SlideShare a Scribd company logo
1 of 34
Supervised by
Dr. Nadeem Abbas
Presented by
Anonymous
Computational Analysis of Second Grade Fluid Flow over
Riga Surfaces under Chemical Reaction and MHD Effects
 Chapter 1: Fundamental definitions and concepts
 Chapter 2: Computational Analysis of Second
Grade Fluid Flow Over Riga Surfaces under
Chemical Reaction and MHD Effects
 Chapter 3:Computational Analysis of Third Grade
Fluid Flow Over Stretching Surface Under
Chemical Reaction And MHD Effects
Chapter 1
Basic definitions
Fluid can be define as “Any gas or liquid or
material that cannot maintain a tangential or
searing force when at rest and that passes a
continuous change in shape when subject to such a
stress”. A material which cannot oppose the
applied shear force is called fluid.
 Gas or liquid is very simplest example of fluid.
It is a subdivision of physics that hand out with the
behavior of fluids at rest. Fluid mechanics has many
implementations in a vast range of chemical
engineering and biology. It has further three sub
classes.
 Fluid statistics
 Fluid dynamics
 Fluid kinematics
 Fluid statistics
A category of fluid that deals with fluids at rest are called fluid
statistics. It is also called hydro statistics. It also studies the
condition of submerged body and the condition of equilibrium.
 Fluid dynamics
In engineering and physics, it is a sub dichotomy of fluid
mechanics that discuss about the flow of fluid gases and liquids
 Fluid kinematics
It is a type of fluid which concerned with such types of flow of
fluid that cannot take into account the forces that cause the
motion. For example velocity, speeds acceleration and
displacement etc.
A fluid in which a linear relationship exists at every
point between deformation rate and viscous stress is
called Newtonian fluids.
Examples:
 Water is a Newtonian fluid because its viscosity is
not affected by shear rate.
 Air is also a Newtonian fluid.
Fluids which disobey the Newtonian law of viscosity
are called non Newtonian fluids i.e.
Constant viscosity is not depending on stress.
 Example
Ketchup, Yogurt, Slurries, Gels, Polymer solutions
“The mass of any system can neither be demolish
nor be generated it can just be interchanged by
one system to another"
Mathematically, it can be represented as:
𝜕ρ
𝜕t
+ 𝛻. ρV = 0.
Where,
ρ = density, V = velocity of fluid.
 If flow is incompressible then ρ = 0 .
So, it is,
𝛻. V = 0.
The body forces operating on a surface and fluid forces
is equal to the rate change in volume linear momentum.
The differential form is given as:
ρ
dV
dt
= ∆. τ + ρb.
Where,
t is time, V is velocity,
ρ is density and b is body force.
τ = Cauchy tensor = −pI + μA1.
The energy equation can be expressed as:
ρCp
dT
dt
= τ. L + k𝛻2T − divqr.
Where,
ρ = fluid density,
L = gradient of velocity,
k = thermal conductivity of fluid,
qr = Radiative heat transmissin.
The concentration equation for nanoparticles is mathematically
represented as
𝜕
𝜕t
+ v. 𝛻 c = 𝛻
DT
T∞
𝛻T + DB(𝛻v) .
where,
DT = coefficient of diffusivity,
C = nanopaticles concentration,
DB = Brownian motion,
T∞ = Ambient temprature,
Computational Analysis of Second Grade Fluid Flow Over
Riga Surfaces under Chemical Reaction and MHD Effects
 Assumptions:
 Second Grade Fluid over Riga Surface
 MHD Effect
Mathematical Formulation
∂u
∂x
+
∂v
∂y
= 0,
(3.1)
u
∂u
∂x
+ v
∂u
∂y
= U∞
du∞
dx
+ v
∂2u
∂y2
+
α1
ρ
u
∂3u
∂x ∂y2
+
∂u
` ∂x
∂2u
∂y2
+ 3
∂u
∂y
∂2u
∂x ∂y
+ ν
∂3u
∂y3
+
2α2
ρ
∂u
∂y
∂2u
∂x ∂y
+ 6
β3
ρ
∂u
∂y
2 ∂2u
∂y2 −
σB2
ρ
(U − u),
(3.2)
u
∂T
∂x
+ v
∂T
∂y
= k
∂2
T
∂y2
+
Dm
cs
KT
∂2
a
∂y2
,
(3.3)
u
∂a
∂x
+ ν
∂a
∂y
= D
∂2
a
∂y2
+
Dm
Tm
KT
∂2
T
∂y2
,
(3.4)
Where, Dm is mass diffusivity,Tm is fluid temperature across boundary layer, cs
is concentration succeptibility, KT is thermal diffusivity rate and Cp is specific
The modifications are explained as,
u → U∞ , T → T∞ → a∞ as y → ∞.
heat flux. The boundary conditions for equations (3.1) to (3.4) are given below
ν = 0, u = Uw , kc
∂T
∂y
= −Qk0ae
−E
RT , D
∂a
∂y
= k0ae−
E
RT , as y → 0,
(3.5)
ѱ =
𝑈∞ 𝜈
𝑙
1
2
𝑥𝑓(𝜂), 𝑇 − 𝑇∞ =
𝑅𝑇∞
2
𝐸
𝜃, 𝑎 − 𝑎∞ = 𝑎∞ 𝛷 ,
𝜂 = 𝑦
𝑈∞
𝜈𝑙
1
2
(3.6)
This gives:
𝑓′ 2
− 𝑓𝑓′′
= 1 + 𝑓′′′
+ 𝜆1 2𝑓′
𝑓′′′
+ 3𝑓′′ 2
+ 𝑓𝑓𝑖𝑣
+ 2(𝑓′′ )2
+ 𝜆2𝑓′′ 2
𝑓′′′
− 𝑀(1 − 𝑓′ )
(3.7)
1
𝑃𝑟
𝜃′′
+ 𝑓𝜃′
+ 𝛼1 𝛷′′
= 0
(3.8)
1
𝑆𝑐
𝛷′′
+ 𝑓𝛷′
+ 𝛼2𝜃′′
= 0
(3.9)
By putting values we get the following results
From Equ.(3.7) we get the value of highest derivative
By applying the numerical technique, nonlinear differentia equation may be converted
in the initial value problem as:
f (iv )
=
1
−λ1f
1 + f ′′′
− f ′ 2
+ ff ′′
+ λ1 2f ′
f ′′′
+ 5f ′′′ 2
+ λ2f ′′ 2
f ′′′
−
M(1 − f′)
(3.10)
From Equ. (3.9)
Φ′′
= −Sc(fΦ′
− α2θ′′)
Put it in (3.8) we get the final results for the value of θ′′
1
Pr
θ′′
+ fθ′
+ α1 −Sc(fΦ′
− α2θ′′ ) = 0
1
Pr
θ′′
+ fθ′
− α1Sc(fΦ′ ) + α1α2θ′′
= 0
fθ′
− α1Sc(fΦ′ ) = −
1
Pr
+ α1α2 θ′
This implies that
θ′′
=
1
(−
1
Pr
+α1α2)
(fθ′
− α1Sc(fΦ′) (3.12)
(3.11)
Φ′′
= −Sc(fΦ′
− α2θ′′ ) (3.13)
Table 3.1: Numerical values for Prantle number and Sherwood number
𝐏𝐫 𝐋 𝐍 𝐒𝐜 𝐌 𝛂𝟏 𝛂𝟐 𝐀 𝐟′′(𝟎) −𝛉′(𝟎) -𝛟′(𝟎)
1.0 0.3 1.0 0.3 0.3 0.6 0.2 2.0 0.0 0.33787 0.4410
1.5 0.3 1.0 0.3 0.3 0.6 0.2 2.0 0.0 0.35298 0.4493
2.0 - - - - - - - - 0.36262 0.4545
- 0.1 1.0 0.3 0.3 0.6 0.2 2.0 - 0.36025 0.4507
- 0.2 - - - - - - - 0.36158 0.4527
- 0.3 - - - - - - - 0.36262 0.4545
- - 0.6 0.3 0.3 0.6 0.2 2.0 - 0.36312 0.4555
- - 0.9 - - - - - - 0.36178 0.4530
- - 1.0 - - - - - - 0.36262 0.4545
- - - 0.3 0.3 0.6 0.2 2.0 - 0.36262 0.4545
-- -- -- 0.4 -- -- -- -- -- 0.36262 0.5149
-- -- -- 0.5 -- -- -- -- -- 0.36262 0.5708
-- -- -- -- 0.2 0.6 0.2 2.0 -- 0.3628 0.5713
-- -- -- -- 0.6 -- -- -- -- 0.36206 0.5693
-- -- -- -- 1.0 -- -- -- -- 0.36138 0.5674
-- -- -- -- -- 0.4 0.2 2.0 -- 0.45593 0.6451
-- -- -- -- -- 0.5 -- -- -- 0.40423 0.6029
-- -- -- -- -- 0.6 -- -- -- 0.36138 0.5674
-- -- -- -- -- -- 0.5 2.0 -- 0.47048 0.5170
-- -- -- -- -- -- 0.8 -- -- 0.43501 0.5335
-- -- -- -- -- -- 1.0 -- - - 0.41689 0.5419
-= -- -- -- -- -- -- 1.0 -
0.4932
0.4887 0.6706
-- -- -- -- -- -- -- 2.0 -- 0.58757 0.8424
-- -- -- -- -- -- -- 3.0 -- 0.69832 1.0251
Fig. (3.1): Effects of λ1
onf′(η).
Fig. (3.2): Effects of N
on f′(η).
Fig. (3.3): Effects of N
onf′(η).
Fig. (3.4): Effects of Pr on
θ η .
Fig .(3.5): Effects of α1 on
θ(η).
Fig.(3.6): Effects of α2 on
θ η .
Fig. (3.7): Effects of Sc on
Φ(η).
Fig. (3.8): Effects of α2on
Φ(η).
Computational Analysis of Third Grade Fluid Flow Over
Stretching Surface Under Chemical Reaction And MHD
Effects
 Assumption:
 Third Grade Fluid over Stretching Surface
 MHD Effect
Mathematical Formulation
𝜕u
𝜕x
+
𝜕v
𝜕y
=0,
(4.1)
u
𝜕u
𝜕x
+ v
𝜕u
𝜕y
= u∞ du∞
dx
+ v 𝜕
2u
𝜕
y2
+
α1
ρ
u 𝜕
3u
𝜕x𝜕
y2
+
𝜕u
`𝜕x
𝜕
2u
𝜕
y2
+
(4.2)
U
𝜕T
𝜕x
+ v
𝜕T
𝜕y
=
Kf
ρCp
𝜕2T
𝜕y2 +
DT
T∞
𝜕2C
𝜕y2 +
μ
ρCp
U2
+ R T − TW ,
(4.3)
u
𝜕C
𝜕x
+ v
𝜕C
𝜕y
= Dm
𝜕2
c
𝜕y2
+
DT
T∞
(
𝜕2
T
𝜕y2
)
(4.4)
Subject to the boundary conditions,
ν = 0, u = Uw, kc
𝜕T
𝜕y
= −Qk0ae
−E
RT ,
D
𝜕a
𝜕y
= k0ae−
E
RT on y = 0
u → U∞, T → T∞ a → a∞ as y → ∞
(4.5)
Where,
U∞ =
U0x
l
and Uw = λU∞
ѱ =
U∞ν
l
1
2
xf η , T − T∞ =
RT∞
2
E
θ, a − a∞ = a∞Φ ,
η = y
U∞
νl
1
2
(4.6)
This gives:
f′2
− ff′′
= 1 + f′′′
+ λ1 2f′
f′′′
+ 3f′′2
+ ffiv
+ 2 f′′ 2
+ λ2f′′2
f′′′ −
M 1 − f′
,
(4.7)
1
Pr
θ′′
+ fθ′
+ DuΦ′′
+ Ec f′′ 2
+ Qθ = 0
(4.8)
Φ′′
+ Sc′
fΦ′
+ Srθ′′
= 0 (4.9)
Where,
Sc = Schmidt number =
ν
Dm
, Ec =
μ2
CpUT
= Eckert number
From Equ.(4.9)
Φ′′ = −Sc(fΦ′
+ Srθ′′
),
(4.10)
Put Equ. (4.10) in Equ.(4.11)
1
Pr
θ′′
+ fθ′
+ Du(−Sc fΦ′
+ Srθ′′
) + Ec f′′ 2
+ Qθ = 0
θ′′
= −pr fθ′
− DuSc fΦ′
+ Srθ′′
+ Ec f′′ 2
+ Qθ ,
θ′′
− DuScPrθ′′
= −Pr fθ′
− DuScfΦ′
+ Ec f′′ 2
+ Qθ
θ′′
1 − DuScPr = − Pr fθ′
− DuScfΦ′
+ Ec f′′ 2
+ Qθ
θ′′
= −
Pr
1 − DuScPr
fθ′
− DuScfΦ′
+ Ec(f′′)2
+ Qθ
(4.11)
From Equ. (4.7)
f(iv)
=
1
−λ1f
1 + f′′′
− f′2
+ ff′′
+ λ1 2f′
f′′′
+ 5f′′′2
+ λ2f′′2
f′′′
− M 1 − f′
(4.12)
Table 3.1: Numerical values for Prantle number, Sherwood number, Eckert number,
Dufour number
𝐏𝐫 L N 𝐒𝐜 M Q 𝐒𝐫 A 𝐃𝐮 𝐄𝐜 𝐒𝐑 f’’(0
)
−𝛉′(𝟎) −𝛟′(𝟎)
1.0 0.
3
2.0 0.3 0.8 1.0 1.0 0.2 0.5 0.4 1.0 0.0 -1.1496 -
0.0083618
1.5 ---
-
---- ---- ----- ----
-
---- ---- ---- ---- ---- 0.0 -2.0476 -0.27583
2.0 ---
--
---- ---- ---- ----
-
---- ---- ---- ----- ----- 0.0 -3.5011 -0.70438
2.5 ---
--
----
-
----
-
---- ----
-
----
-
----- ----
-
----- ------ 0.0 -5.8301 -1.3912
---
-
0.
2
2.0 0.3 0.8 1.0 1.0 0.2 0.5 0.4 1.0 0.0 -1.1529 -
0.0099154
---
-
0.
4
---- ---- ---- ---- ---- ---- ----
-
---- ---- 0.0 -7.2835 -1.816
---
-
0.
6
---- ---- ---- ---- ---- ---- ---- ---- ---- 0.0 -1.15 -
0.0084594
---
-
0.
8
---- ---- ---- ---- ---- ---- ---- ---- ---- 0.0 -1.1496 -
0.0083618
---
-
---
-
0.5 0.3 0.8 1.0 1.0 0.2 0.5 0.4 1.0 0.0 -1.0895 0.013145
---
-
---
-
1.0 ---- ---- ---- ---- ---- ---- ---- ---- 0.0 -1.104 0.0078877
---
-
---
--
1.5 ---- ---- ---- ---- ---- ---- ---- ---- 0.0 -1.1232 0.0007286
5
---
-
---
-
2.0 ---- ---- ---- ---- ---- ---- ---- ---- 0.0 -1.1496 -
0.0083618
---
-
---
-
---- 0.3 0.8 1.0 1.0 0.2 0.5 0.4 1.0 0.0 -1.1496 -
0.0083618
--- --- ---- 0.5 ---- ---- ---- ---- ---- ---- ---- 1.322 -1.4568 -0.30914
Fig. (4.1): Effects of λ1
onf′(η).
Fig. (4.2): Effects of N
onf′
η
Fig. (4.3): Effects of M
on f′(η).
Fig. (4.4): Effects of Du on
θ η .
Fig (4.6): Effects of Pr on
θ(η).
Fig (4.5): Effects of Ec on
θ(η).
 The rate of heat transfer improves as the Dufour number
increase.
 When the Soret number rises, the rate of heat transfer
increases, but the concentration profile decreases.
 By expanding the value of dimensionless parameters
velocities shows reducing behavior while the temperature
profile and the concentration profile shows expanding
behavior.
 By expanding the value of Prantle number
Nusselt number θ′ 0 and the Sherwood number Φ′(0)
will also expand.
math.pptx

More Related Content

Similar to math.pptx

chapter 1 introduction1.pdf
chapter 1 introduction1.pdfchapter 1 introduction1.pdf
chapter 1 introduction1.pdfNebiyuNeba
 
Rhodes solutions-ch4
Rhodes solutions-ch4Rhodes solutions-ch4
Rhodes solutions-ch4sbjhbsbd
 
heat transfer in axisymmetric flow past a cylinder
heat transfer in axisymmetric flow past a cylinderheat transfer in axisymmetric flow past a cylinder
heat transfer in axisymmetric flow past a cylinderRabiaMalik723138
 
Mathematical modeling of two phase gas-liquid medium flow in metantank
Mathematical modeling of two phase gas-liquid medium flow in metantankMathematical modeling of two phase gas-liquid medium flow in metantank
Mathematical modeling of two phase gas-liquid medium flow in metantankjulieenergy
 
IRJET-Deriving One Dimensional Shallow Water Equations from Mass and Momentum...
IRJET-Deriving One Dimensional Shallow Water Equations from Mass and Momentum...IRJET-Deriving One Dimensional Shallow Water Equations from Mass and Momentum...
IRJET-Deriving One Dimensional Shallow Water Equations from Mass and Momentum...IRJET Journal
 
Radiation effects on heat and mass transfer of a mhd
Radiation effects on heat and mass transfer of a mhdRadiation effects on heat and mass transfer of a mhd
Radiation effects on heat and mass transfer of a mhdeSAT Publishing House
 
Senior Research paper
Senior Research paperSenior Research paper
Senior Research paperEvan Foley
 
009b (PPT) Viscous Flow -2.pdf .
009b (PPT) Viscous Flow -2.pdf           .009b (PPT) Viscous Flow -2.pdf           .
009b (PPT) Viscous Flow -2.pdf .happycocoman
 
Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)IJERD Editor
 
1.1 Numerical on fundamental concepts.pptx
1.1 Numerical on fundamental concepts.pptx1.1 Numerical on fundamental concepts.pptx
1.1 Numerical on fundamental concepts.pptx9ashutoshpwr9
 
Hydrology civil engineering Fluid Mechanics.pptx
Hydrology civil engineering Fluid Mechanics.pptxHydrology civil engineering Fluid Mechanics.pptx
Hydrology civil engineering Fluid Mechanics.pptxMuhammadRamzan757427
 
Fluid flow rate Experiment No. 5.pdf
Fluid flow rate Experiment No. 5.pdfFluid flow rate Experiment No. 5.pdf
Fluid flow rate Experiment No. 5.pdfKaiwan B. Hamasalih
 
Analytic Solution Of Stokes Second Problem For Second-Grade Fluid
Analytic Solution Of Stokes Second Problem For Second-Grade FluidAnalytic Solution Of Stokes Second Problem For Second-Grade Fluid
Analytic Solution Of Stokes Second Problem For Second-Grade FluidSimar Neasy
 
IMP_Fluid_Mechanics_lectures_and_Tutorials.pdf
IMP_Fluid_Mechanics_lectures_and_Tutorials.pdfIMP_Fluid_Mechanics_lectures_and_Tutorials.pdf
IMP_Fluid_Mechanics_lectures_and_Tutorials.pdfssuser79cb761
 
International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI)International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI)inventionjournals
 
Meltblowing ii-linear and nonlinear waves on viscoelastic polymer jets
Meltblowing  ii-linear and nonlinear waves on viscoelastic polymer jetsMeltblowing  ii-linear and nonlinear waves on viscoelastic polymer jets
Meltblowing ii-linear and nonlinear waves on viscoelastic polymer jetsVinod Kumar
 
Rc range (resistor with capacitor)
Rc range (resistor with capacitor)Rc range (resistor with capacitor)
Rc range (resistor with capacitor)umammuhammad27
 
FINITE DIFFERENCE METHOD FOR 2D- HEAT TRANSFER
FINITE DIFFERENCE METHOD FOR 2D- HEAT TRANSFERFINITE DIFFERENCE METHOD FOR 2D- HEAT TRANSFER
FINITE DIFFERENCE METHOD FOR 2D- HEAT TRANSFEROjes Sai Pogiri
 
Methods to determine pressure drop in an evaporator or a condenser
Methods to determine pressure drop in an evaporator or a condenserMethods to determine pressure drop in an evaporator or a condenser
Methods to determine pressure drop in an evaporator or a condenserTony Yen
 

Similar to math.pptx (20)

chapter 1 introduction1.pdf
chapter 1 introduction1.pdfchapter 1 introduction1.pdf
chapter 1 introduction1.pdf
 
Rhodes solutions-ch4
Rhodes solutions-ch4Rhodes solutions-ch4
Rhodes solutions-ch4
 
heat transfer in axisymmetric flow past a cylinder
heat transfer in axisymmetric flow past a cylinderheat transfer in axisymmetric flow past a cylinder
heat transfer in axisymmetric flow past a cylinder
 
Mathematical modeling of two phase gas-liquid medium flow in metantank
Mathematical modeling of two phase gas-liquid medium flow in metantankMathematical modeling of two phase gas-liquid medium flow in metantank
Mathematical modeling of two phase gas-liquid medium flow in metantank
 
IRJET-Deriving One Dimensional Shallow Water Equations from Mass and Momentum...
IRJET-Deriving One Dimensional Shallow Water Equations from Mass and Momentum...IRJET-Deriving One Dimensional Shallow Water Equations from Mass and Momentum...
IRJET-Deriving One Dimensional Shallow Water Equations from Mass and Momentum...
 
Radiation effects on heat and mass transfer of a mhd
Radiation effects on heat and mass transfer of a mhdRadiation effects on heat and mass transfer of a mhd
Radiation effects on heat and mass transfer of a mhd
 
Senior Research paper
Senior Research paperSenior Research paper
Senior Research paper
 
009b (PPT) Viscous Flow -2.pdf .
009b (PPT) Viscous Flow -2.pdf           .009b (PPT) Viscous Flow -2.pdf           .
009b (PPT) Viscous Flow -2.pdf .
 
Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)Welcome to International Journal of Engineering Research and Development (IJERD)
Welcome to International Journal of Engineering Research and Development (IJERD)
 
1.1 Numerical on fundamental concepts.pptx
1.1 Numerical on fundamental concepts.pptx1.1 Numerical on fundamental concepts.pptx
1.1 Numerical on fundamental concepts.pptx
 
Hydrology civil engineering Fluid Mechanics.pptx
Hydrology civil engineering Fluid Mechanics.pptxHydrology civil engineering Fluid Mechanics.pptx
Hydrology civil engineering Fluid Mechanics.pptx
 
Fluid flow rate Experiment No. 5.pdf
Fluid flow rate Experiment No. 5.pdfFluid flow rate Experiment No. 5.pdf
Fluid flow rate Experiment No. 5.pdf
 
Analytic Solution Of Stokes Second Problem For Second-Grade Fluid
Analytic Solution Of Stokes Second Problem For Second-Grade FluidAnalytic Solution Of Stokes Second Problem For Second-Grade Fluid
Analytic Solution Of Stokes Second Problem For Second-Grade Fluid
 
IMP_Fluid_Mechanics_lectures_and_Tutorials.pdf
IMP_Fluid_Mechanics_lectures_and_Tutorials.pdfIMP_Fluid_Mechanics_lectures_and_Tutorials.pdf
IMP_Fluid_Mechanics_lectures_and_Tutorials.pdf
 
International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI)International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI)
 
Meltblowing ii-linear and nonlinear waves on viscoelastic polymer jets
Meltblowing  ii-linear and nonlinear waves on viscoelastic polymer jetsMeltblowing  ii-linear and nonlinear waves on viscoelastic polymer jets
Meltblowing ii-linear and nonlinear waves on viscoelastic polymer jets
 
Rc range (resistor with capacitor)
Rc range (resistor with capacitor)Rc range (resistor with capacitor)
Rc range (resistor with capacitor)
 
FM CHAPTER 5.pptx
FM CHAPTER 5.pptxFM CHAPTER 5.pptx
FM CHAPTER 5.pptx
 
FINITE DIFFERENCE METHOD FOR 2D- HEAT TRANSFER
FINITE DIFFERENCE METHOD FOR 2D- HEAT TRANSFERFINITE DIFFERENCE METHOD FOR 2D- HEAT TRANSFER
FINITE DIFFERENCE METHOD FOR 2D- HEAT TRANSFER
 
Methods to determine pressure drop in an evaporator or a condenser
Methods to determine pressure drop in an evaporator or a condenserMethods to determine pressure drop in an evaporator or a condenser
Methods to determine pressure drop in an evaporator or a condenser
 

Recently uploaded

Spellings Wk 4 and Wk 5 for Grade 4 at CAPS
Spellings Wk 4 and Wk 5 for Grade 4 at CAPSSpellings Wk 4 and Wk 5 for Grade 4 at CAPS
Spellings Wk 4 and Wk 5 for Grade 4 at CAPSAnaAcapella
 
Trauma-Informed Leadership - Five Practical Principles
Trauma-Informed Leadership - Five Practical PrinciplesTrauma-Informed Leadership - Five Practical Principles
Trauma-Informed Leadership - Five Practical PrinciplesPooky Knightsmith
 
會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文
會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文
會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文中 央社
 
Rich Dad Poor Dad ( PDFDrive.com )--.pdf
Rich Dad Poor Dad ( PDFDrive.com )--.pdfRich Dad Poor Dad ( PDFDrive.com )--.pdf
Rich Dad Poor Dad ( PDFDrive.com )--.pdfJerry Chew
 
8 Tips for Effective Working Capital Management
8 Tips for Effective Working Capital Management8 Tips for Effective Working Capital Management
8 Tips for Effective Working Capital ManagementMBA Assignment Experts
 
Basic Civil Engineering notes on Transportation Engineering & Modes of Transport
Basic Civil Engineering notes on Transportation Engineering & Modes of TransportBasic Civil Engineering notes on Transportation Engineering & Modes of Transport
Basic Civil Engineering notes on Transportation Engineering & Modes of TransportDenish Jangid
 
How To Create Editable Tree View in Odoo 17
How To Create Editable Tree View in Odoo 17How To Create Editable Tree View in Odoo 17
How To Create Editable Tree View in Odoo 17Celine George
 
會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽
會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽
會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽中 央社
 
ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH FORM 50 CÂU TRẮC NGHI...
ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH FORM 50 CÂU TRẮC NGHI...ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH FORM 50 CÂU TRẮC NGHI...
ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH FORM 50 CÂU TRẮC NGHI...Nguyen Thanh Tu Collection
 
When Quality Assurance Meets Innovation in Higher Education - Report launch w...
When Quality Assurance Meets Innovation in Higher Education - Report launch w...When Quality Assurance Meets Innovation in Higher Education - Report launch w...
When Quality Assurance Meets Innovation in Higher Education - Report launch w...Gary Wood
 
Contoh Aksi Nyata Refleksi Diri ( NUR ).pdf
Contoh Aksi Nyata Refleksi Diri ( NUR ).pdfContoh Aksi Nyata Refleksi Diri ( NUR ).pdf
Contoh Aksi Nyata Refleksi Diri ( NUR ).pdfcupulin
 
An overview of the various scriptures in Hinduism
An overview of the various scriptures in HinduismAn overview of the various scriptures in Hinduism
An overview of the various scriptures in HinduismDabee Kamal
 
Major project report on Tata Motors and its marketing strategies
Major project report on Tata Motors and its marketing strategiesMajor project report on Tata Motors and its marketing strategies
Major project report on Tata Motors and its marketing strategiesAmanpreetKaur157993
 
male presentation...pdf.................
male presentation...pdf.................male presentation...pdf.................
male presentation...pdf.................MirzaAbrarBaig5
 
UChicago CMSC 23320 - The Best Commit Messages of 2024
UChicago CMSC 23320 - The Best Commit Messages of 2024UChicago CMSC 23320 - The Best Commit Messages of 2024
UChicago CMSC 23320 - The Best Commit Messages of 2024Borja Sotomayor
 
The Liver & Gallbladder (Anatomy & Physiology).pptx
The Liver &  Gallbladder (Anatomy & Physiology).pptxThe Liver &  Gallbladder (Anatomy & Physiology).pptx
The Liver & Gallbladder (Anatomy & Physiology).pptxVishal Singh
 
Sternal Fractures & Dislocations - EMGuidewire Radiology Reading Room
Sternal Fractures & Dislocations - EMGuidewire Radiology Reading RoomSternal Fractures & Dislocations - EMGuidewire Radiology Reading Room
Sternal Fractures & Dislocations - EMGuidewire Radiology Reading RoomSean M. Fox
 
24 ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH SỞ GIÁO DỤC HẢI DƯ...
24 ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH SỞ GIÁO DỤC HẢI DƯ...24 ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH SỞ GIÁO DỤC HẢI DƯ...
24 ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH SỞ GIÁO DỤC HẢI DƯ...Nguyen Thanh Tu Collection
 

Recently uploaded (20)

Spellings Wk 4 and Wk 5 for Grade 4 at CAPS
Spellings Wk 4 and Wk 5 for Grade 4 at CAPSSpellings Wk 4 and Wk 5 for Grade 4 at CAPS
Spellings Wk 4 and Wk 5 for Grade 4 at CAPS
 
Trauma-Informed Leadership - Five Practical Principles
Trauma-Informed Leadership - Five Practical PrinciplesTrauma-Informed Leadership - Five Practical Principles
Trauma-Informed Leadership - Five Practical Principles
 
會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文
會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文
會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文
 
Rich Dad Poor Dad ( PDFDrive.com )--.pdf
Rich Dad Poor Dad ( PDFDrive.com )--.pdfRich Dad Poor Dad ( PDFDrive.com )--.pdf
Rich Dad Poor Dad ( PDFDrive.com )--.pdf
 
8 Tips for Effective Working Capital Management
8 Tips for Effective Working Capital Management8 Tips for Effective Working Capital Management
8 Tips for Effective Working Capital Management
 
Basic Civil Engineering notes on Transportation Engineering & Modes of Transport
Basic Civil Engineering notes on Transportation Engineering & Modes of TransportBasic Civil Engineering notes on Transportation Engineering & Modes of Transport
Basic Civil Engineering notes on Transportation Engineering & Modes of Transport
 
How To Create Editable Tree View in Odoo 17
How To Create Editable Tree View in Odoo 17How To Create Editable Tree View in Odoo 17
How To Create Editable Tree View in Odoo 17
 
會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽
會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽
會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽
 
ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH FORM 50 CÂU TRẮC NGHI...
ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH FORM 50 CÂU TRẮC NGHI...ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH FORM 50 CÂU TRẮC NGHI...
ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH FORM 50 CÂU TRẮC NGHI...
 
When Quality Assurance Meets Innovation in Higher Education - Report launch w...
When Quality Assurance Meets Innovation in Higher Education - Report launch w...When Quality Assurance Meets Innovation in Higher Education - Report launch w...
When Quality Assurance Meets Innovation in Higher Education - Report launch w...
 
Contoh Aksi Nyata Refleksi Diri ( NUR ).pdf
Contoh Aksi Nyata Refleksi Diri ( NUR ).pdfContoh Aksi Nyata Refleksi Diri ( NUR ).pdf
Contoh Aksi Nyata Refleksi Diri ( NUR ).pdf
 
An overview of the various scriptures in Hinduism
An overview of the various scriptures in HinduismAn overview of the various scriptures in Hinduism
An overview of the various scriptures in Hinduism
 
Major project report on Tata Motors and its marketing strategies
Major project report on Tata Motors and its marketing strategiesMajor project report on Tata Motors and its marketing strategies
Major project report on Tata Motors and its marketing strategies
 
male presentation...pdf.................
male presentation...pdf.................male presentation...pdf.................
male presentation...pdf.................
 
UChicago CMSC 23320 - The Best Commit Messages of 2024
UChicago CMSC 23320 - The Best Commit Messages of 2024UChicago CMSC 23320 - The Best Commit Messages of 2024
UChicago CMSC 23320 - The Best Commit Messages of 2024
 
VAMOS CUIDAR DO NOSSO PLANETA! .
VAMOS CUIDAR DO NOSSO PLANETA!                    .VAMOS CUIDAR DO NOSSO PLANETA!                    .
VAMOS CUIDAR DO NOSSO PLANETA! .
 
The Liver & Gallbladder (Anatomy & Physiology).pptx
The Liver &  Gallbladder (Anatomy & Physiology).pptxThe Liver &  Gallbladder (Anatomy & Physiology).pptx
The Liver & Gallbladder (Anatomy & Physiology).pptx
 
ESSENTIAL of (CS/IT/IS) class 07 (Networks)
ESSENTIAL of (CS/IT/IS) class 07 (Networks)ESSENTIAL of (CS/IT/IS) class 07 (Networks)
ESSENTIAL of (CS/IT/IS) class 07 (Networks)
 
Sternal Fractures & Dislocations - EMGuidewire Radiology Reading Room
Sternal Fractures & Dislocations - EMGuidewire Radiology Reading RoomSternal Fractures & Dislocations - EMGuidewire Radiology Reading Room
Sternal Fractures & Dislocations - EMGuidewire Radiology Reading Room
 
24 ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH SỞ GIÁO DỤC HẢI DƯ...
24 ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH SỞ GIÁO DỤC HẢI DƯ...24 ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH SỞ GIÁO DỤC HẢI DƯ...
24 ĐỀ THAM KHẢO KÌ THI TUYỂN SINH VÀO LỚP 10 MÔN TIẾNG ANH SỞ GIÁO DỤC HẢI DƯ...
 

math.pptx

  • 1.
  • 2. Supervised by Dr. Nadeem Abbas Presented by Anonymous Computational Analysis of Second Grade Fluid Flow over Riga Surfaces under Chemical Reaction and MHD Effects
  • 3.  Chapter 1: Fundamental definitions and concepts  Chapter 2: Computational Analysis of Second Grade Fluid Flow Over Riga Surfaces under Chemical Reaction and MHD Effects  Chapter 3:Computational Analysis of Third Grade Fluid Flow Over Stretching Surface Under Chemical Reaction And MHD Effects
  • 5. Fluid can be define as “Any gas or liquid or material that cannot maintain a tangential or searing force when at rest and that passes a continuous change in shape when subject to such a stress”. A material which cannot oppose the applied shear force is called fluid.  Gas or liquid is very simplest example of fluid.
  • 6. It is a subdivision of physics that hand out with the behavior of fluids at rest. Fluid mechanics has many implementations in a vast range of chemical engineering and biology. It has further three sub classes.  Fluid statistics  Fluid dynamics  Fluid kinematics
  • 7.  Fluid statistics A category of fluid that deals with fluids at rest are called fluid statistics. It is also called hydro statistics. It also studies the condition of submerged body and the condition of equilibrium.  Fluid dynamics In engineering and physics, it is a sub dichotomy of fluid mechanics that discuss about the flow of fluid gases and liquids  Fluid kinematics It is a type of fluid which concerned with such types of flow of fluid that cannot take into account the forces that cause the motion. For example velocity, speeds acceleration and displacement etc.
  • 8. A fluid in which a linear relationship exists at every point between deformation rate and viscous stress is called Newtonian fluids. Examples:  Water is a Newtonian fluid because its viscosity is not affected by shear rate.  Air is also a Newtonian fluid.
  • 9. Fluids which disobey the Newtonian law of viscosity are called non Newtonian fluids i.e. Constant viscosity is not depending on stress.  Example Ketchup, Yogurt, Slurries, Gels, Polymer solutions
  • 10. “The mass of any system can neither be demolish nor be generated it can just be interchanged by one system to another" Mathematically, it can be represented as: 𝜕ρ 𝜕t + 𝛻. ρV = 0. Where, ρ = density, V = velocity of fluid.  If flow is incompressible then ρ = 0 . So, it is, 𝛻. V = 0.
  • 11. The body forces operating on a surface and fluid forces is equal to the rate change in volume linear momentum. The differential form is given as: ρ dV dt = ∆. τ + ρb. Where, t is time, V is velocity, ρ is density and b is body force. τ = Cauchy tensor = −pI + μA1.
  • 12. The energy equation can be expressed as: ρCp dT dt = τ. L + k𝛻2T − divqr. Where, ρ = fluid density, L = gradient of velocity, k = thermal conductivity of fluid, qr = Radiative heat transmissin.
  • 13. The concentration equation for nanoparticles is mathematically represented as 𝜕 𝜕t + v. 𝛻 c = 𝛻 DT T∞ 𝛻T + DB(𝛻v) . where, DT = coefficient of diffusivity, C = nanopaticles concentration, DB = Brownian motion, T∞ = Ambient temprature,
  • 14. Computational Analysis of Second Grade Fluid Flow Over Riga Surfaces under Chemical Reaction and MHD Effects  Assumptions:  Second Grade Fluid over Riga Surface  MHD Effect
  • 15. Mathematical Formulation ∂u ∂x + ∂v ∂y = 0, (3.1) u ∂u ∂x + v ∂u ∂y = U∞ du∞ dx + v ∂2u ∂y2 + α1 ρ u ∂3u ∂x ∂y2 + ∂u ` ∂x ∂2u ∂y2 + 3 ∂u ∂y ∂2u ∂x ∂y + ν ∂3u ∂y3 + 2α2 ρ ∂u ∂y ∂2u ∂x ∂y + 6 β3 ρ ∂u ∂y 2 ∂2u ∂y2 − σB2 ρ (U − u), (3.2) u ∂T ∂x + v ∂T ∂y = k ∂2 T ∂y2 + Dm cs KT ∂2 a ∂y2 , (3.3) u ∂a ∂x + ν ∂a ∂y = D ∂2 a ∂y2 + Dm Tm KT ∂2 T ∂y2 , (3.4)
  • 16. Where, Dm is mass diffusivity,Tm is fluid temperature across boundary layer, cs is concentration succeptibility, KT is thermal diffusivity rate and Cp is specific The modifications are explained as, u → U∞ , T → T∞ → a∞ as y → ∞. heat flux. The boundary conditions for equations (3.1) to (3.4) are given below ν = 0, u = Uw , kc ∂T ∂y = −Qk0ae −E RT , D ∂a ∂y = k0ae− E RT , as y → 0, (3.5) ѱ = 𝑈∞ 𝜈 𝑙 1 2 𝑥𝑓(𝜂), 𝑇 − 𝑇∞ = 𝑅𝑇∞ 2 𝐸 𝜃, 𝑎 − 𝑎∞ = 𝑎∞ 𝛷 , 𝜂 = 𝑦 𝑈∞ 𝜈𝑙 1 2 (3.6)
  • 17. This gives: 𝑓′ 2 − 𝑓𝑓′′ = 1 + 𝑓′′′ + 𝜆1 2𝑓′ 𝑓′′′ + 3𝑓′′ 2 + 𝑓𝑓𝑖𝑣 + 2(𝑓′′ )2 + 𝜆2𝑓′′ 2 𝑓′′′ − 𝑀(1 − 𝑓′ ) (3.7) 1 𝑃𝑟 𝜃′′ + 𝑓𝜃′ + 𝛼1 𝛷′′ = 0 (3.8) 1 𝑆𝑐 𝛷′′ + 𝑓𝛷′ + 𝛼2𝜃′′ = 0 (3.9) By putting values we get the following results From Equ.(3.7) we get the value of highest derivative By applying the numerical technique, nonlinear differentia equation may be converted in the initial value problem as: f (iv ) = 1 −λ1f 1 + f ′′′ − f ′ 2 + ff ′′ + λ1 2f ′ f ′′′ + 5f ′′′ 2 + λ2f ′′ 2 f ′′′ − M(1 − f′) (3.10)
  • 18. From Equ. (3.9) Φ′′ = −Sc(fΦ′ − α2θ′′) Put it in (3.8) we get the final results for the value of θ′′ 1 Pr θ′′ + fθ′ + α1 −Sc(fΦ′ − α2θ′′ ) = 0 1 Pr θ′′ + fθ′ − α1Sc(fΦ′ ) + α1α2θ′′ = 0 fθ′ − α1Sc(fΦ′ ) = − 1 Pr + α1α2 θ′ This implies that θ′′ = 1 (− 1 Pr +α1α2) (fθ′ − α1Sc(fΦ′) (3.12) (3.11) Φ′′ = −Sc(fΦ′ − α2θ′′ ) (3.13)
  • 19. Table 3.1: Numerical values for Prantle number and Sherwood number 𝐏𝐫 𝐋 𝐍 𝐒𝐜 𝐌 𝛂𝟏 𝛂𝟐 𝐀 𝐟′′(𝟎) −𝛉′(𝟎) -𝛟′(𝟎) 1.0 0.3 1.0 0.3 0.3 0.6 0.2 2.0 0.0 0.33787 0.4410 1.5 0.3 1.0 0.3 0.3 0.6 0.2 2.0 0.0 0.35298 0.4493 2.0 - - - - - - - - 0.36262 0.4545 - 0.1 1.0 0.3 0.3 0.6 0.2 2.0 - 0.36025 0.4507 - 0.2 - - - - - - - 0.36158 0.4527 - 0.3 - - - - - - - 0.36262 0.4545 - - 0.6 0.3 0.3 0.6 0.2 2.0 - 0.36312 0.4555 - - 0.9 - - - - - - 0.36178 0.4530 - - 1.0 - - - - - - 0.36262 0.4545 - - - 0.3 0.3 0.6 0.2 2.0 - 0.36262 0.4545 -- -- -- 0.4 -- -- -- -- -- 0.36262 0.5149 -- -- -- 0.5 -- -- -- -- -- 0.36262 0.5708 -- -- -- -- 0.2 0.6 0.2 2.0 -- 0.3628 0.5713 -- -- -- -- 0.6 -- -- -- -- 0.36206 0.5693 -- -- -- -- 1.0 -- -- -- -- 0.36138 0.5674 -- -- -- -- -- 0.4 0.2 2.0 -- 0.45593 0.6451 -- -- -- -- -- 0.5 -- -- -- 0.40423 0.6029 -- -- -- -- -- 0.6 -- -- -- 0.36138 0.5674 -- -- -- -- -- -- 0.5 2.0 -- 0.47048 0.5170 -- -- -- -- -- -- 0.8 -- -- 0.43501 0.5335 -- -- -- -- -- -- 1.0 -- - - 0.41689 0.5419 -= -- -- -- -- -- -- 1.0 - 0.4932 0.4887 0.6706 -- -- -- -- -- -- -- 2.0 -- 0.58757 0.8424 -- -- -- -- -- -- -- 3.0 -- 0.69832 1.0251
  • 20. Fig. (3.1): Effects of λ1 onf′(η). Fig. (3.2): Effects of N on f′(η).
  • 21. Fig. (3.3): Effects of N onf′(η). Fig. (3.4): Effects of Pr on θ η .
  • 22. Fig .(3.5): Effects of α1 on θ(η). Fig.(3.6): Effects of α2 on θ η .
  • 23. Fig. (3.7): Effects of Sc on Φ(η). Fig. (3.8): Effects of α2on Φ(η).
  • 24. Computational Analysis of Third Grade Fluid Flow Over Stretching Surface Under Chemical Reaction And MHD Effects  Assumption:  Third Grade Fluid over Stretching Surface  MHD Effect
  • 25. Mathematical Formulation 𝜕u 𝜕x + 𝜕v 𝜕y =0, (4.1) u 𝜕u 𝜕x + v 𝜕u 𝜕y = u∞ du∞ dx + v 𝜕 2u 𝜕 y2 + α1 ρ u 𝜕 3u 𝜕x𝜕 y2 + 𝜕u `𝜕x 𝜕 2u 𝜕 y2 + (4.2)
  • 26. U 𝜕T 𝜕x + v 𝜕T 𝜕y = Kf ρCp 𝜕2T 𝜕y2 + DT T∞ 𝜕2C 𝜕y2 + μ ρCp U2 + R T − TW , (4.3) u 𝜕C 𝜕x + v 𝜕C 𝜕y = Dm 𝜕2 c 𝜕y2 + DT T∞ ( 𝜕2 T 𝜕y2 ) (4.4) Subject to the boundary conditions, ν = 0, u = Uw, kc 𝜕T 𝜕y = −Qk0ae −E RT , D 𝜕a 𝜕y = k0ae− E RT on y = 0 u → U∞, T → T∞ a → a∞ as y → ∞ (4.5) Where, U∞ = U0x l and Uw = λU∞ ѱ = U∞ν l 1 2 xf η , T − T∞ = RT∞ 2 E θ, a − a∞ = a∞Φ , η = y U∞ νl 1 2 (4.6)
  • 27. This gives: f′2 − ff′′ = 1 + f′′′ + λ1 2f′ f′′′ + 3f′′2 + ffiv + 2 f′′ 2 + λ2f′′2 f′′′ − M 1 − f′ , (4.7) 1 Pr θ′′ + fθ′ + DuΦ′′ + Ec f′′ 2 + Qθ = 0 (4.8) Φ′′ + Sc′ fΦ′ + Srθ′′ = 0 (4.9) Where, Sc = Schmidt number = ν Dm , Ec = μ2 CpUT = Eckert number From Equ.(4.9) Φ′′ = −Sc(fΦ′ + Srθ′′ ), (4.10)
  • 28. Put Equ. (4.10) in Equ.(4.11) 1 Pr θ′′ + fθ′ + Du(−Sc fΦ′ + Srθ′′ ) + Ec f′′ 2 + Qθ = 0 θ′′ = −pr fθ′ − DuSc fΦ′ + Srθ′′ + Ec f′′ 2 + Qθ , θ′′ − DuScPrθ′′ = −Pr fθ′ − DuScfΦ′ + Ec f′′ 2 + Qθ θ′′ 1 − DuScPr = − Pr fθ′ − DuScfΦ′ + Ec f′′ 2 + Qθ θ′′ = − Pr 1 − DuScPr fθ′ − DuScfΦ′ + Ec(f′′)2 + Qθ (4.11) From Equ. (4.7) f(iv) = 1 −λ1f 1 + f′′′ − f′2 + ff′′ + λ1 2f′ f′′′ + 5f′′′2 + λ2f′′2 f′′′ − M 1 − f′ (4.12)
  • 29. Table 3.1: Numerical values for Prantle number, Sherwood number, Eckert number, Dufour number 𝐏𝐫 L N 𝐒𝐜 M Q 𝐒𝐫 A 𝐃𝐮 𝐄𝐜 𝐒𝐑 f’’(0 ) −𝛉′(𝟎) −𝛟′(𝟎) 1.0 0. 3 2.0 0.3 0.8 1.0 1.0 0.2 0.5 0.4 1.0 0.0 -1.1496 - 0.0083618 1.5 --- - ---- ---- ----- ---- - ---- ---- ---- ---- ---- 0.0 -2.0476 -0.27583 2.0 --- -- ---- ---- ---- ---- - ---- ---- ---- ----- ----- 0.0 -3.5011 -0.70438 2.5 --- -- ---- - ---- - ---- ---- - ---- - ----- ---- - ----- ------ 0.0 -5.8301 -1.3912 --- - 0. 2 2.0 0.3 0.8 1.0 1.0 0.2 0.5 0.4 1.0 0.0 -1.1529 - 0.0099154 --- - 0. 4 ---- ---- ---- ---- ---- ---- ---- - ---- ---- 0.0 -7.2835 -1.816 --- - 0. 6 ---- ---- ---- ---- ---- ---- ---- ---- ---- 0.0 -1.15 - 0.0084594 --- - 0. 8 ---- ---- ---- ---- ---- ---- ---- ---- ---- 0.0 -1.1496 - 0.0083618 --- - --- - 0.5 0.3 0.8 1.0 1.0 0.2 0.5 0.4 1.0 0.0 -1.0895 0.013145 --- - --- - 1.0 ---- ---- ---- ---- ---- ---- ---- ---- 0.0 -1.104 0.0078877 --- - --- -- 1.5 ---- ---- ---- ---- ---- ---- ---- ---- 0.0 -1.1232 0.0007286 5 --- - --- - 2.0 ---- ---- ---- ---- ---- ---- ---- ---- 0.0 -1.1496 - 0.0083618 --- - --- - ---- 0.3 0.8 1.0 1.0 0.2 0.5 0.4 1.0 0.0 -1.1496 - 0.0083618 --- --- ---- 0.5 ---- ---- ---- ---- ---- ---- ---- 1.322 -1.4568 -0.30914
  • 30. Fig. (4.1): Effects of λ1 onf′(η). Fig. (4.2): Effects of N onf′ η
  • 31. Fig. (4.3): Effects of M on f′(η). Fig. (4.4): Effects of Du on θ η .
  • 32. Fig (4.6): Effects of Pr on θ(η). Fig (4.5): Effects of Ec on θ(η).
  • 33.  The rate of heat transfer improves as the Dufour number increase.  When the Soret number rises, the rate of heat transfer increases, but the concentration profile decreases.  By expanding the value of dimensionless parameters velocities shows reducing behavior while the temperature profile and the concentration profile shows expanding behavior.  By expanding the value of Prantle number Nusselt number θ′ 0 and the Sherwood number Φ′(0) will also expand.