SlideShare a Scribd company logo
1 of 35
SISTEM PERSAMAAN
LINIER
OUTLINE
Pendahuluan
Eliminasi Gauss - Jordan
SPL Homogen
Penyelesaian SPL dengan
Inverse Matriks
SISTEM PERSAMAAN LINIER (SPL)
Bentuk umum :
dimana x1, x2, . . . , xn variabel tak diketahui, aij , bi,
i = 1, 2, . . . , m; j = 1, 2, . . . , n bil. diketahui.
Ini adalah SPL dengan m persamaan dan n variabel.
SPL
Mempunyai penyelesaian
disebut KONSISTEN
Tidak mempunyai penyelesaian
disebut TIDAK KONSISTEN
TUNGGAL
BANYAK
ILUSTRASI GRAFIK
• SPL 2 persamaan 2 variabel:
• Masing-masing pers berupa garis lurus. Penyelesaiannya
adalah titik potong kedua garis ini.
kedua garis sejajar kedua garis berpotongan kedua garis berhimpitan
PENYAJIAN SPL DALAM MATRIKS
SPL BENTUK MATRIKS
STRATEGI MENYELESAIKAN SPL:
mengganti SPL lama menjadi SPL baru yang mempunyai
penyelesaian sama (ekuivalen) tetapi dalam bentuk yang
lebih sederhana.
TIGA OPERASI YANG MEMPERTAHANKAN
PENYELESAIAN SPL
SPL
1. Mengalikan suatu persamaan
dengan konstanta tak nol.
2. Menukar posisi dua
persamaan sebarang.
3. Menambahkan kelipatan suatu
persamaan ke persamaan
lainnya.
MATRIKS
1. Mengalikan suatu baris
dengan konstanta tak nol.
2. Menukar posisi dua baris
sebarang.
3. Menambahkan kelipatan suatu
baris ke baris lainnya.
Ketiga operasi ini disebut OPERASI BARIS ELEMENTER (OBE)
SPL atau bentuk matriksnya diolah menjadi bentuk seder-
hana sehingga tercapai 1 elemen tak nol pada suatu baris
CONTOH
DIKETAHUI
kalikan pers (i)
dengan (-2), kemu-
dian tambahkan ke
pers (ii).
kalikan baris (i)
dengan (-2), lalu
tambahkan ke
baris (ii).
…………(i)
…………(ii)
…………(iii)
kalikan pers (i)
dengan (-3), kemu-
dian tambahkan ke
pers (iii).
kalikan baris (i)
dengan (-3), lalu
tambahkan ke
baris (iii).
kalikan pers (ii)
dengan (1/2).
kalikan baris (ii)
dengan (1/2).
kalikan pers (iii)
dengan (-2).
kalikan brs (iii)
dengan (-2).
LANJUTAN CONTOH
kalikan pers (ii)
dengan (1/2).
kalikan baris (ii)
dengan (1/2).
kalikan pers (ii)
dengan (-3), lalu
tambahkan ke pers
(iii).
kalikan brs (ii)
dengan (-3),
lalu tambahkan
ke brs (iii).
kalikan pers (ii)
dengan (-1), lalu
tambahkan ke pers
(i).
kalikan brs (ii)
dengan (-1), lalu
tambahkan ke brs
(i).
Lanjutan CONTOH
kalikan pers (ii)
dengan (-1), lalu
tambahkan ke pers
(i).
kalikan brs (ii)
dengan (-1), lalu
tambahkan ke brs
(i).
kalikan pers (iii)
dengan (-11/2), lalu
tambahkan ke pers (i)
dan kalikan pers (ii) dg
(7/2), lalu tambahkan
ke pers (ii)
kalikan brs (iii)
dengan (-11/2), lalu
tambahkan ke brs (i)
dan kalikan brs (ii) dg
(7/2), lalu tambahkan
ke brs (ii)
Diperoleh penyelesaian x = 1, y = 2, z = 3. Terdapat
kaitan menarik antara bentuk SPL dan representasi
matriksnya. Metoda ini berikutnya disebut dengan
METODA ELIMINASI GAUSS.
BENTUK ECHELON-BARIS
Misalkan SPL disajikan dalam bentuk matriks berikut:
maka SPL ini mempunyai penyelesaian x = 1, y = 2, z = 3.
Matriks ini disebut bentuk echelon-baris tereduksi.
Untuk dapat mencapai bentuk ini maka syaratnya adalah sbb:
1. Jika suatu brs matriks tidak nol semua maka elemen
tak nol pertama adalah 1. Brs ini disebut mempunyai leading 1.
2. Semua brs yg terdiri dari nol semua dikumpulkan di bagian bawah.
3. Leading 1 pada baris lebih atas posisinya lebih kiri daripada leading
1 baris berikut.
4. Setiap kolom yang memuat leading 1, elemen lain semuanya 0.
Bentuk echelon-baris dan echelon-baris tereduksi
Matriks yang memenuhi kondisi (1), (2), (3) disebut
bentuk echelon-baris.
CONTOH bentuk echelon-baris tereduksi:
CONTOH bentuk echelon-baris:
Bentuk umum echelon-baris
dimana lambang ∗ dapat diisi bilangan real sebarang.
Bentuk umum echelon-baris tereduksi
dimana lambang ∗ dapat diisi bilangan real sebarang.
Penyelesaian SPL melalui bentuk echelon-baris
Misal diberikan bentuk matriks SPL sbb:
Tentukan penyelesaian masing-masing SPL di atas.
METODA GAUSS-JORDAN
Ide pada metoda eliminasi Gauss adalah mengubah
matriks ke dalam bentuk echelon-baris tereduksi.
CONTOH: Diberikan SPL berikut.
Bentuk matriks SPL ini adalah:
-2B1 + B2B2
5B2+B3  B3












6
18
0
8
4
0
0
0
0
0
0
0
0
0
1
-
3
-
0
2
-
1
-
0
0
0
0
2
0
2
-
3
1
B4 B4+4B2
B3 ⇄ B4 B3 B3/3
-3B3+B2B2
2B2+B1B1
Akhirnya diperoleh:
Akhirnya, dengan mengambil x2:= r, x4:= s dan x5:= t maka diperoleh
penyelesaian:
dimana r, s dan t bilangan real sebarang. Jadi SPL ini mempunyai tak
berhingga banyak penyelesaian.
METODA SUBSTITUSI MUNDUR
Misalkan kita mempunyai SPL dalam matriks berikut:
Bentuk ini ekuivalen dengan:
LANGKAH 1: selesaikan variabel leading, yaitu x6. Diperoleh:
LANGKAH 2: mulai dari baris paling bawah subtitusi ke atas, diperoleh
LANJUTAN SUBSTITUSI MUNDUR
LANGKAH 3: subtitusi baris 2 ke dalam baris 1, diperoleh:
LANGKAH 4: Karena semua persamaan sudah tersubstitusi maka peker-
jaan substitusi selesai. Akhirnya dengan mengikuti langkah pada
metoda Gauss-Jordan sebelumnya diperoleh:
Eliminasi Gaussian
Mengubah menjadi bentuk echelon-baris (tidak perlu direduksi), kemudian
menggunakan substitusi mundur.
CONTOH: Selesaikan dengan metoda eliminasi Gaussian
PENYELESAIAN: Diperhatikan bentuk matriks SPL berikut:
Dengan menggunakan OBE diperoleh bentuk echelon-baris berikut:
SPL HOMOGEN
• Bentuk umum:
• Penyelesaian trivial (sederhana):
• Bila ada penyelesaian lain yang tidak
semuanya nol maka disebut penyelesaian
taktrivial.
SPL HOMOGEN
pasti ada penyelesaian trivial
penyelesaian trivial +
takberhingga banyak
penyelesaian taktrivial
atau
ILUSTRASI:
SPL dengan Matriks
a11x1 + a12x2 + ….+ a1nxn = b1
a21x1 + a22x2 + ….+ a2nxn = b1
…………………………………
…………………………………
am1x1 + am2x2 + ….+ amnxn = bm





































m
2
1
n
2
1
mn
m2
m1
2n
22
12
1n
12
11
b
....
b
b
x
....
x
x
a
.....
a
a
......
.....
.....
.....
a
.....
a
a
a
.....
a
a
atau AX = B dengan A=(aij) matriks koefisien,
X=(x1,x2,…..,xn)* dan B=(b1,b2,…,bn)*.
Matriks lengkap sistem tersebut adalah :













m
m2
m1
2
2n
22
21
1
1n
12
11
b
....
.....
a
a
....
....
.....
....
....
b
a
.....
a
a
b
a
.....
a
a
(AB)
Pembagian SPL
1. SPL homogen
a11x1 + a12x2 + …….. + a1nxn = 0
a21x1 + a22x2 + …….. + a2nxn = 0
…………………………………….
…………………………………….
am1x1 + am2x2 + …….. + amnxn = 0
Contoh :
x1 – 2x2 + 3x3 = 0
x1 + x2 + 2x3 = 0
2. SPL non homogen
a11x1 + a12x2 + ….+ a1nxn = b1
a21x1 + a22x2 + ….+ a2nxn = b2
…………………………………
…………………………………
am1x1 + am2x2 + ….+ amnxn = bm
CONTOH
x1 – 2x2 + 3x3 = 4
X1 + x2 + 2x3 = 5
E. Penyelesaian SPL Non Homogin
Khusus untuk m=n SPL yg non homogin,
penyelesaian tunggal bila Det (A) ≠ 0 dapat
menggunakan :
1. Aturan Cramer
Pandang sistem n persamaan linear dalam n
bilangan tak diketahui :
a11x11 + a12x12 + ……..+ a1nx1n = b1
a11x11 + a12x12 + ……..+ a1nx1n = b2
………………………………………..
an1x11 + an2x12 + ……..+ annxnn = bn
Determinan matriks koefisien adalah :
Bila de(Ak) adalah determinan yang didapat
dari det (A) dengan mengganti kolom ke k
dengan suku tetap (b1 b2 ……bn), maka
aturan Cramer mengatakan :
k = 1,2,3,……,n
mn
m2
mn
2n
22
21
1n
12
11
a
....
a
a
....
....
....
....
a
....
a
a
a
....
a
a
Det(A) 
Det(A)
)
Det(A
x k
k 
Contoh : Selesaikan SPL berikut !
2x1 + 8x2 + 6x3 = 20
4x1 + 2x2 – 2x3 = -2
3x1 - x2 + x3 = 11
Penyelesaian : determinan matriks koefisien
140
4
32
36
24
48
4
1
1
3
2
2
4
6
8
2
Det(A) 










280
40
16
132
12
176
40
1
1
11
2
2
2
6
8
20
)
Det(A1 











Sedangkan :
560
4
352
120
80
48
44
11
1
3
2
2
4
20
8
2
)
Det(A3 










140
44
80
36
264
120
4
1
11
3
2
2
4
6
20
2
)
Det(A2 










2
140
280
Det(A)
)
Det(A
x 1
1 



 1
140
140
Det(A)
)
Det(A
x 2
2 




4
140
560
Det(A)
)
Det(A
x 3
3 




(2). Menggunakan invers matriks
Bila Det(A)≠ 0, maka A-1 ada
AX = B
A-1.AX = A-1.B
Jadi : X = A-1 penyelesaian sistem ini.
Catatan :
Bila m=n dan Det(A) = 0, maka sistemnya mempu-
nyai tak berhingga banyak penyelesaian.
Contoh : selesaikan SPL berikut dengan mengguna
kan invers matriks !
2x1 + 3x2 + x3 = 9
x1 + 2x2 + 3x3 = 6
3x1 + x2 + 2x3 = 8
Penyelesaian : determinan matriks koefisien
adalah :
11
6
6
4
1
18
8
2
1
2
3
2
1
1
3
2
Det(A) 




















1
7
5
1
1
7
7
5
1
11
1
A 1
-














































11
/
5
11
/
29
11
/
35
8
6
9
11
1
8
6
9
1
7
5
1
1
7
7
5
1
11
1
H
.
A
X 1
-
11
5
x
;
11
29
x
;
11
35
x 3
2
1 


Latihan

More Related Content

Similar to SPL SISTEM

Sistem persamaan linier
Sistem persamaan linierSistem persamaan linier
Sistem persamaan linierBisma Kemal
 
Slide 1-aljabar-linear
Slide 1-aljabar-linearSlide 1-aljabar-linear
Slide 1-aljabar-linearTaufiq Topik
 
Metode Numerik Penyelesaian Persamaan Linier Simultan
Metode Numerik Penyelesaian Persamaan Linier SimultanMetode Numerik Penyelesaian Persamaan Linier Simultan
Metode Numerik Penyelesaian Persamaan Linier SimultanAururia Begi Wiwiet Rambang
 
Sistem persamaan linear
Sistem persamaan linearSistem persamaan linear
Sistem persamaan linearKhotibul Umam
 
Bab 2 Penyelesaian Sistem Persamaan Linier.ppt
Bab 2 Penyelesaian Sistem Persamaan Linier.pptBab 2 Penyelesaian Sistem Persamaan Linier.ppt
Bab 2 Penyelesaian Sistem Persamaan Linier.pptssuserb7d229
 
Topik 1 -_sistem_persamaan_linear
Topik 1 -_sistem_persamaan_linearTopik 1 -_sistem_persamaan_linear
Topik 1 -_sistem_persamaan_linearKanages Rethnam
 
Bab 3 sistem persamaan linear
Bab 3 sistem persamaan linearBab 3 sistem persamaan linear
Bab 3 sistem persamaan linearmaya1585
 
Sistem Persamaan Linear dua variable
Sistem Persamaan Linear dua variableSistem Persamaan Linear dua variable
Sistem Persamaan Linear dua variableMawar Defi Anggraini
 
Power point spl
Power point splPower point spl
Power point splharry indrah
 
Pertemuan3&4
Pertemuan3&4Pertemuan3&4
Pertemuan3&4Amri Sandy
 
Sistem Persamaan Linear dan Kuadrat
Sistem Persamaan Linear dan KuadratSistem Persamaan Linear dan Kuadrat
Sistem Persamaan Linear dan KuadratRidha Rakhmi Nurfitri
 
Persamaan & Pertidaksamaan Kuadrat 1.ppt
Persamaan & Pertidaksamaan Kuadrat 1.pptPersamaan & Pertidaksamaan Kuadrat 1.ppt
Persamaan & Pertidaksamaan Kuadrat 1.pptMuhamadGhofar2
 
matematika bisnis sampai dengan anilisis peluang pokok
matematika bisnis sampai dengan anilisis peluang pokokmatematika bisnis sampai dengan anilisis peluang pokok
matematika bisnis sampai dengan anilisis peluang pokokCloudys04
 
5 sistem persamaan linier
5 sistem persamaan linier5 sistem persamaan linier
5 sistem persamaan linierAmphie Yuurisman
 

Similar to SPL SISTEM (20)

Sistem persamaan linier
Sistem persamaan linierSistem persamaan linier
Sistem persamaan linier
 
Bab 3(3) spl
Bab 3(3) splBab 3(3) spl
Bab 3(3) spl
 
Slide 1-aljabar-linear
Slide 1-aljabar-linearSlide 1-aljabar-linear
Slide 1-aljabar-linear
 
Metode Numerik Penyelesaian Persamaan Linier Simultan
Metode Numerik Penyelesaian Persamaan Linier SimultanMetode Numerik Penyelesaian Persamaan Linier Simultan
Metode Numerik Penyelesaian Persamaan Linier Simultan
 
Draft 2
Draft 2Draft 2
Draft 2
 
Sistem persamaan linear
Sistem persamaan linearSistem persamaan linear
Sistem persamaan linear
 
Bab 2 Penyelesaian Sistem Persamaan Linier.ppt
Bab 2 Penyelesaian Sistem Persamaan Linier.pptBab 2 Penyelesaian Sistem Persamaan Linier.ppt
Bab 2 Penyelesaian Sistem Persamaan Linier.ppt
 
Topik 1 -_sistem_persamaan_linear
Topik 1 -_sistem_persamaan_linearTopik 1 -_sistem_persamaan_linear
Topik 1 -_sistem_persamaan_linear
 
21377253 bab-iii-sistem-persamaan-linear
21377253 bab-iii-sistem-persamaan-linear21377253 bab-iii-sistem-persamaan-linear
21377253 bab-iii-sistem-persamaan-linear
 
Bab 3 sistem persamaan linear
Bab 3 sistem persamaan linearBab 3 sistem persamaan linear
Bab 3 sistem persamaan linear
 
Pertemuan v sistem persamaan linier
Pertemuan v sistem persamaan linierPertemuan v sistem persamaan linier
Pertemuan v sistem persamaan linier
 
Bab v spldv
Bab v spldvBab v spldv
Bab v spldv
 
Sistem Persamaan Linear dua variable
Sistem Persamaan Linear dua variableSistem Persamaan Linear dua variable
Sistem Persamaan Linear dua variable
 
Power point spl
Power point splPower point spl
Power point spl
 
Pertemuan3&4
Pertemuan3&4Pertemuan3&4
Pertemuan3&4
 
Sistem Persamaan Linear dan Kuadrat
Sistem Persamaan Linear dan KuadratSistem Persamaan Linear dan Kuadrat
Sistem Persamaan Linear dan Kuadrat
 
Bab5KELAS 8.ppt
Bab5KELAS 8.pptBab5KELAS 8.ppt
Bab5KELAS 8.ppt
 
Persamaan & Pertidaksamaan Kuadrat 1.ppt
Persamaan & Pertidaksamaan Kuadrat 1.pptPersamaan & Pertidaksamaan Kuadrat 1.ppt
Persamaan & Pertidaksamaan Kuadrat 1.ppt
 
matematika bisnis sampai dengan anilisis peluang pokok
matematika bisnis sampai dengan anilisis peluang pokokmatematika bisnis sampai dengan anilisis peluang pokok
matematika bisnis sampai dengan anilisis peluang pokok
 
5 sistem persamaan linier
5 sistem persamaan linier5 sistem persamaan linier
5 sistem persamaan linier
 

Recently uploaded

aku-dan-kebutuhanku-Kelas 4 SD Mapel IPAS
aku-dan-kebutuhanku-Kelas 4 SD Mapel IPASaku-dan-kebutuhanku-Kelas 4 SD Mapel IPAS
aku-dan-kebutuhanku-Kelas 4 SD Mapel IPASreskosatrio1
 
Modul Ajar Bahasa Indonesia Kelas 4 Fase B
Modul Ajar Bahasa Indonesia Kelas 4 Fase BModul Ajar Bahasa Indonesia Kelas 4 Fase B
Modul Ajar Bahasa Indonesia Kelas 4 Fase BAbdiera
 
11 PPT Pancasila sebagai Paradigma Kehidupan dalam Masyarakat.pptx
11 PPT Pancasila sebagai Paradigma Kehidupan dalam Masyarakat.pptx11 PPT Pancasila sebagai Paradigma Kehidupan dalam Masyarakat.pptx
11 PPT Pancasila sebagai Paradigma Kehidupan dalam Masyarakat.pptxMiftahunnajahTVIBS
 
Dampak Pendudukan Jepang.pptx indonesia1
Dampak Pendudukan Jepang.pptx indonesia1Dampak Pendudukan Jepang.pptx indonesia1
Dampak Pendudukan Jepang.pptx indonesia1udin100
 
Materi Pertemuan 6 Materi Pertemuan 6.pptx
Materi Pertemuan 6 Materi Pertemuan 6.pptxMateri Pertemuan 6 Materi Pertemuan 6.pptx
Materi Pertemuan 6 Materi Pertemuan 6.pptxRezaWahyuni6
 
Modul Ajar Biologi Kelas 11 Fase F Kurikulum Merdeka [abdiera.com]
Modul Ajar Biologi Kelas 11 Fase F Kurikulum Merdeka [abdiera.com]Modul Ajar Biologi Kelas 11 Fase F Kurikulum Merdeka [abdiera.com]
Modul Ajar Biologi Kelas 11 Fase F Kurikulum Merdeka [abdiera.com]Abdiera
 
tugas 1 tutorial online anak berkebutuhan khusus di SD
tugas 1 tutorial online anak berkebutuhan khusus di SDtugas 1 tutorial online anak berkebutuhan khusus di SD
tugas 1 tutorial online anak berkebutuhan khusus di SDmawan5982
 
AKSI NYATA MODUL 1.2-1 untuk pendidikan guru penggerak.pptx
AKSI NYATA MODUL 1.2-1 untuk pendidikan guru penggerak.pptxAKSI NYATA MODUL 1.2-1 untuk pendidikan guru penggerak.pptx
AKSI NYATA MODUL 1.2-1 untuk pendidikan guru penggerak.pptxWirionSembiring2
 
2 KISI-KISI Ujian Sekolah Dasar mata pelajaranPPKn 2024.pdf
2 KISI-KISI Ujian Sekolah Dasar  mata pelajaranPPKn 2024.pdf2 KISI-KISI Ujian Sekolah Dasar  mata pelajaranPPKn 2024.pdf
2 KISI-KISI Ujian Sekolah Dasar mata pelajaranPPKn 2024.pdfsdn3jatiblora
 
soal AKM Mata Pelajaran PPKN kelas .pptx
soal AKM Mata Pelajaran PPKN kelas .pptxsoal AKM Mata Pelajaran PPKN kelas .pptx
soal AKM Mata Pelajaran PPKN kelas .pptxazhari524
 
Aksi nyata Malaikat Kebaikan [Guru].pptx
Aksi nyata Malaikat Kebaikan [Guru].pptxAksi nyata Malaikat Kebaikan [Guru].pptx
Aksi nyata Malaikat Kebaikan [Guru].pptxsdn3jatiblora
 
DEMONSTRASI KONTEKSTUAL MODUL 1.3 PENDIDIKAN GURU PENGGERAK
DEMONSTRASI KONTEKSTUAL MODUL 1.3 PENDIDIKAN GURU PENGGERAKDEMONSTRASI KONTEKSTUAL MODUL 1.3 PENDIDIKAN GURU PENGGERAK
DEMONSTRASI KONTEKSTUAL MODUL 1.3 PENDIDIKAN GURU PENGGERAKirwan461475
 
Aksi Nyata Modul 1.1 Calon Guru Penggerak
Aksi Nyata Modul 1.1 Calon Guru PenggerakAksi Nyata Modul 1.1 Calon Guru Penggerak
Aksi Nyata Modul 1.1 Calon Guru Penggeraksupriadi611
 
MODUL AJAR MATEMATIKA KELAS 6 KURIKULUM MERDEKA
MODUL AJAR MATEMATIKA KELAS 6 KURIKULUM MERDEKAMODUL AJAR MATEMATIKA KELAS 6 KURIKULUM MERDEKA
MODUL AJAR MATEMATIKA KELAS 6 KURIKULUM MERDEKAAndiCoc
 
Karakteristik Negara Mesir (Geografi Regional Dunia)
Karakteristik Negara Mesir (Geografi Regional Dunia)Karakteristik Negara Mesir (Geografi Regional Dunia)
Karakteristik Negara Mesir (Geografi Regional Dunia)3HerisaSintia
 
BAHAN SOSIALISASI PPDB SMA-SMK NEGERI DISDIKSU TP. 2024-2025 REVISI.pptx
BAHAN SOSIALISASI PPDB SMA-SMK NEGERI DISDIKSU TP. 2024-2025 REVISI.pptxBAHAN SOSIALISASI PPDB SMA-SMK NEGERI DISDIKSU TP. 2024-2025 REVISI.pptx
BAHAN SOSIALISASI PPDB SMA-SMK NEGERI DISDIKSU TP. 2024-2025 REVISI.pptxJamhuriIshak
 
AKSI NYATA NARKOBA ATAU OBAT TERLARANG..
AKSI NYATA NARKOBA ATAU OBAT TERLARANG..AKSI NYATA NARKOBA ATAU OBAT TERLARANG..
AKSI NYATA NARKOBA ATAU OBAT TERLARANG..ikayogakinasih12
 
Kelompok 1_Karakteristik negara jepang.pdf
Kelompok 1_Karakteristik negara jepang.pdfKelompok 1_Karakteristik negara jepang.pdf
Kelompok 1_Karakteristik negara jepang.pdfCloverash1
 
Modul 1.2.a.8 Koneksi antar materi 1.2.pdf
Modul 1.2.a.8 Koneksi antar materi 1.2.pdfModul 1.2.a.8 Koneksi antar materi 1.2.pdf
Modul 1.2.a.8 Koneksi antar materi 1.2.pdfSitiJulaeha820399
 
Materi Pertemuan Materi Pertemuan 7.pptx
Materi Pertemuan Materi Pertemuan 7.pptxMateri Pertemuan Materi Pertemuan 7.pptx
Materi Pertemuan Materi Pertemuan 7.pptxRezaWahyuni6
 

Recently uploaded (20)

aku-dan-kebutuhanku-Kelas 4 SD Mapel IPAS
aku-dan-kebutuhanku-Kelas 4 SD Mapel IPASaku-dan-kebutuhanku-Kelas 4 SD Mapel IPAS
aku-dan-kebutuhanku-Kelas 4 SD Mapel IPAS
 
Modul Ajar Bahasa Indonesia Kelas 4 Fase B
Modul Ajar Bahasa Indonesia Kelas 4 Fase BModul Ajar Bahasa Indonesia Kelas 4 Fase B
Modul Ajar Bahasa Indonesia Kelas 4 Fase B
 
11 PPT Pancasila sebagai Paradigma Kehidupan dalam Masyarakat.pptx
11 PPT Pancasila sebagai Paradigma Kehidupan dalam Masyarakat.pptx11 PPT Pancasila sebagai Paradigma Kehidupan dalam Masyarakat.pptx
11 PPT Pancasila sebagai Paradigma Kehidupan dalam Masyarakat.pptx
 
Dampak Pendudukan Jepang.pptx indonesia1
Dampak Pendudukan Jepang.pptx indonesia1Dampak Pendudukan Jepang.pptx indonesia1
Dampak Pendudukan Jepang.pptx indonesia1
 
Materi Pertemuan 6 Materi Pertemuan 6.pptx
Materi Pertemuan 6 Materi Pertemuan 6.pptxMateri Pertemuan 6 Materi Pertemuan 6.pptx
Materi Pertemuan 6 Materi Pertemuan 6.pptx
 
Modul Ajar Biologi Kelas 11 Fase F Kurikulum Merdeka [abdiera.com]
Modul Ajar Biologi Kelas 11 Fase F Kurikulum Merdeka [abdiera.com]Modul Ajar Biologi Kelas 11 Fase F Kurikulum Merdeka [abdiera.com]
Modul Ajar Biologi Kelas 11 Fase F Kurikulum Merdeka [abdiera.com]
 
tugas 1 tutorial online anak berkebutuhan khusus di SD
tugas 1 tutorial online anak berkebutuhan khusus di SDtugas 1 tutorial online anak berkebutuhan khusus di SD
tugas 1 tutorial online anak berkebutuhan khusus di SD
 
AKSI NYATA MODUL 1.2-1 untuk pendidikan guru penggerak.pptx
AKSI NYATA MODUL 1.2-1 untuk pendidikan guru penggerak.pptxAKSI NYATA MODUL 1.2-1 untuk pendidikan guru penggerak.pptx
AKSI NYATA MODUL 1.2-1 untuk pendidikan guru penggerak.pptx
 
2 KISI-KISI Ujian Sekolah Dasar mata pelajaranPPKn 2024.pdf
2 KISI-KISI Ujian Sekolah Dasar  mata pelajaranPPKn 2024.pdf2 KISI-KISI Ujian Sekolah Dasar  mata pelajaranPPKn 2024.pdf
2 KISI-KISI Ujian Sekolah Dasar mata pelajaranPPKn 2024.pdf
 
soal AKM Mata Pelajaran PPKN kelas .pptx
soal AKM Mata Pelajaran PPKN kelas .pptxsoal AKM Mata Pelajaran PPKN kelas .pptx
soal AKM Mata Pelajaran PPKN kelas .pptx
 
Aksi nyata Malaikat Kebaikan [Guru].pptx
Aksi nyata Malaikat Kebaikan [Guru].pptxAksi nyata Malaikat Kebaikan [Guru].pptx
Aksi nyata Malaikat Kebaikan [Guru].pptx
 
DEMONSTRASI KONTEKSTUAL MODUL 1.3 PENDIDIKAN GURU PENGGERAK
DEMONSTRASI KONTEKSTUAL MODUL 1.3 PENDIDIKAN GURU PENGGERAKDEMONSTRASI KONTEKSTUAL MODUL 1.3 PENDIDIKAN GURU PENGGERAK
DEMONSTRASI KONTEKSTUAL MODUL 1.3 PENDIDIKAN GURU PENGGERAK
 
Aksi Nyata Modul 1.1 Calon Guru Penggerak
Aksi Nyata Modul 1.1 Calon Guru PenggerakAksi Nyata Modul 1.1 Calon Guru Penggerak
Aksi Nyata Modul 1.1 Calon Guru Penggerak
 
MODUL AJAR MATEMATIKA KELAS 6 KURIKULUM MERDEKA
MODUL AJAR MATEMATIKA KELAS 6 KURIKULUM MERDEKAMODUL AJAR MATEMATIKA KELAS 6 KURIKULUM MERDEKA
MODUL AJAR MATEMATIKA KELAS 6 KURIKULUM MERDEKA
 
Karakteristik Negara Mesir (Geografi Regional Dunia)
Karakteristik Negara Mesir (Geografi Regional Dunia)Karakteristik Negara Mesir (Geografi Regional Dunia)
Karakteristik Negara Mesir (Geografi Regional Dunia)
 
BAHAN SOSIALISASI PPDB SMA-SMK NEGERI DISDIKSU TP. 2024-2025 REVISI.pptx
BAHAN SOSIALISASI PPDB SMA-SMK NEGERI DISDIKSU TP. 2024-2025 REVISI.pptxBAHAN SOSIALISASI PPDB SMA-SMK NEGERI DISDIKSU TP. 2024-2025 REVISI.pptx
BAHAN SOSIALISASI PPDB SMA-SMK NEGERI DISDIKSU TP. 2024-2025 REVISI.pptx
 
AKSI NYATA NARKOBA ATAU OBAT TERLARANG..
AKSI NYATA NARKOBA ATAU OBAT TERLARANG..AKSI NYATA NARKOBA ATAU OBAT TERLARANG..
AKSI NYATA NARKOBA ATAU OBAT TERLARANG..
 
Kelompok 1_Karakteristik negara jepang.pdf
Kelompok 1_Karakteristik negara jepang.pdfKelompok 1_Karakteristik negara jepang.pdf
Kelompok 1_Karakteristik negara jepang.pdf
 
Modul 1.2.a.8 Koneksi antar materi 1.2.pdf
Modul 1.2.a.8 Koneksi antar materi 1.2.pdfModul 1.2.a.8 Koneksi antar materi 1.2.pdf
Modul 1.2.a.8 Koneksi antar materi 1.2.pdf
 
Materi Pertemuan Materi Pertemuan 7.pptx
Materi Pertemuan Materi Pertemuan 7.pptxMateri Pertemuan Materi Pertemuan 7.pptx
Materi Pertemuan Materi Pertemuan 7.pptx
 

SPL SISTEM

  • 2. OUTLINE Pendahuluan Eliminasi Gauss - Jordan SPL Homogen Penyelesaian SPL dengan Inverse Matriks
  • 3. SISTEM PERSAMAAN LINIER (SPL) Bentuk umum : dimana x1, x2, . . . , xn variabel tak diketahui, aij , bi, i = 1, 2, . . . , m; j = 1, 2, . . . , n bil. diketahui. Ini adalah SPL dengan m persamaan dan n variabel. SPL Mempunyai penyelesaian disebut KONSISTEN Tidak mempunyai penyelesaian disebut TIDAK KONSISTEN TUNGGAL BANYAK
  • 4. ILUSTRASI GRAFIK • SPL 2 persamaan 2 variabel: • Masing-masing pers berupa garis lurus. Penyelesaiannya adalah titik potong kedua garis ini. kedua garis sejajar kedua garis berpotongan kedua garis berhimpitan
  • 5. PENYAJIAN SPL DALAM MATRIKS SPL BENTUK MATRIKS STRATEGI MENYELESAIKAN SPL: mengganti SPL lama menjadi SPL baru yang mempunyai penyelesaian sama (ekuivalen) tetapi dalam bentuk yang lebih sederhana.
  • 6. TIGA OPERASI YANG MEMPERTAHANKAN PENYELESAIAN SPL SPL 1. Mengalikan suatu persamaan dengan konstanta tak nol. 2. Menukar posisi dua persamaan sebarang. 3. Menambahkan kelipatan suatu persamaan ke persamaan lainnya. MATRIKS 1. Mengalikan suatu baris dengan konstanta tak nol. 2. Menukar posisi dua baris sebarang. 3. Menambahkan kelipatan suatu baris ke baris lainnya. Ketiga operasi ini disebut OPERASI BARIS ELEMENTER (OBE) SPL atau bentuk matriksnya diolah menjadi bentuk seder- hana sehingga tercapai 1 elemen tak nol pada suatu baris
  • 7.
  • 8.
  • 9. CONTOH DIKETAHUI kalikan pers (i) dengan (-2), kemu- dian tambahkan ke pers (ii). kalikan baris (i) dengan (-2), lalu tambahkan ke baris (ii). …………(i) …………(ii) …………(iii) kalikan pers (i) dengan (-3), kemu- dian tambahkan ke pers (iii). kalikan baris (i) dengan (-3), lalu tambahkan ke baris (iii). kalikan pers (ii) dengan (1/2). kalikan baris (ii) dengan (1/2).
  • 10. kalikan pers (iii) dengan (-2). kalikan brs (iii) dengan (-2). LANJUTAN CONTOH kalikan pers (ii) dengan (1/2). kalikan baris (ii) dengan (1/2). kalikan pers (ii) dengan (-3), lalu tambahkan ke pers (iii). kalikan brs (ii) dengan (-3), lalu tambahkan ke brs (iii). kalikan pers (ii) dengan (-1), lalu tambahkan ke pers (i). kalikan brs (ii) dengan (-1), lalu tambahkan ke brs (i).
  • 11. Lanjutan CONTOH kalikan pers (ii) dengan (-1), lalu tambahkan ke pers (i). kalikan brs (ii) dengan (-1), lalu tambahkan ke brs (i). kalikan pers (iii) dengan (-11/2), lalu tambahkan ke pers (i) dan kalikan pers (ii) dg (7/2), lalu tambahkan ke pers (ii) kalikan brs (iii) dengan (-11/2), lalu tambahkan ke brs (i) dan kalikan brs (ii) dg (7/2), lalu tambahkan ke brs (ii) Diperoleh penyelesaian x = 1, y = 2, z = 3. Terdapat kaitan menarik antara bentuk SPL dan representasi matriksnya. Metoda ini berikutnya disebut dengan METODA ELIMINASI GAUSS.
  • 12. BENTUK ECHELON-BARIS Misalkan SPL disajikan dalam bentuk matriks berikut: maka SPL ini mempunyai penyelesaian x = 1, y = 2, z = 3. Matriks ini disebut bentuk echelon-baris tereduksi. Untuk dapat mencapai bentuk ini maka syaratnya adalah sbb: 1. Jika suatu brs matriks tidak nol semua maka elemen tak nol pertama adalah 1. Brs ini disebut mempunyai leading 1. 2. Semua brs yg terdiri dari nol semua dikumpulkan di bagian bawah. 3. Leading 1 pada baris lebih atas posisinya lebih kiri daripada leading 1 baris berikut. 4. Setiap kolom yang memuat leading 1, elemen lain semuanya 0.
  • 13. Bentuk echelon-baris dan echelon-baris tereduksi Matriks yang memenuhi kondisi (1), (2), (3) disebut bentuk echelon-baris. CONTOH bentuk echelon-baris tereduksi: CONTOH bentuk echelon-baris:
  • 14. Bentuk umum echelon-baris dimana lambang ∗ dapat diisi bilangan real sebarang.
  • 15. Bentuk umum echelon-baris tereduksi dimana lambang ∗ dapat diisi bilangan real sebarang.
  • 16. Penyelesaian SPL melalui bentuk echelon-baris Misal diberikan bentuk matriks SPL sbb: Tentukan penyelesaian masing-masing SPL di atas.
  • 17. METODA GAUSS-JORDAN Ide pada metoda eliminasi Gauss adalah mengubah matriks ke dalam bentuk echelon-baris tereduksi. CONTOH: Diberikan SPL berikut. Bentuk matriks SPL ini adalah:
  • 18. -2B1 + B2B2 5B2+B3  B3             6 18 0 8 4 0 0 0 0 0 0 0 0 0 1 - 3 - 0 2 - 1 - 0 0 0 0 2 0 2 - 3 1 B4 B4+4B2 B3 ⇄ B4 B3 B3/3 -3B3+B2B2 2B2+B1B1
  • 19. Akhirnya diperoleh: Akhirnya, dengan mengambil x2:= r, x4:= s dan x5:= t maka diperoleh penyelesaian: dimana r, s dan t bilangan real sebarang. Jadi SPL ini mempunyai tak berhingga banyak penyelesaian.
  • 20. METODA SUBSTITUSI MUNDUR Misalkan kita mempunyai SPL dalam matriks berikut: Bentuk ini ekuivalen dengan: LANGKAH 1: selesaikan variabel leading, yaitu x6. Diperoleh: LANGKAH 2: mulai dari baris paling bawah subtitusi ke atas, diperoleh
  • 21. LANJUTAN SUBSTITUSI MUNDUR LANGKAH 3: subtitusi baris 2 ke dalam baris 1, diperoleh: LANGKAH 4: Karena semua persamaan sudah tersubstitusi maka peker- jaan substitusi selesai. Akhirnya dengan mengikuti langkah pada metoda Gauss-Jordan sebelumnya diperoleh:
  • 22. Eliminasi Gaussian Mengubah menjadi bentuk echelon-baris (tidak perlu direduksi), kemudian menggunakan substitusi mundur. CONTOH: Selesaikan dengan metoda eliminasi Gaussian PENYELESAIAN: Diperhatikan bentuk matriks SPL berikut: Dengan menggunakan OBE diperoleh bentuk echelon-baris berikut:
  • 23. SPL HOMOGEN • Bentuk umum: • Penyelesaian trivial (sederhana): • Bila ada penyelesaian lain yang tidak semuanya nol maka disebut penyelesaian taktrivial.
  • 24. SPL HOMOGEN pasti ada penyelesaian trivial penyelesaian trivial + takberhingga banyak penyelesaian taktrivial atau ILUSTRASI:
  • 25. SPL dengan Matriks a11x1 + a12x2 + ….+ a1nxn = b1 a21x1 + a22x2 + ….+ a2nxn = b1 ………………………………… ………………………………… am1x1 + am2x2 + ….+ amnxn = bm                                      m 2 1 n 2 1 mn m2 m1 2n 22 12 1n 12 11 b .... b b x .... x x a ..... a a ...... ..... ..... ..... a ..... a a a ..... a a
  • 26. atau AX = B dengan A=(aij) matriks koefisien, X=(x1,x2,…..,xn)* dan B=(b1,b2,…,bn)*. Matriks lengkap sistem tersebut adalah :              m m2 m1 2 2n 22 21 1 1n 12 11 b .... ..... a a .... .... ..... .... .... b a ..... a a b a ..... a a (AB)
  • 27. Pembagian SPL 1. SPL homogen a11x1 + a12x2 + …….. + a1nxn = 0 a21x1 + a22x2 + …….. + a2nxn = 0 ……………………………………. ……………………………………. am1x1 + am2x2 + …….. + amnxn = 0 Contoh : x1 – 2x2 + 3x3 = 0 x1 + x2 + 2x3 = 0
  • 28. 2. SPL non homogen a11x1 + a12x2 + ….+ a1nxn = b1 a21x1 + a22x2 + ….+ a2nxn = b2 ………………………………… ………………………………… am1x1 + am2x2 + ….+ amnxn = bm CONTOH x1 – 2x2 + 3x3 = 4 X1 + x2 + 2x3 = 5
  • 29. E. Penyelesaian SPL Non Homogin Khusus untuk m=n SPL yg non homogin, penyelesaian tunggal bila Det (A) ≠ 0 dapat menggunakan : 1. Aturan Cramer Pandang sistem n persamaan linear dalam n bilangan tak diketahui : a11x11 + a12x12 + ……..+ a1nx1n = b1 a11x11 + a12x12 + ……..+ a1nx1n = b2 ……………………………………….. an1x11 + an2x12 + ……..+ annxnn = bn
  • 30. Determinan matriks koefisien adalah : Bila de(Ak) adalah determinan yang didapat dari det (A) dengan mengganti kolom ke k dengan suku tetap (b1 b2 ……bn), maka aturan Cramer mengatakan : k = 1,2,3,……,n mn m2 mn 2n 22 21 1n 12 11 a .... a a .... .... .... .... a .... a a a .... a a Det(A)  Det(A) ) Det(A x k k 
  • 31. Contoh : Selesaikan SPL berikut ! 2x1 + 8x2 + 6x3 = 20 4x1 + 2x2 – 2x3 = -2 3x1 - x2 + x3 = 11 Penyelesaian : determinan matriks koefisien 140 4 32 36 24 48 4 1 1 3 2 2 4 6 8 2 Det(A)            280 40 16 132 12 176 40 1 1 11 2 2 2 6 8 20 ) Det(A1            
  • 32. Sedangkan : 560 4 352 120 80 48 44 11 1 3 2 2 4 20 8 2 ) Det(A3            140 44 80 36 264 120 4 1 11 3 2 2 4 6 20 2 ) Det(A2            2 140 280 Det(A) ) Det(A x 1 1      1 140 140 Det(A) ) Det(A x 2 2      4 140 560 Det(A) ) Det(A x 3 3     
  • 33. (2). Menggunakan invers matriks Bila Det(A)≠ 0, maka A-1 ada AX = B A-1.AX = A-1.B Jadi : X = A-1 penyelesaian sistem ini. Catatan : Bila m=n dan Det(A) = 0, maka sistemnya mempu- nyai tak berhingga banyak penyelesaian. Contoh : selesaikan SPL berikut dengan mengguna kan invers matriks ! 2x1 + 3x2 + x3 = 9 x1 + 2x2 + 3x3 = 6 3x1 + x2 + 2x3 = 8
  • 34. Penyelesaian : determinan matriks koefisien adalah : 11 6 6 4 1 18 8 2 1 2 3 2 1 1 3 2 Det(A)                      1 7 5 1 1 7 7 5 1 11 1 A 1 -                                               11 / 5 11 / 29 11 / 35 8 6 9 11 1 8 6 9 1 7 5 1 1 7 7 5 1 11 1 H . A X 1 - 11 5 x ; 11 29 x ; 11 35 x 3 2 1   