCF and optimization of step size o *.cdftLog: Summary of CDFT parameters and computed partial charges 10.1.2018 10
  • 37. Example: 𝐙𝐙𝐧𝐧𝟐𝟐 + (2/2) • The default output file contains the CDFT SCF iterations o Each iteration corresponds to standard CP2K energy optimization o Uses optimized solution from line search as restart if available • The following files are created with (quasi-)Newton optimizers o *.LineSearch.out: Electronic structure SCF and optimization of step size o *.cdftLog: Summary of CDFT parameters and computed partial charges o *.JacobianInfo.out: Calculation of Jacobian matrix with perturbed 𝝀𝝀 10.1.2018 10
  • 38. Example: 𝐙𝐙𝐧𝐧𝟐𝟐 + (2/2) • The default output file contains the CDFT SCF iterations o Each iteration corresponds to standard CP2K energy optimization o Uses optimized solution from line search as restart if available • The following files are created with (quasi-)Newton optimizers o *.LineSearch.out: Electronic structure SCF and optimization of step size o *.cdftLog: Summary of CDFT parameters and computed partial charges o *.JacobianInfo.out: Calculation of Jacobian matrix with perturbed 𝝀𝝀 o *.inverseJacobian: Restart file for inverse Jacobian matrix 10.1.2018 10
  • 39. Standard CP2K SCF with fixed values of constraint strength and step size CDFT SCF iteration information Constraint information Restarted from converged density obtained during line search
  • 40. Fragment constraints (1/2) • Number of valence electrons per molecule not necessarily well defined 12.1.2018 12
  • 41. Fragment constraints (1/2) • Number of valence electrons per molecule not necessarily well defined o Case for overlapping, strongly interacting molecules 12.1.2018 12
  • 42. Fragment constraints (1/2) • Number of valence electrons per molecule not necessarily well defined o Case for overlapping, strongly interacting molecules o How to set constraint target value? 12.1.2018 12
  • 43. Fragment constraints (1/2) • Number of valence electrons per molecule not necessarily well defined o Case for overlapping, strongly interacting molecules o How to set constraint target value? • Use a fragment based constraint 12.1.2018 12 �𝜌𝜌A(𝒓𝒓) �𝜌𝜌B(𝒓𝒓) �𝑁𝑁𝑐𝑐 = � 𝑖𝑖=↑,↓ �𝑤𝑤𝑖𝑖 𝒓𝒓 �𝜌𝜌A 𝑖𝑖 𝒓𝒓 + �𝜌𝜌B 𝑖𝑖 𝒓𝒓 𝑑𝑑𝒓𝒓
  • 44. Fragment constraints (1/2) • Number of valence electrons per molecule not necessarily well defined o Case for overlapping, strongly interacting molecules o How to set constraint target value? • Use a fragment based constraint o Only single-point calculations 12.1.2018 12 �𝜌𝜌A(𝒓𝒓) �𝜌𝜌B(𝒓𝒓) �𝑁𝑁𝑐𝑐 = � 𝑖𝑖=↑,↓ �𝑤𝑤𝑖𝑖 𝒓𝒓 �𝜌𝜌A 𝑖𝑖 𝒓𝒓 + �𝜌𝜌B 𝑖𝑖 𝒓𝒓 𝑑𝑑𝒓𝒓
  • 45. Fragment constraints (1/2) • Number of valence electrons per molecule not necessarily well defined o Case for overlapping, strongly interacting molecules o How to set constraint target value? • Use a fragment based constraint o Only single-point calculations • Cube read/write accelerated with MPI I/O since r18131 12.1.2018 12 �𝜌𝜌A(𝒓𝒓) �𝜌𝜌B(𝒓𝒓) �𝑁𝑁𝑐𝑐 = � 𝑖𝑖=↑,↓ �𝑤𝑤𝑖𝑖 𝒓𝒓 �𝜌𝜌A 𝑖𝑖 𝒓𝒓 + �𝜌𝜌B 𝑖𝑖 𝒓𝒓 𝑑𝑑𝒓𝒓
  • 46. Fragment constraints (2/2) • Charge transfer energies of strongly interacting complexes −Δ𝐸𝐸CT = 𝐸𝐸CDFT − 𝐸𝐸DFT 10.1.2018 13
  • 47. Fragment constraints (2/2) • Charge transfer energies of strongly interacting complexes −Δ𝐸𝐸CT = 𝐸𝐸CDFT − 𝐸𝐸DFT 10.1.2018 13 Energy of system with charge transfer prevented
  • 48. Fragment constraints (2/2) • Charge transfer energies of strongly interacting complexes −Δ𝐸𝐸CT = 𝐸𝐸CDFT − 𝐸𝐸DFT 10.1.2018 13 Energy of system with charge transfer prevented Fragment Becke with atomic size adjustments Becke Becke with atomic size adjustments BW: BW+A: FBB+A:
  • 49. Fragment constraints (2/2) • Charge transfer energies of strongly interacting complexes −Δ𝐸𝐸CT = 𝐸𝐸CDFT − 𝐸𝐸DFT • Magnitude of charge transferred, Δ𝑞𝑞 , overestimated by non- fragment constraints 10.1.2018 13 Energy of system with charge transfer prevented Fragment Becke with atomic size adjustments Becke Becke with atomic size adjustments BW: BW+A: FBB+A:
  • 50. Combining multiple CDFT states • Additional properties can be computed from the interactions between CDFT states 10.1.2018 14
  • 51. Combining multiple CDFT states • Additional properties can be computed from the interactions between CDFT states o Charge transfer kinetics (Marcus theory) 𝑘𝑘ab = 2𝜋𝜋 ℏ 𝑯𝑯ab 2 𝑇𝑇 4𝜋𝜋𝜋𝜋𝜋𝜋𝜉𝜉 exp − 𝜉𝜉 + Δ𝐴𝐴 2 4𝜋𝜋𝑘𝑘𝑇𝑇𝜉𝜉 10.1.2018 14
  • 52. Combining multiple CDFT states • Additional properties can be computed from the interactions between CDFT states o Charge transfer kinetics (Marcus theory) 𝑘𝑘ab = 2𝜋𝜋 ℏ 𝑯𝑯ab 2 𝑇𝑇 4𝜋𝜋𝜋𝜋𝜋𝜋𝜉𝜉 exp − 𝜉𝜉 + Δ𝐴𝐴 2 4𝜋𝜋𝑘𝑘𝑇𝑇𝜉𝜉 10.1.2018 14 Electronic coupling Solvent reorganization energy Reaction free energy
  • 53. Combining multiple CDFT states • Additional properties can be computed from the interactions between CDFT states o Charge transfer kinetics (Marcus theory) 𝑘𝑘ab = 2𝜋𝜋 ℏ 𝑯𝑯ab 2 𝑇𝑇 4𝜋𝜋𝜋𝜋𝜋𝜋𝜉𝜉 exp − 𝜉𝜉 + Δ𝐴𝐴 2 4𝜋𝜋𝑘𝑘𝑇𝑇𝜉𝜉 o Configuration interaction within the basis of CDFT states 10.1.2018 14 Electronic coupling Solvent reorganization energy Reaction free energy
  • 54. Combining multiple CDFT states • Additional properties can be computed from the interactions between CDFT states o Charge transfer kinetics (Marcus theory) 𝑘𝑘ab = 2𝜋𝜋 ℏ 𝑯𝑯ab 2 𝑇𝑇 4𝜋𝜋𝜋𝜋𝜋𝜋𝜉𝜉 exp − 𝜉𝜉 + Δ𝐴𝐴 2 4𝜋𝜋𝑘𝑘𝑇𝑇𝜉𝜉 o Configuration interaction within the basis of CDFT states • Approximate electronic coupling with CDFT Kohn-Sham determinants after orthogonalization [5] 𝑯𝑯ij ≈ 𝚽𝚽CDFT i �𝐻𝐻KS 𝚽𝚽CDFT j = 𝐸𝐸CDFT i + 𝐸𝐸CDFT j 2 𝑺𝑺𝑖𝑖𝑖𝑖 − � 𝑐𝑐 𝚽𝚽CDFT i 𝜆𝜆𝑐𝑐 i 𝑤𝑤𝑐𝑐 i (𝒓𝒓) + 𝜆𝜆𝑐𝑐 j 𝑤𝑤𝑐𝑐 j (𝒓𝒓) 2 𝚽𝚽CDFT j 10.1.2018 14 Electronic coupling Solvent reorganization energy Reaction free energy 5. Wu, Q.; van Voorhis, T., J. Chem. Phys., 2006, 125, 164105.
  • 55. The mixed CDFT module&MULTIPLE_FORCE_EVALS # Zn+ Zn FORCE_EVAL_ORDER 2 3 &FORCE_EVAL MULTIPLE_SUBSYS FALSE @SET WFN_FILE ${WFN_FILE_1} &END @SET RESTART ${RESTART_1} &FORCE_EVAL @SET NAME ${PROJECT_NAME}-state1 METHOD MIXED @SET BECKE_TARGET ${BECKE_TARGET_1} &MIXED @SET BECKE_STR ${BECKE_STR_1} MIXING_TYPE MIXED_CDFT METHOD QS NGROUPS 1 @include ${DFT_FILE} &MIXED_CDFT &END FORCE_EVAL ! Calculate mixed CDFT properties every COUPLING step # Zn Zn+ COUPLING 1 &FORCE_EVAL ! Settings determining how forces are mixed @SET WFN_FILE ${WFN_FILE_2} FORCE_STATES 1 2 @SET RESTART ${RESTART_2} LAMBDA 1.0 @SET NAME ${PROJECT_NAME}-state2 ! Orthogonalize CDFT states with Lowdin's method @SET BECKE_TARGET ${BECKE_TARGET_2} LOWDIN TRUE @SET BECKE_STR ${BECKE_STR_2} ! Configuration interaction? METHOD QS CI FALSE @include ${DFT_FILE} &PRINT &END FORCE_EVAL &PROGRAM_RUN_INFO ON &END &END PRINT &END MIXED_CDFT &END MIXED @include subsys.inc &END FORCE_EVAL 10.1.2018 15 Additional settings available and explained in the manual
  • 56. Electronic coupling in 𝐙𝐙𝐧𝐧𝟐𝟐 + 10.1.2018 16 Zn+ Zn �𝐻𝐻 ZnZn+
  • 57. Electronic coupling in 𝐙𝐙𝐧𝐧𝟐𝟐 + 10.1.2018 16 Zn+ Zn �𝐻𝐻 ZnZn+
  • 58. Electronic coupling in 𝐙𝐙𝐧𝐧𝟐𝟐 + 10.1.2018 16 Zn+ Zn �𝐻𝐻 ZnZn+ Different orthogonalization algorithms
  • 59. Electronic coupling in 𝐙𝐙𝐧𝐧𝟐𝟐 + 10.1.2018 17 Zn+ Zn �𝐻𝐻 ZnZn+ Different orthogonalization algorithms Agrees with 5.49 mHartree estimate from more expensive wavefunction based method CASSCF/MRCI+Q
  • 60. CDFT in solvated systems • Computational efficiency of GPW/OT allows study of solvated charge transfer processes at full DFT level 12.1.2018 18
  • 61. CDFT in solvated systems • Computational efficiency of GPW/OT allows study of solvated charge transfer processes at full DFT level • Evaluating intramolecular charge transfer kinetics in QTTFQ– • 258 water, 12 ps (0.5 fs timestep) • 48 s/timestep @ 384 MPI cores (~120k core hours) 12.1.2018 18
  • 62. List of CDFT capabilities in CP2K • GPW and GAPW (no fragment constraint) 12.1.2018 19
  • 63. List of CDFT capabilities in CP2K • GPW and GAPW (no fragment constraint) • Full DFT or QM/MM 12.1.2018 19
  • 64. List of CDFT capabilities in CP2K • GPW and GAPW (no fragment constraint) • Full DFT or QM/MM • Primarily for OT, diagonalization is supported but difficult to converge 12.1.2018 19
  • 65. List of CDFT capabilities in CP2K • GPW and GAPW (no fragment constraint) • Full DFT or QM/MM • Primarily for OT, diagonalization is supported but difficult to converge • Energies and forces for an unlimited number of constraints (any type) 12.1.2018 19
  • 66. List of CDFT capabilities in CP2K • GPW and GAPW (no fragment constraint) • Full DFT or QM/MM • Primarily for OT, diagonalization is supported but difficult to converge • Energies and forces for an unlimited number of constraints (any type) • Mixed CDFT module supports 12.1.2018 19
  • 67. List of CDFT capabilities in CP2K • GPW and GAPW (no fragment constraint) • Full DFT or QM/MM • Primarily for OT, diagonalization is supported but difficult to converge • Energies and forces for an unlimited number of constraints (any type) • Mixed CDFT module supports o Electronic couplings with various orthogonalization methods 12.1.2018 19
  • 68. List of CDFT capabilities in CP2K • GPW and GAPW (no fragment constraint) • Full DFT or QM/MM • Primarily for OT, diagonalization is supported but difficult to converge • Energies and forces for an unlimited number of constraints (any type) • Mixed CDFT module supports o Electronic couplings with various orthogonalization methods o Configuration interaction 12.1.2018 19
  • 69. List of CDFT capabilities in CP2K • GPW and GAPW (no fragment constraint) • Full DFT or QM/MM • Primarily for OT, diagonalization is supported but difficult to converge • Energies and forces for an unlimited number of constraints (any type) • Mixed CDFT module supports o Electronic couplings with various orthogonalization methods o Configuration interaction o Removal of linearly-dependent MOs via SVD decomposition 12.1.2018 19
  • 70. List of CDFT capabilities in CP2K • GPW and GAPW (no fragment constraint) • Full DFT or QM/MM • Primarily for OT, diagonalization is supported but difficult to converge • Energies and forces for an unlimited number of constraints (any type) • Mixed CDFT module supports o Electronic couplings with various orthogonalization methods o Configuration interaction o Removal of linearly-dependent MOs via SVD decomposition o Electronic coupling reliability metrics 12.1.2018 19
  • 71. Summary • CDFT is a tool to study charge transfer phenomena 12.1.2018 20
  • 72. Summary • CDFT is a tool to study charge transfer phenomena • Available in latest release version 12.1.2018 20
  • 73. Summary • CDFT is a tool to study charge transfer phenomena • Available in latest release version • Tutorial at https://www.cp2k.org/howto:cdft that complements regtests 12.1.2018 20
  • 74. Summary • CDFT is a tool to study charge transfer phenomena • Available in latest release version • Tutorial at https://www.cp2k.org/howto:cdft that complements regtests o Summaries of CDFT theory and the CP2K implementation o Walk throughs of example calculations 12.1.2018 20
  • 75. Summary • CDFT is a tool to study charge transfer phenomena • Available in latest release version • Tutorial at https://www.cp2k.org/howto:cdft that complements regtests o Summaries of CDFT theory and the CP2K implementation o Walk throughs of example calculations • Help provided on Google groups if you encounter issues with CDFT features 12.1.2018 20