SlideShare a Scribd company logo
1 of 93
Plan of the lecturePlan of the lecture
1. Neoplastic growth. Definition.
2. Features of benign and malignant tumors.
3. Classification of cancerogens.
4. Pathogenesis of tumors.
5. Stages of cancerogenesis.
6. Characteristic of tumor cells.
7. Mechanism of immunological response
against tumor cells.
8. Treatment of tumors.
Actuality of the lectureActuality of the lecture
By the prognoses of Worldwide health protectionBy the prognoses of Worldwide health protection
organization morbidity and death rate from oncologicorganization morbidity and death rate from oncologic
diseases in the whole worlddiseases in the whole world will grow in 2 timeswill grow in 2 times forfor
period from 1999 year for 2020period from 1999 year for 2020: from 10 to the 20: from 10 to the 20
million new cases and from 6 to the 12 millionmillion new cases and from 6 to the 12 million
registered deaths.registered deaths.
Taking into account that in the developed countriesTaking into account that in the developed countries
there is a tendency to deceleration of growth ofthere is a tendency to deceleration of growth of
morbidity and death rate from malignant tumors (due tomorbidity and death rate from malignant tumors (due to
the prophylaxis and due to the improvement of earlythe prophylaxis and due to the improvement of early
diagnostics and treatment), clearly, that a basicdiagnostics and treatment), clearly, that a basic
increase will be at developing countries (countries ofincrease will be at developing countries (countries of
former USSR). That is why doctors have to expectformer USSR). That is why doctors have to expect
serious increase of morbidity and death rate fromserious increase of morbidity and death rate from
oncopathology.oncopathology.
From data of Committee of cancer prophylaxis 90%From data of Committee of cancer prophylaxis 90%
tumors are related to influencing of external factors, andtumors are related to influencing of external factors, and
10% - depend on genetic factors.10% - depend on genetic factors.
Neoplasia –Neoplasia –
““new growth”new growth” && newnew
growth is calledgrowth is called
aa neoplasmneoplasm..
 NeoplasiaNeoplasia is new tissue growth that is:is new tissue growth that is:
 unregulated,unregulated,
 irreversible,irreversible,
 monoclonal.monoclonal.
 Monoclonal means that the neoplastic cells are derivedMonoclonal means that the neoplastic cells are derived
from a single mother cell.from a single mother cell.
 CancerCancer is anis an overgrowthovergrowth of cellsof cells
bearing cumulativebearing cumulative genetic injuriesgenetic injuries thatthat
confer growth advantage over theconfer growth advantage over the
normal cells.normal cells. [[Nowell’s LawNowell’s Law]]
these featuresthese features
distinguish it fromdistinguish it from
hyperplasia and repairhyperplasia and repair
• Oncology (Greek oncos = tumor) is the
study of tumors or neoplasms.
• Cancer is the common term for all
malignant tumors.
• Although the ancient origins of this term
are somewhat uncertain, it probably
derives from the Latin for crab, cancer —
presumably because a cancer "adheres to
any part that it seizes upon in an obstinate
manner like the crab."
 Believe it or not, cancer has affected people for several
centuries. It is not a new disease.
 The word cancer came from the father of medicine, Hippocrates,
a Greek physician. He used the Greek words, carcinos and
carcinoma to describe tumors, thus calling cancer “karkinos.”
 Hippocrates (460-377 BC) coined the term karkinos for
cancer of the breast.
 The word ‘cancer’‘cancer’ means crabcrab, thus reflecting the true
character of cancer since ‘it sticks to the part stubbornly like a
crabcrab’. He was certainly not the first to discover the disease.
 The history of cancer actually begins much earlier.
The History of Cancer, Lisa Fayed, About.com July,2008
• The world's oldest documented case of cancer hailsThe world's oldest documented case of cancer hails
from ancient Egypt, infrom ancient Egypt, in 3000 b.c.3000 b.c.
• The details were recorded on a papyrus, documentingThe details were recorded on a papyrus, documenting
8 cases of tumors occurring on the breast.8 cases of tumors occurring on the breast.
• It was treated by cauterization. It was also recordedIt was treated by cauterization. It was also recorded
that there was no treatment for the disease, onlythat there was no treatment for the disease, only
palliative treatment.palliative treatment.
• There is evidence that the ancient Egyptians wereThere is evidence that the ancient Egyptians were
able toable to tell the difference between malignant andtell the difference between malignant and
benign tumors.benign tumors.
• In ancient Egypt, it was believed cancer wasIn ancient Egypt, it was believed cancer was
caused by the Gods.caused by the Gods. The History of Cancer, Lisa Fayed, About.com July,2008
Ebers PapyrusEbers Papyrus treatment
for cancer: recounting a "
tumortumor against the god
Xenus", it recommends
"do nothing there against"
http://en.wikipedia.org/wiki/Ancient_Egyptian_medicine
Ancient Egyptian
medical instruments
depicted in a Ptolemaic
period inscription on
the Temple of Kom
Ombo.
TerminologyTerminology
 HyperplasiaHyperplasia -- increase in theincrease in the
number of cells,number of cells,
 HypertrophyHypertrophy - increase in the- increase in the
sizessizes of individual cellsof individual cells..
 AtrophyAtrophy isis an adaptivean adaptive
response in which there is aresponse in which there is a
decrease in the size anddecrease in the size and
function of cells.function of cells.
 AnaplasiaAnaplasia - lack of differentiation.- lack of differentiation.
MetaplasiaMetaplasia ::
TransformationTransformation
of a certainof a certain
type oftype of
differentiateddifferentiated
tissue intotissue into
another typeanother type ofof
differentiateddifferentiated
tissue.tissue.
HeteroplasiaHeteroplasia ::
Occurrence ofOccurrence of
non-neoplasticnon-neoplastic
tissue at atissue at a
location wherelocation where
it does notit does not
normallynormally
occur, either inoccur, either in
a heterotopiaa heterotopia
or as a resultor as a result ofof
tissuetissue
dissemination.dissemination.
All tumors,All tumors, benignbenign as well asas well as
malignantmalignant, have 2 basic components:, have 2 basic components:
““Parenchyma”Parenchyma”
comprised bycomprised by
proliferating tumor cells;proliferating tumor cells;
parenchymaparenchyma
determines the naturedetermines the nature
and evolution of theand evolution of the
tumortumor.
“Supportive stroma”Supportive stroma”
composed of fibrouscomposed of fibrous
connective tissueconnective tissue
and blood vessels; itand blood vessels; it
provides the frameworkprovides the framework
on which theon which the
parenchymal tumorparenchymal tumor
cells grow.cells grow.
NOMENCLATURENOMENCLATURE
BenignBenign tumors are designatedtumors are designated
by attaching the suffixby attaching the suffix -oma-oma to the cellto the cell
of origin. Tumors ofof origin. Tumors of mesenchymalmesenchymal
cellscells generally follow this rule.generally follow this rule.
For exampleFor example, a benign tumor arising, a benign tumor arising fromfrom
fibroblastic cellsfibroblastic cells is calledis called aa fibromafibroma,, aa
cartilaginous tumocartilaginous tumor isr is aa chondromachondroma, a, a
tumor oftumor of osteoblastsosteoblasts is anis an osteomaosteoma..
AdenomaAdenoma is the term applied to ais the term applied to a
benign epithelial neoplasm that formsbenign epithelial neoplasm that forms
glandularglandular patterns as well as topatterns as well as to
tumors derived from glands but nottumors derived from glands but not
necessarily reproducing glandularnecessarily reproducing glandular
patterns.patterns.
Benign epithelialBenign epithelial neoplasmsneoplasms
producing microscopically orproducing microscopically or
macroscopicallymacroscopically visible finger-likevisible finger-like oror
warty projectionswarty projections from epithelialfrom epithelial
surfaces are referred to assurfaces are referred to as papillomaspapillomas
MalignantMalignant tumours of epithelialtumours of epithelial
origin are calledorigin are called carcinomascarcinomas, while, while
malignantmalignant mesenchymalmesenchymal tumourstumours
are namedare named sarcomas (sarcos =sarcomas (sarcos =
fleshy)fleshy)
For exampleFor example,, fibrosarcoma,fibrosarcoma,
liposarcomaliposarcoma,, leiomyosarcomaleiomyosarcoma forfor
smooth muscle cancersmooth muscle cancer, and, and
rhabdomyosarcomarhabdomyosarcoma for a cancer thatfor a cancer that
differentiates towarddifferentiates toward striated musclestriated muscle).).
However, some cancers areHowever, some cancers are
composed of highlycomposed of highly undifferentiatedundifferentiated
cells and are referred to ascells and are referred to as
undifferentiated malignant tumours.undifferentiated malignant tumours.
TeratomasTeratomas (can be benign)(can be benign),, inin
contrast, are made up of a variety ofcontrast, are made up of a variety of
parenchymal cell typesparenchymal cell types
representative of more than onerepresentative of more than one
germ layer, usually all three.germ layer, usually all three.
"Knapsack” tumor: lipoma
Pleural sarcomatosis:Pleural sarcomatosis:
metastatic sarcoma of the uterusmetastatic sarcoma of the uterus
CANCER CELLS AND NORMAL
CELLS
CANCER CELLSCANCER CELLS NORMAL CELLSNORMAL CELLS
Loss of contact inhibitionLoss of contact inhibition
Increase in growth factor secretionIncrease in growth factor secretion
Increase in oncogene expressionIncrease in oncogene expression
Loss of tumor suppressor genesLoss of tumor suppressor genes
Oncogene expression is rareOncogene expression is rare
Intermittent or co-ordinatedIntermittent or co-ordinated
growth factor secretiongrowth factor secretion
Presence of tumor suppressorPresence of tumor suppressor
genesgenes
NormalNormal
cellcell
FewFew
mitosesmitoses
FrequentFrequent
mitosesmitoses
NucleusNucleus
Blood vesselBlood vessel
AbnormalAbnormal
heterogeneous cellsheterogeneous cells
Characteristics of Benign and Malignant NeoplasmsCharacteristics of Benign and Malignant Neoplasms
CharacteristicsCharacteristics BenignBenign MalignantMalignant
CellCell
characteristicscharacteristics
Well-differentiated cells that resemble
normal cells of the tissue from which
the tumor originated
Cells are undifferentiated and often bear little
resemblance to the normal cells of the tissue
from which they arose
Mode of growthMode of growth
Tumor grows by expansion and does
not infiltrate the surrounding tissues;
usually encapsulated by a fibrous
capsule (exception – uterine leiomyomas do(exception – uterine leiomyomas do
not have fibrous tissue capsule)not have fibrous tissue capsule)
Grows at the periphery and sends out
processes that infiltrate and destroy the
surrounding tissues
Rate of growthRate of growth Rate of growth usually is slow
Rate of growth is variable and depends on
level of differentiation; the more anaplastic the
tumor, the more rapid the rate of growth
MetastasisMetastasis Does not spread by metastasis
Gains access to the blood and lymph channels
and metastasizes to other areas of the body
General effectsGeneral effects
Usually is a localized phenomenon that
does not cause generalized effects
unless its location interferes with vital
functions
Often causes generalized effects such as
anemia, weakness, and weight loss
TissueTissue
destructiondestruction
Usually does not cause tissue damage
unless its location interferes with blood
flow
Often causes extensive tissue damage as the
tumor outgrows its blood supply or
encroaches on blood flow to the area; also
may produce substances that cause cell
damage
Ability to causeAbility to cause
deathdeath
Usually does not cause death unless its
location interferes with vital functions
Usually causes death unless growth can be
controlled
Principal Pathways of
Malignancy
1. Proliferation
2. Cell-Cycle Progression
3. DNA Repair
4. Immortalization
5. Apoptosis
6. Angiogenesis
7. Metastasis and Invasion
1)External factors:1)External factors: tobacco,
alcohol, chemicals,
radiation, pathogens
2) Internal factors:2) Internal factors: hormones,
immune conditions, inheriled
mutations
 1. Age > 55 years - more than 75% of cancers.
 2. Causes:
3. Blacks
a. Greatest risk for cancer
and cancer-related
deaths of any other racial
group or ethnicity
b. Applies to almost all
cancers except
malignant melanoma
4. Hispanics and Asians
Lower incidence rates for all
cancers combined than
whites
b. Exceptions are for cancers
associated with infections –
cervix (human papillomavirus),
liver (hepatitis B and C),
stomach (Helicobacter pylori)
5. Native Americans
• Highest incidence and
cancer-related deaths
due to kidney cancer
than all racial and
ethnic populations.
Cancer incidenceCancer incidence
1. Cancers in children1. Cancers in children
a.a. Second most common cause of deathSecond most common cause of death inin
children (accidents most common cause)children (accidents most common cause)
b.b. Acute lymphoblastic leukemiaAcute lymphoblastic leukemia (-33%),(-33%),
central nervous system (CNS) tumors (-21%),central nervous system (CNS) tumors (-21%),
neuroblastoma (~7%), Wilms' tumor (-5%).neuroblastoma (~7%), Wilms' tumor (-5%).
•• These are not common tumors in adults.These are not common tumors in adults.
2.2. Cancers in menCancers in men
(in decreasing order)(in decreasing order)
•• ProstateProstate, lung, colorectal, lung, colorectal
3.3. Cancers in womenCancers in women
(in decreasing order)(in decreasing order)
•• BreastBreast, lung, colorectal, lung, colorectal
Cancer GeographyCancer Geography
1. Worldwide
•• Malignant melanoma isMalignant melanoma is
increasing at the most rapidincreasing at the most rapid
rate of all cancers.rate of all cancers.
2. China2. China
•• NasopharyngealNasopharyngeal
carcinoma secondary tocarcinoma secondary to
Epstein-Barr virus (EBV)Epstein-Barr virus (EBV)
3. Japan3. Japan
•• StomachStomach
adenocarcinomaadenocarcinoma
due t0 smoked foodsdue t0 smoked foods
4. Southeast Asia4. Southeast Asia
•• Hepatocellular carcinomaHepatocellular carcinoma
due to hepatitis B virus plusdue to hepatitis B virus plus
aflatoxins (produced byaflatoxins (produced by
Aspergillus) in foodAspergillus) in food
5. Africa5. Africa
•• Burkitt's lymphoma due to EBV andBurkitt's lymphoma due to EBV and
Kaposi's sarcoma due t0 humanKaposi's sarcoma due t0 human
herpes virus 8.herpes virus 8.
Epidemiology of Endometrial CancerEpidemiology of Endometrial Cancer
CausalCausal
TumorigenesisTumorigenesis
 CancerCancer is ais a genetic disordergenetic disorder that arises from athat arises from a
single body cell (monoclonal disorder).single body cell (monoclonal disorder).
 In humansIn humans and other animals, it may beand other animals, it may be
triggeredtriggered byby noxious chemicalnoxious chemical,, viralviral, and, and
physical agentsphysical agents withwith mutagenic effectsmutagenic effects..
 Cells acquire severalCells acquire several characteristics duringcharacteristics during
the course of this disease.the course of this disease.
CARCINOGENCARCINOGEN
METABOLISMMETABOLISM
Three Main Categories:Three Main Categories:
I. Chemical Carcinogens
II. Physical Carcinogens
III. Viral Agents
CarcinogensCarcinogens MutationsMutations CancerCancer
??EnvironmentalEnvironmental
factorsfactors
CARCINOGENSCARCINOGENS
• Occupation related causesOccupation related causes
• Lifestyle related causesLifestyle related causes
– TobaccoTobacco
– DietDiet
– Sexual practicesSexual practices
• Multifactorial causesMultifactorial causes
• Chemical carcinogensChemical carcinogens
• Ionizing radiationIonizing radiation
• Viral carcinogensViral carcinogens
CHEMICAL CARCINOGENESISCHEMICAL CARCINOGENESIS
Direct-acting CarcinogensDirect-acting Carcinogens
A.A. Alkylating agents
• Anti-cancer drugs: cyclophosphamide
(transitional cell carcinoma of urinary bladder)(transitional cell carcinoma of urinary bladder),
chlorambucil, busulfan, melphalan,
nitrosourea etc.
• β-propiolactone;
• Epoxides
B. Acylating agents:
• Acetyl imidazole
• Dimethyl carbamyl chloride
PromotersPromoters
 saccharine & cyclamatessaccharine & cyclamates
 EstrogenEstrogen ((endometrial carcinoma.
Adenocarcinoma of the vagina is seen with
increased frequency in adolescent daughters of
mothers who had received estrogen therapy
during pregnancy).

Anabolic steroids (↑ the risk of
developing benign and malignant tumors of the
liver)

Contraceptive hormonesContraceptive hormones ((↑ the risk of
developing breast cancer. For long durations
are benign tumors of the liver, and a few
patients have been reported to have developed
hepatocellular carcinoma.
Gregg Valentino
ProcarcinogensProcarcinogens
1. Polyclic,1. Polyclic, aromatic hydrocarbons (in tobacco, smoke, fossil fuel, soot, tar, minerals
oil, smoked animal foods, industrial and atmospheric pollutants)
(Lung cancer, skin cancer, cancer of upper aerodigestive tract)
• Anthracenes (benza-, dibenza-, dimethyl benza-)
• Benzapyrene;
• Methylcholanthrene
2.2. Aromatic amines and azo-dyes:
• β-naphthylamine; Benzidine (Bladder cancer)
• Azo-dyes (e.g. butter yellow, scarlet red) (hepatocellular carcinoma)
3. Naturally-occurring products
 Aflatoxin B1Aflatoxin B1 ((Hepatocellular carcinoma in association with hepatitis B virusHepatocellular carcinoma in association with hepatitis B virus))
 Actinomycin D; Mitomycin C; Safrole; Betel nutsActinomycin D; Mitomycin C; Safrole; Betel nuts
4. Miscellaneous
 Nitrosamine & AmidesNitrosamine & Amides
 AsbestosAsbestos ((Bronchogenic carcinoma, pleural mesotheliomaBronchogenic carcinoma, pleural mesothelioma))
 Vinyl chlorideVinyl chloride ((Angiosarcoma, liverAngiosarcoma, liver))
 Chromium, nickel, other metalsChromium, nickel, other metals ((Bronchogenic carcinomaBronchogenic carcinoma))
 ArsenicArsenic ((Squamous cell carcinoma of skin, lung cancer, liver angiosarcomaSquamous cell carcinoma of skin, lung cancer, liver angiosarcoma))
3,4-benzopyrene3,4-benzopyrene
This lady chews betel nuts the fruit of a palm
Stages:Stages:
InitiationInitiation - primary exposure- primary exposure
PromotionPromotion - transformation- transformation
ProgressionProgression - Cancer growth- Cancer growth
CancerCancer
InitiationInitiation
 normal cells are exposed to a carcinogennormal cells are exposed to a carcinogen
 not enough to cause malignant transformationnot enough to cause malignant transformation
 requires one round of cell divisionrequires one round of cell division
 normal cells are exposed to a carcinogennormal cells are exposed to a carcinogen
1. Direct-acting carcinogens1. Direct-acting carcinogens
2. Indirect-acting carcinogens2. Indirect-acting carcinogens
ProcarcinogenProcarcinogen CytochromeCytochrome
P450P450
UltimateUltimate
carcinogencarcinogen
PromotionPromotion
 initiated cells are exposed to promotersinitiated cells are exposed to promoters
 promoters are not carcinogens !promoters are not carcinogens !
 properties of promotersproperties of promoters  reversiblereversible
 dose-dependentdose-dependent
 time-dependenttime-dependent
1. Radiation1. Radiation
1). Ionizing radiation-induced cancers1). Ionizing radiation-induced cancers
a. Mechanism:a. Mechanism:
•• Hydroxyl free radical injury to DNAHydroxyl free radical injury to DNA
b. Examplesb. Examples
(1)(1) Acute myelogenous or chronic myelogenousAcute myelogenous or chronic myelogenous
leukemia (leukemia ( risk of leukemia in radiologists andrisk of leukemia in radiologists and
individuals exposed to radiation in nuclear reactors);individuals exposed to radiation in nuclear reactors);
(2) Papillary thyroid carcinoma(2) Papillary thyroid carcinoma
(3) Lung, breast, and bone cancers(3) Lung, breast, and bone cancers
(4) Liver angiosarcoma(4) Liver angiosarcoma (Due to radioactive thorium(Due to radioactive thorium
dioxide used to visualize the arterial tree)dioxide used to visualize the arterial tree)
2). UV light-induced cancers2). UV light-induced cancers
a. Mechanisma. Mechanism
•• Formation of pyrimidine dimers, which distort DNAFormation of pyrimidine dimers, which distort DNA
b. Basal cell carcinoma, squamous cell carcinoma,b. Basal cell carcinoma, squamous cell carcinoma,
malignant melanomamalignant melanoma
2. Physical injury2. Physical injury
1). Squamous cell carcinoma may develop in third-1). Squamous cell carcinoma may develop in third-
degree burn scars.degree burn scars.
2). Squamous cell carcinoma may develop at the2). Squamous cell carcinoma may develop at the
orifices of chronically draining;orifices of chronically draining;
sinuses (e.g., chronic osteomyelitis),sinuses (e.g., chronic osteomyelitis),
Physical CarcinogenesisPhysical Carcinogenesis
PRE-IRRADIATIONPRE-IRRADIATION POST-IRRADIATIONPOST-IRRADIATION
ChondrosarcomaChondrosarcoma
Ultraviolet RaysUltraviolet Rays
UV-A = 320 - 400 nm
UV-B = 280 - 320 nm
UV-C = 200 - 280 nm
UV-CUV-C ⇒⇒ filtered by ozonefiltered by ozone
UV-BUV-B
Inhibition of cell divisionInhibition of cell division
inactivation of enzymesinactivation of enzymes
induction of mutations cellinduction of mutations cell
death at high dosesdeath at high doses
Squamous cell cancerSquamous cell cancer
Basal cell cancerBasal cell cancer
MelanocarcinomaMelanocarcinoma
Virus MECHANISM ASSOCIATED CANCER
RNA Viruses
HCV Produces postnecrotic cirrhosis Hepatocellular carcinomaHepatocellular carcinoma
HTLV-1 (human
T-cell lympho-
tropic virus)
Activates TAX gene, stimulates
polyclonal T-cell proliferation,
inhibits TP53 suppressor gene
T-cell leukemia and lymphomaT-cell leukemia and lymphoma
DNA VirusesDNA Viruses
EBV (Epstein-
Barr virus)
Promotes polyclonal B-cell
proliferation, which increases risk
for t(8:14) translocation
Burkitt's lymphoma, CNS lymphomaBurkitt's lymphoma, CNS lymphoma
in AIDS, mixed cellularity Hodgkin'sin AIDS, mixed cellularity Hodgkin's
lymphoma, nasopharyngeallymphoma, nasopharyngeal
carcinomacarcinoma
HBV (hepatitis B
virus)
Activates proto-oncogenes,
inactivates TP53 suppressor gene
Hepatocellular carcinomaHepatocellular carcinoma
HHV-8 (human
herpesvirus)
Acts via cytokines released from
HIV and HSV
Kaposi's sarcoma in AIDSKaposi's sarcoma in AIDS
HPV types 16
and 18, 31, 33
(human
papillomavirus)
Type 16 (-50% of cancers); E6 gene
product inhibits; TP53 suppressor
gene
Type 18 (-10% of cancers); E7 gene
product inhibits; RB suppressor
gene
Squamous cell carcinoma of vulva,Squamous cell carcinoma of vulva,
vagina, cervix, anus (associatedvagina, cervix, anus (associated
with anal intercourse), larynx,with anal intercourse), larynx,
oropharynxoropharynx
Viral CarcinogenesisViral Carcinogenesis
VirusesViruses
(in brackets)(in brackets)
in humanin human
tumors.tumors.
Burkitt's lymphomaBurkitt's lymphoma
Viral carcinogenesisViral carcinogenesis
Laryngeal papillomatosisLaryngeal papillomatosis
Oral cancerOral cancer
Kaposi's sarcomaKaposi's sarcoma
A, Replication: Step 1. The DNA virus invades the host cell.
Step 2. Viral DNA is incorporated into the host nucleus and T-
antigen is expressed immediately after infection. Step 3.
Replication of viral DNA occurs and other components of virion
are formed. The new virions are assembled in the cell nucleus.
Step 4. The new virions are released, accompanied by host cell
lysis. B, Integration: Steps 1 and 2 are similar as in
replication. Step 3. Integration of viral genome into the host cell
genome occurs which requires essential presence of functional
T-antigen. Step 4. A ‘transformed (neoplastic) cell’ is formed.
Step 1. The RNA virus invades the host cell. The viral envelope
fuses with the plasma membrane of the host cell; viral RNA
genome as well as reverse transcriptase are released into the
cytosol. Step 2. Reverse transcriptase acts as template to
synthesise single strand of matching viral DNA which is then
copied to form complementary DNA resulting in double-stranded
viral DNA (provirus). Step 3. The provirus is integrated into the
host cell genome producing ‘transformed host cell.’ Step 4.
Integration of the provirus brings about replication of viral
components which are then assembled and released by
Lifestyle RiskLifestyle Risk
FactorsFactors
Tobacco-related:Tobacco-related:
 Lung cancerLung cancer
 Pancreatic cancerPancreatic cancer
 Bladder cancerBladder cancer
 Renal cancerRenal cancer
 Cervical cancerCervical cancer
LungLung
carcinomacarcinoma
in situin situ
Penetration of the vena cava:Penetration of the vena cava:
renal carcinomarenal carcinoma
Diet-Related Risk Factors
Nitrates
Salt
Low vitamins A, C, E
Low consumption of
yellow-green
vegetables
Gastric Cancer
Esophageal
Cancer
Diet-Related RiskDiet-Related Risk
FactorsFactors
High fat
Low fiber
Low calcium
High fried foods
Colon Cancer
Pancreatic Cancer
Prostate Cancer
Breast Cancer
Uterine Cancer
Mycotoxins Liver Cancer
Carcinoma of the prostateCarcinoma of the prostate
Sexual PracticesSexual Practices
Risk FactorsRisk Factors
Cervical Cancer
Sexual promiscuity
Multiple partners
Unsafe Sex
Human Papillomavirus
MultifactorialMultifactorial
FactorsFactors
Oral Cavity CancerOral Cavity Cancer
Esophageal CancerEsophageal Cancer
Tobacco + Asbestos
Tobacco + mining
Tobacco + uranium +
radium
Respiratory TractRespiratory Tract
CancerCancer
Lung CancerLung Cancer
Tobacco + Alcohol
CHARACTERISTICS OF CANCERCHARACTERISTICS OF CANCER
• ClonalityClonality
• AutonomyAutonomy
• AnaplasiaAnaplasia
• MetastasisMetastasis
CHARACTERISTICS OF CANCERCHARACTERISTICS OF CANCER
ClonalityClonality
 Clonality can be determined by glucose-6-Clonality can be determined by glucose-6-
phosphate dehydrogenase (G6PD) enzymephosphate dehydrogenase (G6PD) enzyme
isoforms.isoforms.
 1. Multiple isoforms (e.g., G6PD1. Multiple isoforms (e.g., G6PDAA, G6PD, G6PDBB, and, and
G6PDG6PDCC) exist; only one isoform is inherited) exist; only one isoform is inherited
from each parent.from each parent.
 2. In females, one isoform is randomly2. In females, one isoform is randomly
inactivated in each cell by lyonization (G6PD isinactivated in each cell by lyonization (G6PD is
present on the X chromosome).present on the X chromosome).
 3. Normal ratio of active isoforms in cells of any3. Normal ratio of active isoforms in cells of any
tissue is 1:1 (e.g., 50% of cells have G6PDtissue is 1:1 (e.g., 50% of cells have G6PDAA,,
and 50% of cells have G6PDand 50% of cells have G6PDGG).).
 4. 1:1 ratio is maintained in hyperplasia, which4. 1:1 ratio is maintained in hyperplasia, which
is polyclonal (cells are derived from multipleis polyclonal (cells are derived from multiple
cells).cells).
 5. Only one isoform is present in neoplasia,5. Only one isoform is present in neoplasia,
which is monoclonal.which is monoclonal.
 6. Clonality can also be determined by6. Clonality can also be determined by
androgen receptor isoforms, which are alsoandrogen receptor isoforms, which are also
present on the X chromosome.present on the X chromosome.
• Cancer cells are able to proliferate despiteCancer cells are able to proliferate despite
regulatory influences.regulatory influences.
• Unrestricted proliferation results in tumorUnrestricted proliferation results in tumor
formation.formation.
• Mechanisms:Mechanisms:
– Growth factor secretionGrowth factor secretion
– Increased number of cell receptorsIncreased number of cell receptors
– Independent activation of key biochemical processIndependent activation of key biochemical process
• Proliferation depends on the cell cycle.Proliferation depends on the cell cycle.
CHARACTERISTICS OF CANCERCHARACTERISTICS OF CANCER
AutonomyAutonomy
 A tumor usually isA tumor usually is
undetectable until itundetectable until it
has doubled 30has doubled 30
times and containstimes and contains
more than 1 billionmore than 1 billion
(10*9) cells. At this(10*9) cells. At this
point, it ispoint, it is
approximately 1 cmapproximately 1 cm
in size.in size.
 After 35 doublings,After 35 doublings,
the mass containsthe mass contains
more than 1 trillionmore than 1 trillion
(10*12) cells, which(10*12) cells, which
is a sufficientis a sufficient
number to kill thenumber to kill the
host.host.
 The concept of the Hayflick limit was advanced by Leonard Hayflick in 1961, at theThe concept of the Hayflick limit was advanced by Leonard Hayflick in 1961, at the
Wistar Institute in Philadelphia. Hayflick demonstrated that a population of normalWistar Institute in Philadelphia. Hayflick demonstrated that a population of normal
human fetal cellshuman fetal cells in a cell culturein a cell culture will divide between 40 and 60 timeswill divide between 40 and 60 times. The. The
population will then enter a senescence phase, which refutes the contention bypopulation will then enter a senescence phase, which refutes the contention by
Nobel laureate Alexis CarrelNobel laureate Alexis Carrel that normal cells are immortal.that normal cells are immortal.
 Hayflick found thatHayflick found that cells go through three phasescells go through three phases::
 TheThe firstfirst is rapid, healthy cell division.is rapid, healthy cell division.
 In theIn the secondsecond phase, mitosis slows.phase, mitosis slows.
 In theIn the thirdthird stage,stage, senescencesenescence, cells stop dividing entirely. Once a cell reaches the, cells stop dividing entirely. Once a cell reaches the
end of its life span, it undergoes a programmed cellular death calledend of its life span, it undergoes a programmed cellular death called apoptosisapoptosis..
 EachEach mitosismitosis slightly shortens each of theslightly shortens each of the telomerestelomeres on the DNA of the cells.on the DNA of the cells.
 Telomere shortening in humans eventually makes cell division impossible, and thisTelomere shortening in humans eventually makes cell division impossible, and this
aging of the cell population appears to correlate with the overall physical aging ofaging of the cell population appears to correlate with the overall physical aging of
the human body.the human body.
 This mechanism also appears toThis mechanism also appears to prevent genomic instabilityprevent genomic instability..
 Telomere shorteningTelomere shortening may alsomay also prevent the development of cancerprevent the development of cancer in human agedin human aged
cells by limiting the number of cell divisions.cells by limiting the number of cell divisions.
 However,However, shortened telomeresshortened telomeres impair immune functionimpair immune function thatthat might also increasemight also increase
cancer susceptibilitycancer susceptibility..
The Hayflick limit is the number of times a normal
human cell population will divide until cell division stops.
I)I) Epidermal growth factor (EGF)Epidermal growth factor (EGF)
II)II) Fibroblast growth factor (FGF)Fibroblast growth factor (FGF)
III)III) Platelet-derived growth factor (PDGF)Platelet-derived growth factor (PDGF)
IV)IV) Colony stimulating factor (CSF)Colony stimulating factor (CSF)
V)V) Transforming growth factors-β (TGF-β)Transforming growth factors-β (TGF-β)
VI)VI) Interleukins (IL)Interleukins (IL)
VII)VII) Vascular endothelial growth factorVascular endothelial growth factor
(VEGF)(VEGF)
1)1) Activation of growth-promoting oncogenesActivation of growth-promoting oncogenes causingcausing transformation of cell (mutanttransformation of cell (mutant
form of normal protooncogene in cancer is termedform of normal protooncogene in cancer is termed oncogene). Many of these canceroncogene). Many of these cancer
associated genes, oncogenes, were first discovered inassociated genes, oncogenes, were first discovered in viruses, and hence named asviruses, and hence named as
v-oncv-onc. Gene products of oncogenes are. Gene products of oncogenes are calledcalled oncoproteinsoncoproteins..
2)2) Inactivation of cancer-suppressor genesInactivation of cancer-suppressor genes (i.e. inactivation of(i.e. inactivation of anti-oncogenes)anti-oncogenes)
permitting the cellular proliferation of transformed cells. Anti-oncogenes are active inpermitting the cellular proliferation of transformed cells. Anti-oncogenes are active in
recessive formrecessive form i.e. they are active only if both alleles are damaged.i.e. they are active only if both alleles are damaged.
3)3) Abnormal apoptosis regulatory genesAbnormal apoptosis regulatory genes which may act aswhich may act as oncogenes or anti-oncogenes or anti-
oncogenes. Accordingly, these genes may be active in dominant or recessive form.oncogenes. Accordingly, these genes may be active in dominant or recessive form.
4)4) Failure of DNA repair genesFailure of DNA repair genes and thus inability to repair theand thus inability to repair the DNA damage resultingDNA damage resulting
in mutations.in mutations.
1)1) Proto-oncogenesProto-oncogenes are growth-promoting genes i.e. theyare growth-promoting genes i.e. they encode for cell proliferationencode for cell proliferation
pathway.pathway.
2)2) Anti-oncogenesAnti-oncogenes are growth-inhibiting or growth suppressorare growth-inhibiting or growth suppressor genes.genes.
3)3) Apoptosis regulatory genesApoptosis regulatory genes control the programmed cellcontrol the programmed cell death.death.
4)4) DNA repair genesDNA repair genes are those normal genes which regulateare those normal genes which regulate the repair of DNA damagethe repair of DNA damage
that has occurred during mitosis and also control the damage to proto-oncogenesthat has occurred during mitosis and also control the damage to proto-oncogenes
and antioncogenes.and antioncogenes.
MOLECULAR CARCINOGENESISMOLECULAR CARCINOGENESIS
MutationMutation
 the molecular hallmark of cancerthe molecular hallmark of cancer
Gene Families in Cancer DevelopmentGene Families in Cancer Development
11 - Oncogenes- Oncogenes
22 - Tumor Suppressor genes- Tumor Suppressor genes
33 - Mutator genes- Mutator genes
+ oncogenes
Oncogenes
 promote cell proliferation
 dominant & highly conserved
 types: viral oncogenes [v-oncs]
cellular oncogenes [c-oncs]
Proto-oncogene ⇒ “Mutation” ⇒ Oncogene
Classification of OncogenesClassification of Oncogenes
E. Regulators of the Cell CycleE. Regulators of the Cell Cycle
Components ofComponents of
signalsignal
transductiontransduction
pathwayspathways
A. Secreted Growth FactorsA. Secreted Growth Factors
B. Cell Surface ReceptorsB. Cell Surface Receptors
C. Intracellular TransducersC. Intracellular Transducers
D. DNA-binding Nuclear ProteinsD. DNA-binding Nuclear Proteins
c-sis, hstc-sis, hst
erb B, fms, ret, trk, fes, fmserb B, fms, ret, trk, fes, fms
c-src, c-abl, mst, rasc-src, c-abl, mst, ras
myc, jun, fosmyc, jun, fos
bcl, bax, badbcl, bax, bad
PROTPROTOO--
ONCOONCOGGENEENE
FUNCTIONFUNCTION MUTATIONMUTATION CANCERCANCER
ABLABL
Nonreceptor tyrosineNonreceptor tyrosine
kinase activitykinase activity
TranslocationTranslocation
tt(9:22(9:22))
Chronic myelogenousChronic myelogenous
leukemialeukemia (chromosome(chromosome
22 is Philadelphia22 is Philadelphia chrchr..))
HERHER ((ERBB2)ERBB2) RecepRecepttor synor syntthesishesis AmplificationAmplification
Breast carcinomaBreast carcinoma
(marker of(marker of
aggressiveness)aggressiveness)
MYCMYC Nuclear transcriptionNuclear transcription
TranslocaTranslocattionion
tt(8:14)(8:14)
Burkitt's lymphomaBurkitt's lymphoma
N-MYCN-MYC Nuclear transcriptionNuclear transcription AmplificationAmplification NeuroblastomaNeuroblastoma
RASRAS
GuanosineGuanosine
triphosphatetriphosphate signalsignal
transductiontransduction
Point mutationPoint mutation
Leukemia; lung, colon,Leukemia; lung, colon,
pancreaticpancreatic carcinomascarcinomas
RETRET Receptor synthesis PoinPointt mulationmulation
Multiple endocrine
neoplasia lla/llb
syndromes
SIS’SIS’
Growth factor
synthesis
OverexpressionOverexpression
Osteogenic sarcoma,
astrocytoma
Mechanisms of Oncogene ActivationMechanisms of Oncogene Activation
H-ras
GTP
Perpetual cell division
1. Point Mutation
H-ras [codon 12]
Normal CGC → Gly
Bladder ca CTC → Val
2. Gene Amplification
Double minutes
HSRs
Normal copy Multiple copies
Mechanisms of Oncogene ActivationMechanisms of Oncogene Activation
3. Gene Translocation3. Gene Translocation
Ex. Chronic Myelogenous Leukemia [CML]Ex. Chronic Myelogenous Leukemia [CML]
Mechanisms of Oncogene ActivationMechanisms of Oncogene Activation
4. Viral Gene Integration4. Viral Gene Integration
promoter
Viral promoter
ONCOGENS
Categories of oncogenes include growth factors, growth factor receptors, signal
transducers, nuclear regulators, and cell cycle regulators
Mechanisms of activation of protooncogenes to formMechanisms of activation of protooncogenes to form
growth promoting oncogenes.growth promoting oncogenes.
Tumor Suppressor Genes
 Synonym:Synonym: anti-oncogenes
 Definition:Definition: Collective term for genes whose products physiologically inhibit
cell proliferation, promote cell differentiation, and also suppress certain
steps in tumorogenesis and metastasis.
 A. Regulate cell growth and, hence, decrease ("suppress")decrease ("suppress") the risk
of tumor formation;
 p53p53 and Rb (retinoblastoma) are classic examples.
 B. p53p53 regulates progression of the cell cycle from G1 to S phase,
 1. In response to DNA damage, p53 slows the cell cycle and upregulates
DNA repair enzymes.
 2. If DNA repair is not possible, p53 induces apoptosis.
 a). p53 upregulates BAX, which disrupts Bcl2.
 b). Cytochrome c leaks from the mitochondria activating apoptosis,
 3. Both copies of the p53 gene must be knocked out for tumor formation
(Knudson two-hit hypothesis).
 a). Loss is seen in > 50% of cancers.
 b). Germline mutation results in Li-Fraumeni syndrome (2nd hit is somatic),
characterized by the propensity to develop multiple types of carcinomas and
sarcomas.
TUMOR SUPPRESSOR GENETUMOR SUPPRESSOR GENE
FAMILYFAMILYRetinoblastoma gene [Retinoblastoma gene [RB1RB1 gene]gene]
 rare form of childhood malignancyrare form of childhood malignancy
 forms: hereditary & sporadicforms: hereditary & sporadic
pRb
 location: 17p13.1
 105-KDa nuclear protein
 function: induces DNA repair or apoptosis; inhibits E2F [prevents G1 → S
transition]
 inhibited by: phosphorylation, viral oncoproteins [E1A, E1B, HPV E6, E7]
 mutation: point mutation > deletion
 results to: loss of function & extended lifespan of p53
 Clinical conditions: carcinomas, Li Fraumeni Syndrome
Cell Cycle RegulationCell Cycle Regulation
► Process assures that cell accurately duplicates itsProcess assures that cell accurately duplicates its
contents.contents.
► Important checkpointsImportant checkpoints are present atare present at G1G1 andand G2G2 and areand are
regulated by protein kinasesregulated by protein kinases calledcalled cyclinscyclins (cdk).(cdk).
► Checkpoints determineCheckpoints determine
whether the cell proceeds twhether the cell proceeds t
next phase of the cycle.next phase of the cycle.
The role ofThe role of p53 inp53 in
maintaining the integrity ofmaintaining the integrity of
the genome.the genome.
Activation of normal p53 byActivation of normal p53 by
DNA-damaging agents or byDNA-damaging agents or by
hypoxia leads to cell-cyclehypoxia leads to cell-cycle
arrest in G1 and induction ofarrest in G1 and induction of
DNA repair, by transcriptionalDNA repair, by transcriptional
up-regulation of the cyclin-up-regulation of the cyclin-
dependent kinase inhibitordependent kinase inhibitor p21,p21,
and the GADD45 genes,and the GADD45 genes,
respectively.respectively.
Successful repair of DNASuccessful repair of DNA
allows cells to proceed with theallows cells to proceed with the
cell cycle; if DNA repair fails,cell cycle; if DNA repair fails,
p53-induced activation of thep53-induced activation of the
BAX gene promotes apoptosis.BAX gene promotes apoptosis.
In cells with loss or mutations ofIn cells with loss or mutations of
p53, DNA damage does notp53, DNA damage does not
induce cell-cycle arrest or DNAinduce cell-cycle arrest or DNA
repair, and hence geneticallyrepair, and hence genetically
damaged cells proliferate,damaged cells proliferate,
giving rise eventually togiving rise eventually to
malignant neoplasms.malignant neoplasms.
SOME TUMOR SUPPRESSOR GENES, THEIRSOME TUMOR SUPPRESSOR GENES, THEIR
FUNCTIONS, AND ASSOCIATED CANCERSFUNCTIONS, AND ASSOCIATED CANCERS
GENE FUNCTION ASSOCIATED CANCERS
APC
(adenomatous
polyposis coli)
Prevents nuclear transcriplion
(degrades catenin, an activator of
nuclear transcription)
Familial polyposis (colorectal carcinoma)
BRCA1/BRCA2BRCA1/BRCA2
(breast cancer)
Regulates DNA repairRegulates DNA repair Breast, ovary, prosBreast, ovary, prosttate carcinomasate carcinomas
RB
(retinoblastoma)
Inhibits G1 to S phase
Relinoblastoma, osteogenic sarcoma, breast
carcinoma
TGF-TGF-ββ
((transforming
growth factor-β)
Inhibits GInhibits G11 to S phaseto S phase PancreaPancreattic and colorectal carcinomasic and colorectal carcinomas
TP53
Inhibits G1 to S phase. Repairs
DNA, activates BAX gene (initiates
apoptosis)
Lung, colon, breast carcinomas. Li-
Fraumeni syndrome: breast carcinoma,
brain tumors, leukemia, sarcomas
VHLVHL ((VonVon
Hippel-LindauHippel-Lindau ))
Regulates nuclear transcriptionRegulates nuclear transcription
Von Hippel-Lindau syndrome: cerebellarVon Hippel-Lindau syndrome: cerebellar
hemangioblasloma, retinal angioma, renalhemangioblasloma, retinal angioma, renal
cell carcinoma (bilateral),cell carcinoma (bilateral),
pheochromocytoma (bilateral)pheochromocytoma (bilateral)
WT1 (Wilms'
tumor) Regulates nuclear transcription Wilms' tumor
 Antiapoptosis genes;Antiapoptosis genes; BcL2 family of genesBcL2 family of genes
 Prevent apoptosis in normal cells, but promote apoptosis in mutated cellsPrevent apoptosis in normal cells, but promote apoptosis in mutated cells
whose DNA cannot be repaired (e.g., Bcl2)whose DNA cannot be repaired (e.g., Bcl2)
 a. Protein products prevent cytochromea. Protein products prevent cytochrome c from leaving mitochondria.c from leaving mitochondria.
•• CytochromeCytochrome cc in the cytosol activates caspases initiating apoptosis.in the cytosol activates caspases initiating apoptosis.
b. Mutation causes increased gene activity (e.g., over expression), which preventsb. Mutation causes increased gene activity (e.g., over expression), which prevents
apoptosis; e.g..apoptosis; e.g.. B-cell follicular lymphoma.B-cell follicular lymphoma.
 (1)(1) BcL2 gene familyBcL2 gene family (chromosome 18) produces gene products that prevent(chromosome 18) produces gene products that prevent
mitochondrial leakage ofmitochondrial leakage of cytochrome ccytochrome c (signal for apoptosis).(signal for apoptosis).
 (2) Translocation t(14; 18) causes over expression of the BcL2 protein product.(2) Translocation t(14; 18) causes over expression of the BcL2 protein product.
•• Prevents apoptosis of B lymphocytes causingPrevents apoptosis of B lymphocytes causing B-cell follicular lymphomaB-cell follicular lymphoma
 Apoptosis genesApoptosis genes
a.a. Regulate programmed cell deathRegulate programmed cell death (ex. BAX apoptosis gene)(ex. BAX apoptosis gene)
 (1) Activated by a(1) Activated by a TP53TP53 suppressor gene product if DNA damage is excessivesuppressor gene product if DNA damage is excessive
 (2)(2) BAX proteinBAX protein product inactivates theproduct inactivates the BcL2 antiapoptosis gene.BcL2 antiapoptosis gene.
 (3) Mutation inactivating(3) Mutation inactivating TP53 suppressor gene renders the BAX gene inoperative,TP53 suppressor gene renders the BAX gene inoperative,
which prevents apoptosis.which prevents apoptosis.
Anaplasia
The third characteristic feature of tumor cells – is
anaplasiaanaplasia, which is cells structural and biochemical
organization simplification, coming back to embryonic state.
Neoplastic cells lose a capacity for differentiation and can
not form the specific tissue complexes.
Tumor arisesTumor arises from one mutational maternal cell. However
such cells differ from their general ancestor by much
parameters. These distinctions consearn the cell structure, its
organelles, metabolism, specific properties and functions.
Therefore the following kinds of anaplasiakinds of anaplasia are
distinguished:
 morphological,
 biochemical,
 physical and chemical,
 functional,
 immunological.
 The essence of morphological anaplasiamorphological anaplasia is in
appearance of atypic cultural and tissue.
 Description of cultural atypic – lays in:
℘ cellular polymorphism,
℘ nuclear size increase,
℘ polynuclear state,
℘ nuclear hyperchromatosis,
℘ nucleoluses amount increase,
℘mitochondrias changes –
quantative size decrease,    
℘ crests disappearance
 Tissue atypism – is sizes and shapes of tissue
structures change, sometimes is the total loss
of morphological tissue signs.
Conjunctival melanoma
 Biochemical anaplasiaBiochemical anaplasia – is the tumor cells metabolism peculiarities.– is the tumor cells metabolism peculiarities.
Its are arose their genetic system changes, enzymic spectrum of suchIts are arose their genetic system changes, enzymic spectrum of such
cells gets changed. All cells get alike by enzymic admission (unificationcells gets changed. All cells get alike by enzymic admission (unification
of isoenzymic spectrum).of isoenzymic spectrum).
 The most typical biochemical feature of neoplasticThe most typical biochemical feature of neoplastic cellscells
concern proteins and carbohydrates metabolism.concern proteins and carbohydrates metabolism. Proteins metabolismProteins metabolism
peculiarities are:peculiarities are:
℘ synthesis activation of nucleic acids,synthesis activation of nucleic acids,
℘ DNA-polymerase inactivation,DNA-polymerase inactivation,
℘ increase of proteins synthesis,increase of proteins synthesis,
℘ decrease of proteins disintegration.decrease of proteins disintegration.
 Carbohydrates metabolism and energeticCarbohydrates metabolism and energetic of tumor cells is alsoof tumor cells is also
differ of norm. Thediffer of norm. The main energy sourcesmain energy sources in normal cells arein normal cells are
anaerobic and aerobic carbohydrates disintegrationanaerobic and aerobic carbohydrates disintegration, that is, that is
glycolysis and Krebs cycle. Neoplastic cell also receives the energyglycolysis and Krebs cycle. Neoplastic cell also receives the energy
owing to glycolysis and Krebs cycle. However glycolysis role in tumorowing to glycolysis and Krebs cycle. However glycolysis role in tumor
cell is more, than in normal one.cell is more, than in normal one.
 TheThe tumor cells energetic supply includetumor cells energetic supply include::
℘ anaerobic glycolysis activation,anaerobic glycolysis activation,
℘ aerobic glycolysis presence,aerobic glycolysis presence,
℘ oppression of Krebs cycle by powerful glycolytical enzymes systemoppression of Krebs cycle by powerful glycolytical enzymes system..
 Functional anaplasiaFunctional anaplasia
displays in loss or perversiondisplays in loss or perversion
of tumor cells function.of tumor cells function.
℘ For example, inFor example, in
neoplastic thyroid cells aneoplastic thyroid cells a
surplus amount ofsurplus amount of
hormones thyroxine andhormones thyroxine and
triiodothyronine can betriiodothyronine can be
synthesized, thyrotoxicosissynthesized, thyrotoxicosis
arises.arises.
℘℘ In other cases separate functions of tumor cells fall out, forIn other cases separate functions of tumor cells fall out, for
example, bilirubin does not get conjugated in hepatocyte.example, bilirubin does not get conjugated in hepatocyte.
 In veryIn very malignant neoplastic cellsmalignant neoplastic cells functions are totally lostfunctions are totally lost..
Sometimes such cells begin doing the functions, which areSometimes such cells begin doing the functions, which are
not specific for them (bronchus cancer synthesizes thenot specific for them (bronchus cancer synthesizes the
gastrointestinal hormones).gastrointestinal hormones).
 Immunological anaplasiaImmunological anaplasia –– isis change of tumor cellchange of tumor cell
antigen propertiesantigen properties. In such cells antigen admission is. In such cells antigen admission is
changed. Several deviation kinds of antigen out of normchanged. Several deviation kinds of antigen out of norm
admission are distinguishedadmission are distinguished antigen simplificationantigen simplification,,
antigen divergenceantigen divergence andand antigen reversionantigen reversion..
 Antigen simplificationAntigen simplification – is the general number of– is the general number of
neoplastic cells antigens diminution. For example, theneoplastic cells antigens diminution. For example, the
cells of normal tissue synthesize up to 7 typical antigens,cells of normal tissue synthesize up to 7 typical antigens,
while same tissue tumor cells synthesize only 2-3while same tissue tumor cells synthesize only 2-3
antigens.antigens.
 The idea ofThe idea of antigen divergenceantigen divergence is in the fact of neoplasticis in the fact of neoplastic
cells starting to synthesize heterologous antigens. Forcells starting to synthesize heterologous antigens. For
example, hepatoma (liver tumor) begins synthesizingexample, hepatoma (liver tumor) begins synthesizing
organospecific spleenic antigens, or other organsorganospecific spleenic antigens, or other organs
antigens.antigens.
 Antigen reversionAntigen reversion means neoplastic embryonic antigensmeans neoplastic embryonic antigens
synthesis. For example, human liver cancer synthesizes asynthesis. For example, human liver cancer synthesizes a
special embryonic protein, which is a-fetoprotein.special embryonic protein, which is a-fetoprotein.
Invasion and MetastasisInvasion and Metastasis
• The defining
characteristic of a
malignancy.
• InvasionInvasion: active
translocation of
neoplastic cells across
tissue barriers.
• Critical pathologic point:
local invasion and
neovascularization.
These events may occur
before clinical detection.
MetastasisMetastasis
• 1. Benign tumors doBenign tumors do not metastasizenot metastasize.
• 2. Malignant tumors metastasize.
• 3. Pathways of dissemination:
• a. Lymphatic spreadLymphatic spread to lymph nodes (usual(usual
mechanism of dissemination of carcinomas)mechanism of dissemination of carcinomas)
• b. Hematogenous spreadHematogenous spread:
1) Usual mechanism of dissemination for sarcomas
2) Cells entering the portal vein metastasize to the
liver.
3) Cells entering the vena cava metastasize to the
lungs.
MetastasingMetastasing
 The final progression stage of anyThe final progression stage of any
tumor is its transformation into thetumor is its transformation into the
malignant neoplasm. The major criteriamalignant neoplasm. The major criteria
of malignant tumor is its ability toof malignant tumor is its ability to
generalisation, that is – to metastasing.generalisation, that is – to metastasing.
 Metastasing includes three stageMetastasing includes three stage::
℘ neoplastic invasion into the surroundingneoplastic invasion into the surrounding
tissues,tissues,
℘ tumor cells transport with the blood andtumor cells transport with the blood and
lymphatic vessles,lymphatic vessles,
℘ their implantation in different organstheir implantation in different organs
and tissues.and tissues.
 Separate cells evacuation out of theSeparate cells evacuation out of the
neoplastic node takes place in case ofneoplastic node takes place in case of
intercellular contacts relaxation.intercellular contacts relaxation.
 Tumor loses calcium, which must turnTumor loses calcium, which must turn
intercellular spaces cementated inintercellular spaces cementated in
malignisation process. Diminishedmalignisation process. Diminished
amount of desmosomes, which createamount of desmosomes, which create
the intercellular contacts arises inthe intercellular contacts arises in
pernicious neoplasms. The amount ofpernicious neoplasms. The amount of
gangliosides is disranked on the cellulargangliosides is disranked on the cellular
surface of malignant tumor.surface of malignant tumor.
ATTRIBUTES OFATTRIBUTES OF
CANCERCANCER
MetastasisMetastasis
 Two basic steps:
Destruction of the BM
Attachment to the laminin of distant BM
 Genes up-regulated among good metastasizers:
EDGF receptor
Basic Fibroblast Growth Factor
Type IV Collagenase
ε-Cathepsin (under-expressed)
Cathepsin B (a lamininase)
Heparanase
STAGING OF CANCERSTAGING OF CANCER
• A. Assessment of size and spread of a cancerA. Assessment of size and spread of a cancer
• B. Key prognostic factor; more important thanB. Key prognostic factor; more important than
gradegrade
• C. Determined after final surgical resection ofC. Determined after final surgical resection of
the tumorthe tumor
• D. Utilizes TNM staging systemD. Utilizes TNM staging system
• 1.1. TT—tumor (size and/or depth of invasion)—tumor (size and/or depth of invasion)
• 2.2. NN—spread to regional lymph nodes;—spread to regional lymph nodes; secondsecond
most important prognostic factormost important prognostic factor
• 3.3. MM—metastasis; single most important—metastasis; single most important
prognostic factorprognostic factor
Metastasis:Metastasis: cervical lymph nodecervical lymph node
Lymph node metastasis
Tissue destruction:Tissue destruction:
carcinoma of the maxillary sinuscarcinoma of the maxillary sinus
Cancer "crater”:
liver metastases
ANGIOGENESISANGIOGENESIS
 Formation of new blood vessels fromFormation of new blood vessels from
existing vascular bedexisting vascular bed
 Carried out by endothelial cells (EC)Carried out by endothelial cells (EC)
and extra cellular matrix (ECM)and extra cellular matrix (ECM)
 Regulated by angiogenic factorsRegulated by angiogenic factors
(inducers and inhibitors)(inducers and inhibitors)
** A tumor is unable to grow largerA tumor is unable to grow larger
than 1 mm3 w/o developing a newthan 1 mm3 w/o developing a new
blood supplyblood supply
Components of AngiogenesisComponents of Angiogenesis
1)1) ENDOTHELIAL CELLSENDOTHELIAL CELLS
 FenestratedFenestrated
 Increased cell adhesion molecules (E-Increased cell adhesion molecules (E-
selectin)selectin)
 Increased integrinsIncreased integrins αγβαγβ33 essential foressential for
viability during growthviability during growth
 Activated ECs release: bFGF PDGFActivated ECs release: bFGF PDGF
IGF-1IGF-1
Components of AngiogenesisComponents of Angiogenesis
2)2) INDUCERS OF ANGIOGENESISINDUCERS OF ANGIOGENESIS
VEGF – main inducerVEGF – main inducer
TGF-TGF- ββ
TNF-TNF-αα low concentration - inducerlow concentration - inducer
high concentration - inhibitorhigh concentration - inhibitor
PDGF/thymidine phosphorylasePDGF/thymidine phosphorylase
TGF-TGF-αα
EGFEGF
IL-8IL-8
Components of AngiogenesisComponents of Angiogenesis
3) CELL ADHESION MOLECULES (CAM)3) CELL ADHESION MOLECULES (CAM)
 Mediate cell-cell adhesion processesMediate cell-cell adhesion processes
 SelectinsSelectins
 IG Supergene family- ICAM, VCAMIG Supergene family- ICAM, VCAM
 CadherinsCadherins
 Integrins- vitronectin receptorIntegrins- vitronectin receptor
4) PROTEASES4) PROTEASES
 Degrade ECM to provide suitableDegrade ECM to provide suitable
environment for EC migration thru adjacentenvironment for EC migration thru adjacent
stroma Ex: Metalloproteinases (MMP)stroma Ex: Metalloproteinases (MMP)
Components ofComponents of
AngiogenesisAngiogenesis
5)5) ANGIOGENESIS INHIBITORSANGIOGENESIS INHIBITORS
 InterferonInterferon
 TSP-1TSP-1
 AngiostatinAngiostatin
 EndostatinEndostatin
 VasostatinVasostatin
CLINICAL SIGNIFICANCECLINICAL SIGNIFICANCE::
Tumor angiogenesis switch is triggered asTumor angiogenesis switch is triggered as
a result of shift in the balance ofa result of shift in the balance of
stimulators to inhibitorsstimulators to inhibitors
Immune system andImmune system and
neoplastic growthneoplastic growth Tumor cells are heterologous for the organism. They synthesizethe proteins, whichTumor cells are heterologous for the organism. They synthesizethe proteins, which
are not character for normal cells.are not character for normal cells. Neoplasms productNeoplasms product specific swelling antigenspecific swelling antigen ..
Their specificity is conventional, but it is still sufficient for immune reactionTheir specificity is conventional, but it is still sufficient for immune reaction
development. A final result depends on immune attack intensity greatly: that means,development. A final result depends on immune attack intensity greatly: that means,
if the transformed cell is going to reproduct or not; is the tumor going to arise, or not.if the transformed cell is going to reproduct or not; is the tumor going to arise, or not.
 Neoplasms are observed in people with congenital immunodeficiency 10000 timesNeoplasms are observed in people with congenital immunodeficiency 10000 times
more often, than in persons with normal immune system. The malignant neoplasmsmore often, than in persons with normal immune system. The malignant neoplasms
arise in patients, with transplanted organ (for example, kidney) very often.arise in patients, with transplanted organ (for example, kidney) very often.
Immunodepressive drugs are being prescribed with the purpose of transplantedImmunodepressive drugs are being prescribed with the purpose of transplanted
organ rejection prophylaxy in such patients. Tumors in are observed in such casesorgan rejection prophylaxy in such patients. Tumors in are observed in such cases
100 times more frequent, than in the rest of population.100 times more frequent, than in the rest of population.
 These facts testify, that the transformed cells underlie the organism immune systemThese facts testify, that the transformed cells underlie the organism immune system
supervision. In most people they eliminate in time. A transformed cell exists,supervision. In most people they eliminate in time. A transformed cell exists,
reproducts, and produces the neoplasm in a fact of immune supervision insolvency.reproducts, and produces the neoplasm in a fact of immune supervision insolvency.
 Tumor renders an oppressive action upon the organism immune system in its ownTumor renders an oppressive action upon the organism immune system in its own
way. Immunodepression gets developed.way. Immunodepression gets developed.
 The matters, which render immunodepressive action are produced in neoplasticThe matters, which render immunodepressive action are produced in neoplastic
cells. Low-molecular metabolites (oligopeptides, unsaturated fatty acids), embryoniccells. Low-molecular metabolites (oligopeptides, unsaturated fatty acids), embryonic
antigens (antigens (a-fetoproteina-fetoprotein), glucocorticoids belong to them.), glucocorticoids belong to them.
 Т-suppressors activityТ-suppressors activity in patients with tumorsin patients with tumors is increasedis increased. They slow down. They slow down
antineoplastic immunityantineoplastic immunity . One more reason of immunodepression in. One more reason of immunodepression in
oncologic patients is the disparity between neoplastic growth speedoncologic patients is the disparity between neoplastic growth speed
and immune answer development speedand immune answer development speed . Lymphoid cells reproduct slower,. Lymphoid cells reproduct slower,
than tumor cells do. Adequate immune answer is late.than tumor cells do. Adequate immune answer is late.
Systemic neoplastic action uponSystemic neoplastic action upon
the organismthe organism
Tumor is not locally isolated process. It renders an influence upon theTumor is not locally isolated process. It renders an influence upon the
diverse organism functions. This is concerning the malignantdiverse organism functions. This is concerning the malignant
neoplasms especially. Their systemic action displays theneoplasms especially. Their systemic action displays the cancercancer
cachexycachexy. There are a few components of its development.. There are a few components of its development.
Tumor absorbs the glucose reinforcelyTumor absorbs the glucose reinforcely.. Chronic hypoglycaemiaChronic hypoglycaemia
tendencytendency arisesarises. Glycogen disintegrates in liver and muscles. Glycogen disintegrates in liver and muscles
reinforcely.reinforcely. Glyconeogenesis gets increasedGlyconeogenesis gets increased. However, this. However, this
compensatory mechanism has the negative characteristics. Firstly,compensatory mechanism has the negative characteristics. Firstly,
glucocorticoids cause the albumens disintegration ofglucocorticoids cause the albumens disintegration of
immunocompetence organs (thymus, spleen, lymphoid tissue of otherimmunocompetence organs (thymus, spleen, lymphoid tissue of other
organs). Secondly, of big amount of amino acids in glyconeogenesisorgans). Secondly, of big amount of amino acids in glyconeogenesis
usage gets the organic albumens synthesis limited. Diverse organsusage gets the organic albumens synthesis limited. Diverse organs
dystrophy develops, muscles – first of all.dystrophy develops, muscles – first of all.
Neoplastic growth can be described with the intensive syntheticNeoplastic growth can be described with the intensive synthetic
processes. Plastic material (amino acids, nucleic acids) is veryprocesses. Plastic material (amino acids, nucleic acids) is very
important for this. Neoplasm absorbs these matters not only nutritional,important for this. Neoplasm absorbs these matters not only nutritional,
but from other organs also. It is named as nitrogen snare. all of otherbut from other organs also. It is named as nitrogen snare. all of other
tissues are havingtissues are having amino acid deficiencyamino acid deficiency. They can not synthesize their. They can not synthesize their
own proteins in a necessary volume. This is one more link ofown proteins in a necessary volume. This is one more link of cancercancer
cachexy pathogens.cachexy pathogens.
Neoplastic Tumors
Tumor ComplicationsTumor Complications
 The lesions described below complicate theThe lesions described below complicate the
simple growth of the tumor. The combinationsimple growth of the tumor. The combination ofof
such lesions with tumor expansion andsuch lesions with tumor expansion and
metastasismetastasis constitute neoplastic disease thatconstitute neoplastic disease that
extendsextends beyond the tumor as such.beyond the tumor as such.
Local ComplicationsLocal Complications
 Stenosis:Stenosis: Tumors can lead to severalTumors can lead to several
compressioncompression syndromes.syndromes.
 —— Expansion of the tumorExpansion of the tumor compressescompresses thethe
surroundingsurrounding tissuetissue (A(A11)) and causesand causes stenosis instenosis in
hollow organshollow organs (A2(A2)), compression of the, compression of the smallsmall
bowel by a mesenterial liposarcoma;bowel by a mesenterial liposarcoma;
Complications may include difficultiesComplications may include difficulties inin
swallowing, impaired micturition,swallowing, impaired micturition, disruption ofdisruption of
intestinal motility, and also increasedintestinal motility, and also increased intracranialintracranial
pressurepressure..
 —— Infiltration of the tumor can causeInfiltration of the tumor can cause congestioncongestion
in a hollow organ. Complications mayin a hollow organ. Complications may includeinclude
prestenotic dilation of the duct, stasisprestenotic dilation of the duct, stasis andand
congestion of secretions or excretions,congestion of secretions or excretions, andand
bacterial infestation of the congestedbacterial infestation of the congested area.area.
A 2
1
Tumor compression
(mesenterial liposarcoma)
Budd-Chiari Syndrome
Tumor ComplicationsTumor Complications
 —— BleedingBleeding due to erosion of vasculardue to erosion of vascular
structuresstructures may lead to spitting of bloodmay lead to spitting of blood
fromfrom the lungs or bronchi (the lungs or bronchi (hemoptysishemoptysis),),
vomitingvomiting of blood (hematemesis),of blood (hematemesis),
passage of bloodypassage of bloody stools (stools (melenamelena), blood), blood
in the urine (hematuria),in the urine (hematuria), acyclic bleedingacyclic bleeding
from the uterus (metrorrhagia),from the uterus (metrorrhagia), andand
hemorrhagic effusionshemorrhagic effusions (B).(B).
Hemorrhagic effusion (lung cancer)
B
Circulatory Disruption: Tumor growth that compromises or
infiltrates vascular structures produces a variety of lesions.
— Obstruction of venous drainage is common and
successively leads to varicose changes in the walls of the
veins and thrombosis.
— Vascular thrombosis may result from vascular stenosis
and/or substances produced by the tumor itself that promote
coagulation.
Tumor NecrosisTumor Necrosis (C):(C): occurs as a result ofoccurs as a result of the interplay ofthe interplay of
several factors. These include:several factors. These include:
 —— Thrombotic arterial obstruction;Thrombotic arterial obstruction;
 —— Vascular compression by the tumor;Vascular compression by the tumor;
 —— Twisting of the tumor pedicle;Twisting of the tumor pedicle;
 —— Cytokines (macrophagic TNF-a);Cytokines (macrophagic TNF-a);
 —— Aggressive tumor therapy.Aggressive tumor therapy.
Complications of tumor necrosis:Complications of tumor necrosis:
 –– Ulceration of the inner or outer body surface mayUlceration of the inner or outer body surface may
occur, primarily in gastrointestinal, skin, and breastoccur, primarily in gastrointestinal, skin, and breast
cancercancer (D).(D).
 –– Perforation of the tumor necrosis may occur intoPerforation of the tumor necrosis may occur into
hollow organs or through the surface of the skinhollow organs or through the surface of the skin (E).(E).
 –– Fistulas may form that communicate with adjacentFistulas may form that communicate with adjacent
organs.organs.
 Disruption of Organ Function: occurs especiallyDisruption of Organ Function: occurs especially inin
tumors that not only mechanically altertumors that not only mechanically alter the organthe organ
parenchyma and its supporting tissueparenchyma and its supporting tissue but also destroybut also destroy
them.them.
 Particularly susceptible tissues include:Particularly susceptible tissues include:
 —— Neurovascular structures;Neurovascular structures;
 —— Urinary tract,Urinary tract,
 —— Intestinal tract;Intestinal tract;
 —— Skeletal system, where boneSkeletal system, where bone
tumors can causetumors can cause pathologicpathologic
fracturesfractures (F).(F).
C
D
E
Perforation of the cheek:
cancer of the tongue
F
Bone destruction:
Ewing sarcoma
Skin ulceration:
breast cancer
Necrosis: uterine sarcoma
Systemic ComplicationsSystemic Complications
Advanced neoplastic disease regularly producesAdvanced neoplastic disease regularly produces four types of systemicfour types of systemic
lesions.lesions.
 Tumor MetastasesTumor Metastases : occasionally: occasionally occur even in the early phases ofoccur even in the early phases of
neoplastic disease.neoplastic disease.
 Cancer CachexiaCancer Cachexia : involves weight loss in: involves weight loss in cancer patients. Causescancer patients. Causes
include:include:
—— Impaired swallowing due to the tumor;Impaired swallowing due to the tumor;
—— Impaired digestion due to the tumor;Impaired digestion due to the tumor;
—— Generation of TNF-a by macrophages stimulatedGeneration of TNF-a by macrophages stimulated by tumor-associatedby tumor-associated
antigens.antigens.
—— Generation of leptin (fat-cell hormoneGeneration of leptin (fat-cell hormone)). This results in loss of appetite. This results in loss of appetite
(anorexia),(anorexia), reduced intake of nutrients, decreasedreduced intake of nutrients, decreased body fat, andbody fat, and
increased energy consumption.increased energy consumption.
 Tumor AnemiaTumor Anemia : produces the characteristic: produces the characteristic pale skin of cancerpale skin of cancer
patients. It is due to severalpatients. It is due to several factors, including:factors, including:
—— Blood loss due to internal bleeding;Blood loss due to internal bleeding;
—— Lack of substances that promote maturationLack of substances that promote maturation of blood cells;of blood cells;
—— Autoreactive antibodies against erythrocytes;Autoreactive antibodies against erythrocytes;
—— Displacement of bone marrow by tumorousDisplacement of bone marrow by tumorous infiltrates.infiltrates.
Paraneoplastic SyndromesParaneoplastic Syndromes
Definition: Collective term for a group of generalized pathologic
manifestations that are not attributable to the local effects of a tumor but
are linked to the existence of a tumor and can regress after the tumor has
been removed.
Pathogenesis: Often unclear.
— Cell destruction occurs due to formation of autoreactive antibodies
against tumor antigens and “self” antigens and as a result of apoptosis
caused by certain tumor proteins.
— Dysfunction results from synthesis of peptides with endocrine and
enzymatic effects.
Endocrinopathies
General pathogenesis: Tumors synthesize ectopic hormones of
substances similar to hormones.
The most important forms are as follows:
— Cushing’s syndrome is caused by formation of ACTH and occurs in
patients with bronchial cancer.
— Flush’s syndrome is caused by formation of serotonin and leads to
facial erythema, diarrhea, colic, and bronchospasm. It occurs in patients
with bronchial or ileal carcinoid.
— Schwartz-Bartter’s syndrome is caused by formation of proteins
resembling ADH and leads to hyponatremia. It occurs in patients with
small cell bronchogenic carcinoma.
— Hypercalcemia syndrome is caused by formation of parathormone-like
protein. It occurs in patients with squamous cell bronchogenic carcinoma
or renal cell carcinomas.
PARANEOPUSTIC SYNDROMESPARANEOPUSTIC SYNDROMES
SYNDROME ASSOCIATED CANCER COMMENT
Acanthosis nigricans Stomach carcinomaStomach carcinoma Black, verrucoid-appearing lesion
Eaton-Lambert
syndrome
Small cell carcinoma ofSmall cell carcinoma of
lunglung
Myasthenia gravis-like
symptoms(e.g., muscle weakness);
antibody directed against calcium
channel
Hypertrophic
osteoarthropathy
Bronchogenic carcinomaBronchogenic carcinoma
Periosteal reaction of distal phalanx
(often associated with clubbing of
nail)
Nonbacterial
thrombotic
endocarditis
Mucus-secreting pancreaticMucus-secreting pancreatic
and colorectal carcinomasand colorectal carcinomas
Sterile vegetations on mitral valve
Seborrheic keratosis Stomach carcinomaStomach carcinoma
Sudden appearance of
numerouspigmenled seborrheic
keratoses (Lescr-Trdlat sign)
Superficial migratory
thrombophlebitis
Pancreatic carcinomaPancreatic carcinoma
Release of procoagulants
(Trousseau's sign)
Nephrotic syndrome
Lung, breast, stomachLung, breast, stomach
carcinomascarcinomas
Diffuse membranous
glomerulopathy
DISORDER ASSOCIATED CANCER ECTOPIC HORMONE
Cushing syndrome
Small cell carcinoma of lung,
medullary carcinoma of thyroid
ACTH (adrenocorticotropic
hormone)
Gynecomastia Choriocarcinoma (testis)
hCG (human chorionic
gonadotropin)
Hypercalcemia
Renal cell carcinoma, primary
squamous cell carcinoma of lung,
breast carcinoma. Malignant
lymphomas (contain 1α-hydroxylase)
PTH-relaled protein
(parathyroid hormone)
Calcitriol (vilamin D)
Hypocalcemia Medullary carcinoma of thyroid Calcitonin
Hypoglycemia Hepatocellular carcinoma Insulin-like factor
Hyponatremia Small cell carcinoma of lung Antidiuretic hormone
Secondary
polycythemia
Renal cell and hepatocellular
carcinomas
Erythropoietin
Nerve and Muscle SyndromesNerve and Muscle Syndromes
Pathogenesis: Nerve cells and/or muscle fibers are destroyed by autoimmune processes and
by tumor-induced apoptosis. The most important forms are as follows:
• — Myasthenia gravis occurs in patients with thymus tumors (thymomas).
• — Limbic encephalopathy occurs in patients with small cell bronchogenic carcinoma.
• — Degeneration of the cerebellar cortex occurs in patients with small cell bronchogenic
carcinoma, breast cancer, or ovarian carcinoma.
Vascular and Hematologic ChangesVascular and Hematologic Changes
• — Hemolysis: The tumor synthesizes cytotoxic substances and/or autoreactive antibodies,
damaging the bone marrow and leading to hemolytic anemia. This occurs in patients with
leukemias or Hodgkin’s
• disease’s lymphoma.
• — Erythrocyte proliferation: The tumor synthesizes substances that stimulate erythropoiesis
(erythropoietin), leading to polyglobulism (an overabundance of erythrocytes). This occurs
in patients with renal cell carcinoma.
• — Leukocyte proliferation: The tumor synthesizes substances that stimulate myelopoiesis,
leading to a leukemoid reaction. This occurs in patients with stomach cancer or large cell
bronchogenic carcinoma.
• — Macroscopic coagulopathy: The tumor synthesizes thromboplastic substances that lead
to thrombosis. This occurs in patients with pancreatic or adenoid carcinomas.
• — Disseminated intravascular coagulation: The tumor synthesizes thromboplastic and
fibrinolytic substances that consume the clotting factors. This occurs in patients with
leukemias.
• Note: Coagulopathy is characterized by thromboticNote: Coagulopathy is characterized by thrombotic vascular occlusion (primarily invascular occlusion (primarily in
the lung), whereasthe lung), whereas disseminated intravascular coagulation is characterizeddisseminated intravascular coagulation is characterized by hyalinby hyalin
microthrombi (primarily in the microvasculaturemicrothrombi (primarily in the microvasculature of the lung).of the lung).
Dermatologic DisordersDermatologic Disorders
 —— Acanthosis nigricansAcanthosis nigricans manifests itself asmanifests itself as thickening ofthickening of
the skin with clearly discerniblethe skin with clearly discernible papillary lines,papillary lines,
hyperpigmentation, andhyperpigmentation, and wart-like papillomas.wart-like papillomas. It occurs inIt occurs in
patients with stomach cancer or squamouspatients with stomach cancer or squamous cell bronchogeniccell bronchogenic
carcinoma.carcinoma. (А)(А)
 —— Bazex’s syndromeBazex’s syndrome (paraneoplastic acrokeratosis)(paraneoplastic acrokeratosis)
manifests itself as reddish purple plaquesmanifests itself as reddish purple plaques of calcification onof calcification on
the hands, feet,the hands, feet, nose, and ears.nose, and ears. It occurs in patients withIt occurs in patients with
carcinoma of the tonguecarcinoma of the tongue or tonsils.or tonsils. ((BB))
 —— Erythema gyratum repensErythema gyratum repens is a rare skin rashis a rare skin rash resemblingresembling
zebra stripes that changes daily.zebra stripes that changes daily. It occurs in patients withIt occurs in patients with
various carcinomas.various carcinomas. ((C, D)C, D)
 —— Hypertrichosis lanuginosaHypertrichosis lanuginosa is a rare manifestationis a rare manifestation
involving excessive growth of theinvolving excessive growth of the head and body hair.head and body hair. ItIt
occurs in patients with various carcinomas.occurs in patients with various carcinomas. (Е,(Е, F)F)
А
B
C
D
F
E
7 warning signs of7 warning signs of
cancercancer
 CC change in bowel or bladder habitchange in bowel or bladder habit
 AA a sore that doesn’t heala sore that doesn’t heal
 UU unusual bleeding or dischargeunusual bleeding or discharge
 TT thickening or lumpthickening or lump
 II indigestionindigestion
 OO obvious change in wart or moleobvious change in wart or mole
 NN nagging cough or hoarsenessnagging cough or hoarseness
LiteratureLiterature
 Handbook of general and Clinical Pathophysiology/ Edited byHandbook of general and Clinical Pathophysiology/ Edited by
prof.A.V.Kubyshkin, CSMU, 2005. – p. 130-138prof.A.V.Kubyshkin, CSMU, 2005. – p. 130-138
 Pathophysiology/ Edited by prof.Zaporozan, OSMU, 2005 – p.105-114Pathophysiology/ Edited by prof.Zaporozan, OSMU, 2005 – p.105-114
 General and clinical pathophysiology/ Edited by Anatoliy V. Kubyshkin –General and clinical pathophysiology/ Edited by Anatoliy V. Kubyshkin –
Vinnytsia: Nova Knuha Publishers – 2011. p. 166-183Vinnytsia: Nova Knuha Publishers – 2011. p. 166-183
 Pathophysiology, N.K. Symeonova. Kyiv, AUS medicine Publishing, 2010, p.Pathophysiology, N.K. Symeonova. Kyiv, AUS medicine Publishing, 2010, p.
142-160.142-160.
 General and clinical pathophysiology. Workbook for medical students andGeneral and clinical pathophysiology. Workbook for medical students and
practitioners. – Odessa. – 2001.practitioners. – Odessa. – 2001.
 J.B.Walter I.C.Talbot General pathology. Seventh edition. 1996.J.B.Walter I.C.Talbot General pathology. Seventh edition. 1996.
 Stephen J. McPhee, William F. Ganong. Pathophysiology of Disease, 5Stephen J. McPhee, William F. Ganong. Pathophysiology of Disease, 5thth
edition. 2006.edition. 2006.
 Robbins and Cotran Pathologic Basis of Disease 7Robbins and Cotran Pathologic Basis of Disease 7thth
edition / Kumar, Abbas,edition / Kumar, Abbas,
Fauto 2006.Fauto 2006.
 Pathophysiology, Concepts of Altered Health States, Carol Mattson Porth,Pathophysiology, Concepts of Altered Health States, Carol Mattson Porth,
Glenn Matfin.- New York, Milwaukee- 2009 p 156-197.Glenn Matfin.- New York, Milwaukee- 2009 p 156-197.
THANK YOU !

More Related Content

What's hot

Histopathological Patterns of Germ Cell Tumours of Ovary in a Tertiary Level ...
Histopathological Patterns of Germ Cell Tumours of Ovary in a Tertiary Level ...Histopathological Patterns of Germ Cell Tumours of Ovary in a Tertiary Level ...
Histopathological Patterns of Germ Cell Tumours of Ovary in a Tertiary Level ...inventionjournals
 
Introduction to Pathophysiology of Tumors
Introduction to Pathophysiology of TumorsIntroduction to Pathophysiology of Tumors
Introduction to Pathophysiology of Tumorsnermeen_bastawy
 
Minarcik robbins 2013_ch7-neoplasm
Minarcik robbins 2013_ch7-neoplasmMinarcik robbins 2013_ch7-neoplasm
Minarcik robbins 2013_ch7-neoplasmElsa von Licy
 
Pathophysiology of breast cancer (2)
Pathophysiology of breast cancer (2)Pathophysiology of breast cancer (2)
Pathophysiology of breast cancer (2)Joany Salayo
 
Neoplasia basics ! first lecture !
Neoplasia basics ! first lecture !Neoplasia basics ! first lecture !
Neoplasia basics ! first lecture !Ejaz Waris
 
Understanding cancer -_what_is_cancer_edited
Understanding cancer -_what_is_cancer_editedUnderstanding cancer -_what_is_cancer_edited
Understanding cancer -_what_is_cancer_editedvjcummins
 
Comprehensive Notes on the Molecular Basis of Cancer
Comprehensive Notes on the Molecular Basis of CancerComprehensive Notes on the Molecular Basis of Cancer
Comprehensive Notes on the Molecular Basis of Cancermeducationdotnet
 
2 pathological diagnosis of cancer
2 pathological diagnosis of cancer2 pathological diagnosis of cancer
2 pathological diagnosis of cancerSumit Prajapati
 
Neoplasm icd 10 guideline
Neoplasm icd 10 guidelineNeoplasm icd 10 guideline
Neoplasm icd 10 guidelineAkashwani
 
Tumor stem cell reprogramming as a driver of cancer as
Tumor stem cell reprogramming as a driver of cancer asTumor stem cell reprogramming as a driver of cancer as
Tumor stem cell reprogramming as a driver of cancer asmds-web
 
14.tumor immunology and immunotherapy
14.tumor  immunology and immunotherapy14.tumor  immunology and immunotherapy
14.tumor immunology and immunotherapySweta Shrestha
 
1. introduction & nomenclature dr. sinhasan, mdzah
1. introduction & nomenclature dr. sinhasan, mdzah1. introduction & nomenclature dr. sinhasan, mdzah
1. introduction & nomenclature dr. sinhasan, mdzahkciapm
 
Biologia molecular
Biologia molecularBiologia molecular
Biologia molecularSusana Mejia
 

What's hot (20)

Histopathological Patterns of Germ Cell Tumours of Ovary in a Tertiary Level ...
Histopathological Patterns of Germ Cell Tumours of Ovary in a Tertiary Level ...Histopathological Patterns of Germ Cell Tumours of Ovary in a Tertiary Level ...
Histopathological Patterns of Germ Cell Tumours of Ovary in a Tertiary Level ...
 
Introduction to Pathophysiology of Tumors
Introduction to Pathophysiology of TumorsIntroduction to Pathophysiology of Tumors
Introduction to Pathophysiology of Tumors
 
Minarcik robbins 2013_ch7-neoplasm
Minarcik robbins 2013_ch7-neoplasmMinarcik robbins 2013_ch7-neoplasm
Minarcik robbins 2013_ch7-neoplasm
 
Pathophysiology of breast cancer (2)
Pathophysiology of breast cancer (2)Pathophysiology of breast cancer (2)
Pathophysiology of breast cancer (2)
 
Cancer
CancerCancer
Cancer
 
Neoplasia basics ! first lecture !
Neoplasia basics ! first lecture !Neoplasia basics ! first lecture !
Neoplasia basics ! first lecture !
 
Understanding cancer -_what_is_cancer_edited
Understanding cancer -_what_is_cancer_editedUnderstanding cancer -_what_is_cancer_edited
Understanding cancer -_what_is_cancer_edited
 
Tumors
TumorsTumors
Tumors
 
Comprehensive Notes on the Molecular Basis of Cancer
Comprehensive Notes on the Molecular Basis of CancerComprehensive Notes on the Molecular Basis of Cancer
Comprehensive Notes on the Molecular Basis of Cancer
 
Cancer immunology
Cancer immunologyCancer immunology
Cancer immunology
 
Neoplasia & Oncologic Pathology
Neoplasia & Oncologic PathologyNeoplasia & Oncologic Pathology
Neoplasia & Oncologic Pathology
 
Neoplasia
NeoplasiaNeoplasia
Neoplasia
 
2 pathological diagnosis of cancer
2 pathological diagnosis of cancer2 pathological diagnosis of cancer
2 pathological diagnosis of cancer
 
Neoplasm icd 10 guideline
Neoplasm icd 10 guidelineNeoplasm icd 10 guideline
Neoplasm icd 10 guideline
 
Ch7 Neoplasia
Ch7 NeoplasiaCh7 Neoplasia
Ch7 Neoplasia
 
Tumor stem cell reprogramming as a driver of cancer as
Tumor stem cell reprogramming as a driver of cancer asTumor stem cell reprogramming as a driver of cancer as
Tumor stem cell reprogramming as a driver of cancer as
 
14.tumor immunology and immunotherapy
14.tumor  immunology and immunotherapy14.tumor  immunology and immunotherapy
14.tumor immunology and immunotherapy
 
N E O P L A S I A 1
N E O P L A S I A 1N E O P L A S I A 1
N E O P L A S I A 1
 
1. introduction & nomenclature dr. sinhasan, mdzah
1. introduction & nomenclature dr. sinhasan, mdzah1. introduction & nomenclature dr. sinhasan, mdzah
1. introduction & nomenclature dr. sinhasan, mdzah
 
Biologia molecular
Biologia molecularBiologia molecular
Biologia molecular
 

Similar to Tumors

Similar to Tumors (20)

Neoplasia
NeoplasiaNeoplasia
Neoplasia
 
01 NEOPLASIA.pptx
01 NEOPLASIA.pptx01 NEOPLASIA.pptx
01 NEOPLASIA.pptx
 
Neoplasia
Neoplasia Neoplasia
Neoplasia
 
Neoplasia classification
Neoplasia   classificationNeoplasia   classification
Neoplasia classification
 
Antineoplastic agents(ravisankar)
Antineoplastic agents(ravisankar)Antineoplastic agents(ravisankar)
Antineoplastic agents(ravisankar)
 
Chemotheraphy of cancer
Chemotheraphy of cancerChemotheraphy of cancer
Chemotheraphy of cancer
 
Neoplasia2003
Neoplasia2003Neoplasia2003
Neoplasia2003
 
MBBS 2nd Year Pathology - Neoplasia : Introduction
MBBS 2nd Year Pathology - Neoplasia : IntroductionMBBS 2nd Year Pathology - Neoplasia : Introduction
MBBS 2nd Year Pathology - Neoplasia : Introduction
 
NEOPLASIA 2
NEOPLASIA 2NEOPLASIA 2
NEOPLASIA 2
 
neoplasm2. pptx
neoplasm2.                            pptxneoplasm2.                            pptx
neoplasm2. pptx
 
Neoplasia.ppt
Neoplasia.pptNeoplasia.ppt
Neoplasia.ppt
 
Characteristics of neoplasms
Characteristics of neoplasmsCharacteristics of neoplasms
Characteristics of neoplasms
 
Lecture 13 neoplasia
Lecture 13 neoplasiaLecture 13 neoplasia
Lecture 13 neoplasia
 
Neoplasia.ppt
Neoplasia.pptNeoplasia.ppt
Neoplasia.ppt
 
Med term week 14 1
Med term  week 14 1Med term  week 14 1
Med term week 14 1
 
Cancer
CancerCancer
Cancer
 
Oncology epidemiology. Malignant tumor formation. Fight against cancer, dispe...
Oncology epidemiology. Malignant tumor formation. Fight against cancer, dispe...Oncology epidemiology. Malignant tumor formation. Fight against cancer, dispe...
Oncology epidemiology. Malignant tumor formation. Fight against cancer, dispe...
 
Overview of Pediatrics Malignancies Essay.docx
Overview of Pediatrics Malignancies Essay.docxOverview of Pediatrics Malignancies Essay.docx
Overview of Pediatrics Malignancies Essay.docx
 
Premalignant lesions
Premalignant lesionsPremalignant lesions
Premalignant lesions
 
Cancer_New-edited.ppt
Cancer_New-edited.pptCancer_New-edited.ppt
Cancer_New-edited.ppt
 

More from Muhammed hamed albuissa (20)

Stability studies of drugs
Stability studies of drugsStability studies of drugs
Stability studies of drugs
 
Pharmaceutical excipients
Pharmaceutical excipients Pharmaceutical excipients
Pharmaceutical excipients
 
Buccal drug delivery system
Buccal drug delivery systemBuccal drug delivery system
Buccal drug delivery system
 
Pharmaceutical technology
Pharmaceutical  technology Pharmaceutical  technology
Pharmaceutical technology
 
CHolinergic agents
CHolinergic agentsCHolinergic agents
CHolinergic agents
 
Cholinoblockers
Cholinoblockers Cholinoblockers
Cholinoblockers
 
Volatile oil sintroduction by faseeha
Volatile oil sintroduction by faseehaVolatile oil sintroduction by faseeha
Volatile oil sintroduction by faseeha
 
Valerian
Valerian Valerian
Valerian
 
Rosemary benefits
Rosemary benefits Rosemary benefits
Rosemary benefits
 
Camphor
Camphor Camphor
Camphor
 
Testing and-identifying-anions
Testing and-identifying-anionsTesting and-identifying-anions
Testing and-identifying-anions
 
Hypoxia
Hypoxia Hypoxia
Hypoxia
 
Inflamation
Inflamation Inflamation
Inflamation
 
The law of azerbaijan republic about medicinal drugs
The law of azerbaijan republic about medicinal drugsThe law of azerbaijan republic about medicinal drugs
The law of azerbaijan republic about medicinal drugs
 
law of uaeon medical products
law of uaeon medical productslaw of uaeon medical products
law of uaeon medical products
 
Organization of state control over quality of medicinal
Organization of state control over quality of medicinalOrganization of state control over quality of medicinal
Organization of state control over quality of medicinal
 
Abdominal injury
Abdominal injuryAbdominal injury
Abdominal injury
 
Toxicological chemistry
Toxicological chemistryToxicological chemistry
Toxicological chemistry
 
pharmaceutical toxicology
pharmaceutical toxicologypharmaceutical toxicology
pharmaceutical toxicology
 
Pharmacognozy
Pharmacognozy Pharmacognozy
Pharmacognozy
 

Recently uploaded

BUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdf
BUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdfBUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdf
BUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdfWildaNurAmalia2
 
Environmental Biotechnology Topic:- Microbial Biosensor
Environmental Biotechnology Topic:- Microbial BiosensorEnvironmental Biotechnology Topic:- Microbial Biosensor
Environmental Biotechnology Topic:- Microbial Biosensorsonawaneprad
 
Behavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfBehavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfSELF-EXPLANATORY
 
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuine
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 GenuineCall Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuine
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuinethapagita
 
preservation, maintanence and improvement of industrial organism.pptx
preservation, maintanence and improvement of industrial organism.pptxpreservation, maintanence and improvement of industrial organism.pptx
preservation, maintanence and improvement of industrial organism.pptxnoordubaliya2003
 
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptxRESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptxFarihaAbdulRasheed
 
The dark energy paradox leads to a new structure of spacetime.pptx
The dark energy paradox leads to a new structure of spacetime.pptxThe dark energy paradox leads to a new structure of spacetime.pptx
The dark energy paradox leads to a new structure of spacetime.pptxEran Akiva Sinbar
 
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)User Guide: Pulsar™ Weather Station (Columbia Weather Systems)
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)Columbia Weather Systems
 
Transposable elements in prokaryotes.ppt
Transposable elements in prokaryotes.pptTransposable elements in prokaryotes.ppt
Transposable elements in prokaryotes.pptArshadWarsi13
 
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)riyaescorts54
 
Call Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCR
Call Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCRCall Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCR
Call Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCRlizamodels9
 
Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Patrick Diehl
 
Sulphur & Phosphrus Cycle PowerPoint Presentation (2) [Autosaved]-3-1.pptx
Sulphur & Phosphrus Cycle PowerPoint Presentation (2) [Autosaved]-3-1.pptxSulphur & Phosphrus Cycle PowerPoint Presentation (2) [Autosaved]-3-1.pptx
Sulphur & Phosphrus Cycle PowerPoint Presentation (2) [Autosaved]-3-1.pptxnoordubaliya2003
 
Microphone- characteristics,carbon microphone, dynamic microphone.pptx
Microphone- characteristics,carbon microphone, dynamic microphone.pptxMicrophone- characteristics,carbon microphone, dynamic microphone.pptx
Microphone- characteristics,carbon microphone, dynamic microphone.pptxpriyankatabhane
 
Citronella presentation SlideShare mani upadhyay
Citronella presentation SlideShare mani upadhyayCitronella presentation SlideShare mani upadhyay
Citronella presentation SlideShare mani upadhyayupadhyaymani499
 
Pests of jatropha_Bionomics_identification_Dr.UPR.pdf
Pests of jatropha_Bionomics_identification_Dr.UPR.pdfPests of jatropha_Bionomics_identification_Dr.UPR.pdf
Pests of jatropha_Bionomics_identification_Dr.UPR.pdfPirithiRaju
 
Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real timeSatoshi NAKAHIRA
 
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...lizamodels9
 
Pests of safflower_Binomics_Identification_Dr.UPR.pdf
Pests of safflower_Binomics_Identification_Dr.UPR.pdfPests of safflower_Binomics_Identification_Dr.UPR.pdf
Pests of safflower_Binomics_Identification_Dr.UPR.pdfPirithiRaju
 

Recently uploaded (20)

BUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdf
BUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdfBUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdf
BUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdf
 
Environmental Biotechnology Topic:- Microbial Biosensor
Environmental Biotechnology Topic:- Microbial BiosensorEnvironmental Biotechnology Topic:- Microbial Biosensor
Environmental Biotechnology Topic:- Microbial Biosensor
 
Behavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdfBehavioral Disorder: Schizophrenia & it's Case Study.pdf
Behavioral Disorder: Schizophrenia & it's Case Study.pdf
 
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuine
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 GenuineCall Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuine
Call Girls in Majnu Ka Tilla Delhi 🔝9711014705🔝 Genuine
 
preservation, maintanence and improvement of industrial organism.pptx
preservation, maintanence and improvement of industrial organism.pptxpreservation, maintanence and improvement of industrial organism.pptx
preservation, maintanence and improvement of industrial organism.pptx
 
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptxRESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
 
The dark energy paradox leads to a new structure of spacetime.pptx
The dark energy paradox leads to a new structure of spacetime.pptxThe dark energy paradox leads to a new structure of spacetime.pptx
The dark energy paradox leads to a new structure of spacetime.pptx
 
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)User Guide: Pulsar™ Weather Station (Columbia Weather Systems)
User Guide: Pulsar™ Weather Station (Columbia Weather Systems)
 
Transposable elements in prokaryotes.ppt
Transposable elements in prokaryotes.pptTransposable elements in prokaryotes.ppt
Transposable elements in prokaryotes.ppt
 
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
(9818099198) Call Girls In Noida Sector 14 (NOIDA ESCORTS)
 
Call Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCR
Call Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCRCall Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCR
Call Girls In Nihal Vihar Delhi ❤️8860477959 Looking Escorts In 24/7 Delhi NCR
 
Volatile Oils Pharmacognosy And Phytochemistry -I
Volatile Oils Pharmacognosy And Phytochemistry -IVolatile Oils Pharmacognosy And Phytochemistry -I
Volatile Oils Pharmacognosy And Phytochemistry -I
 
Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?Is RISC-V ready for HPC workload? Maybe?
Is RISC-V ready for HPC workload? Maybe?
 
Sulphur & Phosphrus Cycle PowerPoint Presentation (2) [Autosaved]-3-1.pptx
Sulphur & Phosphrus Cycle PowerPoint Presentation (2) [Autosaved]-3-1.pptxSulphur & Phosphrus Cycle PowerPoint Presentation (2) [Autosaved]-3-1.pptx
Sulphur & Phosphrus Cycle PowerPoint Presentation (2) [Autosaved]-3-1.pptx
 
Microphone- characteristics,carbon microphone, dynamic microphone.pptx
Microphone- characteristics,carbon microphone, dynamic microphone.pptxMicrophone- characteristics,carbon microphone, dynamic microphone.pptx
Microphone- characteristics,carbon microphone, dynamic microphone.pptx
 
Citronella presentation SlideShare mani upadhyay
Citronella presentation SlideShare mani upadhyayCitronella presentation SlideShare mani upadhyay
Citronella presentation SlideShare mani upadhyay
 
Pests of jatropha_Bionomics_identification_Dr.UPR.pdf
Pests of jatropha_Bionomics_identification_Dr.UPR.pdfPests of jatropha_Bionomics_identification_Dr.UPR.pdf
Pests of jatropha_Bionomics_identification_Dr.UPR.pdf
 
Grafana in space: Monitoring Japan's SLIM moon lander in real time
Grafana in space: Monitoring Japan's SLIM moon lander  in real timeGrafana in space: Monitoring Japan's SLIM moon lander  in real time
Grafana in space: Monitoring Japan's SLIM moon lander in real time
 
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
Best Call Girls In Sector 29 Gurgaon❤️8860477959 EscorTs Service In 24/7 Delh...
 
Pests of safflower_Binomics_Identification_Dr.UPR.pdf
Pests of safflower_Binomics_Identification_Dr.UPR.pdfPests of safflower_Binomics_Identification_Dr.UPR.pdf
Pests of safflower_Binomics_Identification_Dr.UPR.pdf
 

Tumors

  • 1.
  • 2. Plan of the lecturePlan of the lecture 1. Neoplastic growth. Definition. 2. Features of benign and malignant tumors. 3. Classification of cancerogens. 4. Pathogenesis of tumors. 5. Stages of cancerogenesis. 6. Characteristic of tumor cells. 7. Mechanism of immunological response against tumor cells. 8. Treatment of tumors.
  • 3. Actuality of the lectureActuality of the lecture By the prognoses of Worldwide health protectionBy the prognoses of Worldwide health protection organization morbidity and death rate from oncologicorganization morbidity and death rate from oncologic diseases in the whole worlddiseases in the whole world will grow in 2 timeswill grow in 2 times forfor period from 1999 year for 2020period from 1999 year for 2020: from 10 to the 20: from 10 to the 20 million new cases and from 6 to the 12 millionmillion new cases and from 6 to the 12 million registered deaths.registered deaths. Taking into account that in the developed countriesTaking into account that in the developed countries there is a tendency to deceleration of growth ofthere is a tendency to deceleration of growth of morbidity and death rate from malignant tumors (due tomorbidity and death rate from malignant tumors (due to the prophylaxis and due to the improvement of earlythe prophylaxis and due to the improvement of early diagnostics and treatment), clearly, that a basicdiagnostics and treatment), clearly, that a basic increase will be at developing countries (countries ofincrease will be at developing countries (countries of former USSR). That is why doctors have to expectformer USSR). That is why doctors have to expect serious increase of morbidity and death rate fromserious increase of morbidity and death rate from oncopathology.oncopathology. From data of Committee of cancer prophylaxis 90%From data of Committee of cancer prophylaxis 90% tumors are related to influencing of external factors, andtumors are related to influencing of external factors, and 10% - depend on genetic factors.10% - depend on genetic factors.
  • 4. Neoplasia –Neoplasia – ““new growth”new growth” && newnew growth is calledgrowth is called aa neoplasmneoplasm..  NeoplasiaNeoplasia is new tissue growth that is:is new tissue growth that is:  unregulated,unregulated,  irreversible,irreversible,  monoclonal.monoclonal.  Monoclonal means that the neoplastic cells are derivedMonoclonal means that the neoplastic cells are derived from a single mother cell.from a single mother cell.  CancerCancer is anis an overgrowthovergrowth of cellsof cells bearing cumulativebearing cumulative genetic injuriesgenetic injuries thatthat confer growth advantage over theconfer growth advantage over the normal cells.normal cells. [[Nowell’s LawNowell’s Law]] these featuresthese features distinguish it fromdistinguish it from hyperplasia and repairhyperplasia and repair
  • 5. • Oncology (Greek oncos = tumor) is the study of tumors or neoplasms. • Cancer is the common term for all malignant tumors. • Although the ancient origins of this term are somewhat uncertain, it probably derives from the Latin for crab, cancer — presumably because a cancer "adheres to any part that it seizes upon in an obstinate manner like the crab."
  • 6.  Believe it or not, cancer has affected people for several centuries. It is not a new disease.  The word cancer came from the father of medicine, Hippocrates, a Greek physician. He used the Greek words, carcinos and carcinoma to describe tumors, thus calling cancer “karkinos.”  Hippocrates (460-377 BC) coined the term karkinos for cancer of the breast.  The word ‘cancer’‘cancer’ means crabcrab, thus reflecting the true character of cancer since ‘it sticks to the part stubbornly like a crabcrab’. He was certainly not the first to discover the disease.  The history of cancer actually begins much earlier. The History of Cancer, Lisa Fayed, About.com July,2008
  • 7. • The world's oldest documented case of cancer hailsThe world's oldest documented case of cancer hails from ancient Egypt, infrom ancient Egypt, in 3000 b.c.3000 b.c. • The details were recorded on a papyrus, documentingThe details were recorded on a papyrus, documenting 8 cases of tumors occurring on the breast.8 cases of tumors occurring on the breast. • It was treated by cauterization. It was also recordedIt was treated by cauterization. It was also recorded that there was no treatment for the disease, onlythat there was no treatment for the disease, only palliative treatment.palliative treatment. • There is evidence that the ancient Egyptians wereThere is evidence that the ancient Egyptians were able toable to tell the difference between malignant andtell the difference between malignant and benign tumors.benign tumors. • In ancient Egypt, it was believed cancer wasIn ancient Egypt, it was believed cancer was caused by the Gods.caused by the Gods. The History of Cancer, Lisa Fayed, About.com July,2008
  • 8. Ebers PapyrusEbers Papyrus treatment for cancer: recounting a " tumortumor against the god Xenus", it recommends "do nothing there against" http://en.wikipedia.org/wiki/Ancient_Egyptian_medicine Ancient Egyptian medical instruments depicted in a Ptolemaic period inscription on the Temple of Kom Ombo.
  • 9. TerminologyTerminology  HyperplasiaHyperplasia -- increase in theincrease in the number of cells,number of cells,  HypertrophyHypertrophy - increase in the- increase in the sizessizes of individual cellsof individual cells..  AtrophyAtrophy isis an adaptivean adaptive response in which there is aresponse in which there is a decrease in the size anddecrease in the size and function of cells.function of cells.  AnaplasiaAnaplasia - lack of differentiation.- lack of differentiation.
  • 10. MetaplasiaMetaplasia :: TransformationTransformation of a certainof a certain type oftype of differentiateddifferentiated tissue intotissue into another typeanother type ofof differentiateddifferentiated tissue.tissue. HeteroplasiaHeteroplasia :: Occurrence ofOccurrence of non-neoplasticnon-neoplastic tissue at atissue at a location wherelocation where it does notit does not normallynormally occur, either inoccur, either in a heterotopiaa heterotopia or as a resultor as a result ofof tissuetissue dissemination.dissemination.
  • 11.
  • 12. All tumors,All tumors, benignbenign as well asas well as malignantmalignant, have 2 basic components:, have 2 basic components: ““Parenchyma”Parenchyma” comprised bycomprised by proliferating tumor cells;proliferating tumor cells; parenchymaparenchyma determines the naturedetermines the nature and evolution of theand evolution of the tumortumor. “Supportive stroma”Supportive stroma” composed of fibrouscomposed of fibrous connective tissueconnective tissue and blood vessels; itand blood vessels; it provides the frameworkprovides the framework on which theon which the parenchymal tumorparenchymal tumor cells grow.cells grow.
  • 13. NOMENCLATURENOMENCLATURE BenignBenign tumors are designatedtumors are designated by attaching the suffixby attaching the suffix -oma-oma to the cellto the cell of origin. Tumors ofof origin. Tumors of mesenchymalmesenchymal cellscells generally follow this rule.generally follow this rule. For exampleFor example, a benign tumor arising, a benign tumor arising fromfrom fibroblastic cellsfibroblastic cells is calledis called aa fibromafibroma,, aa cartilaginous tumocartilaginous tumor isr is aa chondromachondroma, a, a tumor oftumor of osteoblastsosteoblasts is anis an osteomaosteoma.. AdenomaAdenoma is the term applied to ais the term applied to a benign epithelial neoplasm that formsbenign epithelial neoplasm that forms glandularglandular patterns as well as topatterns as well as to tumors derived from glands but nottumors derived from glands but not necessarily reproducing glandularnecessarily reproducing glandular patterns.patterns. Benign epithelialBenign epithelial neoplasmsneoplasms producing microscopically orproducing microscopically or macroscopicallymacroscopically visible finger-likevisible finger-like oror warty projectionswarty projections from epithelialfrom epithelial surfaces are referred to assurfaces are referred to as papillomaspapillomas MalignantMalignant tumours of epithelialtumours of epithelial origin are calledorigin are called carcinomascarcinomas, while, while malignantmalignant mesenchymalmesenchymal tumourstumours are namedare named sarcomas (sarcos =sarcomas (sarcos = fleshy)fleshy) For exampleFor example,, fibrosarcoma,fibrosarcoma, liposarcomaliposarcoma,, leiomyosarcomaleiomyosarcoma forfor smooth muscle cancersmooth muscle cancer, and, and rhabdomyosarcomarhabdomyosarcoma for a cancer thatfor a cancer that differentiates towarddifferentiates toward striated musclestriated muscle).). However, some cancers areHowever, some cancers are composed of highlycomposed of highly undifferentiatedundifferentiated cells and are referred to ascells and are referred to as undifferentiated malignant tumours.undifferentiated malignant tumours. TeratomasTeratomas (can be benign)(can be benign),, inin contrast, are made up of a variety ofcontrast, are made up of a variety of parenchymal cell typesparenchymal cell types representative of more than onerepresentative of more than one germ layer, usually all three.germ layer, usually all three.
  • 14. "Knapsack” tumor: lipoma Pleural sarcomatosis:Pleural sarcomatosis: metastatic sarcoma of the uterusmetastatic sarcoma of the uterus
  • 15. CANCER CELLS AND NORMAL CELLS CANCER CELLSCANCER CELLS NORMAL CELLSNORMAL CELLS Loss of contact inhibitionLoss of contact inhibition Increase in growth factor secretionIncrease in growth factor secretion Increase in oncogene expressionIncrease in oncogene expression Loss of tumor suppressor genesLoss of tumor suppressor genes Oncogene expression is rareOncogene expression is rare Intermittent or co-ordinatedIntermittent or co-ordinated growth factor secretiongrowth factor secretion Presence of tumor suppressorPresence of tumor suppressor genesgenes NormalNormal cellcell FewFew mitosesmitoses FrequentFrequent mitosesmitoses NucleusNucleus Blood vesselBlood vessel AbnormalAbnormal heterogeneous cellsheterogeneous cells
  • 16. Characteristics of Benign and Malignant NeoplasmsCharacteristics of Benign and Malignant Neoplasms CharacteristicsCharacteristics BenignBenign MalignantMalignant CellCell characteristicscharacteristics Well-differentiated cells that resemble normal cells of the tissue from which the tumor originated Cells are undifferentiated and often bear little resemblance to the normal cells of the tissue from which they arose Mode of growthMode of growth Tumor grows by expansion and does not infiltrate the surrounding tissues; usually encapsulated by a fibrous capsule (exception – uterine leiomyomas do(exception – uterine leiomyomas do not have fibrous tissue capsule)not have fibrous tissue capsule) Grows at the periphery and sends out processes that infiltrate and destroy the surrounding tissues Rate of growthRate of growth Rate of growth usually is slow Rate of growth is variable and depends on level of differentiation; the more anaplastic the tumor, the more rapid the rate of growth MetastasisMetastasis Does not spread by metastasis Gains access to the blood and lymph channels and metastasizes to other areas of the body General effectsGeneral effects Usually is a localized phenomenon that does not cause generalized effects unless its location interferes with vital functions Often causes generalized effects such as anemia, weakness, and weight loss TissueTissue destructiondestruction Usually does not cause tissue damage unless its location interferes with blood flow Often causes extensive tissue damage as the tumor outgrows its blood supply or encroaches on blood flow to the area; also may produce substances that cause cell damage Ability to causeAbility to cause deathdeath Usually does not cause death unless its location interferes with vital functions Usually causes death unless growth can be controlled
  • 17. Principal Pathways of Malignancy 1. Proliferation 2. Cell-Cycle Progression 3. DNA Repair 4. Immortalization 5. Apoptosis 6. Angiogenesis 7. Metastasis and Invasion
  • 18. 1)External factors:1)External factors: tobacco, alcohol, chemicals, radiation, pathogens 2) Internal factors:2) Internal factors: hormones, immune conditions, inheriled mutations  1. Age > 55 years - more than 75% of cancers.  2. Causes: 3. Blacks a. Greatest risk for cancer and cancer-related deaths of any other racial group or ethnicity b. Applies to almost all cancers except malignant melanoma 4. Hispanics and Asians Lower incidence rates for all cancers combined than whites b. Exceptions are for cancers associated with infections – cervix (human papillomavirus), liver (hepatitis B and C), stomach (Helicobacter pylori) 5. Native Americans • Highest incidence and cancer-related deaths due to kidney cancer than all racial and ethnic populations. Cancer incidenceCancer incidence 1. Cancers in children1. Cancers in children a.a. Second most common cause of deathSecond most common cause of death inin children (accidents most common cause)children (accidents most common cause) b.b. Acute lymphoblastic leukemiaAcute lymphoblastic leukemia (-33%),(-33%), central nervous system (CNS) tumors (-21%),central nervous system (CNS) tumors (-21%), neuroblastoma (~7%), Wilms' tumor (-5%).neuroblastoma (~7%), Wilms' tumor (-5%). •• These are not common tumors in adults.These are not common tumors in adults. 2.2. Cancers in menCancers in men (in decreasing order)(in decreasing order) •• ProstateProstate, lung, colorectal, lung, colorectal 3.3. Cancers in womenCancers in women (in decreasing order)(in decreasing order) •• BreastBreast, lung, colorectal, lung, colorectal
  • 19. Cancer GeographyCancer Geography 1. Worldwide •• Malignant melanoma isMalignant melanoma is increasing at the most rapidincreasing at the most rapid rate of all cancers.rate of all cancers. 2. China2. China •• NasopharyngealNasopharyngeal carcinoma secondary tocarcinoma secondary to Epstein-Barr virus (EBV)Epstein-Barr virus (EBV) 3. Japan3. Japan •• StomachStomach adenocarcinomaadenocarcinoma due t0 smoked foodsdue t0 smoked foods 4. Southeast Asia4. Southeast Asia •• Hepatocellular carcinomaHepatocellular carcinoma due to hepatitis B virus plusdue to hepatitis B virus plus aflatoxins (produced byaflatoxins (produced by Aspergillus) in foodAspergillus) in food 5. Africa5. Africa •• Burkitt's lymphoma due to EBV andBurkitt's lymphoma due to EBV and Kaposi's sarcoma due t0 humanKaposi's sarcoma due t0 human herpes virus 8.herpes virus 8. Epidemiology of Endometrial CancerEpidemiology of Endometrial Cancer
  • 20. CausalCausal TumorigenesisTumorigenesis  CancerCancer is ais a genetic disordergenetic disorder that arises from athat arises from a single body cell (monoclonal disorder).single body cell (monoclonal disorder).  In humansIn humans and other animals, it may beand other animals, it may be triggeredtriggered byby noxious chemicalnoxious chemical,, viralviral, and, and physical agentsphysical agents withwith mutagenic effectsmutagenic effects..  Cells acquire severalCells acquire several characteristics duringcharacteristics during the course of this disease.the course of this disease.
  • 21. CARCINOGENCARCINOGEN METABOLISMMETABOLISM Three Main Categories:Three Main Categories: I. Chemical Carcinogens II. Physical Carcinogens III. Viral Agents CarcinogensCarcinogens MutationsMutations CancerCancer ??EnvironmentalEnvironmental factorsfactors
  • 22. CARCINOGENSCARCINOGENS • Occupation related causesOccupation related causes • Lifestyle related causesLifestyle related causes – TobaccoTobacco – DietDiet – Sexual practicesSexual practices • Multifactorial causesMultifactorial causes • Chemical carcinogensChemical carcinogens • Ionizing radiationIonizing radiation • Viral carcinogensViral carcinogens
  • 23. CHEMICAL CARCINOGENESISCHEMICAL CARCINOGENESIS Direct-acting CarcinogensDirect-acting Carcinogens A.A. Alkylating agents • Anti-cancer drugs: cyclophosphamide (transitional cell carcinoma of urinary bladder)(transitional cell carcinoma of urinary bladder), chlorambucil, busulfan, melphalan, nitrosourea etc. • β-propiolactone; • Epoxides B. Acylating agents: • Acetyl imidazole • Dimethyl carbamyl chloride PromotersPromoters  saccharine & cyclamatessaccharine & cyclamates  EstrogenEstrogen ((endometrial carcinoma. Adenocarcinoma of the vagina is seen with increased frequency in adolescent daughters of mothers who had received estrogen therapy during pregnancy).  Anabolic steroids (↑ the risk of developing benign and malignant tumors of the liver)  Contraceptive hormonesContraceptive hormones ((↑ the risk of developing breast cancer. For long durations are benign tumors of the liver, and a few patients have been reported to have developed hepatocellular carcinoma. Gregg Valentino
  • 24. ProcarcinogensProcarcinogens 1. Polyclic,1. Polyclic, aromatic hydrocarbons (in tobacco, smoke, fossil fuel, soot, tar, minerals oil, smoked animal foods, industrial and atmospheric pollutants) (Lung cancer, skin cancer, cancer of upper aerodigestive tract) • Anthracenes (benza-, dibenza-, dimethyl benza-) • Benzapyrene; • Methylcholanthrene 2.2. Aromatic amines and azo-dyes: • β-naphthylamine; Benzidine (Bladder cancer) • Azo-dyes (e.g. butter yellow, scarlet red) (hepatocellular carcinoma) 3. Naturally-occurring products  Aflatoxin B1Aflatoxin B1 ((Hepatocellular carcinoma in association with hepatitis B virusHepatocellular carcinoma in association with hepatitis B virus))  Actinomycin D; Mitomycin C; Safrole; Betel nutsActinomycin D; Mitomycin C; Safrole; Betel nuts 4. Miscellaneous  Nitrosamine & AmidesNitrosamine & Amides  AsbestosAsbestos ((Bronchogenic carcinoma, pleural mesotheliomaBronchogenic carcinoma, pleural mesothelioma))  Vinyl chlorideVinyl chloride ((Angiosarcoma, liverAngiosarcoma, liver))  Chromium, nickel, other metalsChromium, nickel, other metals ((Bronchogenic carcinomaBronchogenic carcinoma))  ArsenicArsenic ((Squamous cell carcinoma of skin, lung cancer, liver angiosarcomaSquamous cell carcinoma of skin, lung cancer, liver angiosarcoma)) 3,4-benzopyrene3,4-benzopyrene This lady chews betel nuts the fruit of a palm
  • 25. Stages:Stages: InitiationInitiation - primary exposure- primary exposure PromotionPromotion - transformation- transformation ProgressionProgression - Cancer growth- Cancer growth CancerCancer
  • 26. InitiationInitiation  normal cells are exposed to a carcinogennormal cells are exposed to a carcinogen  not enough to cause malignant transformationnot enough to cause malignant transformation  requires one round of cell divisionrequires one round of cell division  normal cells are exposed to a carcinogennormal cells are exposed to a carcinogen 1. Direct-acting carcinogens1. Direct-acting carcinogens 2. Indirect-acting carcinogens2. Indirect-acting carcinogens ProcarcinogenProcarcinogen CytochromeCytochrome P450P450 UltimateUltimate carcinogencarcinogen PromotionPromotion  initiated cells are exposed to promotersinitiated cells are exposed to promoters  promoters are not carcinogens !promoters are not carcinogens !  properties of promotersproperties of promoters  reversiblereversible  dose-dependentdose-dependent  time-dependenttime-dependent
  • 27. 1. Radiation1. Radiation 1). Ionizing radiation-induced cancers1). Ionizing radiation-induced cancers a. Mechanism:a. Mechanism: •• Hydroxyl free radical injury to DNAHydroxyl free radical injury to DNA b. Examplesb. Examples (1)(1) Acute myelogenous or chronic myelogenousAcute myelogenous or chronic myelogenous leukemia (leukemia ( risk of leukemia in radiologists andrisk of leukemia in radiologists and individuals exposed to radiation in nuclear reactors);individuals exposed to radiation in nuclear reactors); (2) Papillary thyroid carcinoma(2) Papillary thyroid carcinoma (3) Lung, breast, and bone cancers(3) Lung, breast, and bone cancers (4) Liver angiosarcoma(4) Liver angiosarcoma (Due to radioactive thorium(Due to radioactive thorium dioxide used to visualize the arterial tree)dioxide used to visualize the arterial tree) 2). UV light-induced cancers2). UV light-induced cancers a. Mechanisma. Mechanism •• Formation of pyrimidine dimers, which distort DNAFormation of pyrimidine dimers, which distort DNA b. Basal cell carcinoma, squamous cell carcinoma,b. Basal cell carcinoma, squamous cell carcinoma, malignant melanomamalignant melanoma 2. Physical injury2. Physical injury 1). Squamous cell carcinoma may develop in third-1). Squamous cell carcinoma may develop in third- degree burn scars.degree burn scars. 2). Squamous cell carcinoma may develop at the2). Squamous cell carcinoma may develop at the orifices of chronically draining;orifices of chronically draining; sinuses (e.g., chronic osteomyelitis),sinuses (e.g., chronic osteomyelitis), Physical CarcinogenesisPhysical Carcinogenesis PRE-IRRADIATIONPRE-IRRADIATION POST-IRRADIATIONPOST-IRRADIATION ChondrosarcomaChondrosarcoma
  • 28. Ultraviolet RaysUltraviolet Rays UV-A = 320 - 400 nm UV-B = 280 - 320 nm UV-C = 200 - 280 nm UV-CUV-C ⇒⇒ filtered by ozonefiltered by ozone UV-BUV-B Inhibition of cell divisionInhibition of cell division inactivation of enzymesinactivation of enzymes induction of mutations cellinduction of mutations cell death at high dosesdeath at high doses Squamous cell cancerSquamous cell cancer Basal cell cancerBasal cell cancer MelanocarcinomaMelanocarcinoma
  • 29. Virus MECHANISM ASSOCIATED CANCER RNA Viruses HCV Produces postnecrotic cirrhosis Hepatocellular carcinomaHepatocellular carcinoma HTLV-1 (human T-cell lympho- tropic virus) Activates TAX gene, stimulates polyclonal T-cell proliferation, inhibits TP53 suppressor gene T-cell leukemia and lymphomaT-cell leukemia and lymphoma DNA VirusesDNA Viruses EBV (Epstein- Barr virus) Promotes polyclonal B-cell proliferation, which increases risk for t(8:14) translocation Burkitt's lymphoma, CNS lymphomaBurkitt's lymphoma, CNS lymphoma in AIDS, mixed cellularity Hodgkin'sin AIDS, mixed cellularity Hodgkin's lymphoma, nasopharyngeallymphoma, nasopharyngeal carcinomacarcinoma HBV (hepatitis B virus) Activates proto-oncogenes, inactivates TP53 suppressor gene Hepatocellular carcinomaHepatocellular carcinoma HHV-8 (human herpesvirus) Acts via cytokines released from HIV and HSV Kaposi's sarcoma in AIDSKaposi's sarcoma in AIDS HPV types 16 and 18, 31, 33 (human papillomavirus) Type 16 (-50% of cancers); E6 gene product inhibits; TP53 suppressor gene Type 18 (-10% of cancers); E7 gene product inhibits; RB suppressor gene Squamous cell carcinoma of vulva,Squamous cell carcinoma of vulva, vagina, cervix, anus (associatedvagina, cervix, anus (associated with anal intercourse), larynx,with anal intercourse), larynx, oropharynxoropharynx Viral CarcinogenesisViral Carcinogenesis
  • 30. VirusesViruses (in brackets)(in brackets) in humanin human tumors.tumors.
  • 31. Burkitt's lymphomaBurkitt's lymphoma Viral carcinogenesisViral carcinogenesis Laryngeal papillomatosisLaryngeal papillomatosis Oral cancerOral cancer Kaposi's sarcomaKaposi's sarcoma
  • 32. A, Replication: Step 1. The DNA virus invades the host cell. Step 2. Viral DNA is incorporated into the host nucleus and T- antigen is expressed immediately after infection. Step 3. Replication of viral DNA occurs and other components of virion are formed. The new virions are assembled in the cell nucleus. Step 4. The new virions are released, accompanied by host cell lysis. B, Integration: Steps 1 and 2 are similar as in replication. Step 3. Integration of viral genome into the host cell genome occurs which requires essential presence of functional T-antigen. Step 4. A ‘transformed (neoplastic) cell’ is formed. Step 1. The RNA virus invades the host cell. The viral envelope fuses with the plasma membrane of the host cell; viral RNA genome as well as reverse transcriptase are released into the cytosol. Step 2. Reverse transcriptase acts as template to synthesise single strand of matching viral DNA which is then copied to form complementary DNA resulting in double-stranded viral DNA (provirus). Step 3. The provirus is integrated into the host cell genome producing ‘transformed host cell.’ Step 4. Integration of the provirus brings about replication of viral components which are then assembled and released by
  • 33. Lifestyle RiskLifestyle Risk FactorsFactors Tobacco-related:Tobacco-related:  Lung cancerLung cancer  Pancreatic cancerPancreatic cancer  Bladder cancerBladder cancer  Renal cancerRenal cancer  Cervical cancerCervical cancer LungLung carcinomacarcinoma in situin situ Penetration of the vena cava:Penetration of the vena cava: renal carcinomarenal carcinoma
  • 34. Diet-Related Risk Factors Nitrates Salt Low vitamins A, C, E Low consumption of yellow-green vegetables Gastric Cancer Esophageal Cancer
  • 35. Diet-Related RiskDiet-Related Risk FactorsFactors High fat Low fiber Low calcium High fried foods Colon Cancer Pancreatic Cancer Prostate Cancer Breast Cancer Uterine Cancer Mycotoxins Liver Cancer Carcinoma of the prostateCarcinoma of the prostate
  • 36. Sexual PracticesSexual Practices Risk FactorsRisk Factors Cervical Cancer Sexual promiscuity Multiple partners Unsafe Sex Human Papillomavirus
  • 37.
  • 38.
  • 39. MultifactorialMultifactorial FactorsFactors Oral Cavity CancerOral Cavity Cancer Esophageal CancerEsophageal Cancer Tobacco + Asbestos Tobacco + mining Tobacco + uranium + radium Respiratory TractRespiratory Tract CancerCancer Lung CancerLung Cancer Tobacco + Alcohol
  • 40. CHARACTERISTICS OF CANCERCHARACTERISTICS OF CANCER • ClonalityClonality • AutonomyAutonomy • AnaplasiaAnaplasia • MetastasisMetastasis
  • 41. CHARACTERISTICS OF CANCERCHARACTERISTICS OF CANCER ClonalityClonality  Clonality can be determined by glucose-6-Clonality can be determined by glucose-6- phosphate dehydrogenase (G6PD) enzymephosphate dehydrogenase (G6PD) enzyme isoforms.isoforms.  1. Multiple isoforms (e.g., G6PD1. Multiple isoforms (e.g., G6PDAA, G6PD, G6PDBB, and, and G6PDG6PDCC) exist; only one isoform is inherited) exist; only one isoform is inherited from each parent.from each parent.  2. In females, one isoform is randomly2. In females, one isoform is randomly inactivated in each cell by lyonization (G6PD isinactivated in each cell by lyonization (G6PD is present on the X chromosome).present on the X chromosome).  3. Normal ratio of active isoforms in cells of any3. Normal ratio of active isoforms in cells of any tissue is 1:1 (e.g., 50% of cells have G6PDtissue is 1:1 (e.g., 50% of cells have G6PDAA,, and 50% of cells have G6PDand 50% of cells have G6PDGG).).  4. 1:1 ratio is maintained in hyperplasia, which4. 1:1 ratio is maintained in hyperplasia, which is polyclonal (cells are derived from multipleis polyclonal (cells are derived from multiple cells).cells).  5. Only one isoform is present in neoplasia,5. Only one isoform is present in neoplasia, which is monoclonal.which is monoclonal.  6. Clonality can also be determined by6. Clonality can also be determined by androgen receptor isoforms, which are alsoandrogen receptor isoforms, which are also present on the X chromosome.present on the X chromosome.
  • 42. • Cancer cells are able to proliferate despiteCancer cells are able to proliferate despite regulatory influences.regulatory influences. • Unrestricted proliferation results in tumorUnrestricted proliferation results in tumor formation.formation. • Mechanisms:Mechanisms: – Growth factor secretionGrowth factor secretion – Increased number of cell receptorsIncreased number of cell receptors – Independent activation of key biochemical processIndependent activation of key biochemical process • Proliferation depends on the cell cycle.Proliferation depends on the cell cycle. CHARACTERISTICS OF CANCERCHARACTERISTICS OF CANCER AutonomyAutonomy
  • 43.  A tumor usually isA tumor usually is undetectable until itundetectable until it has doubled 30has doubled 30 times and containstimes and contains more than 1 billionmore than 1 billion (10*9) cells. At this(10*9) cells. At this point, it ispoint, it is approximately 1 cmapproximately 1 cm in size.in size.  After 35 doublings,After 35 doublings, the mass containsthe mass contains more than 1 trillionmore than 1 trillion (10*12) cells, which(10*12) cells, which is a sufficientis a sufficient number to kill thenumber to kill the host.host.
  • 44.  The concept of the Hayflick limit was advanced by Leonard Hayflick in 1961, at theThe concept of the Hayflick limit was advanced by Leonard Hayflick in 1961, at the Wistar Institute in Philadelphia. Hayflick demonstrated that a population of normalWistar Institute in Philadelphia. Hayflick demonstrated that a population of normal human fetal cellshuman fetal cells in a cell culturein a cell culture will divide between 40 and 60 timeswill divide between 40 and 60 times. The. The population will then enter a senescence phase, which refutes the contention bypopulation will then enter a senescence phase, which refutes the contention by Nobel laureate Alexis CarrelNobel laureate Alexis Carrel that normal cells are immortal.that normal cells are immortal.  Hayflick found thatHayflick found that cells go through three phasescells go through three phases::  TheThe firstfirst is rapid, healthy cell division.is rapid, healthy cell division.  In theIn the secondsecond phase, mitosis slows.phase, mitosis slows.  In theIn the thirdthird stage,stage, senescencesenescence, cells stop dividing entirely. Once a cell reaches the, cells stop dividing entirely. Once a cell reaches the end of its life span, it undergoes a programmed cellular death calledend of its life span, it undergoes a programmed cellular death called apoptosisapoptosis..  EachEach mitosismitosis slightly shortens each of theslightly shortens each of the telomerestelomeres on the DNA of the cells.on the DNA of the cells.  Telomere shortening in humans eventually makes cell division impossible, and thisTelomere shortening in humans eventually makes cell division impossible, and this aging of the cell population appears to correlate with the overall physical aging ofaging of the cell population appears to correlate with the overall physical aging of the human body.the human body.  This mechanism also appears toThis mechanism also appears to prevent genomic instabilityprevent genomic instability..  Telomere shorteningTelomere shortening may alsomay also prevent the development of cancerprevent the development of cancer in human agedin human aged cells by limiting the number of cell divisions.cells by limiting the number of cell divisions.  However,However, shortened telomeresshortened telomeres impair immune functionimpair immune function thatthat might also increasemight also increase cancer susceptibilitycancer susceptibility.. The Hayflick limit is the number of times a normal human cell population will divide until cell division stops.
  • 45. I)I) Epidermal growth factor (EGF)Epidermal growth factor (EGF) II)II) Fibroblast growth factor (FGF)Fibroblast growth factor (FGF) III)III) Platelet-derived growth factor (PDGF)Platelet-derived growth factor (PDGF) IV)IV) Colony stimulating factor (CSF)Colony stimulating factor (CSF) V)V) Transforming growth factors-β (TGF-β)Transforming growth factors-β (TGF-β) VI)VI) Interleukins (IL)Interleukins (IL) VII)VII) Vascular endothelial growth factorVascular endothelial growth factor (VEGF)(VEGF)
  • 46. 1)1) Activation of growth-promoting oncogenesActivation of growth-promoting oncogenes causingcausing transformation of cell (mutanttransformation of cell (mutant form of normal protooncogene in cancer is termedform of normal protooncogene in cancer is termed oncogene). Many of these canceroncogene). Many of these cancer associated genes, oncogenes, were first discovered inassociated genes, oncogenes, were first discovered in viruses, and hence named asviruses, and hence named as v-oncv-onc. Gene products of oncogenes are. Gene products of oncogenes are calledcalled oncoproteinsoncoproteins.. 2)2) Inactivation of cancer-suppressor genesInactivation of cancer-suppressor genes (i.e. inactivation of(i.e. inactivation of anti-oncogenes)anti-oncogenes) permitting the cellular proliferation of transformed cells. Anti-oncogenes are active inpermitting the cellular proliferation of transformed cells. Anti-oncogenes are active in recessive formrecessive form i.e. they are active only if both alleles are damaged.i.e. they are active only if both alleles are damaged. 3)3) Abnormal apoptosis regulatory genesAbnormal apoptosis regulatory genes which may act aswhich may act as oncogenes or anti-oncogenes or anti- oncogenes. Accordingly, these genes may be active in dominant or recessive form.oncogenes. Accordingly, these genes may be active in dominant or recessive form. 4)4) Failure of DNA repair genesFailure of DNA repair genes and thus inability to repair theand thus inability to repair the DNA damage resultingDNA damage resulting in mutations.in mutations. 1)1) Proto-oncogenesProto-oncogenes are growth-promoting genes i.e. theyare growth-promoting genes i.e. they encode for cell proliferationencode for cell proliferation pathway.pathway. 2)2) Anti-oncogenesAnti-oncogenes are growth-inhibiting or growth suppressorare growth-inhibiting or growth suppressor genes.genes. 3)3) Apoptosis regulatory genesApoptosis regulatory genes control the programmed cellcontrol the programmed cell death.death. 4)4) DNA repair genesDNA repair genes are those normal genes which regulateare those normal genes which regulate the repair of DNA damagethe repair of DNA damage that has occurred during mitosis and also control the damage to proto-oncogenesthat has occurred during mitosis and also control the damage to proto-oncogenes and antioncogenes.and antioncogenes.
  • 47. MOLECULAR CARCINOGENESISMOLECULAR CARCINOGENESIS MutationMutation  the molecular hallmark of cancerthe molecular hallmark of cancer Gene Families in Cancer DevelopmentGene Families in Cancer Development 11 - Oncogenes- Oncogenes 22 - Tumor Suppressor genes- Tumor Suppressor genes 33 - Mutator genes- Mutator genes
  • 48. + oncogenes Oncogenes  promote cell proliferation  dominant & highly conserved  types: viral oncogenes [v-oncs] cellular oncogenes [c-oncs] Proto-oncogene ⇒ “Mutation” ⇒ Oncogene
  • 49.
  • 50. Classification of OncogenesClassification of Oncogenes E. Regulators of the Cell CycleE. Regulators of the Cell Cycle Components ofComponents of signalsignal transductiontransduction pathwayspathways A. Secreted Growth FactorsA. Secreted Growth Factors B. Cell Surface ReceptorsB. Cell Surface Receptors C. Intracellular TransducersC. Intracellular Transducers D. DNA-binding Nuclear ProteinsD. DNA-binding Nuclear Proteins c-sis, hstc-sis, hst erb B, fms, ret, trk, fes, fmserb B, fms, ret, trk, fes, fms c-src, c-abl, mst, rasc-src, c-abl, mst, ras myc, jun, fosmyc, jun, fos bcl, bax, badbcl, bax, bad
  • 51. PROTPROTOO-- ONCOONCOGGENEENE FUNCTIONFUNCTION MUTATIONMUTATION CANCERCANCER ABLABL Nonreceptor tyrosineNonreceptor tyrosine kinase activitykinase activity TranslocationTranslocation tt(9:22(9:22)) Chronic myelogenousChronic myelogenous leukemialeukemia (chromosome(chromosome 22 is Philadelphia22 is Philadelphia chrchr..)) HERHER ((ERBB2)ERBB2) RecepRecepttor synor syntthesishesis AmplificationAmplification Breast carcinomaBreast carcinoma (marker of(marker of aggressiveness)aggressiveness) MYCMYC Nuclear transcriptionNuclear transcription TranslocaTranslocattionion tt(8:14)(8:14) Burkitt's lymphomaBurkitt's lymphoma N-MYCN-MYC Nuclear transcriptionNuclear transcription AmplificationAmplification NeuroblastomaNeuroblastoma RASRAS GuanosineGuanosine triphosphatetriphosphate signalsignal transductiontransduction Point mutationPoint mutation Leukemia; lung, colon,Leukemia; lung, colon, pancreaticpancreatic carcinomascarcinomas RETRET Receptor synthesis PoinPointt mulationmulation Multiple endocrine neoplasia lla/llb syndromes SIS’SIS’ Growth factor synthesis OverexpressionOverexpression Osteogenic sarcoma, astrocytoma
  • 52. Mechanisms of Oncogene ActivationMechanisms of Oncogene Activation H-ras GTP Perpetual cell division 1. Point Mutation H-ras [codon 12] Normal CGC → Gly Bladder ca CTC → Val 2. Gene Amplification Double minutes HSRs Normal copy Multiple copies
  • 53. Mechanisms of Oncogene ActivationMechanisms of Oncogene Activation 3. Gene Translocation3. Gene Translocation Ex. Chronic Myelogenous Leukemia [CML]Ex. Chronic Myelogenous Leukemia [CML]
  • 54. Mechanisms of Oncogene ActivationMechanisms of Oncogene Activation 4. Viral Gene Integration4. Viral Gene Integration promoter Viral promoter
  • 55. ONCOGENS Categories of oncogenes include growth factors, growth factor receptors, signal transducers, nuclear regulators, and cell cycle regulators Mechanisms of activation of protooncogenes to formMechanisms of activation of protooncogenes to form growth promoting oncogenes.growth promoting oncogenes.
  • 56. Tumor Suppressor Genes  Synonym:Synonym: anti-oncogenes  Definition:Definition: Collective term for genes whose products physiologically inhibit cell proliferation, promote cell differentiation, and also suppress certain steps in tumorogenesis and metastasis.  A. Regulate cell growth and, hence, decrease ("suppress")decrease ("suppress") the risk of tumor formation;  p53p53 and Rb (retinoblastoma) are classic examples.  B. p53p53 regulates progression of the cell cycle from G1 to S phase,  1. In response to DNA damage, p53 slows the cell cycle and upregulates DNA repair enzymes.  2. If DNA repair is not possible, p53 induces apoptosis.  a). p53 upregulates BAX, which disrupts Bcl2.  b). Cytochrome c leaks from the mitochondria activating apoptosis,  3. Both copies of the p53 gene must be knocked out for tumor formation (Knudson two-hit hypothesis).  a). Loss is seen in > 50% of cancers.  b). Germline mutation results in Li-Fraumeni syndrome (2nd hit is somatic), characterized by the propensity to develop multiple types of carcinomas and sarcomas.
  • 57. TUMOR SUPPRESSOR GENETUMOR SUPPRESSOR GENE FAMILYFAMILYRetinoblastoma gene [Retinoblastoma gene [RB1RB1 gene]gene]  rare form of childhood malignancyrare form of childhood malignancy  forms: hereditary & sporadicforms: hereditary & sporadic pRb  location: 17p13.1  105-KDa nuclear protein  function: induces DNA repair or apoptosis; inhibits E2F [prevents G1 → S transition]  inhibited by: phosphorylation, viral oncoproteins [E1A, E1B, HPV E6, E7]  mutation: point mutation > deletion  results to: loss of function & extended lifespan of p53  Clinical conditions: carcinomas, Li Fraumeni Syndrome
  • 58. Cell Cycle RegulationCell Cycle Regulation ► Process assures that cell accurately duplicates itsProcess assures that cell accurately duplicates its contents.contents. ► Important checkpointsImportant checkpoints are present atare present at G1G1 andand G2G2 and areand are regulated by protein kinasesregulated by protein kinases calledcalled cyclinscyclins (cdk).(cdk). ► Checkpoints determineCheckpoints determine whether the cell proceeds twhether the cell proceeds t next phase of the cycle.next phase of the cycle.
  • 59. The role ofThe role of p53 inp53 in maintaining the integrity ofmaintaining the integrity of the genome.the genome. Activation of normal p53 byActivation of normal p53 by DNA-damaging agents or byDNA-damaging agents or by hypoxia leads to cell-cyclehypoxia leads to cell-cycle arrest in G1 and induction ofarrest in G1 and induction of DNA repair, by transcriptionalDNA repair, by transcriptional up-regulation of the cyclin-up-regulation of the cyclin- dependent kinase inhibitordependent kinase inhibitor p21,p21, and the GADD45 genes,and the GADD45 genes, respectively.respectively. Successful repair of DNASuccessful repair of DNA allows cells to proceed with theallows cells to proceed with the cell cycle; if DNA repair fails,cell cycle; if DNA repair fails, p53-induced activation of thep53-induced activation of the BAX gene promotes apoptosis.BAX gene promotes apoptosis. In cells with loss or mutations ofIn cells with loss or mutations of p53, DNA damage does notp53, DNA damage does not induce cell-cycle arrest or DNAinduce cell-cycle arrest or DNA repair, and hence geneticallyrepair, and hence genetically damaged cells proliferate,damaged cells proliferate, giving rise eventually togiving rise eventually to malignant neoplasms.malignant neoplasms.
  • 60. SOME TUMOR SUPPRESSOR GENES, THEIRSOME TUMOR SUPPRESSOR GENES, THEIR FUNCTIONS, AND ASSOCIATED CANCERSFUNCTIONS, AND ASSOCIATED CANCERS GENE FUNCTION ASSOCIATED CANCERS APC (adenomatous polyposis coli) Prevents nuclear transcriplion (degrades catenin, an activator of nuclear transcription) Familial polyposis (colorectal carcinoma) BRCA1/BRCA2BRCA1/BRCA2 (breast cancer) Regulates DNA repairRegulates DNA repair Breast, ovary, prosBreast, ovary, prosttate carcinomasate carcinomas RB (retinoblastoma) Inhibits G1 to S phase Relinoblastoma, osteogenic sarcoma, breast carcinoma TGF-TGF-ββ ((transforming growth factor-β) Inhibits GInhibits G11 to S phaseto S phase PancreaPancreattic and colorectal carcinomasic and colorectal carcinomas TP53 Inhibits G1 to S phase. Repairs DNA, activates BAX gene (initiates apoptosis) Lung, colon, breast carcinomas. Li- Fraumeni syndrome: breast carcinoma, brain tumors, leukemia, sarcomas VHLVHL ((VonVon Hippel-LindauHippel-Lindau )) Regulates nuclear transcriptionRegulates nuclear transcription Von Hippel-Lindau syndrome: cerebellarVon Hippel-Lindau syndrome: cerebellar hemangioblasloma, retinal angioma, renalhemangioblasloma, retinal angioma, renal cell carcinoma (bilateral),cell carcinoma (bilateral), pheochromocytoma (bilateral)pheochromocytoma (bilateral) WT1 (Wilms' tumor) Regulates nuclear transcription Wilms' tumor
  • 61.  Antiapoptosis genes;Antiapoptosis genes; BcL2 family of genesBcL2 family of genes  Prevent apoptosis in normal cells, but promote apoptosis in mutated cellsPrevent apoptosis in normal cells, but promote apoptosis in mutated cells whose DNA cannot be repaired (e.g., Bcl2)whose DNA cannot be repaired (e.g., Bcl2)  a. Protein products prevent cytochromea. Protein products prevent cytochrome c from leaving mitochondria.c from leaving mitochondria. •• CytochromeCytochrome cc in the cytosol activates caspases initiating apoptosis.in the cytosol activates caspases initiating apoptosis. b. Mutation causes increased gene activity (e.g., over expression), which preventsb. Mutation causes increased gene activity (e.g., over expression), which prevents apoptosis; e.g..apoptosis; e.g.. B-cell follicular lymphoma.B-cell follicular lymphoma.  (1)(1) BcL2 gene familyBcL2 gene family (chromosome 18) produces gene products that prevent(chromosome 18) produces gene products that prevent mitochondrial leakage ofmitochondrial leakage of cytochrome ccytochrome c (signal for apoptosis).(signal for apoptosis).  (2) Translocation t(14; 18) causes over expression of the BcL2 protein product.(2) Translocation t(14; 18) causes over expression of the BcL2 protein product. •• Prevents apoptosis of B lymphocytes causingPrevents apoptosis of B lymphocytes causing B-cell follicular lymphomaB-cell follicular lymphoma  Apoptosis genesApoptosis genes a.a. Regulate programmed cell deathRegulate programmed cell death (ex. BAX apoptosis gene)(ex. BAX apoptosis gene)  (1) Activated by a(1) Activated by a TP53TP53 suppressor gene product if DNA damage is excessivesuppressor gene product if DNA damage is excessive  (2)(2) BAX proteinBAX protein product inactivates theproduct inactivates the BcL2 antiapoptosis gene.BcL2 antiapoptosis gene.  (3) Mutation inactivating(3) Mutation inactivating TP53 suppressor gene renders the BAX gene inoperative,TP53 suppressor gene renders the BAX gene inoperative, which prevents apoptosis.which prevents apoptosis.
  • 62. Anaplasia The third characteristic feature of tumor cells – is anaplasiaanaplasia, which is cells structural and biochemical organization simplification, coming back to embryonic state. Neoplastic cells lose a capacity for differentiation and can not form the specific tissue complexes. Tumor arisesTumor arises from one mutational maternal cell. However such cells differ from their general ancestor by much parameters. These distinctions consearn the cell structure, its organelles, metabolism, specific properties and functions. Therefore the following kinds of anaplasiakinds of anaplasia are distinguished:  morphological,  biochemical,  physical and chemical,  functional,  immunological.
  • 63.  The essence of morphological anaplasiamorphological anaplasia is in appearance of atypic cultural and tissue.  Description of cultural atypic – lays in: ℘ cellular polymorphism, ℘ nuclear size increase, ℘ polynuclear state, ℘ nuclear hyperchromatosis, ℘ nucleoluses amount increase, ℘mitochondrias changes – quantative size decrease,     ℘ crests disappearance  Tissue atypism – is sizes and shapes of tissue structures change, sometimes is the total loss of morphological tissue signs. Conjunctival melanoma
  • 64.  Biochemical anaplasiaBiochemical anaplasia – is the tumor cells metabolism peculiarities.– is the tumor cells metabolism peculiarities. Its are arose their genetic system changes, enzymic spectrum of suchIts are arose their genetic system changes, enzymic spectrum of such cells gets changed. All cells get alike by enzymic admission (unificationcells gets changed. All cells get alike by enzymic admission (unification of isoenzymic spectrum).of isoenzymic spectrum).  The most typical biochemical feature of neoplasticThe most typical biochemical feature of neoplastic cellscells concern proteins and carbohydrates metabolism.concern proteins and carbohydrates metabolism. Proteins metabolismProteins metabolism peculiarities are:peculiarities are: ℘ synthesis activation of nucleic acids,synthesis activation of nucleic acids, ℘ DNA-polymerase inactivation,DNA-polymerase inactivation, ℘ increase of proteins synthesis,increase of proteins synthesis, ℘ decrease of proteins disintegration.decrease of proteins disintegration.  Carbohydrates metabolism and energeticCarbohydrates metabolism and energetic of tumor cells is alsoof tumor cells is also differ of norm. Thediffer of norm. The main energy sourcesmain energy sources in normal cells arein normal cells are anaerobic and aerobic carbohydrates disintegrationanaerobic and aerobic carbohydrates disintegration, that is, that is glycolysis and Krebs cycle. Neoplastic cell also receives the energyglycolysis and Krebs cycle. Neoplastic cell also receives the energy owing to glycolysis and Krebs cycle. However glycolysis role in tumorowing to glycolysis and Krebs cycle. However glycolysis role in tumor cell is more, than in normal one.cell is more, than in normal one.  TheThe tumor cells energetic supply includetumor cells energetic supply include:: ℘ anaerobic glycolysis activation,anaerobic glycolysis activation, ℘ aerobic glycolysis presence,aerobic glycolysis presence, ℘ oppression of Krebs cycle by powerful glycolytical enzymes systemoppression of Krebs cycle by powerful glycolytical enzymes system..
  • 65.  Functional anaplasiaFunctional anaplasia displays in loss or perversiondisplays in loss or perversion of tumor cells function.of tumor cells function. ℘ For example, inFor example, in neoplastic thyroid cells aneoplastic thyroid cells a surplus amount ofsurplus amount of hormones thyroxine andhormones thyroxine and triiodothyronine can betriiodothyronine can be synthesized, thyrotoxicosissynthesized, thyrotoxicosis arises.arises. ℘℘ In other cases separate functions of tumor cells fall out, forIn other cases separate functions of tumor cells fall out, for example, bilirubin does not get conjugated in hepatocyte.example, bilirubin does not get conjugated in hepatocyte.  In veryIn very malignant neoplastic cellsmalignant neoplastic cells functions are totally lostfunctions are totally lost.. Sometimes such cells begin doing the functions, which areSometimes such cells begin doing the functions, which are not specific for them (bronchus cancer synthesizes thenot specific for them (bronchus cancer synthesizes the gastrointestinal hormones).gastrointestinal hormones).
  • 66.  Immunological anaplasiaImmunological anaplasia –– isis change of tumor cellchange of tumor cell antigen propertiesantigen properties. In such cells antigen admission is. In such cells antigen admission is changed. Several deviation kinds of antigen out of normchanged. Several deviation kinds of antigen out of norm admission are distinguishedadmission are distinguished antigen simplificationantigen simplification,, antigen divergenceantigen divergence andand antigen reversionantigen reversion..  Antigen simplificationAntigen simplification – is the general number of– is the general number of neoplastic cells antigens diminution. For example, theneoplastic cells antigens diminution. For example, the cells of normal tissue synthesize up to 7 typical antigens,cells of normal tissue synthesize up to 7 typical antigens, while same tissue tumor cells synthesize only 2-3while same tissue tumor cells synthesize only 2-3 antigens.antigens.  The idea ofThe idea of antigen divergenceantigen divergence is in the fact of neoplasticis in the fact of neoplastic cells starting to synthesize heterologous antigens. Forcells starting to synthesize heterologous antigens. For example, hepatoma (liver tumor) begins synthesizingexample, hepatoma (liver tumor) begins synthesizing organospecific spleenic antigens, or other organsorganospecific spleenic antigens, or other organs antigens.antigens.  Antigen reversionAntigen reversion means neoplastic embryonic antigensmeans neoplastic embryonic antigens synthesis. For example, human liver cancer synthesizes asynthesis. For example, human liver cancer synthesizes a special embryonic protein, which is a-fetoprotein.special embryonic protein, which is a-fetoprotein.
  • 67. Invasion and MetastasisInvasion and Metastasis • The defining characteristic of a malignancy. • InvasionInvasion: active translocation of neoplastic cells across tissue barriers. • Critical pathologic point: local invasion and neovascularization. These events may occur before clinical detection.
  • 68. MetastasisMetastasis • 1. Benign tumors doBenign tumors do not metastasizenot metastasize. • 2. Malignant tumors metastasize. • 3. Pathways of dissemination: • a. Lymphatic spreadLymphatic spread to lymph nodes (usual(usual mechanism of dissemination of carcinomas)mechanism of dissemination of carcinomas) • b. Hematogenous spreadHematogenous spread: 1) Usual mechanism of dissemination for sarcomas 2) Cells entering the portal vein metastasize to the liver. 3) Cells entering the vena cava metastasize to the lungs.
  • 69. MetastasingMetastasing  The final progression stage of anyThe final progression stage of any tumor is its transformation into thetumor is its transformation into the malignant neoplasm. The major criteriamalignant neoplasm. The major criteria of malignant tumor is its ability toof malignant tumor is its ability to generalisation, that is – to metastasing.generalisation, that is – to metastasing.  Metastasing includes three stageMetastasing includes three stage:: ℘ neoplastic invasion into the surroundingneoplastic invasion into the surrounding tissues,tissues, ℘ tumor cells transport with the blood andtumor cells transport with the blood and lymphatic vessles,lymphatic vessles, ℘ their implantation in different organstheir implantation in different organs and tissues.and tissues.  Separate cells evacuation out of theSeparate cells evacuation out of the neoplastic node takes place in case ofneoplastic node takes place in case of intercellular contacts relaxation.intercellular contacts relaxation.  Tumor loses calcium, which must turnTumor loses calcium, which must turn intercellular spaces cementated inintercellular spaces cementated in malignisation process. Diminishedmalignisation process. Diminished amount of desmosomes, which createamount of desmosomes, which create the intercellular contacts arises inthe intercellular contacts arises in pernicious neoplasms. The amount ofpernicious neoplasms. The amount of gangliosides is disranked on the cellulargangliosides is disranked on the cellular surface of malignant tumor.surface of malignant tumor.
  • 70. ATTRIBUTES OFATTRIBUTES OF CANCERCANCER MetastasisMetastasis  Two basic steps: Destruction of the BM Attachment to the laminin of distant BM  Genes up-regulated among good metastasizers: EDGF receptor Basic Fibroblast Growth Factor Type IV Collagenase ε-Cathepsin (under-expressed) Cathepsin B (a lamininase) Heparanase
  • 71.
  • 72. STAGING OF CANCERSTAGING OF CANCER • A. Assessment of size and spread of a cancerA. Assessment of size and spread of a cancer • B. Key prognostic factor; more important thanB. Key prognostic factor; more important than gradegrade • C. Determined after final surgical resection ofC. Determined after final surgical resection of the tumorthe tumor • D. Utilizes TNM staging systemD. Utilizes TNM staging system • 1.1. TT—tumor (size and/or depth of invasion)—tumor (size and/or depth of invasion) • 2.2. NN—spread to regional lymph nodes;—spread to regional lymph nodes; secondsecond most important prognostic factormost important prognostic factor • 3.3. MM—metastasis; single most important—metastasis; single most important prognostic factorprognostic factor
  • 73. Metastasis:Metastasis: cervical lymph nodecervical lymph node Lymph node metastasis Tissue destruction:Tissue destruction: carcinoma of the maxillary sinuscarcinoma of the maxillary sinus Cancer "crater”: liver metastases
  • 74. ANGIOGENESISANGIOGENESIS  Formation of new blood vessels fromFormation of new blood vessels from existing vascular bedexisting vascular bed  Carried out by endothelial cells (EC)Carried out by endothelial cells (EC) and extra cellular matrix (ECM)and extra cellular matrix (ECM)  Regulated by angiogenic factorsRegulated by angiogenic factors (inducers and inhibitors)(inducers and inhibitors) ** A tumor is unable to grow largerA tumor is unable to grow larger than 1 mm3 w/o developing a newthan 1 mm3 w/o developing a new blood supplyblood supply
  • 75. Components of AngiogenesisComponents of Angiogenesis 1)1) ENDOTHELIAL CELLSENDOTHELIAL CELLS  FenestratedFenestrated  Increased cell adhesion molecules (E-Increased cell adhesion molecules (E- selectin)selectin)  Increased integrinsIncreased integrins αγβαγβ33 essential foressential for viability during growthviability during growth  Activated ECs release: bFGF PDGFActivated ECs release: bFGF PDGF IGF-1IGF-1
  • 76. Components of AngiogenesisComponents of Angiogenesis 2)2) INDUCERS OF ANGIOGENESISINDUCERS OF ANGIOGENESIS VEGF – main inducerVEGF – main inducer TGF-TGF- ββ TNF-TNF-αα low concentration - inducerlow concentration - inducer high concentration - inhibitorhigh concentration - inhibitor PDGF/thymidine phosphorylasePDGF/thymidine phosphorylase TGF-TGF-αα EGFEGF IL-8IL-8
  • 77. Components of AngiogenesisComponents of Angiogenesis 3) CELL ADHESION MOLECULES (CAM)3) CELL ADHESION MOLECULES (CAM)  Mediate cell-cell adhesion processesMediate cell-cell adhesion processes  SelectinsSelectins  IG Supergene family- ICAM, VCAMIG Supergene family- ICAM, VCAM  CadherinsCadherins  Integrins- vitronectin receptorIntegrins- vitronectin receptor 4) PROTEASES4) PROTEASES  Degrade ECM to provide suitableDegrade ECM to provide suitable environment for EC migration thru adjacentenvironment for EC migration thru adjacent stroma Ex: Metalloproteinases (MMP)stroma Ex: Metalloproteinases (MMP)
  • 78. Components ofComponents of AngiogenesisAngiogenesis 5)5) ANGIOGENESIS INHIBITORSANGIOGENESIS INHIBITORS  InterferonInterferon  TSP-1TSP-1  AngiostatinAngiostatin  EndostatinEndostatin  VasostatinVasostatin CLINICAL SIGNIFICANCECLINICAL SIGNIFICANCE:: Tumor angiogenesis switch is triggered asTumor angiogenesis switch is triggered as a result of shift in the balance ofa result of shift in the balance of stimulators to inhibitorsstimulators to inhibitors
  • 79. Immune system andImmune system and neoplastic growthneoplastic growth Tumor cells are heterologous for the organism. They synthesizethe proteins, whichTumor cells are heterologous for the organism. They synthesizethe proteins, which are not character for normal cells.are not character for normal cells. Neoplasms productNeoplasms product specific swelling antigenspecific swelling antigen .. Their specificity is conventional, but it is still sufficient for immune reactionTheir specificity is conventional, but it is still sufficient for immune reaction development. A final result depends on immune attack intensity greatly: that means,development. A final result depends on immune attack intensity greatly: that means, if the transformed cell is going to reproduct or not; is the tumor going to arise, or not.if the transformed cell is going to reproduct or not; is the tumor going to arise, or not.  Neoplasms are observed in people with congenital immunodeficiency 10000 timesNeoplasms are observed in people with congenital immunodeficiency 10000 times more often, than in persons with normal immune system. The malignant neoplasmsmore often, than in persons with normal immune system. The malignant neoplasms arise in patients, with transplanted organ (for example, kidney) very often.arise in patients, with transplanted organ (for example, kidney) very often. Immunodepressive drugs are being prescribed with the purpose of transplantedImmunodepressive drugs are being prescribed with the purpose of transplanted organ rejection prophylaxy in such patients. Tumors in are observed in such casesorgan rejection prophylaxy in such patients. Tumors in are observed in such cases 100 times more frequent, than in the rest of population.100 times more frequent, than in the rest of population.  These facts testify, that the transformed cells underlie the organism immune systemThese facts testify, that the transformed cells underlie the organism immune system supervision. In most people they eliminate in time. A transformed cell exists,supervision. In most people they eliminate in time. A transformed cell exists, reproducts, and produces the neoplasm in a fact of immune supervision insolvency.reproducts, and produces the neoplasm in a fact of immune supervision insolvency.  Tumor renders an oppressive action upon the organism immune system in its ownTumor renders an oppressive action upon the organism immune system in its own way. Immunodepression gets developed.way. Immunodepression gets developed.  The matters, which render immunodepressive action are produced in neoplasticThe matters, which render immunodepressive action are produced in neoplastic cells. Low-molecular metabolites (oligopeptides, unsaturated fatty acids), embryoniccells. Low-molecular metabolites (oligopeptides, unsaturated fatty acids), embryonic antigens (antigens (a-fetoproteina-fetoprotein), glucocorticoids belong to them.), glucocorticoids belong to them.  Т-suppressors activityТ-suppressors activity in patients with tumorsin patients with tumors is increasedis increased. They slow down. They slow down antineoplastic immunityantineoplastic immunity . One more reason of immunodepression in. One more reason of immunodepression in oncologic patients is the disparity between neoplastic growth speedoncologic patients is the disparity between neoplastic growth speed and immune answer development speedand immune answer development speed . Lymphoid cells reproduct slower,. Lymphoid cells reproduct slower, than tumor cells do. Adequate immune answer is late.than tumor cells do. Adequate immune answer is late.
  • 80. Systemic neoplastic action uponSystemic neoplastic action upon the organismthe organism Tumor is not locally isolated process. It renders an influence upon theTumor is not locally isolated process. It renders an influence upon the diverse organism functions. This is concerning the malignantdiverse organism functions. This is concerning the malignant neoplasms especially. Their systemic action displays theneoplasms especially. Their systemic action displays the cancercancer cachexycachexy. There are a few components of its development.. There are a few components of its development. Tumor absorbs the glucose reinforcelyTumor absorbs the glucose reinforcely.. Chronic hypoglycaemiaChronic hypoglycaemia tendencytendency arisesarises. Glycogen disintegrates in liver and muscles. Glycogen disintegrates in liver and muscles reinforcely.reinforcely. Glyconeogenesis gets increasedGlyconeogenesis gets increased. However, this. However, this compensatory mechanism has the negative characteristics. Firstly,compensatory mechanism has the negative characteristics. Firstly, glucocorticoids cause the albumens disintegration ofglucocorticoids cause the albumens disintegration of immunocompetence organs (thymus, spleen, lymphoid tissue of otherimmunocompetence organs (thymus, spleen, lymphoid tissue of other organs). Secondly, of big amount of amino acids in glyconeogenesisorgans). Secondly, of big amount of amino acids in glyconeogenesis usage gets the organic albumens synthesis limited. Diverse organsusage gets the organic albumens synthesis limited. Diverse organs dystrophy develops, muscles – first of all.dystrophy develops, muscles – first of all. Neoplastic growth can be described with the intensive syntheticNeoplastic growth can be described with the intensive synthetic processes. Plastic material (amino acids, nucleic acids) is veryprocesses. Plastic material (amino acids, nucleic acids) is very important for this. Neoplasm absorbs these matters not only nutritional,important for this. Neoplasm absorbs these matters not only nutritional, but from other organs also. It is named as nitrogen snare. all of otherbut from other organs also. It is named as nitrogen snare. all of other tissues are havingtissues are having amino acid deficiencyamino acid deficiency. They can not synthesize their. They can not synthesize their own proteins in a necessary volume. This is one more link ofown proteins in a necessary volume. This is one more link of cancercancer cachexy pathogens.cachexy pathogens.
  • 82. Tumor ComplicationsTumor Complications  The lesions described below complicate theThe lesions described below complicate the simple growth of the tumor. The combinationsimple growth of the tumor. The combination ofof such lesions with tumor expansion andsuch lesions with tumor expansion and metastasismetastasis constitute neoplastic disease thatconstitute neoplastic disease that extendsextends beyond the tumor as such.beyond the tumor as such. Local ComplicationsLocal Complications  Stenosis:Stenosis: Tumors can lead to severalTumors can lead to several compressioncompression syndromes.syndromes.  —— Expansion of the tumorExpansion of the tumor compressescompresses thethe surroundingsurrounding tissuetissue (A(A11)) and causesand causes stenosis instenosis in hollow organshollow organs (A2(A2)), compression of the, compression of the smallsmall bowel by a mesenterial liposarcoma;bowel by a mesenterial liposarcoma; Complications may include difficultiesComplications may include difficulties inin swallowing, impaired micturition,swallowing, impaired micturition, disruption ofdisruption of intestinal motility, and also increasedintestinal motility, and also increased intracranialintracranial pressurepressure..  —— Infiltration of the tumor can causeInfiltration of the tumor can cause congestioncongestion in a hollow organ. Complications mayin a hollow organ. Complications may includeinclude prestenotic dilation of the duct, stasisprestenotic dilation of the duct, stasis andand congestion of secretions or excretions,congestion of secretions or excretions, andand bacterial infestation of the congestedbacterial infestation of the congested area.area. A 2 1 Tumor compression (mesenterial liposarcoma) Budd-Chiari Syndrome
  • 83. Tumor ComplicationsTumor Complications  —— BleedingBleeding due to erosion of vasculardue to erosion of vascular structuresstructures may lead to spitting of bloodmay lead to spitting of blood fromfrom the lungs or bronchi (the lungs or bronchi (hemoptysishemoptysis),), vomitingvomiting of blood (hematemesis),of blood (hematemesis), passage of bloodypassage of bloody stools (stools (melenamelena), blood), blood in the urine (hematuria),in the urine (hematuria), acyclic bleedingacyclic bleeding from the uterus (metrorrhagia),from the uterus (metrorrhagia), andand hemorrhagic effusionshemorrhagic effusions (B).(B). Hemorrhagic effusion (lung cancer) B Circulatory Disruption: Tumor growth that compromises or infiltrates vascular structures produces a variety of lesions. — Obstruction of venous drainage is common and successively leads to varicose changes in the walls of the veins and thrombosis. — Vascular thrombosis may result from vascular stenosis and/or substances produced by the tumor itself that promote coagulation.
  • 84. Tumor NecrosisTumor Necrosis (C):(C): occurs as a result ofoccurs as a result of the interplay ofthe interplay of several factors. These include:several factors. These include:  —— Thrombotic arterial obstruction;Thrombotic arterial obstruction;  —— Vascular compression by the tumor;Vascular compression by the tumor;  —— Twisting of the tumor pedicle;Twisting of the tumor pedicle;  —— Cytokines (macrophagic TNF-a);Cytokines (macrophagic TNF-a);  —— Aggressive tumor therapy.Aggressive tumor therapy. Complications of tumor necrosis:Complications of tumor necrosis:  –– Ulceration of the inner or outer body surface mayUlceration of the inner or outer body surface may occur, primarily in gastrointestinal, skin, and breastoccur, primarily in gastrointestinal, skin, and breast cancercancer (D).(D).  –– Perforation of the tumor necrosis may occur intoPerforation of the tumor necrosis may occur into hollow organs or through the surface of the skinhollow organs or through the surface of the skin (E).(E).  –– Fistulas may form that communicate with adjacentFistulas may form that communicate with adjacent organs.organs.  Disruption of Organ Function: occurs especiallyDisruption of Organ Function: occurs especially inin tumors that not only mechanically altertumors that not only mechanically alter the organthe organ parenchyma and its supporting tissueparenchyma and its supporting tissue but also destroybut also destroy them.them.  Particularly susceptible tissues include:Particularly susceptible tissues include:  —— Neurovascular structures;Neurovascular structures;  —— Urinary tract,Urinary tract,  —— Intestinal tract;Intestinal tract;  —— Skeletal system, where boneSkeletal system, where bone tumors can causetumors can cause pathologicpathologic fracturesfractures (F).(F). C D E Perforation of the cheek: cancer of the tongue F Bone destruction: Ewing sarcoma Skin ulceration: breast cancer Necrosis: uterine sarcoma
  • 85. Systemic ComplicationsSystemic Complications Advanced neoplastic disease regularly producesAdvanced neoplastic disease regularly produces four types of systemicfour types of systemic lesions.lesions.  Tumor MetastasesTumor Metastases : occasionally: occasionally occur even in the early phases ofoccur even in the early phases of neoplastic disease.neoplastic disease.  Cancer CachexiaCancer Cachexia : involves weight loss in: involves weight loss in cancer patients. Causescancer patients. Causes include:include: —— Impaired swallowing due to the tumor;Impaired swallowing due to the tumor; —— Impaired digestion due to the tumor;Impaired digestion due to the tumor; —— Generation of TNF-a by macrophages stimulatedGeneration of TNF-a by macrophages stimulated by tumor-associatedby tumor-associated antigens.antigens. —— Generation of leptin (fat-cell hormoneGeneration of leptin (fat-cell hormone)). This results in loss of appetite. This results in loss of appetite (anorexia),(anorexia), reduced intake of nutrients, decreasedreduced intake of nutrients, decreased body fat, andbody fat, and increased energy consumption.increased energy consumption.  Tumor AnemiaTumor Anemia : produces the characteristic: produces the characteristic pale skin of cancerpale skin of cancer patients. It is due to severalpatients. It is due to several factors, including:factors, including: —— Blood loss due to internal bleeding;Blood loss due to internal bleeding; —— Lack of substances that promote maturationLack of substances that promote maturation of blood cells;of blood cells; —— Autoreactive antibodies against erythrocytes;Autoreactive antibodies against erythrocytes; —— Displacement of bone marrow by tumorousDisplacement of bone marrow by tumorous infiltrates.infiltrates.
  • 86. Paraneoplastic SyndromesParaneoplastic Syndromes Definition: Collective term for a group of generalized pathologic manifestations that are not attributable to the local effects of a tumor but are linked to the existence of a tumor and can regress after the tumor has been removed. Pathogenesis: Often unclear. — Cell destruction occurs due to formation of autoreactive antibodies against tumor antigens and “self” antigens and as a result of apoptosis caused by certain tumor proteins. — Dysfunction results from synthesis of peptides with endocrine and enzymatic effects. Endocrinopathies General pathogenesis: Tumors synthesize ectopic hormones of substances similar to hormones. The most important forms are as follows: — Cushing’s syndrome is caused by formation of ACTH and occurs in patients with bronchial cancer. — Flush’s syndrome is caused by formation of serotonin and leads to facial erythema, diarrhea, colic, and bronchospasm. It occurs in patients with bronchial or ileal carcinoid. — Schwartz-Bartter’s syndrome is caused by formation of proteins resembling ADH and leads to hyponatremia. It occurs in patients with small cell bronchogenic carcinoma. — Hypercalcemia syndrome is caused by formation of parathormone-like protein. It occurs in patients with squamous cell bronchogenic carcinoma or renal cell carcinomas.
  • 87. PARANEOPUSTIC SYNDROMESPARANEOPUSTIC SYNDROMES SYNDROME ASSOCIATED CANCER COMMENT Acanthosis nigricans Stomach carcinomaStomach carcinoma Black, verrucoid-appearing lesion Eaton-Lambert syndrome Small cell carcinoma ofSmall cell carcinoma of lunglung Myasthenia gravis-like symptoms(e.g., muscle weakness); antibody directed against calcium channel Hypertrophic osteoarthropathy Bronchogenic carcinomaBronchogenic carcinoma Periosteal reaction of distal phalanx (often associated with clubbing of nail) Nonbacterial thrombotic endocarditis Mucus-secreting pancreaticMucus-secreting pancreatic and colorectal carcinomasand colorectal carcinomas Sterile vegetations on mitral valve Seborrheic keratosis Stomach carcinomaStomach carcinoma Sudden appearance of numerouspigmenled seborrheic keratoses (Lescr-Trdlat sign) Superficial migratory thrombophlebitis Pancreatic carcinomaPancreatic carcinoma Release of procoagulants (Trousseau's sign) Nephrotic syndrome Lung, breast, stomachLung, breast, stomach carcinomascarcinomas Diffuse membranous glomerulopathy
  • 88. DISORDER ASSOCIATED CANCER ECTOPIC HORMONE Cushing syndrome Small cell carcinoma of lung, medullary carcinoma of thyroid ACTH (adrenocorticotropic hormone) Gynecomastia Choriocarcinoma (testis) hCG (human chorionic gonadotropin) Hypercalcemia Renal cell carcinoma, primary squamous cell carcinoma of lung, breast carcinoma. Malignant lymphomas (contain 1α-hydroxylase) PTH-relaled protein (parathyroid hormone) Calcitriol (vilamin D) Hypocalcemia Medullary carcinoma of thyroid Calcitonin Hypoglycemia Hepatocellular carcinoma Insulin-like factor Hyponatremia Small cell carcinoma of lung Antidiuretic hormone Secondary polycythemia Renal cell and hepatocellular carcinomas Erythropoietin
  • 89. Nerve and Muscle SyndromesNerve and Muscle Syndromes Pathogenesis: Nerve cells and/or muscle fibers are destroyed by autoimmune processes and by tumor-induced apoptosis. The most important forms are as follows: • — Myasthenia gravis occurs in patients with thymus tumors (thymomas). • — Limbic encephalopathy occurs in patients with small cell bronchogenic carcinoma. • — Degeneration of the cerebellar cortex occurs in patients with small cell bronchogenic carcinoma, breast cancer, or ovarian carcinoma. Vascular and Hematologic ChangesVascular and Hematologic Changes • — Hemolysis: The tumor synthesizes cytotoxic substances and/or autoreactive antibodies, damaging the bone marrow and leading to hemolytic anemia. This occurs in patients with leukemias or Hodgkin’s • disease’s lymphoma. • — Erythrocyte proliferation: The tumor synthesizes substances that stimulate erythropoiesis (erythropoietin), leading to polyglobulism (an overabundance of erythrocytes). This occurs in patients with renal cell carcinoma. • — Leukocyte proliferation: The tumor synthesizes substances that stimulate myelopoiesis, leading to a leukemoid reaction. This occurs in patients with stomach cancer or large cell bronchogenic carcinoma. • — Macroscopic coagulopathy: The tumor synthesizes thromboplastic substances that lead to thrombosis. This occurs in patients with pancreatic or adenoid carcinomas. • — Disseminated intravascular coagulation: The tumor synthesizes thromboplastic and fibrinolytic substances that consume the clotting factors. This occurs in patients with leukemias. • Note: Coagulopathy is characterized by thromboticNote: Coagulopathy is characterized by thrombotic vascular occlusion (primarily invascular occlusion (primarily in the lung), whereasthe lung), whereas disseminated intravascular coagulation is characterizeddisseminated intravascular coagulation is characterized by hyalinby hyalin microthrombi (primarily in the microvasculaturemicrothrombi (primarily in the microvasculature of the lung).of the lung).
  • 90. Dermatologic DisordersDermatologic Disorders  —— Acanthosis nigricansAcanthosis nigricans manifests itself asmanifests itself as thickening ofthickening of the skin with clearly discerniblethe skin with clearly discernible papillary lines,papillary lines, hyperpigmentation, andhyperpigmentation, and wart-like papillomas.wart-like papillomas. It occurs inIt occurs in patients with stomach cancer or squamouspatients with stomach cancer or squamous cell bronchogeniccell bronchogenic carcinoma.carcinoma. (А)(А)  —— Bazex’s syndromeBazex’s syndrome (paraneoplastic acrokeratosis)(paraneoplastic acrokeratosis) manifests itself as reddish purple plaquesmanifests itself as reddish purple plaques of calcification onof calcification on the hands, feet,the hands, feet, nose, and ears.nose, and ears. It occurs in patients withIt occurs in patients with carcinoma of the tonguecarcinoma of the tongue or tonsils.or tonsils. ((BB))  —— Erythema gyratum repensErythema gyratum repens is a rare skin rashis a rare skin rash resemblingresembling zebra stripes that changes daily.zebra stripes that changes daily. It occurs in patients withIt occurs in patients with various carcinomas.various carcinomas. ((C, D)C, D)  —— Hypertrichosis lanuginosaHypertrichosis lanuginosa is a rare manifestationis a rare manifestation involving excessive growth of theinvolving excessive growth of the head and body hair.head and body hair. ItIt occurs in patients with various carcinomas.occurs in patients with various carcinomas. (Е,(Е, F)F) А B C D F E
  • 91. 7 warning signs of7 warning signs of cancercancer  CC change in bowel or bladder habitchange in bowel or bladder habit  AA a sore that doesn’t heala sore that doesn’t heal  UU unusual bleeding or dischargeunusual bleeding or discharge  TT thickening or lumpthickening or lump  II indigestionindigestion  OO obvious change in wart or moleobvious change in wart or mole  NN nagging cough or hoarsenessnagging cough or hoarseness
  • 92. LiteratureLiterature  Handbook of general and Clinical Pathophysiology/ Edited byHandbook of general and Clinical Pathophysiology/ Edited by prof.A.V.Kubyshkin, CSMU, 2005. – p. 130-138prof.A.V.Kubyshkin, CSMU, 2005. – p. 130-138  Pathophysiology/ Edited by prof.Zaporozan, OSMU, 2005 – p.105-114Pathophysiology/ Edited by prof.Zaporozan, OSMU, 2005 – p.105-114  General and clinical pathophysiology/ Edited by Anatoliy V. Kubyshkin –General and clinical pathophysiology/ Edited by Anatoliy V. Kubyshkin – Vinnytsia: Nova Knuha Publishers – 2011. p. 166-183Vinnytsia: Nova Knuha Publishers – 2011. p. 166-183  Pathophysiology, N.K. Symeonova. Kyiv, AUS medicine Publishing, 2010, p.Pathophysiology, N.K. Symeonova. Kyiv, AUS medicine Publishing, 2010, p. 142-160.142-160.  General and clinical pathophysiology. Workbook for medical students andGeneral and clinical pathophysiology. Workbook for medical students and practitioners. – Odessa. – 2001.practitioners. – Odessa. – 2001.  J.B.Walter I.C.Talbot General pathology. Seventh edition. 1996.J.B.Walter I.C.Talbot General pathology. Seventh edition. 1996.  Stephen J. McPhee, William F. Ganong. Pathophysiology of Disease, 5Stephen J. McPhee, William F. Ganong. Pathophysiology of Disease, 5thth edition. 2006.edition. 2006.  Robbins and Cotran Pathologic Basis of Disease 7Robbins and Cotran Pathologic Basis of Disease 7thth edition / Kumar, Abbas,edition / Kumar, Abbas, Fauto 2006.Fauto 2006.  Pathophysiology, Concepts of Altered Health States, Carol Mattson Porth,Pathophysiology, Concepts of Altered Health States, Carol Mattson Porth, Glenn Matfin.- New York, Milwaukee- 2009 p 156-197.Glenn Matfin.- New York, Milwaukee- 2009 p 156-197.

Editor's Notes

  1. Cancer develops when cells in a part of the body begin to grow out of control. Although there are many kinds of cancer, they all start because of out-of-control growth of abnormal cells. Normal body cells grow, divide, and die in an orderly fashion. During the early years of a person's life, normal cells divide more rapidly until the person becomes an adult. After that, cells in most parts of the body divide only to replace worn-out or dying cells and to repair injuries. Because cancer cells continue to grow and divide, they are different from normal cells. Instead of dying, they outlive normal cells and continue to form new abnormal cells. Cancer cells develop because of damage to DNA. This substance is in every cell and directs all activities. Most of the time when DNA becomes damaged the body is able to repair it. In cancer cells, the damaged DNA is not repaired. People can inherit damaged DNA, which accounts for inherited cancers. More often, though, a person's DNA becomes damaged by exposure to something in the environment, like smoking. Cancer usually forms as a tumor. Some cancers, like leukemia, do not form tumors. Instead, these cancer cells involve the blood and blood-forming organs and circulate through other tissues where they grow.
  2. – Cancer is the common term for all malignant tumors. – Carcinoma is the common term for malignant epithelial tumors. – Sarcoma is the common term for malignant nonepithelial tumors. – Solid tumors are circumscribed tumors such as carcinomas and sarcomas. – Non-solid tumors are systemic autonomous proliferations of noncohesive individual cells, such as occur in leukemias
  3. Universal and obligatory property of benign and malignant neoplasms – is their capacity for unlimited growth. In base growth up lies uncontrolled surplus proliferation of cellular elements. Neoplastic cells mitoses speed does not exceed the one of normal cells – embryonic bone marrow cells, bowels epithelium and other. Tumor cells differ from normal not by the cell division speed, but  character of proliferation. Neoplastic cells acquire ability to cell-fission boundless. Growth unlimitation carries the fact, that the tumor cells are not able to exhaust division resources. In each cell a genetic program is pawned, which limits its division amount. Tumor cells do not have  limiting program. They lost it owing to somatic mutation.
  4. Physical and chemical peculiarities of neoplastic cells: acidosis owing to lactic acid accumulation, intracellular hydration, raised electroconductivity, colloid viscosity decrease, membranes surface-tension decrease, negative membranes charge increase.
  5. This slide lists the different carcinogenic agents identified. By far, chemical carcinogens are the most common. More significant though are lifestyle carcinogens such as the following: Cigarette smoking Diet – high fat, high sodium, low fiber diets have predisposed populations to increase rates of gastrointestinal cancers. Sexual practices – multiple sexual partners can result in the spread of the human papilloma virus (causes cervical cancer), the Hepatitis B virus (causes liver cancer), and the HIV virus (causes AIDS related malignancies) Knowledge of these carcinogens are important because cancer may be prevented if these are avoided. Also, lifestyle related cancers are important to consider because of the role of behavior modification in their avoidance.
  6. Substances, that contain three or more benzoic cycles belong to the first group. More than 200 of them are known. But the only one of them, which is 3,4-benzopyrene is carcinogenic for a human. Carcinogenes of this group, are usually of antropogenous origin. They are in tobacco smoke, car-petroleum gases, blast-furnaces smoke, chemical productions wastes, overfried food. They cause cancer or sarcoma by their injection way. Polycyclic aromatic hydrocarbons exude from organism by kidneys, skin, mammal glands, therefore are followed with the neoplasms of these organs. Aromatic amines and amides Aromatic amines and amides are mainly dyestuffs. They include: monoazobenzene, benzidine, chlornaphthisine and others. These substances are usually used for natural or synthetic fabrics colouring, polygraphy, cosmetics production, colour-photography processes, medications or eather insecticides synthesis that is followed with neoplastic growth attached to skin or gastrointestinal contacts. Tumors are usually located in liver, urinary cyst, bowels, kidneys. Nitrosamines and Nitrosamides The third carcinogenes group (nitrosamines and nitrosamides) cause neoplastic processes in 40 animals species. Their carcinogenous effects upon the humans are not proved, however the experimental data are of the great attention. A man contacts to nitrosamines at productions. Besides, they form in digestive canal of nitrites, nitrates and other junctions of nitrogen. Almost all of carcinogenic matters are not active. But they acquire carcinogenic properties due to their entering the organism. The final cancerogenes get formed with them. Nominally these matters are followed with neoplastic growth. It is proved, that carcinogenes  react with purine bases of DNA obligatorily. The most frequent target – is guanine, which gets methylated or eather alkylated by cancerogenes (that means its combining to the methyl or eather alkyl group). Changed guanine is unable to bind with cytosine, but gets associated with thymine. The sequence of bases in DNA molecule gets disturbed. Genes mutation arises. The Story of the Nut http://www.takaoclub.com/binlang/ The Myth      Once upon a time on the unspoilt island of Formosa dwelt a peace-loving people who lived by hunting and gathering. Amongst the trees that they found in the forests spread across the lower southern valleys was the Betel Palm (Areca catechu) which was possessed of a green nut that turned into gold. So much pleasure did this small nut give, when correctly prepared, that the natives of the island agreed that it was a gift from the gods.      Myths were created, temples were built and processions were held to celebrate the power that possession of the nut gave. All were happy to chew upon the nut and the fortunate coveted their knowledge of the fruit of the Areca Palm or Betel-Nut Tree. (Click on image to read the Vietnamese myth) (Click on image for more about the betel-nut myth)      The tradition had begun. Times would change on the island of Formosa as invaders came from the islands to the north and from the great land to the west but none was mightier than the nut. The chewing of the nut was to become a potent symbol of 'being Taiwanese', and was sufficiently widespread to be known as Taiwanese chewing gum. (Click for full image) The Source      The betel nut is the fruit of the Betel Palm (Areca catechu).      The betel-nut tree today still grows in the verdant valleys of southern Taiwan but no longer does it need to be sought out in the dangerous forests. The ease of cultivation, the almost insatiable demand prior to Taiwan's entry into the World Trade Organization and the lure of money led to an ever greater encroachment of cleared land for areca cultivation. Mountain sides have been denuded to allow for illegal planting on the watersheds of this shallow-rooting palm that fails to bind the topsoil.      In recent years, following the massive lethal mudslides in Nantou County of 2001 that were partially caused by the illegal planting of betel palms on slopeland, the government has sought to curb this practice. However, with few alternative cash crops the farmers have seen little incentive to change. Areca Catechu or Betel Palm (Click on image to enlarge)    The shallow gravels, the climactic conditions and the plentiful groundwater of the eastern part of the Pingtung plain have proved ideal for the cultivation of the areca palm.   Yielding some three tonnes of nuts per hectare each year the crop of the areca palm has been termed as Taiwan's 'green gold'. The rich agricultural and financial harvest has drawn in both local farmers and local businessmen. Betel palms on the Pingtung foothills      Binlang is chewed in a betel quid giving rise to the misnaming of the areca nut as a 'betel nut'. The betel quid as chewed in Taiwan consists of three basic elements: the areca nut itself; the leaf, and, uniquely in Taiwan, the inflorescence, of the piper betel plant: and a paste of slaked lime. Each of these elements has its own purpose and effect, but combine together in the mouth to give the distinctive stimulation or 'high' of the betel nut.     The areca nut contains two significant alkaloids. The main alkaloid is arecoline, which also causes the excessive salivation characteristic of betel-nut chewing.      Two parts of the piper betel, a member of the piperaceae or pepper family, are used in Taiwan. The betel leaf contains a aromatic phenol, betel-phenol, and the inflorescence contains safrole. Although safrole is safely used as a food flavouring, it is thought to be a carcinogenic in larger amounts.      The final component of the betel quid is slaked lime. In Taiwan two slaked lime pastes are used: the more palatable red paste, and the more efficacious white paste. The lime acts as a catalyst to draw out the arecoline, guvacoline and phenols into the saliva and thence into the bloodstream.      As to the effects of binlang, you are probably best to try it for yourself. It is certainly not a stimulant that has the instant and gripping effect of amphetamine or cocaine. It is natural, and thus more akin to drinking coffee or tea, or chewing coca leaves. The effect is thus softer and subtle, giving a feeling of energy and yet well-being, offsetting hunger and fatigue, and bringing a warmth to the body that tempts so many young Taiwanese conscripts on early morning guard duty. Another fine botanical drawing of betel nuts (click to enlarge) Betel leaves (Piper sarmentosum) Areca nuts ready for preparation Betel nuts prepared for sale      The strength of the 'green gold' merchants can be envisioned from the very size of the betel-nut, or bin-lang, market. There are estimated to be over 2 million chewers of the nut on Taiwan, which represents around a quarter of the adult male population. Annual revenue is authoritatively given as 'nearly 100 billion NT dollars', and the area under cultivation as 57,000 hectares.     An updated assessment of the betel-nut trade can be seen from this page of the Taipei Times.      The trade in bin-lang is utterly unregulated and remains untaxed despite its economic importance. Such huge undocumented cash flows have attracted of the interest of people from all walks of life and the need to use creative marketing strategies.
  7. The first clinical supervisions in this direction had been done by Pott. He described scrotum, internal thighs surfaces and stomach cancer in young chimney-sweepers. Yamagiva and Ichikawa proved a carcinogenous of chemical matters in experiment at first. They drifted carbonic resin onto the rabbit ear for fifteenth months. This process was followed with skin cancer in rabbit. In 1930-1932 pure carcinogenes were extracted out of carbonic resin, including benzoapyrene, dibenzanthracene, methylcholanthrene.  Chemical carcinogenes are presented by several groups. The main are: polycyclic aromatic hydrocarbons, aromatic amines and amides, nitrosamines and nitrosamides.
  8. The first stage (transformational stage) is followed with the cell oncogene activation. The cell acquires unusual property, which is called immortalisation. This is a potential unlimited division, immortality ability. However, the presence of active oncogene is a readiness to division only. A cell with active oncogene can resist in latent (condition) for years. It does not display itself with anything. Promotion Supplementary influences upon immortalisated cell, are necessary to exit it out of the latent state, for giving a push to irrepressible division. These are provoking factors, which are supplementary doses of chemical cancerogenes or x-rays, retroviral superinfection. They are named promotors. Progression is the very last and the most protracted stage of neoplastic growth development. The clearest determination of this notion Fulds has given: “Progression is a neoplasm development in a way of constant, irreversible, qualitative changes of its one or a few signs". Progression is not just quantitative tumor growth, but native change of its biological properties. One of the major Fuld’s principles is an independent progression of separate neoplastic signs. Its essence is the following - each tumor sign: morphological anaplasia degree, hormones dependence degree,  invasive growth capacity, metastasing ability evolutionizes irrespectively to the other signs, however  to the malignisation side always. Neoplastic growth progression reflects tumor admiring to autonomy. It holds a neoplastic cell much more further from maternal. The main progression  index is   organs and tissues structure loss by the tumor with simultaneous cell differentiation lowering. Neoplastic growth progression reflects in its clinical symptoms and therapy possibilities.  For example, some tumors (mammal gland cancer, uterius corpus, prostata) on the definite development stages react to hormones. In other words, these neoplasms are hormone dependent. Tumor cells lose the specific receptors  and stop reacting to the hormones influence during the progression. Neoplastic growth becomes hormone independent. It is not sensitive to hormonal therapy.
  9. Radiation-induced mutation in the host cell Transmits irreversible changes in gene expression to cell progeny includes electromagnetic rays & particulate matter mechanism:  free radicals & mutations pathology: leukemias > thyroid ca > lung & breast ca resistant tissues: bone, skin and the GIT
  10. To physical cancerogenes belong ionizing and ultraviolet rays. The ionizing rays cause diverse genetical and chromosomal mutations. They are followed with neoplastic growth in all of organs almost. Skin, bones, lungs, thyroid, mammal gland neoplasms arise in case of external irradiation. In case of ionizing radionuclides entering inside, the tumor arises at their accumulation locations. For example barium, calcium, strontium radionuclides  cause the bone neoplasms. Caesium, thorium radionuclides, able to cause liver, bone marrow, stomach, thick bowel tumors. The ultraviolet rays render weak carcinogenic action, but they damage the mechanisms of DNA reparation. In particular, dimerization of thymine takes place under their dominance. As a result  an usual bases sequence in DNA molecule gets disturbed.
  11. Viral carcinogens are classified into RNA and DNA viruses. Most RNA oncogenic viruses belong to the family of retroviruses that contain reverse transcriptase mediates transfer of viral RNA into virus specific DNA.
  12. Retroviruses are the cause of cellular DNA damage due to the transforming genes invasion, they are called viral oncogenes and have cellular origin. These are the cellular DNA areas, which were seized by virus into the own genome occasionally. Now more than 20 viral oncogenes are known. All of them have cell twins. These cell twins (cell oncogenes) are situated in different chromosomes. Examples are: Raus sarcoma virus in hens is located in 20-th chromosome, Molone sarcoma virus in mice – in 8-th chromosome, Rorru-Donal virus in cats – in 5-th chromosome, sarcoma virus in hairy moukeys – in 22-th chromosome. Viral oncogenes differ from their cell predecessors. Usually, retroviruses holder cell oncogenes not totally, without the regulatory (repressive) genes. Viral oncogene preserves an ability to stimulate cells growth and differentiation, but at the same time loses genes-repressors and becomes uncontrolled. Therefore a recurrent entrance into the infected cell DNA is followed with unrestricted cell division. Cell oncogen itself gets changed also in its seizure by retrovirus process. It consists of exones (encoding areas) and intrones (unencoding areas) in the cell. It combines exones only (encoding areas) in virus genome. Therefore it is very active.
  13. It is proved, that tumors can be caused by viruses. Here are some neoplasms examples of viral origin: Rauss sarcoma in chicken, Shope papilloma in rabbits, mammal gland cancer in rats, which arises in case of Bittner milk factor. Viruses, which cause neoplastic growth, are called oncogenous. They belong to the group of retroviruses. Not many human tumors, which get caused by viruses are known. They are Burkitt’s lymphoma (Central Africa), nasopharyngeal cancer (China), cervix cancer.
  14. All cancers are similar in that the different diseases will all have these basic characteristics.
  15. It is believed that all tumors arise as clones from a genetically damaged cell. Hence, at the molecular level, cancer is a genetic and a clonal disease. The results of genetic instability are as follows: The resulting cells appear different from the parent cells so that a tumor that arises from the lung may have features similar to normal lung cells but do not act nor function as lung cells or may even look totally different from normal lung cells. The result of genetic instability is the production of abnormal proteins that stimulate cellular proliferation. This results in uncontrolled division and tumor formation. Proto-oncogenes are precursors of oncogenes (inactivated oncogenes). They occur naturally and are normally activated when increased cellular proliferation is required (as in, embryonic development). However, in a normal individual, these proto-oncogenes are normally inactivated or kept in check by suppressor genes. A dominant mutation occurs when an event results in the conversion of a proto-oncogene to an oncogene. A recessive mutation occurs when there is damage or loss of a tumor suppressor gene resulting in an unchecked, and therefore expressed, oncogene. Cancer is a genetic disease at the cellular level. Genetic mutations play a critical role in pathogenesis of cancer. Consequences of genetic instability: Phenotypic heterogeneity Tumor progression Proto-oncogenes and oncogenes Dominant and recessive mutations
  16. A basic characteristic of cancer is its capacity to proliferate outside the normal control mechanisms of the organism. This capacity, as previously seen, arises from damage inflicted on the cell’s genetic apparatus. Uncontrolled growth can be stimulated by either: Secretion of growth factors Increased growth factor receptors (making the cell sensitive to normal levels of growth factors). Independent activation of certain enzyme or protein production pathways. To understand the biology of cellular proliferation, one musty be familiar with the cell regeneration cycle. Tumor cells have one more typical caracteristic – growth autonomy.  Cultural growth is controlled at two levels – organism and tissue ones.  At organism level such control is realized with  nervous and endocrine systems  At tissues level – with biologically active substances which are mitogenes and keylones. Neoplastic cells display independence, growth autonomy. Its stop reacting upon nervous, endocrine and local regulative stimuls. Autonomy of tumor cells develops gradually. At first tumor cell gets partially hormonal regulated (hormone dependent tumor). Later it is perfectly irresponsible for hormones (hormone independent tumor). Some researchers mention considerable role of cultural division local regulation violations. In particular, in neoplastic tissue keylones maintenance decrease sharply.
  17. The Hayflick limit (or Hayflick phenomenon) is the number of times a normal human cell population will divide until cell division stops. Empirical evidence shows that the telomeresassociated with each cell's DNA will get slightly shorter with each new cell division until they shorten to a critical length. Hayflick found that cells go through three phases. The first is rapid, healthy cell division. In the second phase, mitosis slows. In the third stage, senescence, cells stop dividing entirely. They remain alive for a time after they stop dividing, but sometime after cellular division ends, cells do a particularly disturbing thing: Essentially, they commit suicide. Once a cell reaches the end of its life span, it undergoes a programmed cellular death called apoptosis. The concept of the Hayflick limit was advanced by Leonard Hayflick in 1961, at the Wistar Institute in Philadelphia. Hayflick demonstrated that a population of normal human fetal cells in a cell culture will divide between 40 and 60 times. The population will then enter a senescence phase, which refutes the contention by Nobel laureate Alexis Carrel that normal cells are immortal. Eachmitosis slightly shortens each of the telomeres on the DNA of the cells. Telomere shortening in humans eventually makes cell division impossible, and this aging of the cell population appears to correlate with the overall physical aging of the human body. This mechanism also appears to prevent genomic instability. Telomere shortening may also prevent the development of cancer in human aged cells by limiting the number of cell divisions. However, shortened telomeres impair immune function that might also increase cancer susceptibility.
  18. Growth Factors Definition: Collective term of mitogenic peptide hormones that promote: — Receptor-mediated proliferation and — Cell differentiation and motility. In the latter case, a cell can only divide by mitosis after first having broken off contact with adjacent cells under the influence of a scatter factor. Growth factors are produced by autocrine secretion or paracrine secretion: — Autocrine secretion: The growth factor is created by a cell also possessing the respective growth factor receptor. Limited autocrine secretion occurs during embryogenesis and tissue regeneration; continuous autocrine secretion occurs in tumor growth. — Paracrine secretion: The growth factor is produced by a cell not itself responding to the substance. This is the typical type of growth factor secretion. Pathogenetic function: Growth factors occur only in small concentrations in normal postnatal tissue. Hyperfunction of these factors contributes significantly to the development of tumors. Growth factor hyperfunction is usually attributable either to: — Autocrine secretion (in which the target cell is the producing cell) or to — Over expression of a growth factor gene resulting in excessive growth factor production. Growth factor hyperfunction has several consequences typically encountered in tumors: — Disruption of intercellular communication: Tumor cells talk to themselves in the sense that they create scatter factors by autocrine secretion. These form a functional complex (“motility factor”) with the receptor of the oncogene c-met. — Cell motility causes tumor cells to leave the cellular aggregate and to divide; the daughter cells migrate away from one another. — Tissue invasion occurs with the aid of proteases (tissue metalloproteinase) on the tumor cell surface. — A permanent proliferation signal results from abnormal quantities and types of receptors and/or excessive generation of growth factor.
  19. proto-oncogenes Definition: Collective term of normal gene sequences whose gene products contribute to regulating proliferation processes. When abnormally activated, they can transform the cells into malignant cells Pathogenetic function: There are two mechanisms by which the physiologic proto-oncogenes (c-onc) are transformed into cancercausing oncogenes. Structural alteration of a proto-oncogene may occur in one of two ways: A single-point mutation (1) of a c-onc allele with substitution of a nucleotide causes synthesis of an abnormal protein or oncoprotein. Because the proto-oncogenes are dominant, mutation of only a single c-onc allele is sufficient to cause this change. Translocation of a proto-oncogene (2) with rearrangement of the genetic material. Gene amplification (3) may result from autocrine secretion (4) or invasion by a highly expressive retrovirus in the vicinity of the proto-oncogene’s locus (5). In these cases, the controlling gene no longer has any influence; the gene copies are replaced, leading to overproduction of oncoproteins.
  20. A special theory was formulated by the end of last century, due to the  foundation of contemporary knowledge, which united all of known carcinogenesis forms (chemical, physical, biological) into a single universal mechanism. It had been called as conception of oncogen. Appearance of neoplastic growth is related to genetic system somatic cells changes. Tumor is a hereditary phenomenon at the cell level. There are many causes of cancer and all of them get DNA damaged. This damage must be located in that area DNA, where  cellular oncogenes are situated. These gens are the usual components of the cell genome. They control growth and cells differentiation.  These growth stimulators normal function can be preserved in case of insignificant damages, but they stop to submit the supervisory dominances of the surrounding genes and the cell. The normal dirigible cells reproduction and maturation  process get lost. It is substituted by an unterminable stream of cellular division. Cellular oncogenes are also called as cancer genes. Carcinogenic agents damage either oncogenes or genes-repressors, which are serial located. In effect of chemical, physical and viral factors, their activity gets raised sharply and they turn the normal cell into the neoplastic one. A few cellular oncogenes  activative mechanisms  are known. They are: viral transduction, chromosomal mutation, genetic material insertion, genetic amplification, point mutations.
  21. Chromosomal aberration. Translocatons are observed in human neoplastic growth cells  more often. It is thought, that translocation is one of the cell oncogenes activation ways majority. Chromosomes breaking  takes place close to the cellular oncogenes frequently. They get activated right after the breaking. Such tumor example is Berkit lymphoma. Mutual translocation between eigth and fourteenth chromosomes is typical for such lymphoma kind. Insertion of genetic material. Neoplastic growth arises not only, in case of viral oncogene injury into the cell DNA. Cell oncogene activation is also possible, when any heterologous (viral) genetic material encroaches into the cell DNA close to it. It is not suppose to keep oncogene. Any viral DNA is able to activate cell oncogene, due to its incorporation into the cell DNA beside the oncogene. Amplification of cell oncogene. Usually, cell oncogenes are represented by one copy. Amount of copies can increase as a result of spontaneous DNA replication anomalies. Such phenomenon is named amplification. DNA copies mount augmentation causes their summary expression augmentation. Supplementary RNA and oncoalbumen amount gets synthesized on supplementary DNA matrices. Amplification is typical for some human tumors. Neuroblastoma and thick bowels carcinoma  arises due to such mechanism. Point mutations. All cell oncogenes activation mechanisms, which were characterized earlier, obligatorily related to cell DNA changes. Eventually, all of them are of mutational origin. Now it is admitted, that point mutations are a major carcinogenesis mechanism. 
  22. Synonym: anti-oncogenes Definition: Collective term for genes whose products physiologically inhibit cell proliferation, promote cell differentiation, and also suppress certain steps in tumorogenesis and metastasis. A single copy of such a tumor suppressor gene is sufficient to maintain control over growth. Therefore the defect only becomes apparent where both alleles are affected, i.e., in a recessive mutation (loss of heterozygosity). Pathogenesis: The function of these genes can be blocked by single-point mutation, deletion, or association with viral or endogenous proteins. They can be categorized functionally as: — “Gatekeeper” genes that directly regulate tumorogenesis by inhibiting its growth or by promoting their death. They are rate-limiting for tumor initiation — Other suppressor genes whose inactivation leads to tumor progression. The next section examines the role of those most thoroughly-researched tumor suppressor genes. Retinoblastoma Gene This gene (= RB-gene)was discovered in retinoblastoma, a malignant retinal tumor. RB-gene: The product of this gene binds transcription factors, inhibiting the expression of genes that control the transition from the G1 phase to the S phase in the cell cycle. This inhibits mitosis. RB-gene inactivation occurs in extremely aggressive rapidly proliferating carcinomas (breast carcinomas, small-cell bronchogenic carcinomas, and glioblastomas) and sarcomas (osteosarcoma). Wilms’ Tumor Genes These genes (= WT-genes) were discovered in Wilms’ tumor or nephroblastoma, a malignant renal tumor. WT-1 gene: The product of this gene inhibits the transcription of a mitogen1. In this manner, it promotes differentiation of the embryonic primordium of the kidney and inhibits adjacent genes such as IGF-22 that control initiation of the cell cycle. WT-2 gene: This gene regulates proliferation. WT-gene inactivation: AWilms’ tumor is frequently associated with congenital malformations of the kidney in the form of simultaneous occurrence of medullary tissue, cortical tissue, and nephroblastoma nodules. p 21: inhibits cell cycle progression and permits DNA repair to take place. p53 Tumor Suppressor Gene p53 gene:“the guardian of the genome” The product of this gene arrests the cell in the G1 phase in the event of DNA damage, giving it the opportunity to repair the DNA. Where this is unsuccessful, p53 initiates apoptosis in the respective cell. p53 inactivation may occur as a result of mutation. Mutated p53 protein inactivation promotes tumor development. Its gene product is broken down more slowly than normal protein, leading to intranuclear accumulation of p53 protein. This occurs in acquired somatic mutations in many tumors and in constitutional mutations in members of families with a history of familial cancer. In the presence of DNA damage, influences transcription to either: Halt cell cycle progression to facilitate DNA repair. In cases of severe DNA damage, activates apoptosis. The gene may also be inactivated by association with viral proteins or endogenous proteins.
  23. Those genes responsible for DNA repair are also called caretaker genes. Their defects are based on a germ line mutation that only takes effect when both alleles are defective. The initial result is genetic instability, which affects primarily tumor suppressor and oncogenes, leaving unrestrained proliferation and immortalization of the affected cells in its wake. Examples of caretaker gene defects: — Nucleotide excision repair in xeroderma pigmentosum, ataxia teleangiectatica, Bloom’s syndrome, Fanconi’s anemia. — DNA mismatch repair: in hereditary nonpolyosis colon cancer. Note: Because they cannot repair radiation damage, tumors with defective caretaker genes are radiocurable. — Defects in the DNA-repair mechanism cause an accumulation of DNA defects, one of which can affect the proliferation signalling genes. — Unrestrained growth: Unregulated activation of growth-inducing genes (oncogenes) and ineffectiveness of growth-inhibiting genes (tumor suppressor genes) leads to excessive, chaotic, and ruthlessly proliferative tissue growth. — Cellular immortality: Genetic defects affecting apoptosis and the retardation of programmed cell death by re-expressing of telomerase lead to uninhibited inter and intracellular proliferation. — Lack of integration into tissue: Defective differentiation genes lead in turn to defective intercellular communication and communication between cells and the extracellular matrix. This means that tumor cells are poorly integrated into cohesive cellular aggregates and into the extracellular matrix. — Alienation: Defective differentiation genes lead to false “self” characteristics that deceive the immune system, which overlooks alienated tumor cells. — Cellular “vagrancy”: Disturbed regulation of the formation of mobility factors and abnormal activation of these factors causes cells to migrate in the body.
  24. The definite role in neoplastic cells abruption from the tumor node belongs to mechanical factors. The part of abrupted cells is carried with blood and lymph channel. 95-99,9 % get necrotiesed. An important role in their elimination the anti-neoplasm immunity mechanisms has. They are performed by Т-lymphocytes and natural killers (NК-cells). Natural killers recognize and kill the mutante cells without preliminary sensibilization.  The tumor cells lysis gets realized with proteolytical and lipolytical blood enzymes also. The secondary tumor nodes form at the third stage. Neoplastic cells delay by the vessel intima and thrombus forming around them arises firstly. Tumor cells accumulation in capillaries is sometimes provoked by mechanical causes: capillary lumen happens to be more narrow, than neoplastic cells diameter. Tumor cells exit into the out of vessels space after their adhesion to the endothelium. This exit is related to capillaries penetrability rising. Cells fate out of blood channel is different. Many cells get perished. Other cells are staying  in a latent condition for a very long time, pending of years. And only small part of cells receive the further development. They reproduct and establish a new neoplastic node (metastasis).
  25. Neoplastic growth and human  organism correlation Tumor appearance and growth depends on the organism state strongly. Two system perform the primary role here, they are: endocrine and immune. Endocrine system and oncogenesis. Neoplasms divide into two groups: dyshormonal tumors and unendocrine ones. Dyshormonal neroplasms totally depend on the organism hormonal  status. Endocrine glands and organs-targets tumors, which underlie hormonal influence belong here. Human dyshormonal mammal gland, uterus, prostate neoplasms are the most expanded.  In case of mammal gland and uterus tumors development an important role belongs to the surplus production of estrogens, which stimulate cells proliferation in these organs. Follicle stimulating hormone role in mammal gland cancer formation is proved. It activates estrogens synthesis and renders the straight influence upon the gland tissue. The high estrogens synthesis regulation tension is observed in case of menopause. Menopause in women is followed with high hypothalamo-hypophyseal system activity. A big amount of gonadotrophic hormones get producted. The Sexual steroids synthesis get increased accordingly in ovaries. But they are out of hormonal properties already in this age, and still preserved their ability to stimulate proliferation. Therefore the tumor appearance risk is very high in this period. Due to its way, the neoplasm, while growing, renders the influence upon the hormonal profile of an organism.  If the tumor does not appear from endocrine gland, it affects upon the hormonal background anyway. So-called paraneoendocrine syndrome arises. Many neoplasms synthesize matters, which are similar to hormones. For example, bronchogenous cancer, synthesizes the matters with adrenocorticotrophin or antidiuretic hormone activity. Chorionepithelioma synthesizes a thyrotropic hormone. Some incretion glands tumors begin synthesing heterologous for the mentioned gland hormones – heterohormones. So, thyroid neoplasms synthesizes adrenocorticotrophin  hormone sometimes. Langerhans islands tumors are able to product up to seven hormones. Neoplastic growth synthesizes normal hormones in some circumstances, but can not transfer them into the active state.
  26. It is important to know what some of the general (non-specific) signs and symptoms of cancer are. They include unexplained weight loss, fever, fatigue, pain, and changes in the skin. Of course, it’s important to remember that having any of these does not necessarily mean that cancer is present -- there are many other conditions that can cause these signs and symptoms as well. Unexplained weight loss: Most people with cancer will lose weight at some time with their disease. An unexplained (unintentional) weight loss of 10 pounds or more may be the first sign of cancer, particularly cancers of the pancreas, stomach, esophagus, or lung. Fever: Fever is very common with cancer, but is more often seen in advanced disease. Almost all patients with cancer will have fever at some time, particularly if the cancer or its treatment affects the immune system and reduces resistance to infection. Less often, fever may be an early sign of cancer, such as with leukemia or lymphoma. Fatigue: Fatigue may be a significant symptom as cancer progresses. It may occur early, however, in cancers such as with leukemia or if the cancer is causing a chronic loss of blood, as in some colon or stomach cancers. Pain: Pain may be an early symptom with some cancers, such as bone cancers or testicular cancer. Most often, however, pain is a symptom of advanced disease. Skin changes: In addition to cancers of the skin (see next section), some internal cancers can produce visible skin signs such as darkening (hyperpigmentation), yellowing (jaundice), reddening (erythema), itching, or excessive hair growth. In addition to the above general symptoms, you should be watchful for the following common symptoms, which could be an indication of cancer. Again, there may be other causes for each of these, but it is important to bring them to your doctor’s attention as soon as possible so that they can be investigated. Change in bowel habits or bladder function: Chronic constipation, diarrhea, or a change in the size of the stool may indicate colon cancer. Pain with urination, blood in the urine, or a change in bladder function (such as more frequent or less frequent urination) could be related to bladder or prostate cancer. Any changes in bladder or bowel function should be reported to your doctor. Sores that do not heal: Skin cancers may bleed and resemble sores that do not heal. A persistent sore in the mouth could be an oral cancer and should be dealt with promptly, especially in patients who smoke, chew tobacco, or frequently drink alcohol. Sores on the penis or vagina may either be signs of infection or an early cancer, and should not be overlooked in either case. Unusual bleeding or discharge: Unusual bleeding can occur in either early or advanced cancer. Blood in the sputum (phlegm) may be a sign of lung cancer. Blood in the stool (or a dark or black stool) could be a sign of colon or rectal cancer. Cancer of the cervix or the endometrium (lining of the uterus) can cause vaginal bleeding. Blood in the urine is a sign of possible bladder or kidney cancer. A bloody discharge from the nipple may be a sign of breast cancer. Thickening or lump in breast or other parts of the body: Many cancers can be felt through the skin, particularly in the breast, testicle, lymph nodes (glands), and the soft tissues of the body. A lump or thickening may be an early or late sign of cancer. Any lump or thickening should be reported to your doctor, especially if you’ve just discovered it or noticed it has grown in size. You may be feeling a lump that is an early cancer that could be treated successfully. Indigestion or trouble swallowing: While they commonly have other causes, these symptoms may indicate cancer of the esophagus, stomach, or pharynx (throat). Recent change in a wart or mole: Any change in color or shape, loss of definite borders, or an increase in size should be reported to your doctor without delay. The skin lesion may be a melanoma which, if diagnosed early, can be treated successfully. Nagging cough or hoarseness: A cough that does not go away may be a sign of lung cancer. Hoarseness can be a sign of cancer of the larynx (voice box) or thyroid. While the signs and symptoms listed above are the more common ones seen with cancer, there are many others that are less common and are not listed here. If you notice any major changes in the way your body functions or the way you feel, especially if it lasts for a long time or gets worse, let your doctor know. If it has nothing to do with cancer, your doctor can investigate it and treat it, if needed. If it is cancer, you’ll give yourself the best chance to have it treated early, when treatment is most likely to be effective.