SlideShare a Scribd company logo
1 of 136
Download to read offline
Cairo Oil Refining Co. ‫ول‬ ‫א‬ ‫א‬
Subsidery of Egyotian Gen. Petroleum Corp. ‫ول‬ ‫א‬ ‫א‬ ‫א‬ ª ‫د‬
P.O. Box : Heliopolis 11757 Cairo A.R.E. ‫د‬ ‫د‬ ‫א‬ ١١٧٥٧ ‫س‬ ‫و‬ ‫و‬ : .ª.‫ص‬
Tel. : 202 - 2529821 (5 Lines) (‫طوط‬ ٥) ٢٠٢ - ٢٥٢٩٨٢١ : ‫ون‬
Fax : 202 - 2529826 ٢٠٢ - ٢٥٢٩٨٢٦ : ‫س‬
E-mail : corc2000@excite.com corc2000@excite.com : ‫و‬ ‫א‬ ‫د‬
Shell & Tube Heat Exchanger
DESIGN CALCULATIONS
Code : ASME Section VIII, Division 1, Edition 2001, Addenda 2002
& TEMA Class R, 7th. Edition 1988.
Code Stamp : U
Client : Amerya Petroleum Refining Co. (APRC)
Project : Design & Fabrication of Residue Cooler
Location : Alexandria, EGYPT
Item No. : E-323 A E-323 B E-514 C E-514 C
Serial No. : 7443-33-U-2008, 7443-33-U-2009, 7443-33-U-2010 & 7443-33-U-2011
Title : Heat Exchanger
Service : Residue Cooler
Type : AES
Job No. : 7443-33
Dwg. No. : 7443-33-1A Rev. : 1
Cooler capacity 1.910848 M3
Weight of exchanger, empty (erection), W 4152.911 Kg
Weight of contents, Wc 764 Kg
Total weight of vessel and contents, Wt 4917 Kg
MAWP : Shell Side 284.776 PSIG 20.04826 Kg/CM2
G
Tube SideTube Side 71.7082 PSIG 5.04826 Kg/CM2
G
Design Temp. : Shell Side 302
o
F 150
o
C
Tube Side 140
o
F 60
o
C
MDMT : Shell Side 29
o
F -2
o
C
Tube SideTube Side 29
o
F -2
o
C
No. of saddles 2 Saddles
No. of anchor bolts per saddle 4 Bolts
Anchor bolts size 28 MM Dia.
By
Eng. Abdel Halim Galala
Design General Manager
Design Sector ‫מ‬ ‫א‬ ‫ع‬ ‫ط‬
Page : 1 of 136 Sheet 1 of 2 Date : 11.4.2004
DESIGN CALCULATIONS OF HEAT EXCHANGER Page : 2 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Sheet : 2 of 2
Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant) Rev. : 1
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Date : 11.4.2004
Job No. : 7443-33 Location : Alex.
Dwg. No. : 7443-33-1A, Rev. 1 Client : APRC
Exchanger : Residue Cooler, Type : AES, TEMA class : R Items : E-323A/B & E-514C/D
A. Title (cont.)
DESIGN CALCULATIONS
Code : ASME Section VIII, Division 1, Edition 2001, Addenda 2002
& TEMA Class R, 7th. Edition 1988.
Client : Amerya Petroleum Refining Co.
Project : Design & Fabrication of Residue Cooler
Location : Alexandria, EGYPT
Item No. : E-323 A E-323 B E-514 C E-514 C
Serial No. : 7443-33-U-2008, 7443-33-U-2009, 7443-33-U-2010 & 7443-33-U-2011
Title : Heat Exchanger
Service : Residue Cooler
Type : AES
Job No. : 7443-33
Dwg. No. : 7443-33-1A Rev. : 1
Notes.
1. The calculated thicknesses are the min. required, where the actual thicknesses shown
on drawings shall be equal or may be greater.
2. The greater thicknesses at drawings are taken into consideration while calaculating the
MDMT and additional stresses due to incresed weight of vessel.
3
2
1 Issued for approval 11.4.2004 11.4.2004 11.4.2004
A. Halim A.H. Galala A.H.G
0 Issued for comments 4.7.2003 4.7.2003 4.7.2003
Designed by Reviewed by Approved by
Rev. Description Date Date Date
Revision Table
Dwg. No. : 7443-33-1A Rev. : 1
DESIGN CALCULATIONS OF HEAT EXCHANGER Page : 3 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Sheet : 1 of 1
Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant) Rev. : 1
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Date : 11.4.2004
Job No. : 7443-33 Location : Alex.
Dwg. No. : 7443-33-1A, Rev. 1 Client : APRC
Exchanger : Residue Cooler, Type : AES, TEMA class : R Items : E-323A/B & E-514C/D
B. Copyright.
Copyright 2002 by
CORC
A.H.Galala, the Design Manager, on behalf of
Cairo Oil Refining Co. (CORC)
All rights reserved.
1st. date of issue - July, 4th., 2003
No part of this document may be reproduced in any form, in
an electronic retrieveal system or any otherwise without the
prior written permission of the CORC/Designer.
DESIGN CALCULATIONS OF HEAT EXCHANGER Page : 4 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Sheet : 1 of 1
Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant) Rev. : 1
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Date : 11.4.2004
Job No. : 7443-33 Location : Alex.
Dwg. No. : 7443-33-1A, Rev. 1 Client : APRC
Exchanger : Residue Cooler, Type : AES, TEMA class : R Items : E-323A/B & E-514C/D
C. Revision Description.
This page is a record of all revisions of the document, and the
following revision(s) has (have) been made to this document.
Sheet
Rev. Date No. Revision Description
0 4.7.2003 all Issued for comments
1 11.4.2004 all Issued for approval
2 16.1.2005 7 UG-22 : Abnormal pressures
DESIGN CALCULATIONS OF HEAT EXCHANGER Page : 5 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Sheet : 1 of 2
Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant) Rev. : 1
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Date : 11.4.2004
Job No. : 7443-33 Location : Alex.
Dwg. No. : 7443-33-1A, Rev. 1 Client : APRC
Exchanger : Residue Cooler, Type : AES, TEMA class : R Items : E-323A/B & E-514C/D
D. Table of Contents.
Description Page
A. Title. Page : 1 of 136
B. Copyright. Page : 3 of 136
C. Revisions Description. Page : 4 of 136
D. Table of Contents. Page : 5 of 136
E. Applicable Loading Considered in Design. Page : 7 of 136
F. Impact Test Requirements. Page : 8 of 136
G. Standarad ASME B16.5 Flange Rating Class. Page : 8 of 136
H. Cylindrical Main Shell Thickness
1. Under Internal Pressureal (Pipe 20" NPS) Page : 9 of 136
2. Check of Main Shell Thickness for External Pressure (FV). Page : 10 of 136
I. Cylindrical Stationary Head-Channel.
1. Under Internal Pressure Page : 12 of 136
2. Check of Channel Thickness for External Pressure (Full Vacuum) Page : 13 of 136
J. Main Ellipsoidal Head Thickness
Under Internal Pressure. Page : 14 of 136
K. Max. Internal Working Pressure, MWP at New (cold) & Operating (corroded)
1. For Shell-Side : Page : 15 of 136
2. For Tube-Side : Page : 15 of 136
3. For Tubes : (Item 38) Page : 17 of 136
L. Check for External Pressure (Convex Side), (Tube Side Full Vacuum)
1. Ellipsoidal Head (Stationary Head-Bonnet NA) Page : 18 of 136
2. Channel Page : 19 of 136
3. Tubes Page : 20 of 136
M. Nozzle Neck Thicknesses & Nozzle Openings Compensation :
M1 S1 & S2 6" NPS 300# WNRF Sch. 80 10.9728 Page : 21 of 136
M2 T1 & T2 6" NPS 150# WNRF Sch. 80 10.9728 Page : 26 of 136
N. Main Shell Flange (item no. 4). E514FLG 5 Page : 36 of 136
N1. Main Shell Flanges (item no. 3). E514FLG 6 Page : 46 of 136
N2. Main Shell Flanges (item no. 12). E514FLG 7 Page : 56 of 136
O. Main Channel Flanges (items no. 18). E514FLG 9 Page : 66 of 136
P. Channel Cover (blind flange) (item no. 22). E514FLG 14 Page : 76 of 136
Q. Stationary Tubesheet (item no. 36). TUBSH514 4 Page : 82 of 136
Q1. Floating Tubesheet (item no. 37). TUBSH514 6 Page : 84 of 136
Q2. TEMA Pass Partition Plate Thickness Calculation (item nTUBSH514 7 Page : 86 of 136
Q3. Floating Head, Flange & Backing Ring (items no. 29, 30 E514FLG 15 Page : 87 of 136
File Sheet
DESIGN CALCULATIONS OF HEAT EXCHANGER Page : 6 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Sheet : 2 of 2
Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant) Rev. : 1
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Date : 11.4.2004
Job No. : 7443-33 Location : Alex.
Dwg. No. : 7443-33-1A, Rev. 1 Client : APRC
Exchanger : Residue Cooler, Type : AES, TEMA class : R Items : E-323A/B & E-514C/D
D. Table of Contents (cont.)
Description Page
R. Design of Saddle Supports. Page : 99 of 136
S. Lowest MDMT Without Impact Test. Page : 106 of 136
T. Radiography. Page : 116 of 136
U. Hydrostatic Test Pressure. [UG-99(b)] [ Refer to Page : 116 of 136
V. Post Weld Heat Treatment (PWHT). Page : 116 of 136
W. Calculation of Exchanger Weight. Page : 117 of 136
X. Stresses in Vessel on Two Saddle Supports Using ZICK's Method. Page : 121 of 136
Y. Check for the Anchor Bolts Due to Seismic and Wind Loading. Page : 129 of 136
Check for the Existing Anchor Bolts Due to Seismic and Wind Loading. Page : 130 of 136
Z. Check for Bundle Pulling. Page : 131 of 136
Z1. Lifting Lugs Thickness Calculations. Page : 133 of 136
Z2. References. Page : 135 of 136
Z3. Notes. Page : 136 of 136
Figures Index.
Figure (1) Page : 36 of 136
Figure (2) Page : 46 of 136
Figure (3) Page : 56 of 136
Figure (4) Page : 66 of 136
Figure (5) Page : 76 of 136
Figure (6) Page : 87 of 136
Figure (7) Page : 91 of 136
Figure (8) Page : 100 of 136
Figure (9) Page : 100 of 136
Figure (10) Page : 104 of 136
Figure (11) Page : 122 of 136
Figure (12) Page : 123 of 136
Figure (13) Page : 124 of 136
Figure (14) Page : 124 of 136
Figure (15) Page : 128 of 136
Figure (16) Page : 129 of 136
Figure (17) Page : 129 of 136
Figure (18) Page : 131 of 136
Figure (19) Page : 131 of 136
Figure (20) Page : 132 of 136
Figure (21) Page : 133 of 136
Figure (22) Page : 134 of 136
DESIGN CALCULATIONS OF HEAT EXCHANGER Page : 7 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Sheet : 1 of 1
Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant) Rev. : 2
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Date : 11.4.2004
Job No. : 7443-33 Location : Alex.
Dwg. No. : 7443-33-1A, Rev. 1 Client : APRC
Exchanger : Residue Cooler, Type : AES, TEMA class : R Items : E-323A/B & E-514C/D
E. Applicable Loading Considered in Design. [UG-22 & UG-98]
I. By considering UG-22 :
1. The loadings to be considered in design of exchanger shall include the following :
a. Internal & external design pressure (see item II below).
b. Weight of the vessel and contents under test conditions.
c. Attachment of vessel supports such as lifting lugs and saddles.
2. No expected effect for superimposed static reactions such as piping .
There is no attached equipment such as motors, machinery, other vessels,
and lining. and insulation.
3. The effect of the following loadings is considered negligible and /or not applicable :
a. Cyclic and dynamic reactions due to pressure for thermal variations.
b. Snow reactions.
c. Impact reactions due to fluid chock.
d. Temperature gradients and differential thermal expansion.
e. Abnormal pressures, such as those caused by deflagration.
II. By considering UG-21 & UG-98 :
The max. allowable working pressure for a vessel part is the max.internal
pressure at the highest point of vessel (i.e. including the static head theron).
Since the exchanger is intended to be erected horizontaly, the static head
equals almost the ID of the exchanger (dimension units of water).
Max. Operating Pressure, Shell side 241.5 PSIG 17 Kg/cm2
G
Tube side 42.6 PSIG 3 Kg/cm2
G
Internal design pressure, P (MAWP) Shell side 284.0909 PSIG 20 Kg/cm2
G
Tube side 71.02273 PSIG 5 Kg/cm2
G
External design pressure, Pex (Tube side) 15 PSIG 1.056 Kg/cm2
G
Exchanger shell ID (fabricated from Pipe 24" NPS, Sch. 30), ID 19 INCH 482.6 MM
Water sp. gr. 1
Fluid sp. gr. 0.8
Max. hydrostatic head at internal bottom of vessel* 0.685511 PSIG 0.04826 Kg/cm2
G
Max. internal pressure : Shell side 284.7764 PSIG 20.0483 Kg/cm2
G
Tube side 71.70824 PSIG 5.04826 Kg/cm2
G
* p water 0.036127 lb/INCH3
1000 Kg/M3
Max. internal working pressure MAWP for calculation : Shell side 286 PSIG 20.0483 Kg/cm2
G
Tube side 73 PSIG 5.04826 Kg/cm2
G
External design pressure, Pe (at tube side) 15 PSIG 1.056 Kg/cm2
G
DESIGN CALCULATIONS OF HEAT EXCHANGER Page : 8 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Sheet : 1 of 1
Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant) Rev. : 1
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Date : 11.4.2004
Job No. : 7443-33 Location : Alex.
Dwg. No. : 7443-33-1A, Rev. 1 Client : APRC
Exchanger : Residue Cooler, Type : AES, TEMA class : R Items : E-323A/B & E-514C/D
F. Impact Test Requirements. [UG-22 & UG-98]
Impact test is not mandatory for the following pressure vessels materials at the specified MDMT :
I. Pressure Parts.
a. Main Exchanger Components : P-No. Group No. Curve
a. Shell, Main Shell : ASME SA 106 Grade B 1 1 B
Shell Cover Course
Channel : ASME SA516 Grade 70 1 1 D
b. Faormed Heads (cap) : ASME SA234 WPB 1 1 B
Floating Head (Spherical Sector) :
c. Nozzle Necks : ASMESA 106 Grade B 1 1 B
d. Standard Flanges : ASME SA105 1 2 B
Non Standard Shell Flanges : ASME SA266 Class 2 1 2 B
Non Standard Channel Flanges : ASME SA266 Class 2 1 2
Channel Cover (blind flange) : ASME SA266 Class 2 1 2
Floating Head Flange : ASME SA266 Class 2 1 2
Backing Ring Flange : ASME SA266 Class 2 1 2
e. Stationary Tubesheet : ASME SB171 C63000 1 1 B
Floatng Tubesheet : ASME SB171 C63000 1 1 B
f. Tubes : ASME SB111 C68700 1 2 B
g. Fittings : Half Couplings : ASME SA105
90 0 Elbows : ASME SA234 WPB
b. Stud Bolts & Nuts :
i. Stud Bolts : ASME SA193 Grade B7 UNS No. G41400 [Size < 2-1/2"]
j. Nuts : ASME SA194 Grade 2H
II. Non-Pressure Parts.
a. Saddle plate : ASME SA106 Grade B 1 1 B
b. Lifting lugs & Pads : ASME SA 516 Grade 70 1 2 D
Thickness of exchanger components :
- Shell & Heads ASME SA106 Grade B 0.5 INCH 12.7 MM
- Max. Nozzle Necks Thk. ASME SA106 Grade B 0.432 INCH 10.9728 MM
Min. Design Metal Temperature, MDMT 28
o
F -2
o
C
Where the MDMT is in accordance with UG-20(f), UCS-66
and FIG. UCS-66, no impact test is required. Please refer to : Page : 106 of 136
Impct Test is not required as per ASME Code for MDMT of 28
o
F -2
o
C
but is required as a client request.
G. Standard ASME Flange Rating Class.
1. Standard ASME B16.5 welded neck flanges shall be used.
2. For standard flange, Carbon Steel material in accordance with ASME SA105,
P-No. 1, Group No. 2 :
a. Shell side flanges, S1 & S2, 6" NPS : MAWP 186 PSIG & Design temp. 302 o
F : Raing 300#
b. Tube side flanges, T1 & T2, 6" NPS : MAWP 72 PSIG & Design temp. 140 o
F : Raing 150#
DESIGN CALCULATIONS OF HEAT EXCHANGER Page : 9 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Sheet : 1 of 3
Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant) Rev. : 1
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Date : 11.4.2004
Job No. : 7443-33 Location : Alex.
Dwg. No. : 7443-33-1A, Rev. 1 Client : APRC
Exchanger : Residue Cooler, Type : AES, TEMA class : R Items : E-323A/B & E-514C/D
H. Cylindrical Main Shell Thickness [UG-27(C)]
1. Under Internal Pressureal (Pipe 20" NPS)
Shell material, Killed carbon steel ASME SA 106 Grade B
Operating Temperature : Shell Side 230
o
F 110
o
C
Tube Side 104
o
F 40
o
C
Design Temperature : Shell Side 302
o
F 150
o
C
Tube Side 140
o
F 60
o
C
Min. Design Metal Temperature, MDMT 28
o
F -2
o
C
Operating Pressure: Shell Side 241.477 PSIG 17 Kg/CM2
G
Tube Side 42.6136 PSIG 3 Kg/CM2
G
Internal Design Pressure: Shell Side 284.091 PSIG 20 Kg/CM2
G
Tube Side 71.0227 PSIG 5 Kg/CM2
G
Shell Inside Diameter, D (by using pipe 20" NPS, Sch.30) 19 INCH 482.6 MM
Shell Inside Radius, R 9.5 INCH 241.3 MM
Stationary Shell Inside Diameter, Ds 19 INCH 482.6 MM
Static Head = Inside Diameter (D) 0.4826 M
Static Head Pressure: Shell & Tube Side 0.68551 PSIG 0.04826 Kg/CM2
G
Floating Head Side 0.68551 PSIG 0.04826 Kg/CM2
G
Internal Design Pressure, P (MAWP): Shell Side 284.776 PSIG 20.04826 Kg/CM2
G
Tube Side 71.7082 PSIG 5.04826 Kg/CM2
G
Max. Allowable Stress @ Design Temp., S 17100 PSIG 1203.84 Kg/CM2
G
Max. Allowable Stress @ Test Temp., St 17100 PSIG 1203.84 Kg/CM2
G
[ Table 1A , SubPart 1 , ASME Sec. II , Part D]
Hydrostatic Test Pressure, Ph = 1.3*MAWP(St/S) [UG-99(b)] 370.2093347 PSIG 26.062738
Kg/CM
2
G
Ph = 1.5*MAWP(St/S) [shell side] [Owner request] 427.164617 PSIG 30.07239
Kg/CM2
G
Corrosion Allowance, C [UG-25] 0.19685 INCH 5 MM
Joint Efficiency, E [Table UW-12] 0.85
[Spot Radiography], [Table UCS-57]
Value of 0.385 SE [UG-27C(1)] 5595.98 PSIG 393.9567 Kg/CM2
G
Since P does not exceed 0.385 SE , Use Thin Wall Equation:
[1] Min. Wall Thickness for Longitudinal Joints,
t1 = PR/(SE - 0.6 P) [UG-27C(1)] 0.18834 INCH 4.783898 MM
[2] Min. Wall Thickness for Circumferential Joints,
t2 = PR/(2SE + 0.4 P) [UG-27C(2)] 0.0927 INCH 2.354604 MM
The Min. Thickness shall be the Greater of t1 or t2 0.18834 INCH 4.783898 MM
By Adding Corrosion Allowance to Wall Tickness, t 0.38519 INCH 9.783898 MM
Use 20" Pipe with thickness of Construction, t (Sch. 30, 12.7 MM) 0.5 INCH 12.7 MM
20" Pipe wall thickness without tolerance 12.5% 0.4375 INCH 11.1125 MM
20" Pipe wall thickness without corrosion allowance 0.24065 INCH 6.1125 MM
Min. Pipe Shell Thickness according to TEMA Table R-3.13 0.375 INCH 9.525 MM
DESIGN CALCULATIONS OF HEAT EXCHANGER Page : 10 of 136 S
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Sheet : 2 of 3
Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant) Rev. : 1
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Date : 11.4.2004
Job No. : 7443-33 Location : Alex.
Dwg. No. : 7443-33-1A, Rev. 1 Client : APRC
Exchanger : Residue Cooler, Type : AES, TEMA class : R Items : E-323A/B & E-514C/D
2. Check of Main Shell Thickness for External Pressure (FV).
a. Check of Shell Thickness (NA)
For external pressure on cylinder, use UG-28 and Subpart 3.
Determine the effective length of shell without stiffening rings, L
Height of shell flange-stationary head end (flange 7), L7 3.70079 INCH 94 MM
Height of shell flange-rear head end (flange 6), L6 3.74016 INCH 95 MM
Total shell length (flange-to-flange), L' 228.346 INCH 5800 MM
Effective shell length without stiffening, L = L' - (L6 + L7) 228.346 INCH 5800 MM
In case of shell with heads, L = 1/3 each head depth + straight 234.68 INCH 5960.867 MM
Assume t for internal pressure (corroded) 0.24065 INCH 6.1125 MM
Do = ID + 2 t 19.4813 INCH 494.825 MM
L / Do 12.0464 For L/Do > 50, use it = 50
Do / t 80.953
a. Enter Fig. G with L / Do and read across to sloping line of Do/t
Read factor A 0.00038
b. Enter Fig. CS-2 with A (to find factor B), 5600 PSIG 394.24 Kg/CM2
G
Follow step (6) of UG-28(c), PA = 4B / 3 (Do / t) 92.2346 PSIG 6.493318 Kg/CM2
G
Change t untill PA > 15 PSI (full vacuum) 15 PSIG 1.056 Kg/CM2
G
OK
For A falling to the left of the applicable material/temp. line,
Pa can be calculated from formula, Pa = 2 A E / 3(Do/t) 86.4329 PSIG 6.084877 Kg/CM2
G
E = Modulus of elasticity at design temp. 2.8E+07 PSIG 1970355 Kg/CM2
G
at amp. temp. 2.9E+07 PSIG 2055680 Kg/CM2
G
The uncorroded shell wall thickness must not lrss than
Use the uncorroded shell wall thickness
Use Thickness of Construction, t (Adopted thickness)
Corroded Thickness = Adopted thickness + Corrosion allowance
Insulation Yes
Post Weld Heat Treatment, PWHT N.A.
DESIGN CALCULATIONS OF HEAT EXCHANGER Page : 11 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Sheet : 3 of 3
Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant) Rev. : 1
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Date : 11.4.2004
Job No. : 7443-33 Location : Alex.
Dwg. No. : 7443-33-1A, Rev. 1 Client : APRC
Exchanger : Residue Cooler, Type : AES, TEMA class : R Items : E-323A/B & E-514C/D
A. CYLINDRICAL SHELL THICKNESSES [UG-27(C)]
a.2. Floating Shell
Shell material, Killed carbon steel (Pipe 26" Sch. 20) ASME SA 516 Grade 70
Operating Temperature : Shell Side 230
o
F 110
o
C
Tube Side 104
o
F 40
o
C
Design Temperature : Shell Side 302
o
F 150
o
C
Tube Side 140
o
F 60
o
C
Min. Design Metal Temperature, MDMT 28.4
o
F -2
o
C
Operating Pressure: Shell Side 241.477 PSIG 17 Kg/CM2
G
Tube Side 42.6136 PSIG 3 Kg/CM2
G
Internal Design Pressure: Shell Side 284.091 PSIG 20 Kg/CM2
G
Tube Side 71.0227 INCH 5 MM
Shell Inside Diameter, D 24.9843 INCH 634.6 MM
Shell Inside Radius, R 12.4921 INCH 317.3 MM
Stationary Shell Inside Diameter, Ds 19 INCH 482.6 MM
Static Head = Inside Diameter (D) 0.6346 M
Static Head Pressure: Shell & Tube Side 0.90142 PSIG 0.06346 Kg/CM2
G
Floating Head Side 0.0009 PSIG 6.35E-05 Kg/CM2
G
Internal Design Pressure, P (MAWP): Shell Side 284.092 PSIG 20.00006 Kg/CM2
G
Tube Side 71.9241 PSIG 5.06346 Kg/CM2
G
Max. Allowable Stress @ Design Temp., S 17100 PSIG 1203.84 Kg/CM2
G
Max. Allowable Stress @ Test Temp., St 17100 PSIG 1203.84 Kg/CM2
G
[ TABLE 1A , SUBPART 1 , ASME SEC. II , PART D]
Hydrostatic Test Pressure, Ph = 1.3*MAWP(St/S) 369.319 PSIG 26.00008 Kg/CM2
G
[ UG-99(b) ]
Corrosion Allowance, C [UG-25] 0.19685 INCH 5 MM
Joint Efficiency, E [TABLE UW-12] 0.85
[Full Radiography], [Table UCS-57]
Value of 0.385 SE [UG-27C(1)] 5595.98 PSIG 393.9567 Kg/CM2
G
Since P does not exceed 0.385 SE , Use Thin Wall Equation:
[1] Min. Wall Thickness for Longitudinal Joints,
t1 = PR/(SE-0.6P) [UG-27C(1)] 0.24706 INCH 6.275335 MM
[2] Min. Wall Thickness for Circumferential Joints,
t2 = PR/(2SE+0.4P) [UG-27C(2)] 0.12161 INCH 3.088797 MM
The Min. Thickness shall be the Greater of t1 or t2 0.24706 INCH 6.275335 MM
By Adding Corrosion Allowance to Wall Tickness, t 0.44391 INCH 11.27533 MM
Use Plate with thickness of Construction, t 0.5 INCH 12.7 MM
Min. Plate Shell Thickness according to TEMA Table R-3.13 0.4375 INCH 11.1125 MM
Insulation Yes
Post Weld Heat Treatment, PWHT N.A.
DESIGN CALCULATIONS OF HEAT EXCHANGER Page : 12 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Sheet : 1 of 2
Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant) Rev. : 1
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Date : 11.4.2004
Job No. : 7443-33 Location : Alex.
Dwg. No. : 7443-33-1A, Rev. 1 Client : APRC
Exchanger : Residue Cooler, Type : AES, TEMA class : R Items : E-323A/B & E-514C/D
I. Cylindrical Stationary Head-Channel. [UG-27(C)]
1. Under Internal Pressure
Shell material, Killed carbon steel ASME SA 106 Grade B
Operating Temperature : Shell Side 230
o
F 110
o
C
Tube Side 104
o
F 40
o
C
Design Temperature : Shell Side 302
o
F 150
o
C
Tube Side 140
o
F 60
o
C
Min. Design Metal Temperature, MDMT 28.4
o
F -2
o
C
Operating Pressure: Shell Side 241.477 PSIG 17 Kg/CM2
G
Tube Side 42.6136 PSIG 3 Kg/CM2
G
Internal Design Pressure: Shell Side 284.091 PSIG 20 Kg/CM2
G
Tube Side 71.0227 PSIG 5 Kg/CM2
G
Shell Inside Diameter, D 19 INCH 482.6 MM
Shell Inside Radius, R 9.5 INCH 241.3 MM
Stationary Shell Inside Diameter, Ds 19.0157 INCH 483 MM
Static Head = Inside Diameter (D) 0.4826 M
Static Head Pressure: Shell & Tube Side 0.68551 PSIG 0.04826 Kg/CM2
G
Floating Head Side 0.68608 PSIG 0.0483 Kg/CM2
G
Internal Design Pressure, P (MAWP): Shell Side 284.776 PSIG 20.04826 Kg/CM2
G
Tube Side 71.7082 PSIG 5.04826 Kg/CM2
G
Max. Allowable Stress @ Design Temp., S 17100 PSIG 1203.84 Kg/CM2
G
Max. Allowable Stress @ Test Temp., St 17100 PSIG 1203.84 Kg/CM2
G
[ TABLE 1A , SUBPART 1 , ASME SEC. II , PART D]
Hydrostatic Test Pressure, Ph = 1.3*MAWP(St/S) [UG-99(b)] 370.2093347 PSIG 26.062738
Kg/CM2
G
Ph = 1.5*MAWP(St/S) [tubel side] [Owner request] 427.164617 PSIG 30.07239
Kg/CM2
G
Corrosion Allowance, C [UG-25] 0.19685 INCH 5 MM
Joint Efficiency, E [TABLE UW-12] 0.85
[Full Radiography], [Table UCS-57]
Value of 0.385 SE [UG-27C(1)] 5595.98 PSIG 393.9567 Kg/CM2
G
Since P does not exceed 0.385 SE , Use Thin Wall Equation:
[1] Min. Wall Thickness for Longitudinal Joints,
t1 = PR/(SE-0.6P) [UG-27C(1)] 0.04743 INCH 1.204611 MM
[2] Min. Wall Thickness for Circumferential Joints,
t2 = PR/(2SE+0.4P) [UG-27C(2)] 0.0927 INCH 2.354604 MM
The Min. Thickness shall be the Greater of t1 or t2 0.0927 INCH 2.354604 MM
By Adding Corrosion Allowance to Wall Tickness, t 0.28955 INCH 7.354604 MM
Use plate thickness, Use 20" Pipe with thickness of Construction, t (Sch. 30, 12.7 MM) 0.51181 INCH 13 MM
20" Pipe wall thickness without tolerance 12.5%
0.511811024 INCH 13 MM
Plate Thickness less corrosion allowance 20" Pipe wall thickness without corrosion allowance 0.51181 INCH 13 MM
Min. Plate thickness Min. Pipe Shell Thickness according to TEMA Table R-3.13 0.375 INCH 9.525 MM
DESIGN CALCULATIONS OF HEAT EXCHANGER Page : 13 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Sheet : 2 of 2
Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant) Rev. : 1
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Date : 11.4.2004
Job No. : 7443-33 Location : Alex.
Dwg. No. : 7443-33-1A, Rev. 1 Client : APRC
Exchanger : Residue Cooler, Type : AES, TEMA class : R Items : E-323A/B & E-514C/D
I. Cylindrical Stationary Head-Channel. [UG-27(C)]
2. Check of Channel Thickness for External Pressure (Full Vacuum)
For external pressure on cylinder, use UG-28 and Subpart 3.
Determine the effective length of shell without stiffening rings, L
Height of shell flange-stationary head end (flange 5), L7 4.72441 INCH 120 MM
Height of shell flange-rear head end (flange 6), L6 5.11811 INCH 130 MM
Total shell length (flange-to-flange), L' 23.622 INCH 600 MM
Effective shell length without stiffening, L = L' - (L6 + L7) 23.622 INCH 600 MM
In case of shell with heads, L = 1/3 each head depth + straight 29.96062992 INCH 761 MM
Assume t for internal pressure (corroded) 0.51181 INCH 13 MM
Do = ID + 2 t 20.0236 INCH 508.6 MM
L / Do 1.49626 For L/Do > 50, use it = 50
Do / t 39.1231
a. Enter Fig. G with L / Do and read across to sloping line of Do/t
Read factor A 0.00038
b. Enter Fig. CS-2 with A (to find factor B), which is off to the left side and can4750 PSIG 334.4 Kg/CM2
G
Follow step (6) of UG-28(c), PA = 4B / 3 (Do / t) 161.882 PSIG 11.39651 Kg/CM2
G
Change t untill PA > 15 PSI (full vacuum) 15 PSIG 1.056 Kg/CM2
G
OK
For A falling to the left of the applicable material/temp. line,
Pa can be calculated from formula, Pa = 2 A E / 3(Do/t) 201.032 PSIG 14.15267 Kg/CM2
G
E = Modulus of elasticity at design temp. 3.1E+07 PSIG 2214784 Kg/CM2
G
at amp. temp. 2.9E+07 PSIG 2055680 Kg/CM2
G
The uncorroded shell wall thickness must not lrss than
Use the uncorroded shell wall thickness
Use Thickness of Construction, t (Adopted thickness)
Corroded Thickness = Adopted thickness + Corrosion allowance
Insulation Yes
Post Weld Heat Treatment, PWHT N.A.
DESIGN CALCULATIONS OF HEAT EXCHANGER Page : 14 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Sheet : 1 of 1
Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant) Rev. : 1
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Date : 11.4.2004
Job No. : 7443-33 Location : Alex.
Dwg. No. : 7443-33-1A, Rev. 1 Client : APRC
Exchanger : Residue Cooler, Type : AES, TEMA class : R Items : E-323A/B & E-514C/D
J. Main Ellipsoidal Head Thickness [UG-32(d)]
Under Internal Pressure. [Semi-ellipsoidal form 2:1 ]
Head Material, Carbon Steel ASME SA 234 WPB
Design Temperature (shell side) 302
o
F 150
o
C
MIN. Design Metal Temperature, MDMT 28
o
F -2
o
C
Operating Pressure (shell side) 156.25 PSIG 11 Kg/CM2
G
Internal Design Pressure (shell side) 284.091 PSIG 20 Kg/CM2
G
Internal Design Pressure, P (MAWP) 284.992 PSIG 20.06346 Kg/CM2
G
Head Skirt Inside Diameter, Di 24.9843 INCH 634.6 MM
Head Inside Radius, L ( ri ) 12.4921 INCH 317.3 MM
Static Head 0.90142 PSIG 0.06346 Kg/CM2
G
Max. Allowable Stress @ Design Temp., S 17100 PSIG 1203.84 Kg/CM2
G
Max. Allowable Stress @ Test Temp., St 17100 PSIG 1203.84 Kg/CM2
G
[TABLE 1A , SUBPART 1 , ASME SEC. II , PART D]
Corrosion Allowance, C [UG-25] 0.19685 INCH 5 MM
Joint Efficiency, E (Spot Radiography) [Table UW-12] 0.85
Assume Outside Diameter of Head, DO 25.4751 INCH 647.0672 MM
Outside Radius of Head, RO 12.7375 INCH 323.5336 MM
Value of 0.665 SE 9665.78 PSIG 680.4706 Kg/CM2
G
Since the value of 0.66SE > P, Use Thin Wall Equation for
Calculating the Min. required Thickness of Head, t:
t1 = PD /(2SE-0.2P) [UG-32(d)] (1) 0.24542 INCH 6.233623 MM
Compare to Thickness of Seamless Spherical Shell :
Ps = 0.665 SE 9665.78 PSIG 680.4706 Kg/CM2
G
Since P < Ps, Calculate Thickness for thin Wall Spherical Shell:
t2 = PR/(2SE-0.2P) [UG-27(d)] (2) 0.12271 INCH 3.116812 MM
Head Thickness due to Internal Pressure: t = MAX ( t1 , t2 ) 0.24542 INCH 6.233623 MM
By adding Corrosion Allowance to Wall Thickness, 0.44227 INCH 11.23362 MM
Use 26" Cap with thickness of Construction, t (Thk. 14.27 MM) 0.56181 INCH 14.27 MM
[ t Represents the Min. Thickness after Forming ]
Head required thickness, tr = P K1 D / (2SE - 0.2P) 0.22088 INCH 5.610261 MM
NB. The required head thickness for reinforcement calculation are to be determined by the
hemispherical head formula using an equivalent radius of K1 D where,
Spherical Radius Factor, K1 (for ellipsoidal head 2:1) 0.9 [Table UG-37]
DESIGN CALCULATIONS OF HEAT EXCHANGER Page : 15 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Sheet : 1 of 3
Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant) Rev. : 1
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Date : 11.4.2004
Job No. : 7443-33 Location : Alex.
Dwg. No. : 7443-33-1A, Rev. 1 Client : APRC
Exchanger : Residue Cooler, Type : AES, TEMA class : R Items : E-323A/B & E-514C/D
K. Max. Internal Working Pressure, MWP at New (cold) & Operating (corroded)
[MWP is differ from MAP or MAWP]
1. For Shell-Side : 302
o
F 150
o
C
Main shell (Item 1) :
MWP, New & cold (12.7 MM-12.5%) P = SE t /(R + 0.6 t) [UG-27(c)(1)] 608.569 PSIG 42.843 Kg/CM2
G
MWP, Operating & corroded (9.286 MM) P = SE t /(R + 0.6 t) 455.517 PSIG 32.068 Kg/CM2
G
Head (cap) (Item 13) :
MWP, New & cold (12.7-12.5% MM) P = 2SE t /(D + 0.2 t) [UG-32(d)(1)] 621.582 PSIG 43.75937 Kg/CM2
G
MWP, Operating & corroded (9.286 MM), P = 2SE t /(D + 0.2 t) 462.789 PSIG 32.58034 Kg/CM2
G
Nozzle Neck 6" NPS, Sch. 80 for N3 & N4 (item 6) :
MWP, New & cold (7.489 MM-12.5%) neck 740 PSIG 52.096 Kg/CM2
G
MWP, Operating & corroded (4.289 MM) neck N3 & N4 664.4 PSIG 46.774 Kg/CM2
G
Standard Flange 6" NPS, ANSI 300#, Sch. 80 for N3 & N4 (items 5) :
MWP, New & cold [TEMA Table D-6.1] 740 PSIG 52.096 Kg/CM2
G
MWP, Operating & corroded [TEMA Table D-6.1] 655 PSIG 46.112 Kg/CM2
G
Non Standard Flange (Item 4) : MWP, New & cold 425.258 PSIG 29.938 Kg/CM2
G
MWP, Operating & corroded 335.398 PSIG 23.612 Kg/CM2
G
Non Standard Flange (Item 3) : MWP, New & cold 425.258 PSIG 29.938 Kg/CM2
G
MWP, Operating & corroded 335.398 PSIG 23.612 Kg/CM2
G
Non Standard Flange (Item 12) : MWP, New & cold 425.258 PSIG 29.938 Kg/CM2
G
MWP, Operating & corroded 335.398 PSIG 23.612 Kg/CM2
G
DESIGN CALCULATIONS OF HEAT EXCHANGER Page : 16 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Sheet : 2 of 3
Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant) Rev. : 2
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Date : 4.7.2003
Job No. : 7443-33 Location : Alex.
Dwg. No. : 7443-33-1A, Rev. 1 Client : APRC
Exchanger : Residue Cooler, Type : AES, TEMA class : R Items : E-323A/B & E-514C/D
K. Max. Internal Working Pressure, MWP at New (cold) & Operating (corroded) (cont.)
[MWP is differ from MAP or MAWP]
2. For Tube-Side : 608
o
F 320
o
C
Channel (Item 17) :
MWP, New & cold (13 MM-12.5%.) P = SE t /(R + 0.6 t) [UG-27(c)(1)] 608.569 PSIG 42.843 Kg/CM2
G
MWP, Operating & corroded (8 MM) P = SE t /(R + 0.6 t) 455.537 PSIG 32.07 Kg/CM2
G
Nozzle Neck 6" NPS, Sch. 80 for N1& N2 (item 20) :
MWP, New & cold (7.489 MM-12.5%) neck 285 PSIG 20.064 Kg/CM2
G
MWP, Operating & corroded (4.289 MM) neck 275 PSIG 19.36 Kg/CM2
G
Standard Flange 6" NPS, ANSI 150#, Sch. 80 for N1& N2 (item 19) :
MWP, New & cold [TEMA Table D-6.1] 285 PSIG 20.064 Kg/CM2
G
MWP, Operating & corroded [TEMA Table D-6.1] 260 PSIG 18.304 Kg/CM2
G
Non Standard Flanges (Item 18) : MWP, New & cold 425.258 PSIG 29.938 Kg/CM2
G
MWP, Operating & corroded 335.368 PSIG 23.61 Kg/CM2
G
Blind Flange (Item 22) : [see page 47 of 80]MWP, New & cold 289.381 PSIG 20.372 Kg/CM2
G
MWP, Operating & corroded 263.006 PSIG 18.516 Kg/CM2
G
Stationary Tubesheet (Item 36) : [see page 49 of 80]MWP, New & cold 431.681 PSIG 30.39 Kg/CM2
G
MWP, Operating & corroded 384.282 PSIG 27.053 Kg/CM2
G
Floating Tubesheet (Item 37) : [see page 49 of 80]MWP, New & cold 431.681 PSIG 30.39 Kg/CM2
G
MWP, Operating & corroded 384.282 PSIG 27.053 Kg/CM2
G
Floating Head Spherical Sector (Item 30) : [see page 49 of 80]MWP, New & c431.681 PSIG 30.39 Kg/CM2
G
MWP, Operating & corroded 384.282 PSIG 27.053 Kg/CM2
G
Floating Head Elange (Item 29) : [see page 49 of 80]MWP, New & cold 431.681 PSIG 30.39 Kg/CM2
G
MWP, Operating & corroded 384.282 PSIG 27.053 Kg/CM2
G
Floating Head Backing Ring (Item 31) : [see page 49 of 80]MWP, New & cold 431.681 PSIG 30.39 Kg/CM2
G
MWP, Operating & corroded 384.282 PSIG 27.053 Kg/CM2
G
DESIGN CALCULATIONS OF HEAT EXCHANGER Page : 17 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Sheet : 3 of 3
Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant) Rev. : 1
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Date : 11.4.2004
Job No. : 7443-33 Location : Alex.
Dwg. No. : 7443-33-1A, Rev. 1 Client : APRC
Exchanger : Residue Cooler, Type : AES, TEMA class : R Items : E-323A/B & E-514C/D
K. Max. Internal Working Pressure, MWP at New (cold) & Operating (corroded) (cont.)
3. For Tubes : (Item 38)
Tube Material ASME SB111 UNS No. C68700-061
P-Number
Group Number
Max. Temp. Limit 450
o
F 232.2222
o
C
Design Temperature : Shell Side 302
o
F 150
o
C
Tube Side 140
o
F 60
o
C
Test Pressure Temp. (ambient temp.) 104
o
F 40
o
C
Max. Allowable Stress @ Design Temp.302
o
F (150 o
C), S 11492 PSIG 809.0368 Kg/CM2
G
Max. Allowable Stress @ Test Temp. 104
o
F (40
o
C), St 11992 PSIG 844.2368 Kg/CM2
G
[Table 1A, SubPart 1, ASME Sec. II, Part D]
No of tubes, n 146
Tube OD 1 INCH 25.4 MM
Tube length, L 236.22 INCH 6000 MM
Tube pitch, p 1.45472 INCH 36.95 MM
Tube BWG [TEMA Table D-7] 13
Tube wall thickness, tt [TEMA Table D-7] 0.09843 INCH 2.500122 MM
Tube pattern (Triangle, equal angles 60
o
) (square rotated) 30
o
MWP (internal), New & cold [TEMA Table D-9] 4132.3 PSIG 290.9139 Kg/CM2
G
MWP (internal), Operating & corroded [TEMA Table D-9] 3963.55 PSIG 279.0339 Kg/CM2
G
Design pressure (tube-side), P 71.0227 PSI 5 Kg/CM2
G
Design temperature (tube-side) 140
o
F 60
o
C
Max. Allowable Stress @ Design Temp.302
o
F (150 o
C), S 11492 PSIG 809.0368 Kg/CM2
G
Corrosion Allowance, C [UG-25] 0 INCH 0 MM
Joint Efficiency, E [TABLE UW-12] 1
Tube required thickness, trn = PRn /(SnEn - 0.6 P) [UG-27] 0.0062 INCH 0.157561 MM
Max. Internal Working pressure MWP for whole Exchanger :
Shell side : MWP, New & cold 425.258 PSIG 29.938 Kg/CM2
G
MWP, Operating & corroded 335.398 PSIG 23.612 Kg/CM2
G
Tube side : MWP, New & cold 285 PSIG 20.064 Kg/CM2
G
MWP, Operating & corroded 260 PSIG 18.304 Kg/CM2
G
DESIGN CALCULATIONS OF HEAT EXCHANGER Page : 18 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Sheet : 1 of 3
Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant) Rev. : 1
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Date : 11.4.2004
Job No. : 7443-33 Location : Alex.
Dwg. No. : 7443-33-1A, Rev. 1 Client : APRC
Exchanger : Residue Cooler, Type : AES, TEMA class : R Items : E-323A/B & E-514C/D
L. Check for External Pressure (Convex Side), (Tube Side Full Vacuum)
1. Ellipsoidal Head (Stationary Head-Bonnet NA)
[UG-33(d)]
Assumed corroded thickness of head, t 0.43583 INCH 11.07 MM
Outside diameter of the head skirt, Do 23.7638 INCH 603.6 MM
The equivalent outside spherical, Ro = Ko Do [UG-33(b)] 20.2171 INCH 513.5147 MM
Outside height of the ellipsoidal head (measured from head-bend line), ho 6.28484 INCH 159.635 MM
Ratio of the major to the minor axis of ellipsoidal head, Do/2ho 1.89056
Factor depending on the ellipsoidal head proportions Do/2ho, Ko 0.85075
(use interpolation) [See Table UG-33.1]
The required thickness of an ellipsoidal head having pressure on the
convex side, either seamless or of built-up construction with butt joints,
shall not be less than that determined by the following procedure :
Step 1. Assume a value for t and calculate the value of factor A
using the following formula : A = 0.125 / (Ro / t) 0.00269
Step 2. Using the value of A calculate in Step 1, follow the same
procedure as that given for sphericalshells in UG-28(d),
Step 2 through 6 :
a. Enter Fig. CS-2 with A (to find factor B), which is under the curve, B 9900 PSIG 696.96 Kg/CM2
G
Follow step (4) of UG-28(d), and calculate the value of max. allowable
external working pressure, PA = B / (Ro / t) 213.417 PSIG 15.02459 Kg/CM2
G
Change t untill PA > 15 PSI (full vacuum) 15 PSIG 1.056 Kg/CM2
G
OK
Notes.
1. For value of A falling to the left of the material-temp. line, the value
of Pa can be calculated in accordance with Step 5 of UG-28(d), as
follows : Pa = 0.0625 E / (Ro /t)2
E = Modulus of elasticity at design temp. 2.6E+07 PSIG 1823360 Kg/CM2
G
DESIGN CALCULATIONS OF HEAT EXCHANGER Page : 19 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Sheet : 2 of 3
Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant) Rev. : 1
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Date : 11.4.2004
Job No. : 7443-33 Location : Alex.
Dwg. No. : 7443-33-1A, Rev. 1 Client : APRC
Exchanger : Residue Cooler, Type : AES, TEMA class : R Items : E-323A/B & E-514C/D
L. Check of External Pressure (Convex Side), (Tube Side Full Vacuum) (cont.)
2. Channel
Channel Material ASME SA106 Grade B
Design Temperature 140
o
F 60
o
C
Corrosion allowance 0.19685 INCH 5 MM
Channel Diameter, 20" NPS 20 INCH 508 MM
Channel Thickness (20" Sch. 30) 0.562 INCH 14.2748 MM
Channel Thickness (20" Sch. 30) - 12.5% 0.49175 INCH 12.49045 MM
For external pressure on cylinder, use UG-28 and Subpart 3.
Determine the effective length of shell without stiffening rings, L : 23.622 INCH 600 MM
Assume t for internal pressure (at corroded condition) 0.2949 INCH 7.49045 MM
Do = ID + 2 t 20 INCH 508 MM
L / Do 1.1811
Do / t 67.8197 > 10 UG-28(c)(1)
Since Do/t > 10, use UG-28(c)(1)
a. Enter Fig. G with L / Do and read across to sloping line of Do/t
Read factor A 0.00035
b. Enter Fig. CS-2 with A (to find factor B), which falls under the curve. 11500 PSIG 809.6 Kg/CM2
G
Follow step (6) of UG-28(c)(1), and calculate the value of max. allowable
external working pressure, PA = 4B / 3 (Do / t) 226.09 PSIG 15.91672 Kg/CM2
G
Change t untill PA > 15 PSI (full vacuum) 15 PSIG 1.056 Kg/CM2
G
OK
E = Modulus of elasticity at design temp. 3.3E+07 PSIG 2323200 Kg/CM2
G
at amp. temp. 2.9E+07 PSIG 2055680 Kg/CM2
G
Notes 1. For value of A falling to the left of the material-temp. line, the value
of Pa can be calculated as follows : Pa = 2 A E / 3 (Do /t)
2. For L/Do > 50, use L/Do = 50
For L/Do < 0.05, use L/Do = 0.05
3. For Do/t > 10, use UG-28(c)(1)
For Do/t < 10, use UG-28(c)(2)
DESIGN CALCULATIONS OF HEAT EXCHANGER Page : 20 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Sheet : 3 of 3
Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant) Rev. : 1
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Date : 11.4.2004
Job No. : 7443-33 Location : Alex.
Dwg. No. : 7443-33-1A, Rev. 1 Client : APRC
Exchanger : Residue Cooler, Type : AES, TEMA class : R Items : E-323A/B & E-514C/D
L. Check of External Pressure (Convex Side), (Tube Side Full Vacuum) (cont.)
3. Tubes
Tube Material ASME SB111 UNS No. C68700-061
Design Temperature 140
o
F 60
o
C
Corrosion allowance 0 INCH 0 MM
Tube OD 1 INCH 25.4 MM
Tube BWG 13
Tube Wall Thickness 0.09843 INCH 2.500122 MM
For external pressure on cylinder, use UG-28 and Subpart 3.
Determine the effective length of tube without stiffening rings, L : 236.22 INCH 6000 MM
Assume t for internal pressure (at corroded condition) 0.09843 INCH 2.500122 MM
Do 1 INCH 25.4 MM
L / Do 236.22 > 50
Use L / Do 50
Do / t 10.1595 > 10 UG-28(c)(1)
Since Do/t > 10, use UG-28(c)(1)
Step 1. Enter Fig. G in Subpart 3 of Sec. II, Part D with L / Do and read
across to sloping line of Do/t Read factor A 0.012
Step 2. Enter Fig. NFC-2 with A (to find factor B), which falls under the curve. 6150 PSIG 432.96 Kg/CM2
G
Follow step (2) of UG-28(c)(1), and calculate the value of max. allowable
external working pressure.
Step 3. Calculate a value of Pa = 4 B / 3 (Do/t) 807.126 PSIG 56.82167 Kg/CM2
G
Step 4. Compare the calculated value of Pa with Pe 807.126 PSIG 56.82167 Kg/CM2
G
Change t untill Pa > 15 PSI (full vacuum) 15 PSIG 1.056 Kg/CM2
G
OK
Change t untill Pa > 186 PSI (full vacuum with respect to shell-side) 186 PSIG 13.0944 Kg/CM2
G
OK
Change t untill Pa > 30.7Kg/cm2 (436 PSI) (hydrostatic test of tube sid436 PSIG 30.6944 Kg/CM2
G
OK
Notes 1. For value of A falling to the left of the material-temp. line, the value
of Pa can be calculated as follows : Pa = 2 A E / 3 (Do /t)
2. For L/Do > 50, use L/Do = 50
For L/Do < 0.05, use L/Do = 0.05
3. For Do/t > 10, use UG-28(c)(1)
For Do/t < 10, use UG-28(c)(2) :
- for Do/t < 4, A = 1.1 / (Do/t)2
- for A > 0.10, use a value of 0.10
DESIGN CALCULATIONS OF HEAT EXCHANGER Page : 21 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Sheet : 1 of 5
Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant) Rev. : 1
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Date : 11.4.2004
Job No. : 7443-33 Location : Alex.
Dwg. No. : 7443-33-1A, Rev. 1 Client : APRC
Exchanger : Residue Cooler, Type : AES, TEMA class : R Items : E-323A/B & E-514C/D
M1. Nozzle Mark : N3 & N4 6" 300# WNRF (Located at Shell) with Reinforcement
Nozzle Neck Thickness Calculation [UG-27(c) & Appendix 1-1]
Nozzle Size, NPS 6 INCH 150 DN
Nozzle Material ASME SA 106 Grade B
Design Pressure, P 284.776 PSIG 20.04826 Kg/CM2
G
Design Temperature 302
o
F 150
o
C
For nominated Design Pressure & Temperature, Flange Rating 300#
[ASME B16.5-1996]
Max. Allowable Stress of Nozzle Material @ Design Temp.(150
o
C), Sn 17100 PSIG 1203.84 Kg/CM2
G
Max. Allowable Stress of Nozzle Materiall @ Test Temp.(40
o
C), Snt 17100 PSIG 1203.84 Kg/CM2
G
[Table 1A, SubPart 1, ASME Sec. II, Part D]
Outside Radius of Nozzle, Ron 3.3125 INCH 84.1375 MM
Joint Efficiency of Nozzle, En (Seamless Pipe) 1
Nozzle Corrosion Allowance, Can 0.19685 INCH 5 MM
Nozzle Thickness Calculation :
Longitudinal Stress, t = PRon /(Sn*En + 0.4 P) [Appendix 1.1] 0.0548 INCH 1.391917 MM
By adding Corrosion Allowance, t [UG-25] 0.25165 INCH 6.391917 MM
By adding Pipe Tolerance 12.5% to the Thickness of Nozzle, t 0.28311 INCH 7.190907 MM
Use Nozzle 6" NPS with Selected Neck Sch. 80, 0.432 INCH 10.9728 MM
with Thickness 0.432" ( 10.97 MM ). [Table 2 of ASME B 36.10M-1985-(R-1994)]
Nozzle Neck Maximum Working Pressure, MWP (New & Operating)
Nozzle wall thickness less tolerance 12.5% 0.378 INCH 9.6012 MM
Nozzle wall thickness less tolerance 12.5% - Corrosion allowance 0.18115 INCH 4.6012 MM
MWP, New & cold (10.97 MM) P = Snt E t /(Ron - 0.4 t) [App. 1.1] 2044.67 PSIG 143.944 Kg/CM2
G
MWP, Operating & corroded (4.6 MM) P = Sn E t /(Ron - 0.4 t) 956.056 PSIG 67.306 Kg/CM2
G
Nozzle Flange Maximum Working Pressure, MWP (New & Operating)
MWP, New & cold , 300# @ 100 o
F [ASME B.165, Table 2] 740 PSIG 52.096 Kg/CM2
G
MWP, Operating & corroded, 300# @ 302
o
F [ASME B16.5, Table 2] 664.4 PSIG 46.774 Kg/CM2
G
DESIGN CALCULATIONS OF HEAT EXCHANGER Page : 22 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Sheet : 2 of 5
Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant) Rev. : 1
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Date : 11.4.2004
Job No. : 7443-33 Location : Alex.
Dwg. No. : 7443-33-1A, Rev. 1 Client : APRC
Exchanger : Residue Cooler, Type : AES, TEMA class : R Items : E-323A/B & E-514C/D
M1. Nozzle Mark : N3 & N4 6" 300# WNRF (Located at Shell) (cont.)
Nozzle Opening Calculation With Reinforcing [UG-27(c) & Appendix 1-1]
Nozzle Pipe Size, NPS 6 INCH 150 DN
Nozzle Pipe Sch. 80
Design Pressure, P 185.483 PSIG 13.058 Kg/CM2
G
Design Temparture 302
o
F 150
o
C
Shell Material ASME SA106 Grade B
Nozzle Material ASME SA 106 Grade B
Reinforcing Pad Material ASME SA 106 Grade B
Allowable Stress of Shell Material, Sv 17100 PSIG 1203.84 Kg/CM2
G
Allowable Stress of Nozzle Material, Sn 17100 PSIG 1203.84 Kg/CM2
G
Allowable Stress of Pad Material, Sp 17100 PSIG 1203.84 Kg/CM2
G
Shell Thickness 0.5 INCH 12.7 MM
Shell Corrosion Allowance, Cas 0.19685 INCH 5 MM
Shell Thickness less Pipe Tolerance 12.5% (12.5% NA) 0.4375 INCH 11.1125 MM
Shell Thickness less Corrosion Allowance & 12.5%, t (12.5% NA) 0.24065 INCH 6.1125 MM
Nozzle Wall Nominal Thickness 0.432 INCH 10.9728 MM
Nozzle Wall Thickness less Pipe Tolerance 12.5% 0.378 INCH 9.6012 MM
Nozzle Corrosion Allowance, Can 0.19685 INCH 5 MM
Nozzle Wall Thick. less Corr. Allowance & 12.5% , tn 0.18115 INCH 4.6012 MM
Nozzle Wall Thick.of Internal Projection (less Corr. Allowance & 12.5%), ti 0.18115 INCH 4.6012 MM
Reinforced Pad Thickness, te 0.5 INCH 12.7 MM
Joint Efficiency of Shell, E 1
Joint Efficiency of Nozzle, En 1
Correction Factor, F [UG-37(a)] 1
E1 [Nozzle in solid plate] 1
Shell Outside Diameter, OD 20 INCH 508 MM
Shell Inside Diameter in Corroded Condition, 2R = OD - 2 t 19.5187 INCH 495.775 MM
Shell Inside Radius in Corroded Condition, R 9.75935 INCH 247.8875 MM
Nozzle Outside Diameter, OD 6.625 INCH 168.275 MM
Nozzle Inside Diameter, ID 5.761 INCH 146.3294 MM
Nozzle Projection beyond Inner Vessel Wall, h = min. (h1,h2) 0 INCH 0 MM
h1 = 2.5 t 0.60162 INCH 15.28125 MM
h2 = 2.5 ti 0.45287 INCH 11.503 MM
Nozzle ID Without Corrosion Allowance & 12.5% , d = OD - 2*tn 6.2627 INCH 159.0726 MM
Finished Radius of Circular Opening, Rn 3.13135 INCH 79.5363 MM
DESIGN CALCULATIONS OF HEAT EXCHANGER Page : 23 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Sheet : 3 of 5
Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant) Rev. : 1
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Date : 11.4.2004
Job No. : 7443-33 Location : Alex.
Dwg. No. : 7443-33-1A, Rev. 1 Client : APRC
Exchanger : Residue Cooler, Type : AES, TEMA class : R Items : E-323A/B & E-514C/D
M1. Nozzle Mark : N3 & N4 6" 300# WNRF (Located at Shell) (cont.)
Nozzle Opening Calculation With Reinforcing (cont.)
[UG-27(c) & Appendix 1-1]
* Outside Diameter of Reinforced Pad (if used) [UG-40(b)&FIG.UG-37.1]
Dp1 = 2 d 12.5254 INCH 318.1452 MM
Dp2 = 2 (Rn + nozzle wall thk. , tn + vessel wall thk. , t ) 7.1063 INCH 180.5 MM
OD of Reinf. Pad, Dp = the greater of Dp1 or Dp2 12.5254 INCH 318.1452 MM
Calculating Siz of Fillet Welds : [UW-16(c)(2)&Fig.UW-16.1]
* For Outward Nozzle Weld [UW-16(c)(2)&Fig.UW-16.1Sketch (c)]
Calculation of tmin. :
tmin.1 = 0.75 inch 0.75 INCH 19.05 MM
tmin.2 (nozzle wall nominal thickness) 0.432 INCH 10.9728 MM
tmin.3 (shell wall thickness) 0.56181 INCH 14.27 MM
tmin. = lesser of tmin.1, tmin. & tmin.3 0.432 INCH 10.9728 MM
Calculation of tc : tc1 = 0.25 inch 0.25 INCH 6.35 MM
tc2 = 0.7 t min. 0.3024 INCH 7.68096 MM
tc = lesser of tc1 & tc2 0.25 INCH 6.35 MM
By Considering Equal Legs Fillet Welds :
Leg of Outward Nozzle Weld = SQRT2 * tc 0.35355 INCH 8.980256 MM
Use Leg with Dimension E in Dwg. No. 7443-33-1A 0.35433 INCH 9 MM
* For Outer Reinforcing Pad Weld [Fig.UW-16 Sketch (c)]
tmin.1 = 0.75 inch 0.75 INCH 19.05 MM
tmin.2 ( te = thk. of reinforcing element) 0.5 INCH 12.7 MM
tmin.3 ( shell wall thickness) 0.5 INCH 12.7 MM
tmin. = lesser of tmin.1, tmin. 2 & tmin.3 0.5 INCH 12.7 MM
1/2 tmin. 0.25 INCH 6.35 MM
By Considering Equal Legs Fillet Welds :
Leg of Outer Pad Weld = SQRT(2)*(tmin./2) 0.35355 INCH 9 MM
Use Leg with Dimension D in Dwg. No. 7443-33-1A 0.35433 INCH 9 MM
* Wall Thickness Required : [UG-27(c)(1)]
Shell tr = PR / (SE - 0.6 P) 0.1255 INCH 3.187732 MM
Nozzle trn = PRn /(SnEn - 0.6 P) 0.03419 INCH 0.868379 MM
* Strength Reduction Factors : Sp / Sv 1
fr1 = Sn / Sv 1
fr2 = Sn / Sv 1
fr3 = lesser of Sn/Sv or Sp/Sv 1
fr4 = Sp / Sv 1
DESIGN CALCULATIONS OF HEAT EXCHANGER Page : 24 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Sheet : 4 of 5
Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant) Rev. : 1
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Date : 11.4.2004
Job No. : 7443-33 Location : Alex.
Dwg. No. : 7443-33-1A, Rev. 1 Client : APRC
Exchanger : Residue Cooler, Type : AES, TEMA class : R Items : E-323A/B & E-514C/D
M1. Nozzle Mark : N3 & N4 6" 300# WNRF (Located at Shell) (cont.)
Min. Nozzle Neck Wall Thickness Check Per UG-45
A. Wall Thickness per UG-45(a) : trna = trn + C.A. 0.23104 INCH 5.868379 MM
B. Wall Thickness per UG-45(b) : trnb = Min. (trnb1, trnb2, trnb3, trnb 0.245 INCH 6.223 MM
Wall Thickness per UG-45(b)(1), trnb1 = Min. (trnb11, trnb12) 0.2906 INCH 7.38125 MM
trnb11 = tr + C.A. (tr for shell or head at E=1) 0.32235 INCH 8.187732 MM
trnb12 = Min Wall Thickness per UG-16(b), see below 0.2906 INCH 7.38125 MM
Wall Thickness per UG-45(b)(2), trnb2 (apply to external pressure only), NA INCH #VALUE! MM
Wall Thickness per UG-45(b)(3), trnb3 (apply to internal & external pressure)
= Max. (trnb1, trnb2) NA INCH #VALUE! MM
Wall Thickness per UG-45(b)(4), trnb4
= Min. thickness of std. wall pipe - 12.5% Max. (including CA) 0.245 INCH 6.223 MM
(Under tolerance12.5% in accordance with ASME B36.10M)
Nominal thickness of std. pipe wall thickness, NPS 6", Sch. Std. 0.28 INCH 7.112 MM
Wall Thickness per UG-16(b), trnb12
I - Min. Wall Thickness 1/16" + C.A. 0.25935 INCH 6.5875 MM
II - Min. Wall Thickness of Unfired Steam Boilers = 1/4" + C.A. 0.44685 INCH 11.35 MM
III - Min. Wall Thickness of Shell/Head in Compressed Air
Service, Steam Service, and Water Service = 3/32" + C.A. 0.2906 INCH 7.38125 MM
Selected Vessel Service in our case is : Case III (compressed air)
So, the Min. Wall Thickness per UG-16(b), trnb12 0.2906 INCH 7.38125 MM
The min. nozzle wall thk. = Max. thk. determined by UG-45(a), or by UG-45(b)0.245 INCH 6.223 MM
The min. nozzle thk. provided = t (1-0.125) 0.378 INCH 9.6012 MM
So, the thickness provided meets the rules of UG-45. OK
Since there is no superimposed loads, the vessel doesn't require
a calculationon shear stresses caused by UG-22(c).
DESIGN CALCULATIONS OF HEAT EXCHANGER Page : 25 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Sheet : 5 of 5
Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant) Rev. : 1
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Date : 11.4.2004
Job No. : 7443-33 Location : Alex.
Dwg. No. : 7443-33-1A, Rev. 1 Client : APRC
Exchanger : Residue Cooler, Type : AES, TEMA class : R Items : E-323A/B & E-514C/D
M1. Nozzle Mark : N3 & N4 6" 300# WNRF (Located at Shell) (cont.)
Nozzle Opening Calculation With Reinforcing (cont.) [UG-27]
Area of Reinforcement (witht Reinforcing element) :
Required Area, A = d tr F + 2 tn tr F(1-fr1) 0.78598 INCH
2
507.0808 MM2
Area Available in Shell, A1:
A11 = d (E1 t - F tr) - 2tn (E1 t - F tr)(1-fr1) 0.72114 INCH
2
465.2505 MM2
A12 = 2 (t + tn)(E1 t - F tr) - 2tn (E1 t - F tr)(1-f r1) 0.09714 INCH2
62.67018 MM2
A1 = The Greater of A11 or A12 0.72114 INCH
2
465.2505 MM2
Area Available in Nozzle Projecting Outward, A2 :
A21 = 5 (tn - trn) fr2 t 0.17683 INCH
2
114.0844 MM2
A22 = 2 (tn - trn)(2.5tn+te) fr2 0.28007 INCH2
180.691 MM2
A2 = The Lesser of A21 or A22 0.17683 INCH
2
114.0844 MM2
Area Available in Inward Nozzle, A3 : (Not applicable)
A31 = 5 t ti fr2 0.21797 INCH2
140.6242 MM2
A32 = 5 ti ti fr2 0.16408 INCH2
105.8552 MM2
A33 = 2 h ti fr2 0 INCH2
0 MM2
A3 = The Greater of A31, A32 or A33 0 INCH
2
0 MM2
Area Available in Outward Nozzle Weld, A41:
A41 = (LEG)
2
fr2 0.12555 INCH2
81 MM2
Area Available in Outer Reinforcing Pad Weld, A42:
A42 = (LEG)
2
fr4 0.12555 INCH
2
81 MM2
Area Available in Inward Nozzle Weld, A43 :
A43 = (LEG)
2
fr2 0 INCH
2
0 MM2
Area Available in Reinforcing Pad, A5 :
A5 = (Dp - d - 2tn) te fr4 2.9502 INCH
2
1903.352 MM2
Total Area Available, AT :
AT = A1 + A2 + A41 + A42 + A43 + A5 4.09927 INCH
2
2644.686 MM2
AT is greater than A, therefore opening is adequately reinforced.
NOTE. No need for Strength Path Calculations.
DESIGN CALCULATIONS OF HEAT EXCHANGER Page : 26 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Sheet : 1 of 5
Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant) Rev. : 1
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Date : 11.4.2004
Job No. : 7443-33 Location : Alex.
Dwg. No. : 7443-33-1A, Rev. 1 Client : APRC
Exchanger : Residue Cooler, Type : AES, TEMA class : R Items : E-323A/B & E-514C/D
M2. Nozzle Mark : N1 & N2 6" 150# WNRF (Located at Channel) with reinforcement
Nozzle Neck Thickness Calculation [UG-45, UG-27 & APPENDIX 1-1]
Nozzle Size, NPS 6 INCH 150 DN
Nozzle Material ASME SA 106 Grade B
Design Pressure, P 71.708 PSIG 5.04826 Kg/CM2
G
Design Temperature 140
o
F 60
o
C
For nominated Design Pressure & Temperature, Flange Rating 150#
[ASME B16.5-1996]
Max. Allowable Stress of Nozzle Material @ Design Temp.(60
o
C), Sn 17100 PSIG 1203.84 Kg/CM2
G
Max. Allowable Stress of Nozzle Materiall @ Test Temp.(40
o
C), Snt 17100 PSIG 1203.84 Kg/CM2
G
[Table 1A, SubPart 1, ASME Sec. II, Part D]
Outside Radius of Nozzle, Ron 3.3125 INCH 84.1375 MM
Joint Efficiency of Nozzle, En (Seamless Pipe) 1
Nozzle Corrosion Allowance, Can 0.19685 INCH 5 MM
Nozzle Thickness Calculation :
Longitudinal Stress, t = PRon /(Sn*En + 0.4 P) [APPENDIX 1.1] 0.01387 INCH 0.352236 MM
By adding Corrosion Allowance, t [UG-25] 0.21072 INCH 5.352236 MM
By adding Pipe Tolerance 12.5% to the Thickness of Nozzle, t 0.23706 INCH 6.021265 MM
Use Nozzle 6" NPS with Selected Neck Sch. 80, 0.432 INCH 10.9728 MM
with Thickness 0.432" ( 10.97 MM ). [Table 2 of ASME B 36.10M-1985-(R-1994)]
Nozzle Neck Maximum Working Pressure, MWP (New & Operating)
Nozzle wall thickness less tolerance 12.5% 0.378 INCH 9.6012 MM
Nozzle wall thickness less tolerance 12.5% - Corrosion allowance 0.18115 INCH 4.6012 MM
MWP, New & cold (10.97 MM) P = Snt E t /(Ron - 0.4 t) [App. 1.1] 2044.67 PSIG 143.944 Kg/CM2
G
MWP, Operating & corroded (4.6 MM) P = Sn E t /(Ron - 0.4 t) 956.056 PSIG 67.306 Kg/CM2
G
Nozzle Flange Maximum Working Pressure, MWP (New & Operating)
MWP, New & cold , 150# @ 100 o
F [ASME B.165, Table 2] 285 PSIG 20.064 Kg/CM2
G
MWP, Operating & corroded, 150# @ 140
o
F [ASME B16.5, Table 2] 275 PSIG 19.36 Kg/CM2
G
DESIGN CALCULATIONS OF HEAT EXCHANGER Page : 27 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Sheet : 2 of 5
Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant) Rev. : 1
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Date : 11.4.2004
Job No. : 7443-33 Location : Alex.
Dwg. No. : 7443-33-1A, Rev. 1 Client : APRC
Exchanger : Residue Cooler, Type : AES, TEMA class : R Items : E-323A/B & E-514C/D
M2. Nozzle Mark : N1 & N2 6" 150# WNRF (located at channel) (cont.)
Nozzle Opening Calculation With Reinforcing [UG-27(c) & Appendix 1-1]
Nozzle Pipe Size, NPS 6 INCH 150 DN
Nozzle Pipe Sch. 80
Design Pressure, P 71.708 PSIG 5.048243 Kg/CM2
G
Design Temparture 140
o
F 60
o
C
Shell Material ASME SA106 Grade B
Nozzle Material ASME SA 106 Grade B
Reinforcing Pad Material ASME SA106 Grade B
Allowable Stress of Shell Material, Sv 17100 PSIG 1203.84 Kg/CM2
G
Allowable Stress of Nozzle Material, Sn 17100 PSIG 1203.84 Kg/CM2
G
Allowable Stress of Pad Material, Sp 17100 PSIG 1203.84 Kg/CM2
G
Shell Thickness 0.5 INCH 12.7 MM
Shell Corrosion Allowance, Cas 0.19685 INCH 5 MM
Shell Thickness less Pipe Tolerance 12.5% (12.5% NA) 0.4375 INCH 11.1125 MM
Shell Thickness less Corrosion Allowance & 12.5%, t (12.5% NA) 0.24065 INCH 6.1125 MM
Nozzle Wall Nominal Thickness 0.432 INCH 10.9728 MM
Nozzle Wall Thickness less Pipe Tolerance 12.5% 0.378 INCH 9.6012 MM
Nozzle Corrosion Allowance, Can 0.19685 INCH 5 MM
Nozzle Wall Thick. less Corr. Allowance & 12.5% , tn 0.18115 INCH 4.6012 MM
Nozzle Wall Thick.of Internal Projection (less Corr. Allowance & 12.5%), ti 0.18115 INCH 4.6012 MM
Reinforced Pad Thickness, te 0.5 INCH 12.7 MM
Joint Efficiency of Shell, E 1
Joint Efficiency of Nozzle, En 1
Correction Factor, F [UG-37(a)] 1
E1 [Nozzle in solid plate] 1
Shell Outside Diameter, OD 20 INCH 508 MM
Shell Inside Diameter in Corroded Condition, 2R = OD - 2 t 19.5187 INCH 495.775 MM
Shell Inside Radius in Corroded Condition, R 9.75935 INCH 247.8875 MM
Nozzle Outside Diameter, OD 6.625 INCH 168.275 MM
Nozzle Inside Diameter, ID 5.761 INCH 146.3294 MM
Nozzle Projection beyond Inner Vessel Wall, h = min. (h1,h2) 0 INCH 0 MM
h1 = 2.5 t 0.60162 INCH 15.28125 MM
h2 = 2.5 ti 0.45287 INCH 11.503 MM
Nozzle ID Without Corrosion Allowance & 12.5% , d = OD - 2*tn 6.2627 INCH 159.0726 MM
Finished Radius of Circular Opening, Rn 3.13135 INCH 79.5363 MM
DESIGN CALCULATIONS OF HEAT EXCHANGER Page : 28 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Sheet : 3 of 5
Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant) Rev. : 1
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Date : 11.4.2004
Job No. : 7443-33 Location : Alex.
Dwg. No. : 7443-33-1A, Rev. 1 Client : APRC
Exchanger : Residue Cooler, Type : AES, TEMA class : R Items : E-323A/B & E-514C/D
M2. Nozzle Mark : N1 & N2 6" 150# WNRF (located at channel) (cont.)
Nozzle Opening Calculation With Reinforcing (cont.) [UG-27(c) & Appendix 1-1]
* Outside Diameter of Reinforced Pad [UG-40(b) & Fig.UG-37.1]
Dp1 = 2 d 12.5254 INCH 318.1452 MM
Dp2 = 2 (Rn + nozzle wall thk. , tn + vessel wall thk. , t ) 7.1063 INCH 180.5 MM
OD of Reinf. Pad, Dp = the greater of Dp1 or Dp2 12.5254 INCH 318.1452 MM
Calculating Size of Fillet Welds : [UW-16(c)(2) & Fig.UW-16.1]
* For Outward Nozzle Weld [UW-16(c)(2)&Fig.UW-16.1 Sketch (c)]
Calculation of tmin. :
tmin.1 = 0.75 inch 0.75 INCH 19.05 MM
tmin.2 (nozzle wall nominal thickness) 0.432 INCH 10.9728 MM
tmin.3 (shell wall thickness) 0.5 INCH 12.7 MM
tmin. = lesser of tmin.1, tmin. & tmin.3 0.432 INCH 10.9728 MM
Calculation of tc : tc1 = 0.25 inch 0.25 INCH 6.35 MM
tc2 = 0.7 t min. 0.3024 INCH 7.68096 MM
tc = lesser of tc1 & tc2 0.25 INCH 6.35 MM
By Considering Equal Legs Fillet Welds :
Leg of Outward Nozzle Weld = SQRT2 * tc 0.35355 INCH 8.980256 MM
Use Leg with Dimension E in Dwg. No. 7443-33-1A 0.35433 INCH 9 MM
* For Outer Reinforcing Pad Weld [Fig.UW-16 Sketch (c)]
tmin.1 = 0.75 inch 0.75 INCH 19.05 MM
tmin.2 ( te = thk. of reinforcing element) 0.5 INCH 12.7 MM
tmin.3 ( shell wall thickness) 0.5 INCH 12.7 MM
tmin. = lesser of tmin.1, tmin. 2 & tmin.3 0.5 INCH 12.7 MM
1/2 t min. 0.25 INCH 6.35 MM
By Considering Equal Legs Fillet Welds :
Leg of Outer Pad Weld = SQRT(2)*(tmin./2) 0.35355 INCH 9 MM
Use Leg with Dimension D in Dwg. No. 7443-33-1A 0.35433 INCH 9 MM
* Wall Thickness Required : [UG-27(c)(1)]
Shell tr = PR / (SE - 0.6 P) 0.04829 INCH 1.226577 MM
Nozzle trn = PRn /(SnEn - 0.6 P) 0.03419 INCH 0.868379 MM
* Strength Reduction Factors : Sp / Sv 1
fr1 = Sn / Sv 1
fr2 = Sn / Sv 1
fr3 = lesser of Sn/Sv or Sp/Sv 1
fr4 = Sp / Sv 1
DESIGN CALCULATIONS OF HEAT EXCHANGER Page : 29 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Sheet : 4 of 5
Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant) Rev. : 1
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Date : 11.4.2004
Job No. : 7443-33 Location : Alex.
Dwg. No. : 7443-33-1A, Rev. 1 Client : APRC
Exchanger : Residue Cooler, Type : AES, TEMA class : R Items : E-323A/B & E-514C/D
M2. Nozzle Mark : N1 & N2 6" 150# WNRF (located at channel) (cont.)
Min. Nozzle Neck Wall Thickness Check Per UG-45
A. Wall Thickness per UG-45(a) : trna = trn + C.A. 0.23104 INCH 5.868379 MM
B. Wall Thickness per UG-45(b) : trnb = Min. (trnb1, trnb2, trnb3, trnb 0.245 INCH 6.223 MM
Wall Thickness per UG-45(b)(1), trnb1 = Min. (trnb11, trnb12) 0.24514 INCH 6.226577 MM
trnb11 = tr + C.A. (tr for shell or head at E=1) 0.24514 INCH 6.226577 MM
trnb12 = Min Wall Thickness per UG-16(b), see below 0.2906 INCH 7.38125 MM
Wall Thickness per UG-45(b)(2), trnb2 (apply to external pressure only), NA INCH #VALUE! MM
Wall Thickness per UG-45(b)(3), trnb3 (apply to internal & external pressure)
= Max. (trnb1, trnb2) NA INCH #VALUE! MM
Wall Thickness per UG-45(b)(4), trnb4
= Min. thickness of std. wall pipe - 12.5% Max. (including CA) 0.245 INCH 6.223 MM
(Under tolerance12.5% in accordance with ASME B36.10M)
Nominal thickness of std. pipe wall thickness, NPS 6", Sch. Std0.28 INCH 7.112 MM
Wall Thickness per UG-16(b), trnb12
I - Min. Wall Thickness 1/16" + C.A. 0.25935 INCH 6.5875 MM
II - Min. Wall Thickness of Unfired Steam Boilers = 1/4" + C.A. 0.44685 INCH 11.35 MM
III - Min. Wall Thickness of Shell/Head in Compressed Air
Service, Steam Service, and Water Service = 3/32" + C.A. 0.2906 INCH 7.38125 MM
Selected Vessel Service in our case is : Case III (compressed air)
So, the Min. Wall Thickness per UG-16(b), trnb12 0.2906 INCH 7.38125 MM
The min. nozzle wall thk. = Max. thk. determined by UG-45(a), or by UG-45(b)0.245 INCH 6.223 MM
The min. nozzle thk. provided = t (1-0.125) 0.378 INCH 9.6012 MM
So, the thickness provided meets the rules of UG-45. OK
Since there is no superimposed loads, the vessel doesn't require
a calculationon shear stresses caused by UG-22(c).
DESIGN CALCULATIONS OF HEAT EXCHANGER Page : 30 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Sheet : 5 of 5
Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant) Rev. : 1
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Date : 11.4.2004
Job No. : 7443-33 Location : Alex.
Dwg. No. : 7443-33-1A, Rev. 1 Client : APRC
Exchanger : Residue Cooler, Type : AES, TEMA class : R Items : E-323A/B & E-514C/D
M2. Nozzle Mark : N1 & N2 6" 150# WNRF (located at channel) (cont.)
Nozzle Opening Calculation With Reinforcing (cont.) [UG-37]
Area of Reinforcement (with reinforcing Element) :
Required Area, A = d tr F + 2 tn tr F(1-fr1) 0.30243 INCH
2
195.1147 MM2
Area Available in Shell, A1:
A11 = d (E1 t - F tr) - 2tn (E1 t - F tr)(1-fr1) 1.20469 INCH
2
777.2165 MM2
A12 = 2 (t + tn)(E1 t - F tr) - 2tn (E1 t - F tr)(1-f r1) 0.16227 INCH2
104.6926 MM2
A1 = The Greater of A11 or A12 1.20469 INCH
2
777.2165 MM2
Area Available in Nozzle Projecting Outward, A2 :
A21 = 5 (tn - trn) fr2 t 0.17683 INCH
2
114.0844 MM2
A22 = 2 (tn - trn)(2.5tn+te) fr2 0.28007 INCH2
180.691 MM2
A2 = The Lesser of A21 or A22 0.17683 INCH
2
114.0844 MM2
Area Available in Inward Nozzle, A3 :
A31 = 5 t ti fr2 0.21797 INCH
2
140.6242 MM2
A32 = 5 ti ti fr2 0.16408 INCH2
105.8552 MM2
A33 = 2 h ti fr2 0 INCH2
0 MM2
A3 = The Greater of A31, A32 or A33 0 INCH
2
0 MM2
Area Available in Outward Nozzle Weld, A41:
A41 = (LEG)
2
fr2 0.12555 INCH2
81 MM2
Area Available in Outer Reinforcing Pad Weld, A42:
A42 = (LEG)
2
fr4 0.12555 INCH
2
81 MM2
Area Available in Inward Nozzle Weld, A43 :
A43 = (LEG)
2
fr2 0 INCH
2
0 MM2
Area Available in Reinforcing Pad, A5 :
A5 = (Dp - d - 2tn) te fr4 2.9502 INCH
2
1903.352 MM2
Total Area Available, AT :
AT = A1 + A2 + A41 + A42 + A43 + A5 4.58282 INCH
2
2956.652 MM2
AT is greater than A, therefore opening is adequately reinforced.
NOTE. No need for Strength Path Calculations.
DESIGN CALCULATIONS OF HEAT EXCHANGER Page : 31 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Sheet : 1 of 5
Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant) Rev. : 1
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Date : 11.4.2004
Job No. : 7443-33 Location : Alex.
Dwg. No. : 7443-33-1A, Rev. 1 Client : APRC
Exchanger : Residue Cooler, Type : AES, TEMA class : R Items : E-323A/B & E-514C/D
M4a. Nozzle Mark : N1 & N2 6" 150# WNRF (Located at Shell) without reinforcement
Nozzle Neck Thickness Calculation [UG-45 , UG-27 & APPENDIX 1-1]
Nozzle Size, NPS 6 INCH 150 DN
Nozzle Material ASME SA 106 Grade B
Design Pressure, P 71.708 PSIG 5.04826 Kg/CM2
G
Design Temperature 140
o
F 60
o
C
For nominated Design Pressure & Temperature, Flange Rating 150#
[ANSI/ASME B16.5-1996]
Allowable Stress of Nozzle Material @ Design Temp. (60
o
C), Sn 17100 PSIG 1203.84 Kg/CM2
G
Max. Allowable Stress of Nozzle Materiall @ Test Temp.(40
o
C), Snt 17100 PSIG 1203.84 Kg/CM2
G
[Table 1A, SubPart 1, ASME Sec. II, Part D]
Outside Radius of Nozzle, Ron 3.3125 INCH 84.1375 MM
Joint Efficiency of Nozzle, En (Seamless Pipe) 1
Nozzle Corrosion Allowance, Can 0.19685 INCH 5 MM
Nozzle Thickness Calculation :
Longitudinal Stress, t = PRon /(Sn*En + 0.4 P) [APPENDIX 1.1] 0.01387 INCH 0.352236 MM
By adding Corrosion Allowance, t [UG-25] 0.21072 INCH 5.352236 MM
By adding Pipe Tolerance 12.5% to the Thickness of Nozzle, t 0.23706 INCH 6.021265 MM
Use Nozzle 6" NPS with Selected Neck Sch. 80, 0.432 INCH 10.9728 MM
with Thickness 0.432" ( 10.97 MM ). [Table 2 of ANSI B 36.10M-1985-(R-1994)]
Nozzle Neck Maximum Working Pressure, MWP (New & Operating)
Nozzle wall thickness less tolerance 12.5% 0.378 INCH 9.6012 MM
Nozzle wall thickness less tolerance 12.5% - Corrosion allowance 0.18115 INCH 4.6012 MM
MWP, New & cold (10.97 MM) P = Snt E t /(Ron - 0.4 t) [App. 1.1] 2044.67 PSIG 143.944 Kg/CM2
G
MWP, Operating & corroded (4.6 MM) P = Sn E t /(Ron - 0.4 t) 956.056 PSIG 67.306 Kg/CM2
G
Nozzle Flange Maximum Working Pressure, MWP (New & Operating)
MWP, New & cold , 150# @ 100 o
F [ASME B.165, Table 2] 285 PSIG 20.064 Kg/CM2
G
MWP, Operating & corroded, 150# @ 140
o
F [ASME B16.5, Table 2] 275 PSIG 19.36 Kg/CM2
G
DESIGN CALCULATIONS OF HEAT EXCHANGER Page : 32 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Sheet : 2 of 5
Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant) Date : 11.4.2004
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Client : APRC
Job No. : 7443-33 Location : Alex.
Dwg. No. : 7443-33-1A, Rev. 1 Client : APRC
Exchanger : Residue Cooler, Type : AES, TEMA class : R Items : E-323A/B & E-514C/D
M4. Nozzle Mark : N1 & N2 6" 150# WNRF (Located at Channel) without reinforcement (cont.)
Nozzle Opening Calculation Without Reinforcing [UG-27(c) & Appendix 1-1]
Nozzle Pipe Size, NPS 6 INCH 150 DN
Nozzle Pipe Sch. 80
Design Pressure, P 71.708 PSIG 5.048243 Kg/CM2
G
Design Temparture 140
o
F 60
o
C
Shell Material ASME SA106 Grade B
Nozzle Material ASME SA 106 Grade B
Reinforcing Pad Material N.A.
Allowable Stress of Shell Material, Sv 17100 PSIG 1203.84 Kg/CM2
G
Allowable Stress of Nozzle Material, Sn 17100 PSIG 1203.84 Kg/CM2
G
Allowable Stress of Pad Material, Sp 0 PSIG 0 Kg/CM2
G
Shell Thickness 0.5 INCH 12.7 MM
Shell Corrosion Allowance, Cas 0.19685 INCH 5 MM
Shell Thickness less Pipe Tolerance 12.5% (12.5% NA) 0.4375 INCH 11.1125 MM
Shell Thickness less Corrosion Allowance & 12.5%, t (12.5% NA) 0.24065 INCH 6.1125 MM
Nozzle Wall Nominal Thickness 0.432 INCH 10.9728 MM
Nozzle Wall Thickness less Pipe Tolerance 12.5% 0.378 INCH 9.6012 MM
Nozzle Corrosion Allowance, Can 0.19685 INCH 5 MM
Nozzle Wall Thick. less Corr. Allowance & 12.5% , tn 0.18115 INCH 4.6012 MM
Nozzle Wall Thick.of Internal Projection (less Corr. Allowance & 12.5%), ti 0.18115 INCH 4.6012 MM
Reinforced Pad Thickness, te 0 INCH 0 MM
Joint Efficiency of Shell, E 1
Joint Efficiency of Nozzle, En 1
Correction Factor, F [UG-37(a)] 1
E1 [Nozzle in solid plate] 1
Shell Outside Diameter, OD 20 INCH 508 MM
Shell Inside Diameter in Corroded Condition, 2R = OD - 2 t 19.5187 INCH 495.775 MM
Shell Inside Radius in Corroded Condition, R 9.75935 INCH 247.8875 MM
Nozzle Outside Diameter, OD 6.625 INCH 168.275 MM
Nozzle Inside Diameter, ID 5.761 INCH 146.3294 MM
Nozzle Projection beyond Inner Vessel Wall, h = min. (h1,h2) 0 INCH 0 MM
h1 = 2.5 t 0.60162 INCH 15.28125 MM
h2 = 2.5 ti 0.45287 INCH 11.503 MM
Nozzle ID Without Corrosion Allowance & 12.5% , d = OD - 2*tn 6.2627 INCH 159.0726 MM
Finished Radius of Circular Opening, Rn 3.13135 INCH 79.5363 MM
DESIGN CALCULATIONS OF HEAT EXCHANGER Page : 33 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Sheet : 3 of 5
Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant) Rev. : 1
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Date : 11.4.2004
Job No. : 7443-33 Location : Alex.
Dwg. No. : 7443-33-1A, Rev. 1 Client : APRC
Exchanger : Residue Cooler, Type : AES, TEMA class : R Items : E-323A/B & E-514C/D
M4. Nozzle Mark : N1 & N2 6" 150# WNRF (Located at Channel) without reinforcement (cont.)
Nozzle Opening Calculation With Reinforcing (cont.) [UG-27(c) & Appendix 1-1]
* Outside Diameter of Reinforced Pad (if used) [UG-40(b)&FIG.UG-37.1]
Dp1 = 2 d 12.5254 INCH 318.1452 MM
Dp2 = 2 (Rn + nozzle wall thk. , tn + vessel wall thk. , t ) 7.1063 INCH 180.5 MM
OD of Reinf. Pad, Dp = the greater of Dp1 or Dp2 0 INCH 0 MM
Calculating Size of Fillet Welds : [UW-16(c)(2)&FIG.UW-16.1]
* For Outward Nozzle Weld [UW-16(c)(2)&FIG.UW-16.1SKETCH (c)]
Calculation of tmin. :
tmin.1 = 0.75 inch 0.75 INCH 19.05 MM
tmin.2 (nozzle wall nominal thickness) 0.432 INCH 10.9728 MM
tmin.3 (shell wall thickness) 0.5 INCH 12.7 MM
tmin. = lesser of tmin.1, tmin. & tmin.3 0.432 INCH 10.9728 MM
Calculation of tc : tc1 = 0.25 inch 0.25 INCH 6.35 MM
tc2 = 0.7 t min. 0.3024 INCH 7.68096 MM
tc = lesser of tc1 & tc2 0.25 INCH 6.35 MM
By Considering Equal Legs Fillet Welds :
Leg of Outward Nozzle Weld = SQRT2 * tc 0.35355 INCH 8.980256 MM
Use Leg with Dimension E in Dwg. No. 7443-33-1A 0.35433 INCH 9 MM
* For Outer Reinforcing Pad Weld (NA) [FIG.UW-16 SKETCH (c)]
tmin.1 = 0.75 inch 0.75 INCH 19.05 MM
tmin.2 ( te = thk. of reinforcing element) 0 INCH 0 MM
tmin.3 ( shell wall thickness) 0.5 INCH 12.7 MM
tmin. = lesser of tmin.1, tmin. 2 & tmin.3 0 INCH 0 MM
1/2 t min. 0 INCH 0 MM
By Considering Equal Legs Fillet Welds :
Leg of Outer Pad Weld = SQRT(2)*(tmin./2) 0 INCH 0 MM
Use Leg with Dimension D in Dwg. No. 7443-33-1A 0 INCH 0 MM
* Wall Thickness Required : [UG-27(c)(1)]
Shell tr = PR / (SE - 0.6 P) 0.04829 INCH 1.226577 MM
Nozzle trn = PRn /(SnEn - 0.6 P) 0.01316 INCH 0.334373 MM
* Strength Reduction Factors : Sp / Sv 0
fr1 = Sn / Sv 1
fr2 = Sn / Sv 1
fr3 = lesser of Sn/Sv or Sp/Sv 1
fr4 = Sp / Sv 0
DESIGN CALCULATIONS OF HEAT EXCHANGER Page : 34 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Sheet : 4 of 5
Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant) Rev. : 1
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Date : 11.4.2004
Job No. : 7443-33 Location : Alex.
Dwg. No. : 7443-33-1A, Rev. 1 Client : APRC
Exchanger : Residue Cooler, Type : AES, TEMA class : R Items : E-323A/B & E-514C/D
M4. Nozzle Mark : N1 & N2 6" 150# WNRF (Located at Channel) without reinforcement (cont.)
MIN. NOZZLE NECK WALL THICKNESS CHECK PER UG-45
A. Wall Thickness per UG-45(a) : trna = trn + C.A. 0.21001 INCH 5.334373 MM
B. Wall Thickness per UG-45(b) : trnb = Min. (trnb1, trnb2, trnb3, trnb 0.245 INCH 6.223 MM
Wall Thickness per UG-45(b)(1), trnb1 = Min. (trnb11, trnb12) 0.24514 INCH 6.226577 MM
trnb11 = tr + C.A. (tr for shell or head at E=1) 0.24514 INCH 6.226577 MM
trnb12 = Min Wall Thickness per UG-16(b), see below 0.2906 INCH 7.38125 MM
Wall Thickness per UG-45(b)(2), trnb2 (apply to external pressure only), NA INCH #VALUE! MM
Wall Thickness per UG-45(b)(3), trnb3 (apply to internal & external pressure)
= Max. (trnb1, trnb2) NA INCH #VALUE! MM
Wall Thickness per UG-45(b)(4), trnb4
= Min. thickness of std. wall pipe - 12.5% Max. (icluding CA) 0.245 INCH 6.223 MM
(Under tolerance12.5% in accordance with ASME B36.10M)
Nominal thickness of std. pipe wall thickness, NPS 6", Sch. Std. 0.28 INCH 7.112 MM
Wall Thickness per UG-16(b), trnb12
I - Min. Wall Thickness 1/16" + C.A. 0.25935 INCH 6.5875 MM
II - Min. Wall Thickness of Unfired Steam Boilers = 1/4" + C.A. 0.44685 INCH 11.35 MM
III - Min. Wall Thickness of Shell/Head in Compressed Air
Service, Steam Service, and Water Service = 3/32" + C.A. 0.2906 INCH 7.38125 MM
Selected Vessel Service in our case is : Case III (compressed air)
So, the Min. Wall Thickness per UG-16(b), trnb12 0.2906 INCH 7.38125 MM
The min. nozzle wall thk. = Max. thk. determined by UG-45(a), or by UG-45(b)0.245 INCH 6.223 MM
The min. nozzle thk. provided = t (1-0.125) 0.378 INCH 9.6012 MM
So, the thickness provided meets the rules of UG-45. OK
Since there is no superimposed loads, the vessel doesn't require
a calculationon shear stresses caused by UG-22(c).
DESIGN CALCULATIONS OF HEAT EXCHANGER Page : 35 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Sheet : 5 of 5
Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant) Rev. : 1
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Date : 11.4.2004
Job No. : 7443-33 Location : Alex.
Dwg. No. : 7443-33-1A, Rev. 1 Client : APRC
Exchanger : Residue Cooler, Type : AES, TEMA class : R Items : E-323A/B & E-514C/D
M4. Nozzle Mark : N1 & N2 6" 150# WNRF (Located at Channel) without reinforcement (cont.)
Nozzle Opening Calculation Without Reinforcing [UG-37]
Area of Reinforcement (without reinforcing Element) :
Required Area, A = d tr F + 2 tn tr F(1-fr1) 0.30243 INCH
2
195.1147 MM2
Area Available in Shell, A1:
A11 = d (E1 t - F tr) - 2tn (E1 t - F tr)(1-fr1) 1.20469 INCH
2
777.2165 MM2
A12 = 2 (t + tn)(E1 t - F tr) - 2tn (E1 t - F tr)(1-f r1) 0.16227 INCH2
104.6926 MM2
A1 = The Greater of A11 or A12 1.20469 INCH
2
777.2165 MM2
Area Available in Nozzle Projecting Outward, A2 :
A21 = 5 (tn - trn) fr2 t 0.20213 INCH
2
130.4049 MM2
A22 = 5 (tn - trn) fr2 tn 0.15215 INCH2
98.16263 MM2
A2 = The Lesser of A21 or A22 0.15215 INCH
2
98.16263 MM2
Area Available in Inward Nozzle, A3 : (Not applicable)
A31 = 5 t ti fr2 0.21797 INCH2
140.6242 MM2
A32 = 5 ti ti fr2 0.16408 INCH2
105.8552 MM2
A33 = 2 h ti fr2 0 INCH2
0 MM2
A3 = The Greater of A31, A32 or A33 0 INCH
2
0 MM2
Area Available in Outward Nozzle Weld, A41:
A41 = (LEG)
2
fr2 0.12555 INCH2
81 MM2
Area Available in Outer Reinforcing Pad Weld, A42:
A42 = (LEG)
2
fr4 0 INCH
2
0 MM2
Area Available in Inward Nozzle Weld, A43 :
A43 = (LEG)
2
fr2 0 INCH
2
0 MM2
Area Available in Reinforcing Pad, A5 : (Not applicable)
A5 = (Dp - d - 2tn) te fr4 0 INCH2
0 MM2
Total Area Available, AT :
AT = A1 + A2 + A41 + A42 + A43 1.48239 INCH
2
956.3792 MM2
AT is greater than A, therefore opening is adequately reinforced.
NOTE. No need for Strength Path Calculations.
DESIGN CALCULATIONS OF HEAT EXCHANGER Page : 36 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Sheet : 1 of 10
Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant) Rev. : 0
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Date : 4.7.2003
Job No. : 7443-33 Location : Alex.
Dwg. No. : 7443-33-1A, Rev. 0 Sheet : 5 Client : APRC
Exchanger : Residue Cooler, Type : AES Item : E-323A/B & E-514C/D
N. Integral Type (WN) Main Shell Flange Thickness (item no. 4) [Appendix 2] [FIG. 2-4, Sketch (6a)]
Flange Material, [Attached by Bolts] ASME SA266 ClassSubjected to internal press.
Design Temperature (shell side) 302
o
F 150
o
C
Min. Design Metal Temperature, MDMT 53.6
o
F 12
o
C
Bolt-up and Gasket Seating Temperature 86
o
F 30
o
C
Assume no corrosion, C [UG-25] 0.19685 INCH 5 MM
Operating Pressure (shell side) 241.477 PSIG 17 Kg/CM2
G
Internal Design Pressure, P (MAWP) 284.776 PSIG 20.0483 Kg/CM2
G
Allowable Stress of Bolt Material (ASME SA193 Gr. B7), SB :
* at design temp.(operating condition), Sb 25000 PSIG 1760 Kg/CM2
G
* or at atmospheric temp./bolt-up temp. (gasket seating), Sa 25000 PSIG 1760 Kg/CM2
G
Allowable Stress of Flange Material (ASME SA266 Class 2) :
* at design temp.(operating condition), SfH 20000 PSIG 1408 Kg/CM2
G
* or at atmospheric temp./bolt-up temp. (gasket seating), SfC 20000 PSIG 1408 Kg/CM2
G
Allowable Stress of Nozzle neck, Vessel or Pipe wall Material (ASME SA106 Gr. B) :
* at design temp.(operating condition), SnH 17100 PSIG 1203.84 Kg/CM2
G
* or at atmospheric temp./bolt-up temp.(gasket seating), SnC 17100 PSIG 1203.84 Kg/CM2
G
[Table 1A , SubPart 1 , ASME Sec. II , Part D]
FIG. 2-4, Sketch (6a)
Figure (1)
No. of bolts 28
Nominal bolt dia., dB 1 INCH 25.4 MM
Bolt Hole, d 1.10236 INCH 28 MM
Flange outside diameter, A 26.9685 INCH 685 MM
Flange inside diameter, B 19 INCH 482.6 MM
Bolt circut diameter (B.C.D.), C = B + 2(g1 + h1+ R) [Appendix 2-3] 24.5276 INCH 623 MM
Hup thickness at small end, go = Shell Thickness t 0.5 INCH 12.7 MM
Hup thickness at back of flange, g1 (assume g1 = 2 go) 1 INCH 25.4 MM
R must not less than 1.5 the bolt hole (see TEMA Table D-5) 1.5 INCH 38 MM
Hup length, h (must greater than 1.5 go) [FIG. 2-4, Sketch 6] 1.5748 INCH 40 MM
Use max. slope 1:3, h = 3.5 g0 1.73228 INCH 44 MM
Slope angle, Y = arc Tan [(g1-go)/h] 16.1001 Degree
Fillet radius, r = 0.25 g1 [but not less than 3/16"(4.7625 MM)] [FIG. 2-4, Sketch 6, Note a] 0.25 INCH 6.35 MM
Use r 0.23622 INCH 6 MM
h1 = r * Tan (45-Y/2) 0.17768 INCH 5 MM
E = (A-C)/2 (Check D292 ) 1.22047 INCH 31 MM
DESIGN CALCULATIONS OF HEAT EXCHANGER Page : 37 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Sheet : 2 of 10
Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant) Rev. : 0
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Date : 4.7.2003
Job No. : 7443-33 Location : Alex.
Dwg. No. : 7443-33-1A, Rev. 0 Sheet : 5 Client : APRC
Exchanger : Residue Cooler, Type : AES Item : E-323A/B & E-514C/D
N. Integral Type (W.N.) Main Shell Flange Thickness, item no. 4 (cont.) [Appendix 2] [FIG. 2-4, Sketch (6a)]
[Attached by Bolts] Subjected to internal pressure
Nominal shell (pipe) size 20"
Pipe Schedule 30
No. of bolts 28
Nominal bolt dia., dB 1 INCH 25.4 MM
Bolt diameter at root of thread 0.88189 INCH 22.4 MM
Actual cross-sectional area of each bolt, [TEMA Table D-5] 0.551 INCH2
355.483 MM2
Total actual cross-sectional area of bolts, Ab 15.428 INCH2
9953.53 MM2
Flange outside diameter, A 26.9685 INCH 685 MM
Flange inside diameter, B 19 INCH 482.6 MM
Bolt circut diameter (B.C.D.), C 24.5276 INCH 623 MM
Gasket Details: - Flat metal, jacketed asbestos filled, iron or soft steel
- Outside diameter = (B.C.D - d) - 2*13 22.0472 INCH 560 MM
- Inside diameter = O.D - 2N 20.8661 INCH 530 MM
- Width, N 0.59055 INCH 15 MM
Gasket Dimensions:
Basic gasket seating width, bO = N/2 [Table 2-5.2] 0.29528 INCH 7.5 MM
Since bo > 1/4 inch (6.35 MM), [Table 2-5.2]
Effective gasket seating width, b = 0.5*SQRT(bO) [Table 2-5.2] 0.2717 INCH 6.90109 MM
Gasket Factor, m [Table 2-5.1] 3.75
Min. Seating Stress, y [Table 2-5.1] 7600 PSIG 535.04 Kg/CM2
G
Facing Sketch [Table 2-5.1] (1a); Column II
Diameter at location of gasket load reaction, G
When bo is larger than 1/4", G = O.D.of gasket contact face - 2 b 21.5039 INCH 546.198 MM
[Appendix 2-3]
N.B. When b < 1/4", the effective gasket seating width, b = bo [Table 2-5.2]
N.B. When b > 1/4", the effective gasket seating width, b = 0.5*SQRT(bO) [Table 2-5.2]
DESIGN CALCULATIONS OF HEAT EXCHANGER Page : 38 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Sheet : 3 of 10
Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant) Rev. : 0
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Date : 4.7.2003
Job No. : 7443-33 Location : Alex.
Dwg. No. : 7443-33-1A, Rev. 0 Sheet : 5 Client : APRC
Exchanger : Residue Cooler, Type : AES Item : E-323A/B & E-514C/D
N. Integral Type (W.N.) Main Shell Flange Thickness, item no. 4 (cont.) [Appendix 2] [FIG. 2-4, Sketch (6a)]
[Attached by Bolts] Subjected to internal pressure
1. Bolt loading and size of bolts: [Appendix 2-5(c)]
(a) Total hydrostatic end force, H = 0.785 G2
P [Appendix 2-3] 103373 lb 46889.2 Kg
(b) Total joint-contact surface compression load, Hp =2b*3.14GmP 39182.8 lb 17773 Kg
[Appendix 2-3]
(c) Min. required bolt load for operating conditions, Wm1 = H + Hp 142556 lb 64662.2 Kg
Min. required bolt load for gasket seating, Wm2 = 3.14 b G y 139426 lb 63242.6 Kg
Allowable Bolt Stress at atmospheric temp., Sa 25000 PSIG 1760 Kg/CM2
G
Allowable Bolt Stress at design temp., Sb 25000 PSIG 1760 Kg/CM2
G
[Table 1A, SubPart 1, ASME Sec. II, Part D]
(d) Total cross-sectional area of bolts at root of thread required for:
- operating conditions, Am1 = Wm1 / Sb 5.70222 INCH2
3678.84 MM2
- Gasket seating, Am2 = Wm2 / Sa 5.57703 INCH2
3598.08 MM2
[Appendix 2-3]
Total required cross-sectional of bolts, Am = the greater of Am1 & Am2 5.70222 INCH2
3678.84 MM2
Actual bolt area Ab 15.428 INCH2
9953.53 MM2
Since area Ab > area Am, the bolts are adequately enough. OK
(e) Flange design bolt load, W :
- For operating conditions, Wo = Wm1 [Appendix 2-5(d)] 142556 lb 64662.2 Kg
- For gasket seating, Wa = 0.5(Am + Ab) * Sa [Appendix 2-5(d)] 264128 lb 119806 Kg
2. Total flange moment for design condition: [Appendix 2-5(c)]
Flange Loads:
Hydrostatic end force on area inside flange, HD = 0.785 B2
P 80701.4 lb 36605.6 Kg
Gasket load (flange design bolt load - total hydrostatic end force), HG
Gasket seating force HG = Wm1 - H 39182.8 lb 17773 Kg
Difference bet. total hydrostatic end force and the hydrostatic end force on area inside of flange, HT
HT = H - HD 22671.4 lb 10283.6 Kg
Lever arms:
hD = R' + 0.5 g1 [Table 2-6] 2.17768 INCH 55.3131 MM
hG = (C - G) / 2 [Table 2-6] 1.51185 INCH 38.4011 MM
hT = (R' + g1 + hG) / 2 [Table 2-6] 2.09477 INCH 53.2071 MM
Where R' = R + h1 1.67768 INCH 42.6131 MM
DESIGN CALCULATIONS OF HEAT EXCHANGER Page : 39 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Sheet : 4 of 10
Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant) Rev. : 0
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Date : 4.7.2003
Job No. : 7443-33 Location : Alex.
Dwg. No. : 7443-33-1A, Rev. 0 Sheet : 5 Client : APRC
Exchanger : Residue Cooler, Type : AES Item : E-323A/B & E-514C/D
N. Integral Type (W.N.) Main Shell Flange Thickness, item no. 4 (cont.) [Appendix 2] [FIG. 2-4, Sketch (6a)]
[Attached by Bolts] Subjected to internal presure
Flange Moments:
Component of moment due to HD, MD = HD hD [Appendix 2-3] 175742 lb-in 2024.77 Kg-M
Component of moment due to HG, MG = HG hG [Appendix 2-3] 59238.6 lb-in 682.503 Kg-M
Component of moment due to HT, MT = HT hT [Appendix 2-3] 47491.3 lb-in 547.16 Kg-M
Total moment acting upon the flange, Mo: [Appendix 2-6]
- For operating condition MO1 = MD + MG + MT 282472 lb-in 3254.43 Kg-M
23539.3 lb-ft
3. Total flange moment for bolt-up condition (Gasket condition):
[Appendix 2-6]
Flange Load: HG = WA = 0.5 (Am + Ab) * Sa 264128 lb 119806 Kg
Lever Arm., hG = (C - G) / 2 1.51185 INCH 38.4011 MM
Flange Moment for gasket condition, MO2 = HG hG = WA (C - G) / 2 (5) 399323 lb-in 4600.7 Kg-M
Mo2 * (SfH / SfC ) 399323 lb-in 4600.7 Kg-M
4. MO = The greater of MO1 or MO2 (SfH/SfC) 399323 lb-in 4600.7 Kg-M
33276.9 lb-ft
5. Shape constants for flange:
1.41939
From Appendix 2, FIG. 2-7.1:
1.74578
2.97106
5.71057
6.27534
g1/go 2
ho = SQRT(B go) 3.08221
h/ho 0.56203
From Appendix 2, FIG. 2-7.2: F 0.81225
From Appendix 2, FIG. 2-7.3: V 0.21166
From Appendix 2, FIG. 2-7.6: f 1.02557
d = (U/V) ho go2
(for integral type flanges) [APPENDIX 2-3] 22.8457 INCH3
374374 MM3
e = F / ho (for integral type flanges) [APPENDIX 2-3] 0.26353 INCH-1
0.01038 MM-1
K
B
A
=
T
K Log k
k k
=
+ −
+ −
2
10
2
1 8 55246 1
1 04720 19448 1
( . )
( . . )( )
Z
K
K
=
+
−
2
1
2
1
Y
K
K Log K
K
=
−
+
−
⎡
⎣
⎢
⎤
⎦
⎥
1
2
10
2
1
0 66845 5 71690
1
. .
U
K Log K
K K
=
+ −
− −
2
2
1 8 55246
10
1
136136 1 1
( . )
. ( )( )
DESIGN CALCULATIONS OF HEAT EXCHANGER Page : 40 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Sheet : 5 of 10
Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant) Rev. : 0
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Date : 4.7.2003
Job No. : 7443-33 Location : Alex.
Dwg. No. : 7443-33-1A, Rev. 0 Sheet : 5 Client : APRC
Exchanger : Residue Cooler, Type : AES Item : E-323A/B & E-514C/D
N. Integral Type (W.N.) Main Shell Flange Thickness, item no. 4 (cont.) [Appendix 2] [FIG. 2-4, Sketch (6a)]
[Attached by Bolts] Subjected to internal pressure
6. Calculation of flange actual stresses
Assume t 1.45669 INCH 37 MM
[Appendix 2-3] 0.928
Where t = flange thickness
factor e = F/ ho (for integral type flanges) [Appendix 2-3] 0.26353 INCH-1
0.01038 MM-1
e = FL/ ho (for loose type flanges) [Appendix 2-3] NA
F = factor for integral type flanges [Fig. 2-7.2] 0.81225
T = factor involving K [Fig. 2-7.1] 1.74578
d = (U/V) ho go2
[Appendix 2-3] 22.8457 INCH3
374374 MM3
For integral type flange, actual stresses (calculated) : [Fig. 2-4, Sketch (6a)]
1. a. Longitudinal hub stress, operating SH = f Mo / L g1
2
B (6) [Appendix 2-7(a)] 23226.7 PSIG 1635.16 Kg/CM2
G
b. Longitudinal hub stress, seating SH = f Mo2 / L g1
2
B (6) [Appendix 2-7(a)] 23226.7 PSIG 1635.16 Kg/CM2
G
2. a. Radial flange stress, operating SR = (1.33 t e +1) Mo / L t2
B (7) [Appendix 2-7(a 16135.7 PSIG 1135.96 Kg/CM2
G
b. Radial flange stress, seating SR = (1.33 t e +1) Mo2 / L t2
B (7) [Appendix 2-7(a16135.7 PSIG 1135.96 Kg/CM2
G
3. a. Tangential flange stress, operating ST = (Y Mo / t2
B) - Z SR (8) [Appendix 2-7(a)] 8620.34 PSIG 606.872 Kg/CM2
G
b. Tangential flange stress, seating ST = (Y Mo2 / t2
B) - Z SR (8) [Appendix 2-7(a)8620.34 PSIG 606.872 Kg/CM2
G
4. a. Flange stress, operating 0.5 (SH + SR) [Appendix 2-8(a)(4)] 19681.2 PSIG 1385.56 Kg/CM2
G
b. Flange stress, seating 0.5 (SH + SR) [Appendix 2-8(a)(4)] 19681.2 PSIG 1385.56 Kg/CM2
G
5. a. Flange stress, operating 0.5 (SH + ST) [Appendix 2-8(a)(4)] 15923.5 PSIG 1121.02 Kg/CM2
G
b. Flange stress, seating 0.5 (SH + ST) [Appendix 2-8(a)(4)] 15923.5 PSIG 1121.02 Kg/CM2
G
6. a. Bolt stress, operating = Wm1 / Ab 9240.05 PSIG 650.5 Kg/CM2
G
b. Bolt stress, seating = Wm2 / Ab 9037.19 PSIG 636.219 Kg/CM2
G
7. a. Shear stress carried by the fillet weld 0 PSIG 0 Kg/CM2
G
7. Actual Stresses (Calculated) Compared with Allowable Stresses [APPENDIX 2-8]
7.a. For Operating Condition :
Allowable design stress of flange at operating condiotion, Sf 20000 PSIG 1408 Kg/CM2
G
Allowable design stress of nozzle/vessel at operating condition, Sn 17100 PSIG 1203.84 Kg/CM2
G
Assume flange thickness (without C.A), toperating 1.45669 INCH 37 MM
Allowable stresses Actual stresses
(Calculated )
PSIG Kg/CM2
PSIG Kg/CM2
Longitudinal Hub Stress SH1 = 1.5 Sf [Appendix 2-8(a)(1)(b)] 30000
Longitudinal Hub Stress SH2 = 2 Sn [Appendix 2-8(a)(1)(b)] 34200
The calculated (actual) hub stress SH < SH (min.) allowable 30000 > 23226.7
Radial Flange Stress SR = Sf [Appendix 2-8(a)(2)] 20000 > 16135.7
The calculated (actual) radial stress SR < SR allowable
Factor L
t
T
t
d
e
=
+
+
1 3^
DESIGN CALCULATIONS OF HEAT EXCHANGER Page : 41 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Sheet : 6 of 10
Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant) Rev. : 0
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Date : 4.7.2003
Job No. : 7443-33 Location : Alex.
Dwg. No. : 7443-33-1A, Rev. 0 Sheet : 5 Client : APRC
Exchanger : Residue Cooler, Type : AES Item : E-323A/B & E-514C/D
N. Integral Type (W.N.) Main Shell Flange Thickness, item no. 4 (cont.) [Appendix 2] [FIG. 2-4, Sketch (6a)]
Subjected to internal pressure
Tangential Flange Stress ST = Sf [Appendix 2-8(a)(3)] 20000 > 8620.34
The calculated (actual) tangential stress ST < ST allowable
0.5(SH + SR) = Sf 20000 > 19681.2
The calculated (actual) stress < Allowable stress
0.5(SH + ST) = Sf 20000 > 15923.5
The calculated (actual) stress < Allowable stress
Bolt stress = Wm1 / Ab 25000 > 9240.05
The calculated (actual) stress < Allowable stress
7.b. For Gasket Seating :
Allowable design stress of flange at gasket seating, Sf 20000 PSIG 1408 Kg/CM2
G
Allowable design stress of nozzle/vessel at gasket seating, Sn 17100 PSIG 1203.84 Kg/CM2
G
Assume flange thickness (without C.A), tgasket 1.45669 INCH 37 MM
Allowable stresses Actual stresses
(Calculated )
PSIG Kg/CM2
PSIG Kg/CM2
Longitudinal Hub Stress SH1 = 1.5 Sf [Appendix 2-8(a)(1)(b)] 30000
Longitudinal Hub Stress SH2 = 2 Sn [Appendix 2-8(a)(1)(b)] 34200
The calculated (actual) hub stress SH < SH (min.) allowable 30000 > 23226.7
Radial Flange Stress SR = Sf [Appendix 2-8(a)(2)] 20000 > 16135.7
The calculated (actual) radial stress SR < SR allowable
Tangential Flange Stress ST = Sf [Appendix 2-8(a)(3)] 20000 > 8620.34
The calculated (actual) tangential stress ST < ST allowable
0.5(SH + SR) = Sf 20000 > 19681.2
The calculated (actual) stress < Allowable stress
0.5(SH + ST) = Sf 20000 > 15923.5
The calculated (actual) stress < Allowable stress
Bolt stress = Wm2 / Ab 25000 > 9037.19
The calculated (actual) stress < Allowable stress
The min. flange thickness, t = Max. (toperating, tgasket) 1.45669 INCH 37 MM
DESIGN CALCULATIONS OF HEAT EXCHANGER Page : 42 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Sheet : 7 of 10
Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant) Rev. : 0
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Date : 4.7.2003
Job No. : 7443-33 Location : Alex.
Dwg. No. : 7443-33-1A, Rev. 0 Sheet : 5 Client : APRC
Exchanger : Residue Cooler, Type : AES Item : E-323A/B & E-514C/D
N. Integral Type (W.N.) Main Shell Flange Thickness, item no. 4 (cont.) [Appendix 2] [FIG. 2-4, Sketch (6a)]
Subjected to internal pressure
Since all actual stresses are less than the allowable stresses, the
selection of t = 4.5 inch, is adequate. If an optimum min. thickness
of flange is desired, calculations must be operated with a smaller
value of t until one of the actual stresses or stress combination is
approximately equal to the allowable stress even though other
actual stresses are less than the allowable stress for that actual stress.
Flange thickness with C.A & RF = t + 2*corrosion all. + raised face 2.04724 INCH 52 MM
Use flange thickness for construction 2.16535 INCH 55 MM
BOLT SUMMARY
Factor K = A/B 1.41939
Gasket width, N 0.59055 INCH 15 MM
Total required cross-sectional area of bolts 5.70222 INCH2
3678.84 MM2
Actual bolt cross-sectional area, Ab 15.428 INCH2
9953.53 MM2
Nominal bolt dia., dB 1 INCH 25.4 MM
1. Actual Edge distance, E from drawing = 1/2 (A - C) 1.22047 INCH 31 MM
Min. Edge distance, E (for bolt size 0.75") 0.8125 INCH 20.6375 MM
Min. Edge distance, E (for bolt size 7/8") 0.9375 INCH 23.8125 MM
Min. Edge distance, E (for bolt size 1") 1.0625 INCH 26.9875 MM
Min. Edge distance, E (for bolt size 1-1/8") [TEMA Table D-5] 1.125 INCH 28.575 MM
Min. Edge distance, E (for bolt size 1-1/4") 1.25 INCH 31.75 MM
2. Actual Bolt spacing, B from drawing 2.74622 INCH 69.7539 MM
Min. Bolt spacing, B (for bolt size 0.75") 1.75 INCH 44.45 MM
Min. Bolt spacing, B (for bolt size 7/8") 2.0625 INCH 52.3875 MM
Min. Bolt spacing, B (for bolt size 1") 2.25 INCH 57.15 MM
Min. Bolt spacing, B (for bolt size 1-1/8") [TEMA Table D-5] 2.5 INCH 63.5 MM
Min. Bolt spacing, B (for bolt size 1-1/4") 2.8125 INCH 71.4375 MM
Max. Recommended bolt spacing, Bmax = 2 dB + 6 t / (m + 0.5) [TEMA RCB-11.224.05651 INCH 103.035 MM
3. Actual Radial distance, Rh from drawing = (C-B)/2-(g1+h1) 1.56693 INCH 39.8 MM
Min. Radial distance, Rh (for bolt size 0.75") 1.125 INCH 28.575 MM
Min. Radial distance, Rh (for bolt size 7/8") 1.25 INCH 31.75 MM
Min. Radial distance, Rh (for bolt size 1") 1.375 INCH 34.925 MM
Min. Radial distance, Rh (for bolt size 1-1/8") [TEMA Table D-5] 1.5 INCH 38.1 MM
Min. Radial distance, Rh (for bolt size 1-1/4") 1.75 INCH 44.45 MM
DESIGN CALCULATIONS OF HEAT EXCHANGER Page : 43 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Sheet : 8 of 10
Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant) Rev. : 0
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Date : 4.7.2003
Job No. : 7443-33 Location : Alex.
Dwg. No. : 7443-33-1A, Rev. 0 Sheet : 5 Client : APRC
Exchanger : Residue Cooler, Type : AES Item : E-323A/B & E-514C/D
N. Integral Type (W.N.) Main Shell Flange Thickness, item no. 4 (cont.) [Appendix 2] [FIG. 2-4, Sketch (6a)]
FLANGE FACTORS Subjected to internal pressure
(a) For Integral Flanges
Factor F per Fig. 2-7.2 is then solved by 0.81225
Factor V per Fig. 2-7.3 is then solved by 0.21166
Factor f per Fig. 2-7.6 is then solved by f = C36 / (1 + A) 1.02557 h/SQRT(BGo 0.562026971
The values used in the above equations are solved using Eqs. (1) through (45) below based on the values g1, g0, h and ho
as defined by 2-3. When g1 = go, F = 0.908920, V = 0.550103, and f = 1; thus Eqs. (1) through (45) need not be solved.
(b) For Loose Hub Flanges
Factor FL per Fig. 2-7.4 is solved by
1.435
Factor VL per Fig. 2-7.5 is solved by 0.66229
Factor f per Fig. 2-7.6 is set equal to 1. f = 1 1
The values used in the above equations are solved using Eqs. (1) through (5), (7), (9), (10), (12),
(14), (16), (18), (20), (23), and (26) below based on the values of g1, g0, h, and ho as defined by 2-3.
go 0.5 INCH 12.7 MM
g1 1 INCH 25.4 MM
h 1.73228 INCH 44 MM
ho = SQRT(B go), Effective hub length 3.08221 INCH 78.2881 MM
B 19 INCH 482.6 MM
(1) A = (g1/go) - 1 1
(2) C = 43.68(h/ho)4
4.35824
(3) C1 = 1/3 + A/12 0.41667
(4) C2 = 5/42 + 17 A / 336 0.16964
(5) C3 = 1/210 + A/360 0.00754
(6) C4 = 11/360 + 59 A/5040 + (1+3 A)/C 0.96006
(7) C5 = 1/90 + 5 A/1008 - (1+ A)3
/C -1.81953
F
E
C A
C
=
+
6
1 4
3
2 73
1
[
.
]
( )/
V
E
C
A
=
+
4
1 4 32 73
1[
.
] ( )/
F
C
A
C
A
C
A A
C A
C
L =
+
⎛
⎝
⎜
⎞
⎠
⎟ + +
⎛
⎝
⎜
⎞
⎠
⎟ + +
⎛
⎝
⎜
⎞
⎠
⎟ − −
⎛
⎝
⎜
⎞
⎠
⎟
⎛
⎝
⎜
⎞
⎠
⎟
+
1 8 2 1 2 4
1 4 3
1
2 6
1
4
1 1
8 4
1
7 0 1 0 5
1
4 0 7 2
2 7 3
1
.
( )
/
V
C C
C
C
A
L =
− − −
⎛
⎝
⎜
⎞
⎠
⎟ +
1
4 5
3
2
2 73
1
24 21
18
1 4
3.
( )
/
DESIGN CALCULATIONS OF HEAT EXCHANGER Page : 44 of 136
According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Sheet : 9 of 10
Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant) Rev. : 0
Project : Design & Fabrication of Heat Exchanger for APRC Refinery Date : 4.7.2003
Job No. : 7443-33 Location : Alex.
Dwg. No. : 7443-33-1A, Rev. 0 Sheet : 5 Client : APRC
Exchanger : Residue Cooler, Type : AES Item : E-323A/B & E-514C/D
N. Integral Type (W.N.) Main Shell Flange Thickness, item no. 4 (cont.) [Appendix 2] [FIG. 2-4, Sketch (6a)]
FLANGE FACTORS (CONT.) Subjected to internal pressure
(8) C6 = 1/120 + 17 A/5040 +1 /C 0.24116
(9) C7 = 215/2772 + 51 A/1232 + (60/7 + 225 A/14 + 75A2
/7 + 5 A3
/2)/C 8.80529
(10) C8 = 31/6930 + 128 A/45045 + (6/7 + 15 A/7 + 12A2
/7 + 5 A3
/11)/C 1.19331
(11) C9 = 533/30240 + 653 A/73920 + (1/2 + 33 A/14 + 39 A2
/28 + 25 A3
/84)/C 1.06991
(12) C10 = 29/3780 + 3 A/704 - (1/2 + 33 A/14 + 81 A2
/28 + 13 A3
/12)/C -1.55598
(13) C11 = 31/6048 + 1763 A/665280 + (1/2 + 6 A/7 + 15 A2
/28 + 5 A3
/42)/C 0.46941
(14) C12 = 1/2925 + 71 A/300300 + (8/35 + 18 A /35 + 156 A2
/385 + 6 A3
/55)/C 0.28903
(15) C13 = 761/831600 + 937 A/1663200 + (1/35 + 6 A /35 + 11 A2
/70 + 3 A3
/70)/0.09326
(16) C14 = 197/415800 + 103 A/332640 - (1/35 + 6 A /35 + 17 A2
/70 + A3
/10)/C -0.12378
(17) C15 = 233/831600 + 97 A/554400 + (1/35 + 3 A /35 + A2
/14 + 2 A3
/105)/C 0.04744
(18) C16 = C1C7C12 + C2C8C3 + C3C8C2 - (C3
2
C7 + C8
2
C1 + C2
2
C12) 0.46133
(19) C17 = [C4C7C12 + C2C8C13 + C3C8C9 - (C13C7C3 + C8
2
C4 + C12C2C9)] / C16 2.2676
(20) C18 = [C5C7C12 + C2C8C14 + C3C8C10 - (C14C7C3 + C8
2
C5 + C12C2C10)] / C16 -4.32293
(21) C19 = [C6C7C12 + C2C8C15 + C3C8C11 - (C15C7C3 + C8
2
C6 + C12C2C11)] / C16 0.55926
(22) C20 = [C1C9C12 + C4C8C3 + C3C13C2 - (C3
2
C9 + C13C8 C1 + C12C4C2)] / C16 0.0956
(23) C21 = [C1C10C12 + C5C8C3 + C3C14C2 - (C3
2
C10 + C14C8 C1 + C12C5C2)] / C16 -0.11503
(24) C22 = [C1C11C12 + C6C8C3 + C3C15C2 - (C3
2
C11 + C15C8 C1 + C12C6C2)] / C16 0.05056
(25) C23 = [C1C7C13 + C2C9C3 + C4C8C2 - (C3C7C4 + C8C9 C1 + C2
2
C13)] / C16 -0.13119
(26) C24 = [C1C7C14 + C2C10C3 + C5C8C2 - (C3C7C5 + C8C10 C1 + C2
2
C14)] / C16 0.15946
(27) C25 = [C1C7C15 + C2C11C3 + C6C8C2 - (C3C7C6 + C8C11 C1 + C2
2
C15)] / C16 -0.05919
(28) C26 = - (C/4)1/4
-1.02168
(29) C27 = C20 - C17 - 5/12 + C17C26 -4.90543
(30) C28 = C22 - C19 - 1/12 + C19C26 -1.16343
(31) C29 = - (C/4)1/2
-1.04382
(32) C30 = - (C/4)3/4
-1.06644
(33) C31 = 3 A/2 - C17 C30 3.91827
(34) C32 = 1/2 - C19 C30 1.09642
(35) C33 = 0.5 C26C32 + C28C31C29 - (0.5 C30C28 + C32C27C29) -2.03619
(36) C34 = 1/12 + C18 - C21 - C18C26 -8.54118
(37) C35 = - C18 (C/4)3/4
4.61016
(38) C36 = (C28C35C29 - C32C34C29)/C33 2.05114
(39) C37 = [0.5 C26C35 + C34C31C29 - (0.5 C30C34 + C35C27C29)] / C33 -2.16975
(40) E1 = C17C36 + C18 + C19C37 -0.88522
(41) E2 = C20C36 + C21 + C22C37 -0.02864
(42) E3 = C23C36 + C24 + C25C37 0.01881
(43) E4 = 1/4 + C37/12 + C36/4 - E3/5 - 3E2/2 - E1 1.50639
(44) E5 = E1 (1/2 + A/6) + E2(1/4 + 11A/84) + E3(1/70 + A/105) -0.60061
(45) E6 = E5 - C36(7/120 +A/36 + 3A/C) - 1/40 - A/72 - C37(1/60 +A/120 + 1/C) -1.67593
Heat_exchanger_mechanical_design_calculations_per_asme_& tema   by abdel halim_galala
Heat_exchanger_mechanical_design_calculations_per_asme_& tema   by abdel halim_galala
Heat_exchanger_mechanical_design_calculations_per_asme_& tema   by abdel halim_galala
Heat_exchanger_mechanical_design_calculations_per_asme_& tema   by abdel halim_galala
Heat_exchanger_mechanical_design_calculations_per_asme_& tema   by abdel halim_galala
Heat_exchanger_mechanical_design_calculations_per_asme_& tema   by abdel halim_galala
Heat_exchanger_mechanical_design_calculations_per_asme_& tema   by abdel halim_galala
Heat_exchanger_mechanical_design_calculations_per_asme_& tema   by abdel halim_galala
Heat_exchanger_mechanical_design_calculations_per_asme_& tema   by abdel halim_galala
Heat_exchanger_mechanical_design_calculations_per_asme_& tema   by abdel halim_galala
Heat_exchanger_mechanical_design_calculations_per_asme_& tema   by abdel halim_galala
Heat_exchanger_mechanical_design_calculations_per_asme_& tema   by abdel halim_galala
Heat_exchanger_mechanical_design_calculations_per_asme_& tema   by abdel halim_galala
Heat_exchanger_mechanical_design_calculations_per_asme_& tema   by abdel halim_galala
Heat_exchanger_mechanical_design_calculations_per_asme_& tema   by abdel halim_galala
Heat_exchanger_mechanical_design_calculations_per_asme_& tema   by abdel halim_galala
Heat_exchanger_mechanical_design_calculations_per_asme_& tema   by abdel halim_galala
Heat_exchanger_mechanical_design_calculations_per_asme_& tema   by abdel halim_galala
Heat_exchanger_mechanical_design_calculations_per_asme_& tema   by abdel halim_galala
Heat_exchanger_mechanical_design_calculations_per_asme_& tema   by abdel halim_galala
Heat_exchanger_mechanical_design_calculations_per_asme_& tema   by abdel halim_galala
Heat_exchanger_mechanical_design_calculations_per_asme_& tema   by abdel halim_galala
Heat_exchanger_mechanical_design_calculations_per_asme_& tema   by abdel halim_galala
Heat_exchanger_mechanical_design_calculations_per_asme_& tema   by abdel halim_galala
Heat_exchanger_mechanical_design_calculations_per_asme_& tema   by abdel halim_galala
Heat_exchanger_mechanical_design_calculations_per_asme_& tema   by abdel halim_galala
Heat_exchanger_mechanical_design_calculations_per_asme_& tema   by abdel halim_galala
Heat_exchanger_mechanical_design_calculations_per_asme_& tema   by abdel halim_galala
Heat_exchanger_mechanical_design_calculations_per_asme_& tema   by abdel halim_galala
Heat_exchanger_mechanical_design_calculations_per_asme_& tema   by abdel halim_galala
Heat_exchanger_mechanical_design_calculations_per_asme_& tema   by abdel halim_galala
Heat_exchanger_mechanical_design_calculations_per_asme_& tema   by abdel halim_galala
Heat_exchanger_mechanical_design_calculations_per_asme_& tema   by abdel halim_galala
Heat_exchanger_mechanical_design_calculations_per_asme_& tema   by abdel halim_galala
Heat_exchanger_mechanical_design_calculations_per_asme_& tema   by abdel halim_galala
Heat_exchanger_mechanical_design_calculations_per_asme_& tema   by abdel halim_galala
Heat_exchanger_mechanical_design_calculations_per_asme_& tema   by abdel halim_galala
Heat_exchanger_mechanical_design_calculations_per_asme_& tema   by abdel halim_galala
Heat_exchanger_mechanical_design_calculations_per_asme_& tema   by abdel halim_galala
Heat_exchanger_mechanical_design_calculations_per_asme_& tema   by abdel halim_galala
Heat_exchanger_mechanical_design_calculations_per_asme_& tema   by abdel halim_galala
Heat_exchanger_mechanical_design_calculations_per_asme_& tema   by abdel halim_galala
Heat_exchanger_mechanical_design_calculations_per_asme_& tema   by abdel halim_galala
Heat_exchanger_mechanical_design_calculations_per_asme_& tema   by abdel halim_galala
Heat_exchanger_mechanical_design_calculations_per_asme_& tema   by abdel halim_galala
Heat_exchanger_mechanical_design_calculations_per_asme_& tema   by abdel halim_galala
Heat_exchanger_mechanical_design_calculations_per_asme_& tema   by abdel halim_galala
Heat_exchanger_mechanical_design_calculations_per_asme_& tema   by abdel halim_galala
Heat_exchanger_mechanical_design_calculations_per_asme_& tema   by abdel halim_galala
Heat_exchanger_mechanical_design_calculations_per_asme_& tema   by abdel halim_galala
Heat_exchanger_mechanical_design_calculations_per_asme_& tema   by abdel halim_galala
Heat_exchanger_mechanical_design_calculations_per_asme_& tema   by abdel halim_galala
Heat_exchanger_mechanical_design_calculations_per_asme_& tema   by abdel halim_galala
Heat_exchanger_mechanical_design_calculations_per_asme_& tema   by abdel halim_galala
Heat_exchanger_mechanical_design_calculations_per_asme_& tema   by abdel halim_galala
Heat_exchanger_mechanical_design_calculations_per_asme_& tema   by abdel halim_galala
Heat_exchanger_mechanical_design_calculations_per_asme_& tema   by abdel halim_galala
Heat_exchanger_mechanical_design_calculations_per_asme_& tema   by abdel halim_galala
Heat_exchanger_mechanical_design_calculations_per_asme_& tema   by abdel halim_galala
Heat_exchanger_mechanical_design_calculations_per_asme_& tema   by abdel halim_galala
Heat_exchanger_mechanical_design_calculations_per_asme_& tema   by abdel halim_galala
Heat_exchanger_mechanical_design_calculations_per_asme_& tema   by abdel halim_galala
Heat_exchanger_mechanical_design_calculations_per_asme_& tema   by abdel halim_galala
Heat_exchanger_mechanical_design_calculations_per_asme_& tema   by abdel halim_galala
Heat_exchanger_mechanical_design_calculations_per_asme_& tema   by abdel halim_galala
Heat_exchanger_mechanical_design_calculations_per_asme_& tema   by abdel halim_galala
Heat_exchanger_mechanical_design_calculations_per_asme_& tema   by abdel halim_galala
Heat_exchanger_mechanical_design_calculations_per_asme_& tema   by abdel halim_galala
Heat_exchanger_mechanical_design_calculations_per_asme_& tema   by abdel halim_galala
Heat_exchanger_mechanical_design_calculations_per_asme_& tema   by abdel halim_galala
Heat_exchanger_mechanical_design_calculations_per_asme_& tema   by abdel halim_galala
Heat_exchanger_mechanical_design_calculations_per_asme_& tema   by abdel halim_galala
Heat_exchanger_mechanical_design_calculations_per_asme_& tema   by abdel halim_galala
Heat_exchanger_mechanical_design_calculations_per_asme_& tema   by abdel halim_galala
Heat_exchanger_mechanical_design_calculations_per_asme_& tema   by abdel halim_galala
Heat_exchanger_mechanical_design_calculations_per_asme_& tema   by abdel halim_galala
Heat_exchanger_mechanical_design_calculations_per_asme_& tema   by abdel halim_galala
Heat_exchanger_mechanical_design_calculations_per_asme_& tema   by abdel halim_galala
Heat_exchanger_mechanical_design_calculations_per_asme_& tema   by abdel halim_galala
Heat_exchanger_mechanical_design_calculations_per_asme_& tema   by abdel halim_galala
Heat_exchanger_mechanical_design_calculations_per_asme_& tema   by abdel halim_galala
Heat_exchanger_mechanical_design_calculations_per_asme_& tema   by abdel halim_galala
Heat_exchanger_mechanical_design_calculations_per_asme_& tema   by abdel halim_galala
Heat_exchanger_mechanical_design_calculations_per_asme_& tema   by abdel halim_galala
Heat_exchanger_mechanical_design_calculations_per_asme_& tema   by abdel halim_galala
Heat_exchanger_mechanical_design_calculations_per_asme_& tema   by abdel halim_galala
Heat_exchanger_mechanical_design_calculations_per_asme_& tema   by abdel halim_galala
Heat_exchanger_mechanical_design_calculations_per_asme_& tema   by abdel halim_galala
Heat_exchanger_mechanical_design_calculations_per_asme_& tema   by abdel halim_galala
Heat_exchanger_mechanical_design_calculations_per_asme_& tema   by abdel halim_galala
Heat_exchanger_mechanical_design_calculations_per_asme_& tema   by abdel halim_galala
Heat_exchanger_mechanical_design_calculations_per_asme_& tema   by abdel halim_galala

More Related Content

What's hot

Heat exchanger: Shell And Tube Heat Exchanger
Heat exchanger: Shell And Tube Heat ExchangerHeat exchanger: Shell And Tube Heat Exchanger
Heat exchanger: Shell And Tube Heat ExchangerAkshay Sarita
 
AIR COOLED HEAT EXCHANGER
AIR COOLED HEAT EXCHANGERAIR COOLED HEAT EXCHANGER
AIR COOLED HEAT EXCHANGERAhsan Shakil
 
PRESSURE VESSEL NEW-GENERAL ARRANGEMENT
PRESSURE VESSEL NEW-GENERAL ARRANGEMENTPRESSURE VESSEL NEW-GENERAL ARRANGEMENT
PRESSURE VESSEL NEW-GENERAL ARRANGEMENTsourabh arora
 
Presentacion asme seccion viii division 2 2013
Presentacion asme seccion viii division 2 2013Presentacion asme seccion viii division 2 2013
Presentacion asme seccion viii division 2 2013leo040490
 
Design of thermosyphon reboiler
Design of thermosyphon reboilerDesign of thermosyphon reboiler
Design of thermosyphon reboilerHarshad Vaghela
 
Pressure vessel lecture note ppt
Pressure vessel lecture note pptPressure vessel lecture note ppt
Pressure vessel lecture note pptBashaMekonnen
 
Distillation column internals.pptx
Distillation column internals.pptxDistillation column internals.pptx
Distillation column internals.pptxJOMON M.C
 
PRESENTATION ON DUCT DESIGN
PRESENTATION ON DUCT DESIGNPRESENTATION ON DUCT DESIGN
PRESENTATION ON DUCT DESIGNRakshit vadi
 
Fundamentals of Heat Exchanger Design
Fundamentals of Heat Exchanger DesignFundamentals of Heat Exchanger Design
Fundamentals of Heat Exchanger DesignAddisu Dagne Zegeye
 
Relief and safety valves for thermal power plants
Relief and safety valves for thermal power plantsRelief and safety valves for thermal power plants
Relief and safety valves for thermal power plantsSHIVAJI CHOUDHURY
 
Skirt support for vertical vessal 16 06,07,08,09
Skirt support for vertical vessal 16 06,07,08,09Skirt support for vertical vessal 16 06,07,08,09
Skirt support for vertical vessal 16 06,07,08,09Shahrukh Vahora
 
Chapter 2-Shell & Tube Heat Exchangers.pdf
Chapter 2-Shell & Tube Heat Exchangers.pdfChapter 2-Shell & Tube Heat Exchangers.pdf
Chapter 2-Shell & Tube Heat Exchangers.pdfKAhmedRehman
 
Critical Variables in Catalytic Reforming and Unit Monitoring Best Practices
Critical Variables in Catalytic Reforming and Unit Monitoring Best PracticesCritical Variables in Catalytic Reforming and Unit Monitoring Best Practices
Critical Variables in Catalytic Reforming and Unit Monitoring Best PracticesGerard B. Hawkins
 
Pressure relief system_design
Pressure relief system_designPressure relief system_design
Pressure relief system_designRahul Tewari
 
Process Engineer Training PID.ppt.pdf
Process Engineer Training PID.ppt.pdfProcess Engineer Training PID.ppt.pdf
Process Engineer Training PID.ppt.pdfFaustoMarceloCaibe
 

What's hot (20)

Heat exchanger: Shell And Tube Heat Exchanger
Heat exchanger: Shell And Tube Heat ExchangerHeat exchanger: Shell And Tube Heat Exchanger
Heat exchanger: Shell And Tube Heat Exchanger
 
AIR COOLED HEAT EXCHANGER
AIR COOLED HEAT EXCHANGERAIR COOLED HEAT EXCHANGER
AIR COOLED HEAT EXCHANGER
 
PRESSURE VESSEL NEW-GENERAL ARRANGEMENT
PRESSURE VESSEL NEW-GENERAL ARRANGEMENTPRESSURE VESSEL NEW-GENERAL ARRANGEMENT
PRESSURE VESSEL NEW-GENERAL ARRANGEMENT
 
Presentacion asme seccion viii division 2 2013
Presentacion asme seccion viii division 2 2013Presentacion asme seccion viii division 2 2013
Presentacion asme seccion viii division 2 2013
 
Design of thermosyphon reboiler
Design of thermosyphon reboilerDesign of thermosyphon reboiler
Design of thermosyphon reboiler
 
Heat Exchanger
Heat ExchangerHeat Exchanger
Heat Exchanger
 
Pressure vessel lecture note ppt
Pressure vessel lecture note pptPressure vessel lecture note ppt
Pressure vessel lecture note ppt
 
Distillation column internals.pptx
Distillation column internals.pptxDistillation column internals.pptx
Distillation column internals.pptx
 
Assignment 1
Assignment 1Assignment 1
Assignment 1
 
PRESENTATION ON DUCT DESIGN
PRESENTATION ON DUCT DESIGNPRESENTATION ON DUCT DESIGN
PRESENTATION ON DUCT DESIGN
 
Fundamentals of Heat Exchanger Design
Fundamentals of Heat Exchanger DesignFundamentals of Heat Exchanger Design
Fundamentals of Heat Exchanger Design
 
Relief and safety valves for thermal power plants
Relief and safety valves for thermal power plantsRelief and safety valves for thermal power plants
Relief and safety valves for thermal power plants
 
Skirt support for vertical vessal 16 06,07,08,09
Skirt support for vertical vessal 16 06,07,08,09Skirt support for vertical vessal 16 06,07,08,09
Skirt support for vertical vessal 16 06,07,08,09
 
Chapter 2-Shell & Tube Heat Exchangers.pdf
Chapter 2-Shell & Tube Heat Exchangers.pdfChapter 2-Shell & Tube Heat Exchangers.pdf
Chapter 2-Shell & Tube Heat Exchangers.pdf
 
Critical Variables in Catalytic Reforming and Unit Monitoring Best Practices
Critical Variables in Catalytic Reforming and Unit Monitoring Best PracticesCritical Variables in Catalytic Reforming and Unit Monitoring Best Practices
Critical Variables in Catalytic Reforming and Unit Monitoring Best Practices
 
Pressure relief system_design
Pressure relief system_designPressure relief system_design
Pressure relief system_design
 
Ced_ppt
Ced_pptCed_ppt
Ced_ppt
 
Process Engineer Training PID.ppt.pdf
Process Engineer Training PID.ppt.pdfProcess Engineer Training PID.ppt.pdf
Process Engineer Training PID.ppt.pdf
 
Tutorial hysys
Tutorial hysysTutorial hysys
Tutorial hysys
 
design and analysis of pressure vessel
design and analysis of pressure vesseldesign and analysis of pressure vessel
design and analysis of pressure vessel
 

Viewers also liked

Asme sec viii div 2
Asme sec viii div 2Asme sec viii div 2
Asme sec viii div 2Jithu John
 
Heat exchanger design handbook
Heat exchanger design handbookHeat exchanger design handbook
Heat exchanger design handbookvijayabhaskar83
 
Heat Exchanges & Tubesheets - Design & Verification
Heat Exchanges & Tubesheets - Design & VerificationHeat Exchanges & Tubesheets - Design & Verification
Heat Exchanges & Tubesheets - Design & VerificationMidas Engineering Group
 
design and analysis of heat exchanger
design and analysis of heat exchangerdesign and analysis of heat exchanger
design and analysis of heat exchangerAkash Behl
 
Engineering service
Engineering serviceEngineering service
Engineering servicewangzh2k
 
Selection of Shell and tube heat exchanger (STHE)
Selection of Shell and tube heat exchanger (STHE)Selection of Shell and tube heat exchanger (STHE)
Selection of Shell and tube heat exchanger (STHE)Gautham Sankaraselvam
 
35 Insp, Ndt, Stat Reqmts Fope
35 Insp, Ndt, Stat Reqmts Fope35 Insp, Ndt, Stat Reqmts Fope
35 Insp, Ndt, Stat Reqmts Fopejubin
 
PetroSync - TEMA & HTRI-Heat Exchanger Design & Cost Saving Management
PetroSync - TEMA & HTRI-Heat Exchanger Design & Cost Saving ManagementPetroSync - TEMA & HTRI-Heat Exchanger Design & Cost Saving Management
PetroSync - TEMA & HTRI-Heat Exchanger Design & Cost Saving ManagementPetroSync
 
Mechanical_design_of_process_system_volume-2.
Mechanical_design_of_process_system_volume-2.Mechanical_design_of_process_system_volume-2.
Mechanical_design_of_process_system_volume-2.MIGUEL SALDIVAR HERNANDEZ
 
Heat exchanger - Training course material
Heat exchanger - Training course materialHeat exchanger - Training course material
Heat exchanger - Training course materialBassem Eleaba, MEng
 
41914644 storage-tank-design-calculations-seismic-design-overturning-moment-b...
41914644 storage-tank-design-calculations-seismic-design-overturning-moment-b...41914644 storage-tank-design-calculations-seismic-design-overturning-moment-b...
41914644 storage-tank-design-calculations-seismic-design-overturning-moment-b...141jdf
 

Viewers also liked (16)

Heat exchangers
Heat exchangersHeat exchangers
Heat exchangers
 
Asme sec viii div 2
Asme sec viii div 2Asme sec viii div 2
Asme sec viii div 2
 
Heat exchanger design handbook
Heat exchanger design handbookHeat exchanger design handbook
Heat exchanger design handbook
 
Heat Exchanges & Tubesheets - Design & Verification
Heat Exchanges & Tubesheets - Design & VerificationHeat Exchanges & Tubesheets - Design & Verification
Heat Exchanges & Tubesheets - Design & Verification
 
API-Rp c204 2010-10
API-Rp c204 2010-10API-Rp c204 2010-10
API-Rp c204 2010-10
 
design and analysis of heat exchanger
design and analysis of heat exchangerdesign and analysis of heat exchanger
design and analysis of heat exchanger
 
Engineering service
Engineering serviceEngineering service
Engineering service
 
Heat exchangers
Heat exchangersHeat exchangers
Heat exchangers
 
Selection of Shell and tube heat exchanger (STHE)
Selection of Shell and tube heat exchanger (STHE)Selection of Shell and tube heat exchanger (STHE)
Selection of Shell and tube heat exchanger (STHE)
 
35 Insp, Ndt, Stat Reqmts Fope
35 Insp, Ndt, Stat Reqmts Fope35 Insp, Ndt, Stat Reqmts Fope
35 Insp, Ndt, Stat Reqmts Fope
 
PetroSync - TEMA & HTRI-Heat Exchanger Design & Cost Saving Management
PetroSync - TEMA & HTRI-Heat Exchanger Design & Cost Saving ManagementPetroSync - TEMA & HTRI-Heat Exchanger Design & Cost Saving Management
PetroSync - TEMA & HTRI-Heat Exchanger Design & Cost Saving Management
 
Mechanical_design_of_process_system_volume-2.
Mechanical_design_of_process_system_volume-2.Mechanical_design_of_process_system_volume-2.
Mechanical_design_of_process_system_volume-2.
 
CV-Trungvv
CV-TrungvvCV-Trungvv
CV-Trungvv
 
Heat Exchangers by Hanif Dewan
Heat Exchangers by Hanif DewanHeat Exchangers by Hanif Dewan
Heat Exchangers by Hanif Dewan
 
Heat exchanger - Training course material
Heat exchanger - Training course materialHeat exchanger - Training course material
Heat exchanger - Training course material
 
41914644 storage-tank-design-calculations-seismic-design-overturning-moment-b...
41914644 storage-tank-design-calculations-seismic-design-overturning-moment-b...41914644 storage-tank-design-calculations-seismic-design-overturning-moment-b...
41914644 storage-tank-design-calculations-seismic-design-overturning-moment-b...
 

Similar to Heat_exchanger_mechanical_design_calculations_per_asme_& tema by abdel halim_galala

IRJET- Design and Analysis of Ejector Refrigeration System using R-134a Refr...
IRJET-	 Design and Analysis of Ejector Refrigeration System using R-134a Refr...IRJET-	 Design and Analysis of Ejector Refrigeration System using R-134a Refr...
IRJET- Design and Analysis of Ejector Refrigeration System using R-134a Refr...IRJET Journal
 
13.3m special light tele. design 1 approved by zain.pdf
13.3m special light tele. design 1 approved by zain.pdf13.3m special light tele. design 1 approved by zain.pdf
13.3m special light tele. design 1 approved by zain.pdfEhteshamAli28
 
Gas Turbine Nuclear Power Plants
Gas Turbine Nuclear Power PlantsGas Turbine Nuclear Power Plants
Gas Turbine Nuclear Power PlantsAdam Doligalski
 
IRJET- Analysis of Cooling Techniques of a Gas Turbine Blade
IRJET- Analysis of Cooling Techniques of a Gas Turbine BladeIRJET- Analysis of Cooling Techniques of a Gas Turbine Blade
IRJET- Analysis of Cooling Techniques of a Gas Turbine BladeIRJET Journal
 
2136-872A-X003-001-VER-A4000C (1).PDF
2136-872A-X003-001-VER-A4000C (1).PDF2136-872A-X003-001-VER-A4000C (1).PDF
2136-872A-X003-001-VER-A4000C (1).PDFWorldofAllLyrics
 
48 tc 04-16-03pd paquete carrier
48 tc 04-16-03pd paquete carrier48 tc 04-16-03pd paquete carrier
48 tc 04-16-03pd paquete carrierRios Luis
 
IAC 18,c4,5,10,x45214
IAC 18,c4,5,10,x45214IAC 18,c4,5,10,x45214
IAC 18,c4,5,10,x45214Nihar Patel
 
DESIGN AND FABRICATION OF HELICAL TUBE IN COIL TYPE HEAT EXCHANGER
DESIGN AND FABRICATION OF HELICAL TUBE IN COIL TYPE HEAT EXCHANGERDESIGN AND FABRICATION OF HELICAL TUBE IN COIL TYPE HEAT EXCHANGER
DESIGN AND FABRICATION OF HELICAL TUBE IN COIL TYPE HEAT EXCHANGERhemantnehete
 
Cnc projeto completo (só montar)
Cnc projeto completo (só montar)Cnc projeto completo (só montar)
Cnc projeto completo (só montar)epahk
 
volumetric air receivers.pdf
volumetric air receivers.pdfvolumetric air receivers.pdf
volumetric air receivers.pdfPreetamSingh89
 
Study of forced convection in smooth and ribbed ducts
Study of forced convection in smooth and ribbed ductsStudy of forced convection in smooth and ribbed ducts
Study of forced convection in smooth and ribbed ductsHaamid Shah
 
[ME-20249]Complex Engineering RAC file.pdf
[ME-20249]Complex Engineering RAC file.pdf[ME-20249]Complex Engineering RAC file.pdf
[ME-20249]Complex Engineering RAC file.pdfSHAHFAISALHAMEED
 
PCB manufacture design rule
PCB manufacture design rulePCB manufacture design rule
PCB manufacture design ruleJane Soong
 
HDOT one of the topmost Manufacturing Units in India
HDOT one of the topmost Manufacturing Units in IndiaHDOT one of the topmost Manufacturing Units in India
HDOT one of the topmost Manufacturing Units in IndiaGitanjali Singh
 
IRJET- Design and Thermal Analysis of Steam Turbine Blade
IRJET- Design and Thermal Analysis of Steam Turbine BladeIRJET- Design and Thermal Analysis of Steam Turbine Blade
IRJET- Design and Thermal Analysis of Steam Turbine BladeIRJET Journal
 
IRJET- Certain Investigation on Induction Motor Performance with Variable Fre...
IRJET- Certain Investigation on Induction Motor Performance with Variable Fre...IRJET- Certain Investigation on Induction Motor Performance with Variable Fre...
IRJET- Certain Investigation on Induction Motor Performance with Variable Fre...IRJET Journal
 
IRJET- CFD Analysis of various Turbulent Parameters in a Radiator by using Lo...
IRJET- CFD Analysis of various Turbulent Parameters in a Radiator by using Lo...IRJET- CFD Analysis of various Turbulent Parameters in a Radiator by using Lo...
IRJET- CFD Analysis of various Turbulent Parameters in a Radiator by using Lo...IRJET Journal
 

Similar to Heat_exchanger_mechanical_design_calculations_per_asme_& tema by abdel halim_galala (20)

IRJET- Design and Analysis of Ejector Refrigeration System using R-134a Refr...
IRJET-	 Design and Analysis of Ejector Refrigeration System using R-134a Refr...IRJET-	 Design and Analysis of Ejector Refrigeration System using R-134a Refr...
IRJET- Design and Analysis of Ejector Refrigeration System using R-134a Refr...
 
13.3m special light tele. design 1 approved by zain.pdf
13.3m special light tele. design 1 approved by zain.pdf13.3m special light tele. design 1 approved by zain.pdf
13.3m special light tele. design 1 approved by zain.pdf
 
Gas Turbine Nuclear Power Plants
Gas Turbine Nuclear Power PlantsGas Turbine Nuclear Power Plants
Gas Turbine Nuclear Power Plants
 
IRJET- Analysis of Cooling Techniques of a Gas Turbine Blade
IRJET- Analysis of Cooling Techniques of a Gas Turbine BladeIRJET- Analysis of Cooling Techniques of a Gas Turbine Blade
IRJET- Analysis of Cooling Techniques of a Gas Turbine Blade
 
2136-872A-X003-001-VER-A4000C (1).PDF
2136-872A-X003-001-VER-A4000C (1).PDF2136-872A-X003-001-VER-A4000C (1).PDF
2136-872A-X003-001-VER-A4000C (1).PDF
 
48 tc 04-16-03pd paquete carrier
48 tc 04-16-03pd paquete carrier48 tc 04-16-03pd paquete carrier
48 tc 04-16-03pd paquete carrier
 
IAC 18,c4,5,10,x45214
IAC 18,c4,5,10,x45214IAC 18,c4,5,10,x45214
IAC 18,c4,5,10,x45214
 
DESIGN AND FABRICATION OF HELICAL TUBE IN COIL TYPE HEAT EXCHANGER
DESIGN AND FABRICATION OF HELICAL TUBE IN COIL TYPE HEAT EXCHANGERDESIGN AND FABRICATION OF HELICAL TUBE IN COIL TYPE HEAT EXCHANGER
DESIGN AND FABRICATION OF HELICAL TUBE IN COIL TYPE HEAT EXCHANGER
 
Cnc projeto completo (só montar)
Cnc projeto completo (só montar)Cnc projeto completo (só montar)
Cnc projeto completo (só montar)
 
volumetric air receivers.pdf
volumetric air receivers.pdfvolumetric air receivers.pdf
volumetric air receivers.pdf
 
Study of forced convection in smooth and ribbed ducts
Study of forced convection in smooth and ribbed ductsStudy of forced convection in smooth and ribbed ducts
Study of forced convection in smooth and ribbed ducts
 
project
projectproject
project
 
[ME-20249]Complex Engineering RAC file.pdf
[ME-20249]Complex Engineering RAC file.pdf[ME-20249]Complex Engineering RAC file.pdf
[ME-20249]Complex Engineering RAC file.pdf
 
Second Draw
Second DrawSecond Draw
Second Draw
 
PCB manufacture design rule
PCB manufacture design rulePCB manufacture design rule
PCB manufacture design rule
 
HDOT one of the topmost Manufacturing Units in India
HDOT one of the topmost Manufacturing Units in IndiaHDOT one of the topmost Manufacturing Units in India
HDOT one of the topmost Manufacturing Units in India
 
IRJET- Design and Thermal Analysis of Steam Turbine Blade
IRJET- Design and Thermal Analysis of Steam Turbine BladeIRJET- Design and Thermal Analysis of Steam Turbine Blade
IRJET- Design and Thermal Analysis of Steam Turbine Blade
 
IRJET- Certain Investigation on Induction Motor Performance with Variable Fre...
IRJET- Certain Investigation on Induction Motor Performance with Variable Fre...IRJET- Certain Investigation on Induction Motor Performance with Variable Fre...
IRJET- Certain Investigation on Induction Motor Performance with Variable Fre...
 
IRJET- CFD Analysis of various Turbulent Parameters in a Radiator by using Lo...
IRJET- CFD Analysis of various Turbulent Parameters in a Radiator by using Lo...IRJET- CFD Analysis of various Turbulent Parameters in a Radiator by using Lo...
IRJET- CFD Analysis of various Turbulent Parameters in a Radiator by using Lo...
 
Automobile - Thermocouple
Automobile - ThermocoupleAutomobile - Thermocouple
Automobile - Thermocouple
 

Recently uploaded

Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxJoão Esperancinha
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxwendy cai
 
Concrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxConcrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxKartikeyaDwivedi3
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfAsst.prof M.Gokilavani
 
chaitra-1.pptx fake news detection using machine learning
chaitra-1.pptx  fake news detection using machine learningchaitra-1.pptx  fake news detection using machine learning
chaitra-1.pptx fake news detection using machine learningmisbanausheenparvam
 
Introduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptxIntroduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptxvipinkmenon1
 
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024hassan khalil
 
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEINFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEroselinkalist12
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...Soham Mondal
 
Churning of Butter, Factors affecting .
Churning of Butter, Factors affecting  .Churning of Butter, Factors affecting  .
Churning of Butter, Factors affecting .Satyam Kumar
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionDr.Costas Sachpazis
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfAsst.prof M.Gokilavani
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024Mark Billinghurst
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx959SahilShah
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.eptoze12
 

Recently uploaded (20)

Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptx
 
Concrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxConcrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptx
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
 
chaitra-1.pptx fake news detection using machine learning
chaitra-1.pptx  fake news detection using machine learningchaitra-1.pptx  fake news detection using machine learning
chaitra-1.pptx fake news detection using machine learning
 
Introduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptxIntroduction to Microprocesso programming and interfacing.pptx
Introduction to Microprocesso programming and interfacing.pptx
 
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
 
Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024Architect Hassan Khalil Portfolio for 2024
Architect Hassan Khalil Portfolio for 2024
 
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEINFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
 
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
 
Churning of Butter, Factors affecting .
Churning of Butter, Factors affecting  .Churning of Butter, Factors affecting  .
Churning of Butter, Factors affecting .
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024
 
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
 
Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.
 

Heat_exchanger_mechanical_design_calculations_per_asme_& tema by abdel halim_galala

  • 1. Cairo Oil Refining Co. ‫ول‬ ‫א‬ ‫א‬ Subsidery of Egyotian Gen. Petroleum Corp. ‫ول‬ ‫א‬ ‫א‬ ‫א‬ ª ‫د‬ P.O. Box : Heliopolis 11757 Cairo A.R.E. ‫د‬ ‫د‬ ‫א‬ ١١٧٥٧ ‫س‬ ‫و‬ ‫و‬ : .ª.‫ص‬ Tel. : 202 - 2529821 (5 Lines) (‫طوط‬ ٥) ٢٠٢ - ٢٥٢٩٨٢١ : ‫ون‬ Fax : 202 - 2529826 ٢٠٢ - ٢٥٢٩٨٢٦ : ‫س‬ E-mail : corc2000@excite.com corc2000@excite.com : ‫و‬ ‫א‬ ‫د‬ Shell & Tube Heat Exchanger DESIGN CALCULATIONS Code : ASME Section VIII, Division 1, Edition 2001, Addenda 2002 & TEMA Class R, 7th. Edition 1988. Code Stamp : U Client : Amerya Petroleum Refining Co. (APRC) Project : Design & Fabrication of Residue Cooler Location : Alexandria, EGYPT Item No. : E-323 A E-323 B E-514 C E-514 C Serial No. : 7443-33-U-2008, 7443-33-U-2009, 7443-33-U-2010 & 7443-33-U-2011 Title : Heat Exchanger Service : Residue Cooler Type : AES Job No. : 7443-33 Dwg. No. : 7443-33-1A Rev. : 1 Cooler capacity 1.910848 M3 Weight of exchanger, empty (erection), W 4152.911 Kg Weight of contents, Wc 764 Kg Total weight of vessel and contents, Wt 4917 Kg MAWP : Shell Side 284.776 PSIG 20.04826 Kg/CM2 G Tube SideTube Side 71.7082 PSIG 5.04826 Kg/CM2 G Design Temp. : Shell Side 302 o F 150 o C Tube Side 140 o F 60 o C MDMT : Shell Side 29 o F -2 o C Tube SideTube Side 29 o F -2 o C No. of saddles 2 Saddles No. of anchor bolts per saddle 4 Bolts Anchor bolts size 28 MM Dia. By Eng. Abdel Halim Galala Design General Manager Design Sector ‫מ‬ ‫א‬ ‫ع‬ ‫ط‬ Page : 1 of 136 Sheet 1 of 2 Date : 11.4.2004
  • 2. DESIGN CALCULATIONS OF HEAT EXCHANGER Page : 2 of 136 According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Sheet : 2 of 2 Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant) Rev. : 1 Project : Design & Fabrication of Heat Exchanger for APRC Refinery Date : 11.4.2004 Job No. : 7443-33 Location : Alex. Dwg. No. : 7443-33-1A, Rev. 1 Client : APRC Exchanger : Residue Cooler, Type : AES, TEMA class : R Items : E-323A/B & E-514C/D A. Title (cont.) DESIGN CALCULATIONS Code : ASME Section VIII, Division 1, Edition 2001, Addenda 2002 & TEMA Class R, 7th. Edition 1988. Client : Amerya Petroleum Refining Co. Project : Design & Fabrication of Residue Cooler Location : Alexandria, EGYPT Item No. : E-323 A E-323 B E-514 C E-514 C Serial No. : 7443-33-U-2008, 7443-33-U-2009, 7443-33-U-2010 & 7443-33-U-2011 Title : Heat Exchanger Service : Residue Cooler Type : AES Job No. : 7443-33 Dwg. No. : 7443-33-1A Rev. : 1 Notes. 1. The calculated thicknesses are the min. required, where the actual thicknesses shown on drawings shall be equal or may be greater. 2. The greater thicknesses at drawings are taken into consideration while calaculating the MDMT and additional stresses due to incresed weight of vessel. 3 2 1 Issued for approval 11.4.2004 11.4.2004 11.4.2004 A. Halim A.H. Galala A.H.G 0 Issued for comments 4.7.2003 4.7.2003 4.7.2003 Designed by Reviewed by Approved by Rev. Description Date Date Date Revision Table Dwg. No. : 7443-33-1A Rev. : 1
  • 3. DESIGN CALCULATIONS OF HEAT EXCHANGER Page : 3 of 136 According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Sheet : 1 of 1 Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant) Rev. : 1 Project : Design & Fabrication of Heat Exchanger for APRC Refinery Date : 11.4.2004 Job No. : 7443-33 Location : Alex. Dwg. No. : 7443-33-1A, Rev. 1 Client : APRC Exchanger : Residue Cooler, Type : AES, TEMA class : R Items : E-323A/B & E-514C/D B. Copyright. Copyright 2002 by CORC A.H.Galala, the Design Manager, on behalf of Cairo Oil Refining Co. (CORC) All rights reserved. 1st. date of issue - July, 4th., 2003 No part of this document may be reproduced in any form, in an electronic retrieveal system or any otherwise without the prior written permission of the CORC/Designer.
  • 4. DESIGN CALCULATIONS OF HEAT EXCHANGER Page : 4 of 136 According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Sheet : 1 of 1 Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant) Rev. : 1 Project : Design & Fabrication of Heat Exchanger for APRC Refinery Date : 11.4.2004 Job No. : 7443-33 Location : Alex. Dwg. No. : 7443-33-1A, Rev. 1 Client : APRC Exchanger : Residue Cooler, Type : AES, TEMA class : R Items : E-323A/B & E-514C/D C. Revision Description. This page is a record of all revisions of the document, and the following revision(s) has (have) been made to this document. Sheet Rev. Date No. Revision Description 0 4.7.2003 all Issued for comments 1 11.4.2004 all Issued for approval 2 16.1.2005 7 UG-22 : Abnormal pressures
  • 5. DESIGN CALCULATIONS OF HEAT EXCHANGER Page : 5 of 136 According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Sheet : 1 of 2 Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant) Rev. : 1 Project : Design & Fabrication of Heat Exchanger for APRC Refinery Date : 11.4.2004 Job No. : 7443-33 Location : Alex. Dwg. No. : 7443-33-1A, Rev. 1 Client : APRC Exchanger : Residue Cooler, Type : AES, TEMA class : R Items : E-323A/B & E-514C/D D. Table of Contents. Description Page A. Title. Page : 1 of 136 B. Copyright. Page : 3 of 136 C. Revisions Description. Page : 4 of 136 D. Table of Contents. Page : 5 of 136 E. Applicable Loading Considered in Design. Page : 7 of 136 F. Impact Test Requirements. Page : 8 of 136 G. Standarad ASME B16.5 Flange Rating Class. Page : 8 of 136 H. Cylindrical Main Shell Thickness 1. Under Internal Pressureal (Pipe 20" NPS) Page : 9 of 136 2. Check of Main Shell Thickness for External Pressure (FV). Page : 10 of 136 I. Cylindrical Stationary Head-Channel. 1. Under Internal Pressure Page : 12 of 136 2. Check of Channel Thickness for External Pressure (Full Vacuum) Page : 13 of 136 J. Main Ellipsoidal Head Thickness Under Internal Pressure. Page : 14 of 136 K. Max. Internal Working Pressure, MWP at New (cold) & Operating (corroded) 1. For Shell-Side : Page : 15 of 136 2. For Tube-Side : Page : 15 of 136 3. For Tubes : (Item 38) Page : 17 of 136 L. Check for External Pressure (Convex Side), (Tube Side Full Vacuum) 1. Ellipsoidal Head (Stationary Head-Bonnet NA) Page : 18 of 136 2. Channel Page : 19 of 136 3. Tubes Page : 20 of 136 M. Nozzle Neck Thicknesses & Nozzle Openings Compensation : M1 S1 & S2 6" NPS 300# WNRF Sch. 80 10.9728 Page : 21 of 136 M2 T1 & T2 6" NPS 150# WNRF Sch. 80 10.9728 Page : 26 of 136 N. Main Shell Flange (item no. 4). E514FLG 5 Page : 36 of 136 N1. Main Shell Flanges (item no. 3). E514FLG 6 Page : 46 of 136 N2. Main Shell Flanges (item no. 12). E514FLG 7 Page : 56 of 136 O. Main Channel Flanges (items no. 18). E514FLG 9 Page : 66 of 136 P. Channel Cover (blind flange) (item no. 22). E514FLG 14 Page : 76 of 136 Q. Stationary Tubesheet (item no. 36). TUBSH514 4 Page : 82 of 136 Q1. Floating Tubesheet (item no. 37). TUBSH514 6 Page : 84 of 136 Q2. TEMA Pass Partition Plate Thickness Calculation (item nTUBSH514 7 Page : 86 of 136 Q3. Floating Head, Flange & Backing Ring (items no. 29, 30 E514FLG 15 Page : 87 of 136 File Sheet
  • 6. DESIGN CALCULATIONS OF HEAT EXCHANGER Page : 6 of 136 According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Sheet : 2 of 2 Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant) Rev. : 1 Project : Design & Fabrication of Heat Exchanger for APRC Refinery Date : 11.4.2004 Job No. : 7443-33 Location : Alex. Dwg. No. : 7443-33-1A, Rev. 1 Client : APRC Exchanger : Residue Cooler, Type : AES, TEMA class : R Items : E-323A/B & E-514C/D D. Table of Contents (cont.) Description Page R. Design of Saddle Supports. Page : 99 of 136 S. Lowest MDMT Without Impact Test. Page : 106 of 136 T. Radiography. Page : 116 of 136 U. Hydrostatic Test Pressure. [UG-99(b)] [ Refer to Page : 116 of 136 V. Post Weld Heat Treatment (PWHT). Page : 116 of 136 W. Calculation of Exchanger Weight. Page : 117 of 136 X. Stresses in Vessel on Two Saddle Supports Using ZICK's Method. Page : 121 of 136 Y. Check for the Anchor Bolts Due to Seismic and Wind Loading. Page : 129 of 136 Check for the Existing Anchor Bolts Due to Seismic and Wind Loading. Page : 130 of 136 Z. Check for Bundle Pulling. Page : 131 of 136 Z1. Lifting Lugs Thickness Calculations. Page : 133 of 136 Z2. References. Page : 135 of 136 Z3. Notes. Page : 136 of 136 Figures Index. Figure (1) Page : 36 of 136 Figure (2) Page : 46 of 136 Figure (3) Page : 56 of 136 Figure (4) Page : 66 of 136 Figure (5) Page : 76 of 136 Figure (6) Page : 87 of 136 Figure (7) Page : 91 of 136 Figure (8) Page : 100 of 136 Figure (9) Page : 100 of 136 Figure (10) Page : 104 of 136 Figure (11) Page : 122 of 136 Figure (12) Page : 123 of 136 Figure (13) Page : 124 of 136 Figure (14) Page : 124 of 136 Figure (15) Page : 128 of 136 Figure (16) Page : 129 of 136 Figure (17) Page : 129 of 136 Figure (18) Page : 131 of 136 Figure (19) Page : 131 of 136 Figure (20) Page : 132 of 136 Figure (21) Page : 133 of 136 Figure (22) Page : 134 of 136
  • 7. DESIGN CALCULATIONS OF HEAT EXCHANGER Page : 7 of 136 According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Sheet : 1 of 1 Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant) Rev. : 2 Project : Design & Fabrication of Heat Exchanger for APRC Refinery Date : 11.4.2004 Job No. : 7443-33 Location : Alex. Dwg. No. : 7443-33-1A, Rev. 1 Client : APRC Exchanger : Residue Cooler, Type : AES, TEMA class : R Items : E-323A/B & E-514C/D E. Applicable Loading Considered in Design. [UG-22 & UG-98] I. By considering UG-22 : 1. The loadings to be considered in design of exchanger shall include the following : a. Internal & external design pressure (see item II below). b. Weight of the vessel and contents under test conditions. c. Attachment of vessel supports such as lifting lugs and saddles. 2. No expected effect for superimposed static reactions such as piping . There is no attached equipment such as motors, machinery, other vessels, and lining. and insulation. 3. The effect of the following loadings is considered negligible and /or not applicable : a. Cyclic and dynamic reactions due to pressure for thermal variations. b. Snow reactions. c. Impact reactions due to fluid chock. d. Temperature gradients and differential thermal expansion. e. Abnormal pressures, such as those caused by deflagration. II. By considering UG-21 & UG-98 : The max. allowable working pressure for a vessel part is the max.internal pressure at the highest point of vessel (i.e. including the static head theron). Since the exchanger is intended to be erected horizontaly, the static head equals almost the ID of the exchanger (dimension units of water). Max. Operating Pressure, Shell side 241.5 PSIG 17 Kg/cm2 G Tube side 42.6 PSIG 3 Kg/cm2 G Internal design pressure, P (MAWP) Shell side 284.0909 PSIG 20 Kg/cm2 G Tube side 71.02273 PSIG 5 Kg/cm2 G External design pressure, Pex (Tube side) 15 PSIG 1.056 Kg/cm2 G Exchanger shell ID (fabricated from Pipe 24" NPS, Sch. 30), ID 19 INCH 482.6 MM Water sp. gr. 1 Fluid sp. gr. 0.8 Max. hydrostatic head at internal bottom of vessel* 0.685511 PSIG 0.04826 Kg/cm2 G Max. internal pressure : Shell side 284.7764 PSIG 20.0483 Kg/cm2 G Tube side 71.70824 PSIG 5.04826 Kg/cm2 G * p water 0.036127 lb/INCH3 1000 Kg/M3 Max. internal working pressure MAWP for calculation : Shell side 286 PSIG 20.0483 Kg/cm2 G Tube side 73 PSIG 5.04826 Kg/cm2 G External design pressure, Pe (at tube side) 15 PSIG 1.056 Kg/cm2 G
  • 8. DESIGN CALCULATIONS OF HEAT EXCHANGER Page : 8 of 136 According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Sheet : 1 of 1 Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant) Rev. : 1 Project : Design & Fabrication of Heat Exchanger for APRC Refinery Date : 11.4.2004 Job No. : 7443-33 Location : Alex. Dwg. No. : 7443-33-1A, Rev. 1 Client : APRC Exchanger : Residue Cooler, Type : AES, TEMA class : R Items : E-323A/B & E-514C/D F. Impact Test Requirements. [UG-22 & UG-98] Impact test is not mandatory for the following pressure vessels materials at the specified MDMT : I. Pressure Parts. a. Main Exchanger Components : P-No. Group No. Curve a. Shell, Main Shell : ASME SA 106 Grade B 1 1 B Shell Cover Course Channel : ASME SA516 Grade 70 1 1 D b. Faormed Heads (cap) : ASME SA234 WPB 1 1 B Floating Head (Spherical Sector) : c. Nozzle Necks : ASMESA 106 Grade B 1 1 B d. Standard Flanges : ASME SA105 1 2 B Non Standard Shell Flanges : ASME SA266 Class 2 1 2 B Non Standard Channel Flanges : ASME SA266 Class 2 1 2 Channel Cover (blind flange) : ASME SA266 Class 2 1 2 Floating Head Flange : ASME SA266 Class 2 1 2 Backing Ring Flange : ASME SA266 Class 2 1 2 e. Stationary Tubesheet : ASME SB171 C63000 1 1 B Floatng Tubesheet : ASME SB171 C63000 1 1 B f. Tubes : ASME SB111 C68700 1 2 B g. Fittings : Half Couplings : ASME SA105 90 0 Elbows : ASME SA234 WPB b. Stud Bolts & Nuts : i. Stud Bolts : ASME SA193 Grade B7 UNS No. G41400 [Size < 2-1/2"] j. Nuts : ASME SA194 Grade 2H II. Non-Pressure Parts. a. Saddle plate : ASME SA106 Grade B 1 1 B b. Lifting lugs & Pads : ASME SA 516 Grade 70 1 2 D Thickness of exchanger components : - Shell & Heads ASME SA106 Grade B 0.5 INCH 12.7 MM - Max. Nozzle Necks Thk. ASME SA106 Grade B 0.432 INCH 10.9728 MM Min. Design Metal Temperature, MDMT 28 o F -2 o C Where the MDMT is in accordance with UG-20(f), UCS-66 and FIG. UCS-66, no impact test is required. Please refer to : Page : 106 of 136 Impct Test is not required as per ASME Code for MDMT of 28 o F -2 o C but is required as a client request. G. Standard ASME Flange Rating Class. 1. Standard ASME B16.5 welded neck flanges shall be used. 2. For standard flange, Carbon Steel material in accordance with ASME SA105, P-No. 1, Group No. 2 : a. Shell side flanges, S1 & S2, 6" NPS : MAWP 186 PSIG & Design temp. 302 o F : Raing 300# b. Tube side flanges, T1 & T2, 6" NPS : MAWP 72 PSIG & Design temp. 140 o F : Raing 150#
  • 9. DESIGN CALCULATIONS OF HEAT EXCHANGER Page : 9 of 136 According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Sheet : 1 of 3 Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant) Rev. : 1 Project : Design & Fabrication of Heat Exchanger for APRC Refinery Date : 11.4.2004 Job No. : 7443-33 Location : Alex. Dwg. No. : 7443-33-1A, Rev. 1 Client : APRC Exchanger : Residue Cooler, Type : AES, TEMA class : R Items : E-323A/B & E-514C/D H. Cylindrical Main Shell Thickness [UG-27(C)] 1. Under Internal Pressureal (Pipe 20" NPS) Shell material, Killed carbon steel ASME SA 106 Grade B Operating Temperature : Shell Side 230 o F 110 o C Tube Side 104 o F 40 o C Design Temperature : Shell Side 302 o F 150 o C Tube Side 140 o F 60 o C Min. Design Metal Temperature, MDMT 28 o F -2 o C Operating Pressure: Shell Side 241.477 PSIG 17 Kg/CM2 G Tube Side 42.6136 PSIG 3 Kg/CM2 G Internal Design Pressure: Shell Side 284.091 PSIG 20 Kg/CM2 G Tube Side 71.0227 PSIG 5 Kg/CM2 G Shell Inside Diameter, D (by using pipe 20" NPS, Sch.30) 19 INCH 482.6 MM Shell Inside Radius, R 9.5 INCH 241.3 MM Stationary Shell Inside Diameter, Ds 19 INCH 482.6 MM Static Head = Inside Diameter (D) 0.4826 M Static Head Pressure: Shell & Tube Side 0.68551 PSIG 0.04826 Kg/CM2 G Floating Head Side 0.68551 PSIG 0.04826 Kg/CM2 G Internal Design Pressure, P (MAWP): Shell Side 284.776 PSIG 20.04826 Kg/CM2 G Tube Side 71.7082 PSIG 5.04826 Kg/CM2 G Max. Allowable Stress @ Design Temp., S 17100 PSIG 1203.84 Kg/CM2 G Max. Allowable Stress @ Test Temp., St 17100 PSIG 1203.84 Kg/CM2 G [ Table 1A , SubPart 1 , ASME Sec. II , Part D] Hydrostatic Test Pressure, Ph = 1.3*MAWP(St/S) [UG-99(b)] 370.2093347 PSIG 26.062738 Kg/CM 2 G Ph = 1.5*MAWP(St/S) [shell side] [Owner request] 427.164617 PSIG 30.07239 Kg/CM2 G Corrosion Allowance, C [UG-25] 0.19685 INCH 5 MM Joint Efficiency, E [Table UW-12] 0.85 [Spot Radiography], [Table UCS-57] Value of 0.385 SE [UG-27C(1)] 5595.98 PSIG 393.9567 Kg/CM2 G Since P does not exceed 0.385 SE , Use Thin Wall Equation: [1] Min. Wall Thickness for Longitudinal Joints, t1 = PR/(SE - 0.6 P) [UG-27C(1)] 0.18834 INCH 4.783898 MM [2] Min. Wall Thickness for Circumferential Joints, t2 = PR/(2SE + 0.4 P) [UG-27C(2)] 0.0927 INCH 2.354604 MM The Min. Thickness shall be the Greater of t1 or t2 0.18834 INCH 4.783898 MM By Adding Corrosion Allowance to Wall Tickness, t 0.38519 INCH 9.783898 MM Use 20" Pipe with thickness of Construction, t (Sch. 30, 12.7 MM) 0.5 INCH 12.7 MM 20" Pipe wall thickness without tolerance 12.5% 0.4375 INCH 11.1125 MM 20" Pipe wall thickness without corrosion allowance 0.24065 INCH 6.1125 MM Min. Pipe Shell Thickness according to TEMA Table R-3.13 0.375 INCH 9.525 MM
  • 10. DESIGN CALCULATIONS OF HEAT EXCHANGER Page : 10 of 136 S According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Sheet : 2 of 3 Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant) Rev. : 1 Project : Design & Fabrication of Heat Exchanger for APRC Refinery Date : 11.4.2004 Job No. : 7443-33 Location : Alex. Dwg. No. : 7443-33-1A, Rev. 1 Client : APRC Exchanger : Residue Cooler, Type : AES, TEMA class : R Items : E-323A/B & E-514C/D 2. Check of Main Shell Thickness for External Pressure (FV). a. Check of Shell Thickness (NA) For external pressure on cylinder, use UG-28 and Subpart 3. Determine the effective length of shell without stiffening rings, L Height of shell flange-stationary head end (flange 7), L7 3.70079 INCH 94 MM Height of shell flange-rear head end (flange 6), L6 3.74016 INCH 95 MM Total shell length (flange-to-flange), L' 228.346 INCH 5800 MM Effective shell length without stiffening, L = L' - (L6 + L7) 228.346 INCH 5800 MM In case of shell with heads, L = 1/3 each head depth + straight 234.68 INCH 5960.867 MM Assume t for internal pressure (corroded) 0.24065 INCH 6.1125 MM Do = ID + 2 t 19.4813 INCH 494.825 MM L / Do 12.0464 For L/Do > 50, use it = 50 Do / t 80.953 a. Enter Fig. G with L / Do and read across to sloping line of Do/t Read factor A 0.00038 b. Enter Fig. CS-2 with A (to find factor B), 5600 PSIG 394.24 Kg/CM2 G Follow step (6) of UG-28(c), PA = 4B / 3 (Do / t) 92.2346 PSIG 6.493318 Kg/CM2 G Change t untill PA > 15 PSI (full vacuum) 15 PSIG 1.056 Kg/CM2 G OK For A falling to the left of the applicable material/temp. line, Pa can be calculated from formula, Pa = 2 A E / 3(Do/t) 86.4329 PSIG 6.084877 Kg/CM2 G E = Modulus of elasticity at design temp. 2.8E+07 PSIG 1970355 Kg/CM2 G at amp. temp. 2.9E+07 PSIG 2055680 Kg/CM2 G The uncorroded shell wall thickness must not lrss than Use the uncorroded shell wall thickness Use Thickness of Construction, t (Adopted thickness) Corroded Thickness = Adopted thickness + Corrosion allowance Insulation Yes Post Weld Heat Treatment, PWHT N.A.
  • 11. DESIGN CALCULATIONS OF HEAT EXCHANGER Page : 11 of 136 According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Sheet : 3 of 3 Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant) Rev. : 1 Project : Design & Fabrication of Heat Exchanger for APRC Refinery Date : 11.4.2004 Job No. : 7443-33 Location : Alex. Dwg. No. : 7443-33-1A, Rev. 1 Client : APRC Exchanger : Residue Cooler, Type : AES, TEMA class : R Items : E-323A/B & E-514C/D A. CYLINDRICAL SHELL THICKNESSES [UG-27(C)] a.2. Floating Shell Shell material, Killed carbon steel (Pipe 26" Sch. 20) ASME SA 516 Grade 70 Operating Temperature : Shell Side 230 o F 110 o C Tube Side 104 o F 40 o C Design Temperature : Shell Side 302 o F 150 o C Tube Side 140 o F 60 o C Min. Design Metal Temperature, MDMT 28.4 o F -2 o C Operating Pressure: Shell Side 241.477 PSIG 17 Kg/CM2 G Tube Side 42.6136 PSIG 3 Kg/CM2 G Internal Design Pressure: Shell Side 284.091 PSIG 20 Kg/CM2 G Tube Side 71.0227 INCH 5 MM Shell Inside Diameter, D 24.9843 INCH 634.6 MM Shell Inside Radius, R 12.4921 INCH 317.3 MM Stationary Shell Inside Diameter, Ds 19 INCH 482.6 MM Static Head = Inside Diameter (D) 0.6346 M Static Head Pressure: Shell & Tube Side 0.90142 PSIG 0.06346 Kg/CM2 G Floating Head Side 0.0009 PSIG 6.35E-05 Kg/CM2 G Internal Design Pressure, P (MAWP): Shell Side 284.092 PSIG 20.00006 Kg/CM2 G Tube Side 71.9241 PSIG 5.06346 Kg/CM2 G Max. Allowable Stress @ Design Temp., S 17100 PSIG 1203.84 Kg/CM2 G Max. Allowable Stress @ Test Temp., St 17100 PSIG 1203.84 Kg/CM2 G [ TABLE 1A , SUBPART 1 , ASME SEC. II , PART D] Hydrostatic Test Pressure, Ph = 1.3*MAWP(St/S) 369.319 PSIG 26.00008 Kg/CM2 G [ UG-99(b) ] Corrosion Allowance, C [UG-25] 0.19685 INCH 5 MM Joint Efficiency, E [TABLE UW-12] 0.85 [Full Radiography], [Table UCS-57] Value of 0.385 SE [UG-27C(1)] 5595.98 PSIG 393.9567 Kg/CM2 G Since P does not exceed 0.385 SE , Use Thin Wall Equation: [1] Min. Wall Thickness for Longitudinal Joints, t1 = PR/(SE-0.6P) [UG-27C(1)] 0.24706 INCH 6.275335 MM [2] Min. Wall Thickness for Circumferential Joints, t2 = PR/(2SE+0.4P) [UG-27C(2)] 0.12161 INCH 3.088797 MM The Min. Thickness shall be the Greater of t1 or t2 0.24706 INCH 6.275335 MM By Adding Corrosion Allowance to Wall Tickness, t 0.44391 INCH 11.27533 MM Use Plate with thickness of Construction, t 0.5 INCH 12.7 MM Min. Plate Shell Thickness according to TEMA Table R-3.13 0.4375 INCH 11.1125 MM Insulation Yes Post Weld Heat Treatment, PWHT N.A.
  • 12. DESIGN CALCULATIONS OF HEAT EXCHANGER Page : 12 of 136 According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Sheet : 1 of 2 Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant) Rev. : 1 Project : Design & Fabrication of Heat Exchanger for APRC Refinery Date : 11.4.2004 Job No. : 7443-33 Location : Alex. Dwg. No. : 7443-33-1A, Rev. 1 Client : APRC Exchanger : Residue Cooler, Type : AES, TEMA class : R Items : E-323A/B & E-514C/D I. Cylindrical Stationary Head-Channel. [UG-27(C)] 1. Under Internal Pressure Shell material, Killed carbon steel ASME SA 106 Grade B Operating Temperature : Shell Side 230 o F 110 o C Tube Side 104 o F 40 o C Design Temperature : Shell Side 302 o F 150 o C Tube Side 140 o F 60 o C Min. Design Metal Temperature, MDMT 28.4 o F -2 o C Operating Pressure: Shell Side 241.477 PSIG 17 Kg/CM2 G Tube Side 42.6136 PSIG 3 Kg/CM2 G Internal Design Pressure: Shell Side 284.091 PSIG 20 Kg/CM2 G Tube Side 71.0227 PSIG 5 Kg/CM2 G Shell Inside Diameter, D 19 INCH 482.6 MM Shell Inside Radius, R 9.5 INCH 241.3 MM Stationary Shell Inside Diameter, Ds 19.0157 INCH 483 MM Static Head = Inside Diameter (D) 0.4826 M Static Head Pressure: Shell & Tube Side 0.68551 PSIG 0.04826 Kg/CM2 G Floating Head Side 0.68608 PSIG 0.0483 Kg/CM2 G Internal Design Pressure, P (MAWP): Shell Side 284.776 PSIG 20.04826 Kg/CM2 G Tube Side 71.7082 PSIG 5.04826 Kg/CM2 G Max. Allowable Stress @ Design Temp., S 17100 PSIG 1203.84 Kg/CM2 G Max. Allowable Stress @ Test Temp., St 17100 PSIG 1203.84 Kg/CM2 G [ TABLE 1A , SUBPART 1 , ASME SEC. II , PART D] Hydrostatic Test Pressure, Ph = 1.3*MAWP(St/S) [UG-99(b)] 370.2093347 PSIG 26.062738 Kg/CM2 G Ph = 1.5*MAWP(St/S) [tubel side] [Owner request] 427.164617 PSIG 30.07239 Kg/CM2 G Corrosion Allowance, C [UG-25] 0.19685 INCH 5 MM Joint Efficiency, E [TABLE UW-12] 0.85 [Full Radiography], [Table UCS-57] Value of 0.385 SE [UG-27C(1)] 5595.98 PSIG 393.9567 Kg/CM2 G Since P does not exceed 0.385 SE , Use Thin Wall Equation: [1] Min. Wall Thickness for Longitudinal Joints, t1 = PR/(SE-0.6P) [UG-27C(1)] 0.04743 INCH 1.204611 MM [2] Min. Wall Thickness for Circumferential Joints, t2 = PR/(2SE+0.4P) [UG-27C(2)] 0.0927 INCH 2.354604 MM The Min. Thickness shall be the Greater of t1 or t2 0.0927 INCH 2.354604 MM By Adding Corrosion Allowance to Wall Tickness, t 0.28955 INCH 7.354604 MM Use plate thickness, Use 20" Pipe with thickness of Construction, t (Sch. 30, 12.7 MM) 0.51181 INCH 13 MM 20" Pipe wall thickness without tolerance 12.5% 0.511811024 INCH 13 MM Plate Thickness less corrosion allowance 20" Pipe wall thickness without corrosion allowance 0.51181 INCH 13 MM Min. Plate thickness Min. Pipe Shell Thickness according to TEMA Table R-3.13 0.375 INCH 9.525 MM
  • 13. DESIGN CALCULATIONS OF HEAT EXCHANGER Page : 13 of 136 According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Sheet : 2 of 2 Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant) Rev. : 1 Project : Design & Fabrication of Heat Exchanger for APRC Refinery Date : 11.4.2004 Job No. : 7443-33 Location : Alex. Dwg. No. : 7443-33-1A, Rev. 1 Client : APRC Exchanger : Residue Cooler, Type : AES, TEMA class : R Items : E-323A/B & E-514C/D I. Cylindrical Stationary Head-Channel. [UG-27(C)] 2. Check of Channel Thickness for External Pressure (Full Vacuum) For external pressure on cylinder, use UG-28 and Subpart 3. Determine the effective length of shell without stiffening rings, L Height of shell flange-stationary head end (flange 5), L7 4.72441 INCH 120 MM Height of shell flange-rear head end (flange 6), L6 5.11811 INCH 130 MM Total shell length (flange-to-flange), L' 23.622 INCH 600 MM Effective shell length without stiffening, L = L' - (L6 + L7) 23.622 INCH 600 MM In case of shell with heads, L = 1/3 each head depth + straight 29.96062992 INCH 761 MM Assume t for internal pressure (corroded) 0.51181 INCH 13 MM Do = ID + 2 t 20.0236 INCH 508.6 MM L / Do 1.49626 For L/Do > 50, use it = 50 Do / t 39.1231 a. Enter Fig. G with L / Do and read across to sloping line of Do/t Read factor A 0.00038 b. Enter Fig. CS-2 with A (to find factor B), which is off to the left side and can4750 PSIG 334.4 Kg/CM2 G Follow step (6) of UG-28(c), PA = 4B / 3 (Do / t) 161.882 PSIG 11.39651 Kg/CM2 G Change t untill PA > 15 PSI (full vacuum) 15 PSIG 1.056 Kg/CM2 G OK For A falling to the left of the applicable material/temp. line, Pa can be calculated from formula, Pa = 2 A E / 3(Do/t) 201.032 PSIG 14.15267 Kg/CM2 G E = Modulus of elasticity at design temp. 3.1E+07 PSIG 2214784 Kg/CM2 G at amp. temp. 2.9E+07 PSIG 2055680 Kg/CM2 G The uncorroded shell wall thickness must not lrss than Use the uncorroded shell wall thickness Use Thickness of Construction, t (Adopted thickness) Corroded Thickness = Adopted thickness + Corrosion allowance Insulation Yes Post Weld Heat Treatment, PWHT N.A.
  • 14. DESIGN CALCULATIONS OF HEAT EXCHANGER Page : 14 of 136 According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Sheet : 1 of 1 Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant) Rev. : 1 Project : Design & Fabrication of Heat Exchanger for APRC Refinery Date : 11.4.2004 Job No. : 7443-33 Location : Alex. Dwg. No. : 7443-33-1A, Rev. 1 Client : APRC Exchanger : Residue Cooler, Type : AES, TEMA class : R Items : E-323A/B & E-514C/D J. Main Ellipsoidal Head Thickness [UG-32(d)] Under Internal Pressure. [Semi-ellipsoidal form 2:1 ] Head Material, Carbon Steel ASME SA 234 WPB Design Temperature (shell side) 302 o F 150 o C MIN. Design Metal Temperature, MDMT 28 o F -2 o C Operating Pressure (shell side) 156.25 PSIG 11 Kg/CM2 G Internal Design Pressure (shell side) 284.091 PSIG 20 Kg/CM2 G Internal Design Pressure, P (MAWP) 284.992 PSIG 20.06346 Kg/CM2 G Head Skirt Inside Diameter, Di 24.9843 INCH 634.6 MM Head Inside Radius, L ( ri ) 12.4921 INCH 317.3 MM Static Head 0.90142 PSIG 0.06346 Kg/CM2 G Max. Allowable Stress @ Design Temp., S 17100 PSIG 1203.84 Kg/CM2 G Max. Allowable Stress @ Test Temp., St 17100 PSIG 1203.84 Kg/CM2 G [TABLE 1A , SUBPART 1 , ASME SEC. II , PART D] Corrosion Allowance, C [UG-25] 0.19685 INCH 5 MM Joint Efficiency, E (Spot Radiography) [Table UW-12] 0.85 Assume Outside Diameter of Head, DO 25.4751 INCH 647.0672 MM Outside Radius of Head, RO 12.7375 INCH 323.5336 MM Value of 0.665 SE 9665.78 PSIG 680.4706 Kg/CM2 G Since the value of 0.66SE > P, Use Thin Wall Equation for Calculating the Min. required Thickness of Head, t: t1 = PD /(2SE-0.2P) [UG-32(d)] (1) 0.24542 INCH 6.233623 MM Compare to Thickness of Seamless Spherical Shell : Ps = 0.665 SE 9665.78 PSIG 680.4706 Kg/CM2 G Since P < Ps, Calculate Thickness for thin Wall Spherical Shell: t2 = PR/(2SE-0.2P) [UG-27(d)] (2) 0.12271 INCH 3.116812 MM Head Thickness due to Internal Pressure: t = MAX ( t1 , t2 ) 0.24542 INCH 6.233623 MM By adding Corrosion Allowance to Wall Thickness, 0.44227 INCH 11.23362 MM Use 26" Cap with thickness of Construction, t (Thk. 14.27 MM) 0.56181 INCH 14.27 MM [ t Represents the Min. Thickness after Forming ] Head required thickness, tr = P K1 D / (2SE - 0.2P) 0.22088 INCH 5.610261 MM NB. The required head thickness for reinforcement calculation are to be determined by the hemispherical head formula using an equivalent radius of K1 D where, Spherical Radius Factor, K1 (for ellipsoidal head 2:1) 0.9 [Table UG-37]
  • 15. DESIGN CALCULATIONS OF HEAT EXCHANGER Page : 15 of 136 According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Sheet : 1 of 3 Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant) Rev. : 1 Project : Design & Fabrication of Heat Exchanger for APRC Refinery Date : 11.4.2004 Job No. : 7443-33 Location : Alex. Dwg. No. : 7443-33-1A, Rev. 1 Client : APRC Exchanger : Residue Cooler, Type : AES, TEMA class : R Items : E-323A/B & E-514C/D K. Max. Internal Working Pressure, MWP at New (cold) & Operating (corroded) [MWP is differ from MAP or MAWP] 1. For Shell-Side : 302 o F 150 o C Main shell (Item 1) : MWP, New & cold (12.7 MM-12.5%) P = SE t /(R + 0.6 t) [UG-27(c)(1)] 608.569 PSIG 42.843 Kg/CM2 G MWP, Operating & corroded (9.286 MM) P = SE t /(R + 0.6 t) 455.517 PSIG 32.068 Kg/CM2 G Head (cap) (Item 13) : MWP, New & cold (12.7-12.5% MM) P = 2SE t /(D + 0.2 t) [UG-32(d)(1)] 621.582 PSIG 43.75937 Kg/CM2 G MWP, Operating & corroded (9.286 MM), P = 2SE t /(D + 0.2 t) 462.789 PSIG 32.58034 Kg/CM2 G Nozzle Neck 6" NPS, Sch. 80 for N3 & N4 (item 6) : MWP, New & cold (7.489 MM-12.5%) neck 740 PSIG 52.096 Kg/CM2 G MWP, Operating & corroded (4.289 MM) neck N3 & N4 664.4 PSIG 46.774 Kg/CM2 G Standard Flange 6" NPS, ANSI 300#, Sch. 80 for N3 & N4 (items 5) : MWP, New & cold [TEMA Table D-6.1] 740 PSIG 52.096 Kg/CM2 G MWP, Operating & corroded [TEMA Table D-6.1] 655 PSIG 46.112 Kg/CM2 G Non Standard Flange (Item 4) : MWP, New & cold 425.258 PSIG 29.938 Kg/CM2 G MWP, Operating & corroded 335.398 PSIG 23.612 Kg/CM2 G Non Standard Flange (Item 3) : MWP, New & cold 425.258 PSIG 29.938 Kg/CM2 G MWP, Operating & corroded 335.398 PSIG 23.612 Kg/CM2 G Non Standard Flange (Item 12) : MWP, New & cold 425.258 PSIG 29.938 Kg/CM2 G MWP, Operating & corroded 335.398 PSIG 23.612 Kg/CM2 G
  • 16. DESIGN CALCULATIONS OF HEAT EXCHANGER Page : 16 of 136 According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Sheet : 2 of 3 Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant) Rev. : 2 Project : Design & Fabrication of Heat Exchanger for APRC Refinery Date : 4.7.2003 Job No. : 7443-33 Location : Alex. Dwg. No. : 7443-33-1A, Rev. 1 Client : APRC Exchanger : Residue Cooler, Type : AES, TEMA class : R Items : E-323A/B & E-514C/D K. Max. Internal Working Pressure, MWP at New (cold) & Operating (corroded) (cont.) [MWP is differ from MAP or MAWP] 2. For Tube-Side : 608 o F 320 o C Channel (Item 17) : MWP, New & cold (13 MM-12.5%.) P = SE t /(R + 0.6 t) [UG-27(c)(1)] 608.569 PSIG 42.843 Kg/CM2 G MWP, Operating & corroded (8 MM) P = SE t /(R + 0.6 t) 455.537 PSIG 32.07 Kg/CM2 G Nozzle Neck 6" NPS, Sch. 80 for N1& N2 (item 20) : MWP, New & cold (7.489 MM-12.5%) neck 285 PSIG 20.064 Kg/CM2 G MWP, Operating & corroded (4.289 MM) neck 275 PSIG 19.36 Kg/CM2 G Standard Flange 6" NPS, ANSI 150#, Sch. 80 for N1& N2 (item 19) : MWP, New & cold [TEMA Table D-6.1] 285 PSIG 20.064 Kg/CM2 G MWP, Operating & corroded [TEMA Table D-6.1] 260 PSIG 18.304 Kg/CM2 G Non Standard Flanges (Item 18) : MWP, New & cold 425.258 PSIG 29.938 Kg/CM2 G MWP, Operating & corroded 335.368 PSIG 23.61 Kg/CM2 G Blind Flange (Item 22) : [see page 47 of 80]MWP, New & cold 289.381 PSIG 20.372 Kg/CM2 G MWP, Operating & corroded 263.006 PSIG 18.516 Kg/CM2 G Stationary Tubesheet (Item 36) : [see page 49 of 80]MWP, New & cold 431.681 PSIG 30.39 Kg/CM2 G MWP, Operating & corroded 384.282 PSIG 27.053 Kg/CM2 G Floating Tubesheet (Item 37) : [see page 49 of 80]MWP, New & cold 431.681 PSIG 30.39 Kg/CM2 G MWP, Operating & corroded 384.282 PSIG 27.053 Kg/CM2 G Floating Head Spherical Sector (Item 30) : [see page 49 of 80]MWP, New & c431.681 PSIG 30.39 Kg/CM2 G MWP, Operating & corroded 384.282 PSIG 27.053 Kg/CM2 G Floating Head Elange (Item 29) : [see page 49 of 80]MWP, New & cold 431.681 PSIG 30.39 Kg/CM2 G MWP, Operating & corroded 384.282 PSIG 27.053 Kg/CM2 G Floating Head Backing Ring (Item 31) : [see page 49 of 80]MWP, New & cold 431.681 PSIG 30.39 Kg/CM2 G MWP, Operating & corroded 384.282 PSIG 27.053 Kg/CM2 G
  • 17. DESIGN CALCULATIONS OF HEAT EXCHANGER Page : 17 of 136 According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Sheet : 3 of 3 Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant) Rev. : 1 Project : Design & Fabrication of Heat Exchanger for APRC Refinery Date : 11.4.2004 Job No. : 7443-33 Location : Alex. Dwg. No. : 7443-33-1A, Rev. 1 Client : APRC Exchanger : Residue Cooler, Type : AES, TEMA class : R Items : E-323A/B & E-514C/D K. Max. Internal Working Pressure, MWP at New (cold) & Operating (corroded) (cont.) 3. For Tubes : (Item 38) Tube Material ASME SB111 UNS No. C68700-061 P-Number Group Number Max. Temp. Limit 450 o F 232.2222 o C Design Temperature : Shell Side 302 o F 150 o C Tube Side 140 o F 60 o C Test Pressure Temp. (ambient temp.) 104 o F 40 o C Max. Allowable Stress @ Design Temp.302 o F (150 o C), S 11492 PSIG 809.0368 Kg/CM2 G Max. Allowable Stress @ Test Temp. 104 o F (40 o C), St 11992 PSIG 844.2368 Kg/CM2 G [Table 1A, SubPart 1, ASME Sec. II, Part D] No of tubes, n 146 Tube OD 1 INCH 25.4 MM Tube length, L 236.22 INCH 6000 MM Tube pitch, p 1.45472 INCH 36.95 MM Tube BWG [TEMA Table D-7] 13 Tube wall thickness, tt [TEMA Table D-7] 0.09843 INCH 2.500122 MM Tube pattern (Triangle, equal angles 60 o ) (square rotated) 30 o MWP (internal), New & cold [TEMA Table D-9] 4132.3 PSIG 290.9139 Kg/CM2 G MWP (internal), Operating & corroded [TEMA Table D-9] 3963.55 PSIG 279.0339 Kg/CM2 G Design pressure (tube-side), P 71.0227 PSI 5 Kg/CM2 G Design temperature (tube-side) 140 o F 60 o C Max. Allowable Stress @ Design Temp.302 o F (150 o C), S 11492 PSIG 809.0368 Kg/CM2 G Corrosion Allowance, C [UG-25] 0 INCH 0 MM Joint Efficiency, E [TABLE UW-12] 1 Tube required thickness, trn = PRn /(SnEn - 0.6 P) [UG-27] 0.0062 INCH 0.157561 MM Max. Internal Working pressure MWP for whole Exchanger : Shell side : MWP, New & cold 425.258 PSIG 29.938 Kg/CM2 G MWP, Operating & corroded 335.398 PSIG 23.612 Kg/CM2 G Tube side : MWP, New & cold 285 PSIG 20.064 Kg/CM2 G MWP, Operating & corroded 260 PSIG 18.304 Kg/CM2 G
  • 18. DESIGN CALCULATIONS OF HEAT EXCHANGER Page : 18 of 136 According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Sheet : 1 of 3 Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant) Rev. : 1 Project : Design & Fabrication of Heat Exchanger for APRC Refinery Date : 11.4.2004 Job No. : 7443-33 Location : Alex. Dwg. No. : 7443-33-1A, Rev. 1 Client : APRC Exchanger : Residue Cooler, Type : AES, TEMA class : R Items : E-323A/B & E-514C/D L. Check for External Pressure (Convex Side), (Tube Side Full Vacuum) 1. Ellipsoidal Head (Stationary Head-Bonnet NA) [UG-33(d)] Assumed corroded thickness of head, t 0.43583 INCH 11.07 MM Outside diameter of the head skirt, Do 23.7638 INCH 603.6 MM The equivalent outside spherical, Ro = Ko Do [UG-33(b)] 20.2171 INCH 513.5147 MM Outside height of the ellipsoidal head (measured from head-bend line), ho 6.28484 INCH 159.635 MM Ratio of the major to the minor axis of ellipsoidal head, Do/2ho 1.89056 Factor depending on the ellipsoidal head proportions Do/2ho, Ko 0.85075 (use interpolation) [See Table UG-33.1] The required thickness of an ellipsoidal head having pressure on the convex side, either seamless or of built-up construction with butt joints, shall not be less than that determined by the following procedure : Step 1. Assume a value for t and calculate the value of factor A using the following formula : A = 0.125 / (Ro / t) 0.00269 Step 2. Using the value of A calculate in Step 1, follow the same procedure as that given for sphericalshells in UG-28(d), Step 2 through 6 : a. Enter Fig. CS-2 with A (to find factor B), which is under the curve, B 9900 PSIG 696.96 Kg/CM2 G Follow step (4) of UG-28(d), and calculate the value of max. allowable external working pressure, PA = B / (Ro / t) 213.417 PSIG 15.02459 Kg/CM2 G Change t untill PA > 15 PSI (full vacuum) 15 PSIG 1.056 Kg/CM2 G OK Notes. 1. For value of A falling to the left of the material-temp. line, the value of Pa can be calculated in accordance with Step 5 of UG-28(d), as follows : Pa = 0.0625 E / (Ro /t)2 E = Modulus of elasticity at design temp. 2.6E+07 PSIG 1823360 Kg/CM2 G
  • 19. DESIGN CALCULATIONS OF HEAT EXCHANGER Page : 19 of 136 According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Sheet : 2 of 3 Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant) Rev. : 1 Project : Design & Fabrication of Heat Exchanger for APRC Refinery Date : 11.4.2004 Job No. : 7443-33 Location : Alex. Dwg. No. : 7443-33-1A, Rev. 1 Client : APRC Exchanger : Residue Cooler, Type : AES, TEMA class : R Items : E-323A/B & E-514C/D L. Check of External Pressure (Convex Side), (Tube Side Full Vacuum) (cont.) 2. Channel Channel Material ASME SA106 Grade B Design Temperature 140 o F 60 o C Corrosion allowance 0.19685 INCH 5 MM Channel Diameter, 20" NPS 20 INCH 508 MM Channel Thickness (20" Sch. 30) 0.562 INCH 14.2748 MM Channel Thickness (20" Sch. 30) - 12.5% 0.49175 INCH 12.49045 MM For external pressure on cylinder, use UG-28 and Subpart 3. Determine the effective length of shell without stiffening rings, L : 23.622 INCH 600 MM Assume t for internal pressure (at corroded condition) 0.2949 INCH 7.49045 MM Do = ID + 2 t 20 INCH 508 MM L / Do 1.1811 Do / t 67.8197 > 10 UG-28(c)(1) Since Do/t > 10, use UG-28(c)(1) a. Enter Fig. G with L / Do and read across to sloping line of Do/t Read factor A 0.00035 b. Enter Fig. CS-2 with A (to find factor B), which falls under the curve. 11500 PSIG 809.6 Kg/CM2 G Follow step (6) of UG-28(c)(1), and calculate the value of max. allowable external working pressure, PA = 4B / 3 (Do / t) 226.09 PSIG 15.91672 Kg/CM2 G Change t untill PA > 15 PSI (full vacuum) 15 PSIG 1.056 Kg/CM2 G OK E = Modulus of elasticity at design temp. 3.3E+07 PSIG 2323200 Kg/CM2 G at amp. temp. 2.9E+07 PSIG 2055680 Kg/CM2 G Notes 1. For value of A falling to the left of the material-temp. line, the value of Pa can be calculated as follows : Pa = 2 A E / 3 (Do /t) 2. For L/Do > 50, use L/Do = 50 For L/Do < 0.05, use L/Do = 0.05 3. For Do/t > 10, use UG-28(c)(1) For Do/t < 10, use UG-28(c)(2)
  • 20. DESIGN CALCULATIONS OF HEAT EXCHANGER Page : 20 of 136 According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Sheet : 3 of 3 Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant) Rev. : 1 Project : Design & Fabrication of Heat Exchanger for APRC Refinery Date : 11.4.2004 Job No. : 7443-33 Location : Alex. Dwg. No. : 7443-33-1A, Rev. 1 Client : APRC Exchanger : Residue Cooler, Type : AES, TEMA class : R Items : E-323A/B & E-514C/D L. Check of External Pressure (Convex Side), (Tube Side Full Vacuum) (cont.) 3. Tubes Tube Material ASME SB111 UNS No. C68700-061 Design Temperature 140 o F 60 o C Corrosion allowance 0 INCH 0 MM Tube OD 1 INCH 25.4 MM Tube BWG 13 Tube Wall Thickness 0.09843 INCH 2.500122 MM For external pressure on cylinder, use UG-28 and Subpart 3. Determine the effective length of tube without stiffening rings, L : 236.22 INCH 6000 MM Assume t for internal pressure (at corroded condition) 0.09843 INCH 2.500122 MM Do 1 INCH 25.4 MM L / Do 236.22 > 50 Use L / Do 50 Do / t 10.1595 > 10 UG-28(c)(1) Since Do/t > 10, use UG-28(c)(1) Step 1. Enter Fig. G in Subpart 3 of Sec. II, Part D with L / Do and read across to sloping line of Do/t Read factor A 0.012 Step 2. Enter Fig. NFC-2 with A (to find factor B), which falls under the curve. 6150 PSIG 432.96 Kg/CM2 G Follow step (2) of UG-28(c)(1), and calculate the value of max. allowable external working pressure. Step 3. Calculate a value of Pa = 4 B / 3 (Do/t) 807.126 PSIG 56.82167 Kg/CM2 G Step 4. Compare the calculated value of Pa with Pe 807.126 PSIG 56.82167 Kg/CM2 G Change t untill Pa > 15 PSI (full vacuum) 15 PSIG 1.056 Kg/CM2 G OK Change t untill Pa > 186 PSI (full vacuum with respect to shell-side) 186 PSIG 13.0944 Kg/CM2 G OK Change t untill Pa > 30.7Kg/cm2 (436 PSI) (hydrostatic test of tube sid436 PSIG 30.6944 Kg/CM2 G OK Notes 1. For value of A falling to the left of the material-temp. line, the value of Pa can be calculated as follows : Pa = 2 A E / 3 (Do /t) 2. For L/Do > 50, use L/Do = 50 For L/Do < 0.05, use L/Do = 0.05 3. For Do/t > 10, use UG-28(c)(1) For Do/t < 10, use UG-28(c)(2) : - for Do/t < 4, A = 1.1 / (Do/t)2 - for A > 0.10, use a value of 0.10
  • 21. DESIGN CALCULATIONS OF HEAT EXCHANGER Page : 21 of 136 According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Sheet : 1 of 5 Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant) Rev. : 1 Project : Design & Fabrication of Heat Exchanger for APRC Refinery Date : 11.4.2004 Job No. : 7443-33 Location : Alex. Dwg. No. : 7443-33-1A, Rev. 1 Client : APRC Exchanger : Residue Cooler, Type : AES, TEMA class : R Items : E-323A/B & E-514C/D M1. Nozzle Mark : N3 & N4 6" 300# WNRF (Located at Shell) with Reinforcement Nozzle Neck Thickness Calculation [UG-27(c) & Appendix 1-1] Nozzle Size, NPS 6 INCH 150 DN Nozzle Material ASME SA 106 Grade B Design Pressure, P 284.776 PSIG 20.04826 Kg/CM2 G Design Temperature 302 o F 150 o C For nominated Design Pressure & Temperature, Flange Rating 300# [ASME B16.5-1996] Max. Allowable Stress of Nozzle Material @ Design Temp.(150 o C), Sn 17100 PSIG 1203.84 Kg/CM2 G Max. Allowable Stress of Nozzle Materiall @ Test Temp.(40 o C), Snt 17100 PSIG 1203.84 Kg/CM2 G [Table 1A, SubPart 1, ASME Sec. II, Part D] Outside Radius of Nozzle, Ron 3.3125 INCH 84.1375 MM Joint Efficiency of Nozzle, En (Seamless Pipe) 1 Nozzle Corrosion Allowance, Can 0.19685 INCH 5 MM Nozzle Thickness Calculation : Longitudinal Stress, t = PRon /(Sn*En + 0.4 P) [Appendix 1.1] 0.0548 INCH 1.391917 MM By adding Corrosion Allowance, t [UG-25] 0.25165 INCH 6.391917 MM By adding Pipe Tolerance 12.5% to the Thickness of Nozzle, t 0.28311 INCH 7.190907 MM Use Nozzle 6" NPS with Selected Neck Sch. 80, 0.432 INCH 10.9728 MM with Thickness 0.432" ( 10.97 MM ). [Table 2 of ASME B 36.10M-1985-(R-1994)] Nozzle Neck Maximum Working Pressure, MWP (New & Operating) Nozzle wall thickness less tolerance 12.5% 0.378 INCH 9.6012 MM Nozzle wall thickness less tolerance 12.5% - Corrosion allowance 0.18115 INCH 4.6012 MM MWP, New & cold (10.97 MM) P = Snt E t /(Ron - 0.4 t) [App. 1.1] 2044.67 PSIG 143.944 Kg/CM2 G MWP, Operating & corroded (4.6 MM) P = Sn E t /(Ron - 0.4 t) 956.056 PSIG 67.306 Kg/CM2 G Nozzle Flange Maximum Working Pressure, MWP (New & Operating) MWP, New & cold , 300# @ 100 o F [ASME B.165, Table 2] 740 PSIG 52.096 Kg/CM2 G MWP, Operating & corroded, 300# @ 302 o F [ASME B16.5, Table 2] 664.4 PSIG 46.774 Kg/CM2 G
  • 22. DESIGN CALCULATIONS OF HEAT EXCHANGER Page : 22 of 136 According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Sheet : 2 of 5 Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant) Rev. : 1 Project : Design & Fabrication of Heat Exchanger for APRC Refinery Date : 11.4.2004 Job No. : 7443-33 Location : Alex. Dwg. No. : 7443-33-1A, Rev. 1 Client : APRC Exchanger : Residue Cooler, Type : AES, TEMA class : R Items : E-323A/B & E-514C/D M1. Nozzle Mark : N3 & N4 6" 300# WNRF (Located at Shell) (cont.) Nozzle Opening Calculation With Reinforcing [UG-27(c) & Appendix 1-1] Nozzle Pipe Size, NPS 6 INCH 150 DN Nozzle Pipe Sch. 80 Design Pressure, P 185.483 PSIG 13.058 Kg/CM2 G Design Temparture 302 o F 150 o C Shell Material ASME SA106 Grade B Nozzle Material ASME SA 106 Grade B Reinforcing Pad Material ASME SA 106 Grade B Allowable Stress of Shell Material, Sv 17100 PSIG 1203.84 Kg/CM2 G Allowable Stress of Nozzle Material, Sn 17100 PSIG 1203.84 Kg/CM2 G Allowable Stress of Pad Material, Sp 17100 PSIG 1203.84 Kg/CM2 G Shell Thickness 0.5 INCH 12.7 MM Shell Corrosion Allowance, Cas 0.19685 INCH 5 MM Shell Thickness less Pipe Tolerance 12.5% (12.5% NA) 0.4375 INCH 11.1125 MM Shell Thickness less Corrosion Allowance & 12.5%, t (12.5% NA) 0.24065 INCH 6.1125 MM Nozzle Wall Nominal Thickness 0.432 INCH 10.9728 MM Nozzle Wall Thickness less Pipe Tolerance 12.5% 0.378 INCH 9.6012 MM Nozzle Corrosion Allowance, Can 0.19685 INCH 5 MM Nozzle Wall Thick. less Corr. Allowance & 12.5% , tn 0.18115 INCH 4.6012 MM Nozzle Wall Thick.of Internal Projection (less Corr. Allowance & 12.5%), ti 0.18115 INCH 4.6012 MM Reinforced Pad Thickness, te 0.5 INCH 12.7 MM Joint Efficiency of Shell, E 1 Joint Efficiency of Nozzle, En 1 Correction Factor, F [UG-37(a)] 1 E1 [Nozzle in solid plate] 1 Shell Outside Diameter, OD 20 INCH 508 MM Shell Inside Diameter in Corroded Condition, 2R = OD - 2 t 19.5187 INCH 495.775 MM Shell Inside Radius in Corroded Condition, R 9.75935 INCH 247.8875 MM Nozzle Outside Diameter, OD 6.625 INCH 168.275 MM Nozzle Inside Diameter, ID 5.761 INCH 146.3294 MM Nozzle Projection beyond Inner Vessel Wall, h = min. (h1,h2) 0 INCH 0 MM h1 = 2.5 t 0.60162 INCH 15.28125 MM h2 = 2.5 ti 0.45287 INCH 11.503 MM Nozzle ID Without Corrosion Allowance & 12.5% , d = OD - 2*tn 6.2627 INCH 159.0726 MM Finished Radius of Circular Opening, Rn 3.13135 INCH 79.5363 MM
  • 23. DESIGN CALCULATIONS OF HEAT EXCHANGER Page : 23 of 136 According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Sheet : 3 of 5 Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant) Rev. : 1 Project : Design & Fabrication of Heat Exchanger for APRC Refinery Date : 11.4.2004 Job No. : 7443-33 Location : Alex. Dwg. No. : 7443-33-1A, Rev. 1 Client : APRC Exchanger : Residue Cooler, Type : AES, TEMA class : R Items : E-323A/B & E-514C/D M1. Nozzle Mark : N3 & N4 6" 300# WNRF (Located at Shell) (cont.) Nozzle Opening Calculation With Reinforcing (cont.) [UG-27(c) & Appendix 1-1] * Outside Diameter of Reinforced Pad (if used) [UG-40(b)&FIG.UG-37.1] Dp1 = 2 d 12.5254 INCH 318.1452 MM Dp2 = 2 (Rn + nozzle wall thk. , tn + vessel wall thk. , t ) 7.1063 INCH 180.5 MM OD of Reinf. Pad, Dp = the greater of Dp1 or Dp2 12.5254 INCH 318.1452 MM Calculating Siz of Fillet Welds : [UW-16(c)(2)&Fig.UW-16.1] * For Outward Nozzle Weld [UW-16(c)(2)&Fig.UW-16.1Sketch (c)] Calculation of tmin. : tmin.1 = 0.75 inch 0.75 INCH 19.05 MM tmin.2 (nozzle wall nominal thickness) 0.432 INCH 10.9728 MM tmin.3 (shell wall thickness) 0.56181 INCH 14.27 MM tmin. = lesser of tmin.1, tmin. & tmin.3 0.432 INCH 10.9728 MM Calculation of tc : tc1 = 0.25 inch 0.25 INCH 6.35 MM tc2 = 0.7 t min. 0.3024 INCH 7.68096 MM tc = lesser of tc1 & tc2 0.25 INCH 6.35 MM By Considering Equal Legs Fillet Welds : Leg of Outward Nozzle Weld = SQRT2 * tc 0.35355 INCH 8.980256 MM Use Leg with Dimension E in Dwg. No. 7443-33-1A 0.35433 INCH 9 MM * For Outer Reinforcing Pad Weld [Fig.UW-16 Sketch (c)] tmin.1 = 0.75 inch 0.75 INCH 19.05 MM tmin.2 ( te = thk. of reinforcing element) 0.5 INCH 12.7 MM tmin.3 ( shell wall thickness) 0.5 INCH 12.7 MM tmin. = lesser of tmin.1, tmin. 2 & tmin.3 0.5 INCH 12.7 MM 1/2 tmin. 0.25 INCH 6.35 MM By Considering Equal Legs Fillet Welds : Leg of Outer Pad Weld = SQRT(2)*(tmin./2) 0.35355 INCH 9 MM Use Leg with Dimension D in Dwg. No. 7443-33-1A 0.35433 INCH 9 MM * Wall Thickness Required : [UG-27(c)(1)] Shell tr = PR / (SE - 0.6 P) 0.1255 INCH 3.187732 MM Nozzle trn = PRn /(SnEn - 0.6 P) 0.03419 INCH 0.868379 MM * Strength Reduction Factors : Sp / Sv 1 fr1 = Sn / Sv 1 fr2 = Sn / Sv 1 fr3 = lesser of Sn/Sv or Sp/Sv 1 fr4 = Sp / Sv 1
  • 24. DESIGN CALCULATIONS OF HEAT EXCHANGER Page : 24 of 136 According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Sheet : 4 of 5 Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant) Rev. : 1 Project : Design & Fabrication of Heat Exchanger for APRC Refinery Date : 11.4.2004 Job No. : 7443-33 Location : Alex. Dwg. No. : 7443-33-1A, Rev. 1 Client : APRC Exchanger : Residue Cooler, Type : AES, TEMA class : R Items : E-323A/B & E-514C/D M1. Nozzle Mark : N3 & N4 6" 300# WNRF (Located at Shell) (cont.) Min. Nozzle Neck Wall Thickness Check Per UG-45 A. Wall Thickness per UG-45(a) : trna = trn + C.A. 0.23104 INCH 5.868379 MM B. Wall Thickness per UG-45(b) : trnb = Min. (trnb1, trnb2, trnb3, trnb 0.245 INCH 6.223 MM Wall Thickness per UG-45(b)(1), trnb1 = Min. (trnb11, trnb12) 0.2906 INCH 7.38125 MM trnb11 = tr + C.A. (tr for shell or head at E=1) 0.32235 INCH 8.187732 MM trnb12 = Min Wall Thickness per UG-16(b), see below 0.2906 INCH 7.38125 MM Wall Thickness per UG-45(b)(2), trnb2 (apply to external pressure only), NA INCH #VALUE! MM Wall Thickness per UG-45(b)(3), trnb3 (apply to internal & external pressure) = Max. (trnb1, trnb2) NA INCH #VALUE! MM Wall Thickness per UG-45(b)(4), trnb4 = Min. thickness of std. wall pipe - 12.5% Max. (including CA) 0.245 INCH 6.223 MM (Under tolerance12.5% in accordance with ASME B36.10M) Nominal thickness of std. pipe wall thickness, NPS 6", Sch. Std. 0.28 INCH 7.112 MM Wall Thickness per UG-16(b), trnb12 I - Min. Wall Thickness 1/16" + C.A. 0.25935 INCH 6.5875 MM II - Min. Wall Thickness of Unfired Steam Boilers = 1/4" + C.A. 0.44685 INCH 11.35 MM III - Min. Wall Thickness of Shell/Head in Compressed Air Service, Steam Service, and Water Service = 3/32" + C.A. 0.2906 INCH 7.38125 MM Selected Vessel Service in our case is : Case III (compressed air) So, the Min. Wall Thickness per UG-16(b), trnb12 0.2906 INCH 7.38125 MM The min. nozzle wall thk. = Max. thk. determined by UG-45(a), or by UG-45(b)0.245 INCH 6.223 MM The min. nozzle thk. provided = t (1-0.125) 0.378 INCH 9.6012 MM So, the thickness provided meets the rules of UG-45. OK Since there is no superimposed loads, the vessel doesn't require a calculationon shear stresses caused by UG-22(c).
  • 25. DESIGN CALCULATIONS OF HEAT EXCHANGER Page : 25 of 136 According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Sheet : 5 of 5 Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant) Rev. : 1 Project : Design & Fabrication of Heat Exchanger for APRC Refinery Date : 11.4.2004 Job No. : 7443-33 Location : Alex. Dwg. No. : 7443-33-1A, Rev. 1 Client : APRC Exchanger : Residue Cooler, Type : AES, TEMA class : R Items : E-323A/B & E-514C/D M1. Nozzle Mark : N3 & N4 6" 300# WNRF (Located at Shell) (cont.) Nozzle Opening Calculation With Reinforcing (cont.) [UG-27] Area of Reinforcement (witht Reinforcing element) : Required Area, A = d tr F + 2 tn tr F(1-fr1) 0.78598 INCH 2 507.0808 MM2 Area Available in Shell, A1: A11 = d (E1 t - F tr) - 2tn (E1 t - F tr)(1-fr1) 0.72114 INCH 2 465.2505 MM2 A12 = 2 (t + tn)(E1 t - F tr) - 2tn (E1 t - F tr)(1-f r1) 0.09714 INCH2 62.67018 MM2 A1 = The Greater of A11 or A12 0.72114 INCH 2 465.2505 MM2 Area Available in Nozzle Projecting Outward, A2 : A21 = 5 (tn - trn) fr2 t 0.17683 INCH 2 114.0844 MM2 A22 = 2 (tn - trn)(2.5tn+te) fr2 0.28007 INCH2 180.691 MM2 A2 = The Lesser of A21 or A22 0.17683 INCH 2 114.0844 MM2 Area Available in Inward Nozzle, A3 : (Not applicable) A31 = 5 t ti fr2 0.21797 INCH2 140.6242 MM2 A32 = 5 ti ti fr2 0.16408 INCH2 105.8552 MM2 A33 = 2 h ti fr2 0 INCH2 0 MM2 A3 = The Greater of A31, A32 or A33 0 INCH 2 0 MM2 Area Available in Outward Nozzle Weld, A41: A41 = (LEG) 2 fr2 0.12555 INCH2 81 MM2 Area Available in Outer Reinforcing Pad Weld, A42: A42 = (LEG) 2 fr4 0.12555 INCH 2 81 MM2 Area Available in Inward Nozzle Weld, A43 : A43 = (LEG) 2 fr2 0 INCH 2 0 MM2 Area Available in Reinforcing Pad, A5 : A5 = (Dp - d - 2tn) te fr4 2.9502 INCH 2 1903.352 MM2 Total Area Available, AT : AT = A1 + A2 + A41 + A42 + A43 + A5 4.09927 INCH 2 2644.686 MM2 AT is greater than A, therefore opening is adequately reinforced. NOTE. No need for Strength Path Calculations.
  • 26. DESIGN CALCULATIONS OF HEAT EXCHANGER Page : 26 of 136 According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Sheet : 1 of 5 Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant) Rev. : 1 Project : Design & Fabrication of Heat Exchanger for APRC Refinery Date : 11.4.2004 Job No. : 7443-33 Location : Alex. Dwg. No. : 7443-33-1A, Rev. 1 Client : APRC Exchanger : Residue Cooler, Type : AES, TEMA class : R Items : E-323A/B & E-514C/D M2. Nozzle Mark : N1 & N2 6" 150# WNRF (Located at Channel) with reinforcement Nozzle Neck Thickness Calculation [UG-45, UG-27 & APPENDIX 1-1] Nozzle Size, NPS 6 INCH 150 DN Nozzle Material ASME SA 106 Grade B Design Pressure, P 71.708 PSIG 5.04826 Kg/CM2 G Design Temperature 140 o F 60 o C For nominated Design Pressure & Temperature, Flange Rating 150# [ASME B16.5-1996] Max. Allowable Stress of Nozzle Material @ Design Temp.(60 o C), Sn 17100 PSIG 1203.84 Kg/CM2 G Max. Allowable Stress of Nozzle Materiall @ Test Temp.(40 o C), Snt 17100 PSIG 1203.84 Kg/CM2 G [Table 1A, SubPart 1, ASME Sec. II, Part D] Outside Radius of Nozzle, Ron 3.3125 INCH 84.1375 MM Joint Efficiency of Nozzle, En (Seamless Pipe) 1 Nozzle Corrosion Allowance, Can 0.19685 INCH 5 MM Nozzle Thickness Calculation : Longitudinal Stress, t = PRon /(Sn*En + 0.4 P) [APPENDIX 1.1] 0.01387 INCH 0.352236 MM By adding Corrosion Allowance, t [UG-25] 0.21072 INCH 5.352236 MM By adding Pipe Tolerance 12.5% to the Thickness of Nozzle, t 0.23706 INCH 6.021265 MM Use Nozzle 6" NPS with Selected Neck Sch. 80, 0.432 INCH 10.9728 MM with Thickness 0.432" ( 10.97 MM ). [Table 2 of ASME B 36.10M-1985-(R-1994)] Nozzle Neck Maximum Working Pressure, MWP (New & Operating) Nozzle wall thickness less tolerance 12.5% 0.378 INCH 9.6012 MM Nozzle wall thickness less tolerance 12.5% - Corrosion allowance 0.18115 INCH 4.6012 MM MWP, New & cold (10.97 MM) P = Snt E t /(Ron - 0.4 t) [App. 1.1] 2044.67 PSIG 143.944 Kg/CM2 G MWP, Operating & corroded (4.6 MM) P = Sn E t /(Ron - 0.4 t) 956.056 PSIG 67.306 Kg/CM2 G Nozzle Flange Maximum Working Pressure, MWP (New & Operating) MWP, New & cold , 150# @ 100 o F [ASME B.165, Table 2] 285 PSIG 20.064 Kg/CM2 G MWP, Operating & corroded, 150# @ 140 o F [ASME B16.5, Table 2] 275 PSIG 19.36 Kg/CM2 G
  • 27. DESIGN CALCULATIONS OF HEAT EXCHANGER Page : 27 of 136 According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Sheet : 2 of 5 Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant) Rev. : 1 Project : Design & Fabrication of Heat Exchanger for APRC Refinery Date : 11.4.2004 Job No. : 7443-33 Location : Alex. Dwg. No. : 7443-33-1A, Rev. 1 Client : APRC Exchanger : Residue Cooler, Type : AES, TEMA class : R Items : E-323A/B & E-514C/D M2. Nozzle Mark : N1 & N2 6" 150# WNRF (located at channel) (cont.) Nozzle Opening Calculation With Reinforcing [UG-27(c) & Appendix 1-1] Nozzle Pipe Size, NPS 6 INCH 150 DN Nozzle Pipe Sch. 80 Design Pressure, P 71.708 PSIG 5.048243 Kg/CM2 G Design Temparture 140 o F 60 o C Shell Material ASME SA106 Grade B Nozzle Material ASME SA 106 Grade B Reinforcing Pad Material ASME SA106 Grade B Allowable Stress of Shell Material, Sv 17100 PSIG 1203.84 Kg/CM2 G Allowable Stress of Nozzle Material, Sn 17100 PSIG 1203.84 Kg/CM2 G Allowable Stress of Pad Material, Sp 17100 PSIG 1203.84 Kg/CM2 G Shell Thickness 0.5 INCH 12.7 MM Shell Corrosion Allowance, Cas 0.19685 INCH 5 MM Shell Thickness less Pipe Tolerance 12.5% (12.5% NA) 0.4375 INCH 11.1125 MM Shell Thickness less Corrosion Allowance & 12.5%, t (12.5% NA) 0.24065 INCH 6.1125 MM Nozzle Wall Nominal Thickness 0.432 INCH 10.9728 MM Nozzle Wall Thickness less Pipe Tolerance 12.5% 0.378 INCH 9.6012 MM Nozzle Corrosion Allowance, Can 0.19685 INCH 5 MM Nozzle Wall Thick. less Corr. Allowance & 12.5% , tn 0.18115 INCH 4.6012 MM Nozzle Wall Thick.of Internal Projection (less Corr. Allowance & 12.5%), ti 0.18115 INCH 4.6012 MM Reinforced Pad Thickness, te 0.5 INCH 12.7 MM Joint Efficiency of Shell, E 1 Joint Efficiency of Nozzle, En 1 Correction Factor, F [UG-37(a)] 1 E1 [Nozzle in solid plate] 1 Shell Outside Diameter, OD 20 INCH 508 MM Shell Inside Diameter in Corroded Condition, 2R = OD - 2 t 19.5187 INCH 495.775 MM Shell Inside Radius in Corroded Condition, R 9.75935 INCH 247.8875 MM Nozzle Outside Diameter, OD 6.625 INCH 168.275 MM Nozzle Inside Diameter, ID 5.761 INCH 146.3294 MM Nozzle Projection beyond Inner Vessel Wall, h = min. (h1,h2) 0 INCH 0 MM h1 = 2.5 t 0.60162 INCH 15.28125 MM h2 = 2.5 ti 0.45287 INCH 11.503 MM Nozzle ID Without Corrosion Allowance & 12.5% , d = OD - 2*tn 6.2627 INCH 159.0726 MM Finished Radius of Circular Opening, Rn 3.13135 INCH 79.5363 MM
  • 28. DESIGN CALCULATIONS OF HEAT EXCHANGER Page : 28 of 136 According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Sheet : 3 of 5 Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant) Rev. : 1 Project : Design & Fabrication of Heat Exchanger for APRC Refinery Date : 11.4.2004 Job No. : 7443-33 Location : Alex. Dwg. No. : 7443-33-1A, Rev. 1 Client : APRC Exchanger : Residue Cooler, Type : AES, TEMA class : R Items : E-323A/B & E-514C/D M2. Nozzle Mark : N1 & N2 6" 150# WNRF (located at channel) (cont.) Nozzle Opening Calculation With Reinforcing (cont.) [UG-27(c) & Appendix 1-1] * Outside Diameter of Reinforced Pad [UG-40(b) & Fig.UG-37.1] Dp1 = 2 d 12.5254 INCH 318.1452 MM Dp2 = 2 (Rn + nozzle wall thk. , tn + vessel wall thk. , t ) 7.1063 INCH 180.5 MM OD of Reinf. Pad, Dp = the greater of Dp1 or Dp2 12.5254 INCH 318.1452 MM Calculating Size of Fillet Welds : [UW-16(c)(2) & Fig.UW-16.1] * For Outward Nozzle Weld [UW-16(c)(2)&Fig.UW-16.1 Sketch (c)] Calculation of tmin. : tmin.1 = 0.75 inch 0.75 INCH 19.05 MM tmin.2 (nozzle wall nominal thickness) 0.432 INCH 10.9728 MM tmin.3 (shell wall thickness) 0.5 INCH 12.7 MM tmin. = lesser of tmin.1, tmin. & tmin.3 0.432 INCH 10.9728 MM Calculation of tc : tc1 = 0.25 inch 0.25 INCH 6.35 MM tc2 = 0.7 t min. 0.3024 INCH 7.68096 MM tc = lesser of tc1 & tc2 0.25 INCH 6.35 MM By Considering Equal Legs Fillet Welds : Leg of Outward Nozzle Weld = SQRT2 * tc 0.35355 INCH 8.980256 MM Use Leg with Dimension E in Dwg. No. 7443-33-1A 0.35433 INCH 9 MM * For Outer Reinforcing Pad Weld [Fig.UW-16 Sketch (c)] tmin.1 = 0.75 inch 0.75 INCH 19.05 MM tmin.2 ( te = thk. of reinforcing element) 0.5 INCH 12.7 MM tmin.3 ( shell wall thickness) 0.5 INCH 12.7 MM tmin. = lesser of tmin.1, tmin. 2 & tmin.3 0.5 INCH 12.7 MM 1/2 t min. 0.25 INCH 6.35 MM By Considering Equal Legs Fillet Welds : Leg of Outer Pad Weld = SQRT(2)*(tmin./2) 0.35355 INCH 9 MM Use Leg with Dimension D in Dwg. No. 7443-33-1A 0.35433 INCH 9 MM * Wall Thickness Required : [UG-27(c)(1)] Shell tr = PR / (SE - 0.6 P) 0.04829 INCH 1.226577 MM Nozzle trn = PRn /(SnEn - 0.6 P) 0.03419 INCH 0.868379 MM * Strength Reduction Factors : Sp / Sv 1 fr1 = Sn / Sv 1 fr2 = Sn / Sv 1 fr3 = lesser of Sn/Sv or Sp/Sv 1 fr4 = Sp / Sv 1
  • 29. DESIGN CALCULATIONS OF HEAT EXCHANGER Page : 29 of 136 According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Sheet : 4 of 5 Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant) Rev. : 1 Project : Design & Fabrication of Heat Exchanger for APRC Refinery Date : 11.4.2004 Job No. : 7443-33 Location : Alex. Dwg. No. : 7443-33-1A, Rev. 1 Client : APRC Exchanger : Residue Cooler, Type : AES, TEMA class : R Items : E-323A/B & E-514C/D M2. Nozzle Mark : N1 & N2 6" 150# WNRF (located at channel) (cont.) Min. Nozzle Neck Wall Thickness Check Per UG-45 A. Wall Thickness per UG-45(a) : trna = trn + C.A. 0.23104 INCH 5.868379 MM B. Wall Thickness per UG-45(b) : trnb = Min. (trnb1, trnb2, trnb3, trnb 0.245 INCH 6.223 MM Wall Thickness per UG-45(b)(1), trnb1 = Min. (trnb11, trnb12) 0.24514 INCH 6.226577 MM trnb11 = tr + C.A. (tr for shell or head at E=1) 0.24514 INCH 6.226577 MM trnb12 = Min Wall Thickness per UG-16(b), see below 0.2906 INCH 7.38125 MM Wall Thickness per UG-45(b)(2), trnb2 (apply to external pressure only), NA INCH #VALUE! MM Wall Thickness per UG-45(b)(3), trnb3 (apply to internal & external pressure) = Max. (trnb1, trnb2) NA INCH #VALUE! MM Wall Thickness per UG-45(b)(4), trnb4 = Min. thickness of std. wall pipe - 12.5% Max. (including CA) 0.245 INCH 6.223 MM (Under tolerance12.5% in accordance with ASME B36.10M) Nominal thickness of std. pipe wall thickness, NPS 6", Sch. Std0.28 INCH 7.112 MM Wall Thickness per UG-16(b), trnb12 I - Min. Wall Thickness 1/16" + C.A. 0.25935 INCH 6.5875 MM II - Min. Wall Thickness of Unfired Steam Boilers = 1/4" + C.A. 0.44685 INCH 11.35 MM III - Min. Wall Thickness of Shell/Head in Compressed Air Service, Steam Service, and Water Service = 3/32" + C.A. 0.2906 INCH 7.38125 MM Selected Vessel Service in our case is : Case III (compressed air) So, the Min. Wall Thickness per UG-16(b), trnb12 0.2906 INCH 7.38125 MM The min. nozzle wall thk. = Max. thk. determined by UG-45(a), or by UG-45(b)0.245 INCH 6.223 MM The min. nozzle thk. provided = t (1-0.125) 0.378 INCH 9.6012 MM So, the thickness provided meets the rules of UG-45. OK Since there is no superimposed loads, the vessel doesn't require a calculationon shear stresses caused by UG-22(c).
  • 30. DESIGN CALCULATIONS OF HEAT EXCHANGER Page : 30 of 136 According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Sheet : 5 of 5 Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant) Rev. : 1 Project : Design & Fabrication of Heat Exchanger for APRC Refinery Date : 11.4.2004 Job No. : 7443-33 Location : Alex. Dwg. No. : 7443-33-1A, Rev. 1 Client : APRC Exchanger : Residue Cooler, Type : AES, TEMA class : R Items : E-323A/B & E-514C/D M2. Nozzle Mark : N1 & N2 6" 150# WNRF (located at channel) (cont.) Nozzle Opening Calculation With Reinforcing (cont.) [UG-37] Area of Reinforcement (with reinforcing Element) : Required Area, A = d tr F + 2 tn tr F(1-fr1) 0.30243 INCH 2 195.1147 MM2 Area Available in Shell, A1: A11 = d (E1 t - F tr) - 2tn (E1 t - F tr)(1-fr1) 1.20469 INCH 2 777.2165 MM2 A12 = 2 (t + tn)(E1 t - F tr) - 2tn (E1 t - F tr)(1-f r1) 0.16227 INCH2 104.6926 MM2 A1 = The Greater of A11 or A12 1.20469 INCH 2 777.2165 MM2 Area Available in Nozzle Projecting Outward, A2 : A21 = 5 (tn - trn) fr2 t 0.17683 INCH 2 114.0844 MM2 A22 = 2 (tn - trn)(2.5tn+te) fr2 0.28007 INCH2 180.691 MM2 A2 = The Lesser of A21 or A22 0.17683 INCH 2 114.0844 MM2 Area Available in Inward Nozzle, A3 : A31 = 5 t ti fr2 0.21797 INCH 2 140.6242 MM2 A32 = 5 ti ti fr2 0.16408 INCH2 105.8552 MM2 A33 = 2 h ti fr2 0 INCH2 0 MM2 A3 = The Greater of A31, A32 or A33 0 INCH 2 0 MM2 Area Available in Outward Nozzle Weld, A41: A41 = (LEG) 2 fr2 0.12555 INCH2 81 MM2 Area Available in Outer Reinforcing Pad Weld, A42: A42 = (LEG) 2 fr4 0.12555 INCH 2 81 MM2 Area Available in Inward Nozzle Weld, A43 : A43 = (LEG) 2 fr2 0 INCH 2 0 MM2 Area Available in Reinforcing Pad, A5 : A5 = (Dp - d - 2tn) te fr4 2.9502 INCH 2 1903.352 MM2 Total Area Available, AT : AT = A1 + A2 + A41 + A42 + A43 + A5 4.58282 INCH 2 2956.652 MM2 AT is greater than A, therefore opening is adequately reinforced. NOTE. No need for Strength Path Calculations.
  • 31. DESIGN CALCULATIONS OF HEAT EXCHANGER Page : 31 of 136 According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Sheet : 1 of 5 Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant) Rev. : 1 Project : Design & Fabrication of Heat Exchanger for APRC Refinery Date : 11.4.2004 Job No. : 7443-33 Location : Alex. Dwg. No. : 7443-33-1A, Rev. 1 Client : APRC Exchanger : Residue Cooler, Type : AES, TEMA class : R Items : E-323A/B & E-514C/D M4a. Nozzle Mark : N1 & N2 6" 150# WNRF (Located at Shell) without reinforcement Nozzle Neck Thickness Calculation [UG-45 , UG-27 & APPENDIX 1-1] Nozzle Size, NPS 6 INCH 150 DN Nozzle Material ASME SA 106 Grade B Design Pressure, P 71.708 PSIG 5.04826 Kg/CM2 G Design Temperature 140 o F 60 o C For nominated Design Pressure & Temperature, Flange Rating 150# [ANSI/ASME B16.5-1996] Allowable Stress of Nozzle Material @ Design Temp. (60 o C), Sn 17100 PSIG 1203.84 Kg/CM2 G Max. Allowable Stress of Nozzle Materiall @ Test Temp.(40 o C), Snt 17100 PSIG 1203.84 Kg/CM2 G [Table 1A, SubPart 1, ASME Sec. II, Part D] Outside Radius of Nozzle, Ron 3.3125 INCH 84.1375 MM Joint Efficiency of Nozzle, En (Seamless Pipe) 1 Nozzle Corrosion Allowance, Can 0.19685 INCH 5 MM Nozzle Thickness Calculation : Longitudinal Stress, t = PRon /(Sn*En + 0.4 P) [APPENDIX 1.1] 0.01387 INCH 0.352236 MM By adding Corrosion Allowance, t [UG-25] 0.21072 INCH 5.352236 MM By adding Pipe Tolerance 12.5% to the Thickness of Nozzle, t 0.23706 INCH 6.021265 MM Use Nozzle 6" NPS with Selected Neck Sch. 80, 0.432 INCH 10.9728 MM with Thickness 0.432" ( 10.97 MM ). [Table 2 of ANSI B 36.10M-1985-(R-1994)] Nozzle Neck Maximum Working Pressure, MWP (New & Operating) Nozzle wall thickness less tolerance 12.5% 0.378 INCH 9.6012 MM Nozzle wall thickness less tolerance 12.5% - Corrosion allowance 0.18115 INCH 4.6012 MM MWP, New & cold (10.97 MM) P = Snt E t /(Ron - 0.4 t) [App. 1.1] 2044.67 PSIG 143.944 Kg/CM2 G MWP, Operating & corroded (4.6 MM) P = Sn E t /(Ron - 0.4 t) 956.056 PSIG 67.306 Kg/CM2 G Nozzle Flange Maximum Working Pressure, MWP (New & Operating) MWP, New & cold , 150# @ 100 o F [ASME B.165, Table 2] 285 PSIG 20.064 Kg/CM2 G MWP, Operating & corroded, 150# @ 140 o F [ASME B16.5, Table 2] 275 PSIG 19.36 Kg/CM2 G
  • 32. DESIGN CALCULATIONS OF HEAT EXCHANGER Page : 32 of 136 According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Sheet : 2 of 5 Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant) Date : 11.4.2004 Project : Design & Fabrication of Heat Exchanger for APRC Refinery Client : APRC Job No. : 7443-33 Location : Alex. Dwg. No. : 7443-33-1A, Rev. 1 Client : APRC Exchanger : Residue Cooler, Type : AES, TEMA class : R Items : E-323A/B & E-514C/D M4. Nozzle Mark : N1 & N2 6" 150# WNRF (Located at Channel) without reinforcement (cont.) Nozzle Opening Calculation Without Reinforcing [UG-27(c) & Appendix 1-1] Nozzle Pipe Size, NPS 6 INCH 150 DN Nozzle Pipe Sch. 80 Design Pressure, P 71.708 PSIG 5.048243 Kg/CM2 G Design Temparture 140 o F 60 o C Shell Material ASME SA106 Grade B Nozzle Material ASME SA 106 Grade B Reinforcing Pad Material N.A. Allowable Stress of Shell Material, Sv 17100 PSIG 1203.84 Kg/CM2 G Allowable Stress of Nozzle Material, Sn 17100 PSIG 1203.84 Kg/CM2 G Allowable Stress of Pad Material, Sp 0 PSIG 0 Kg/CM2 G Shell Thickness 0.5 INCH 12.7 MM Shell Corrosion Allowance, Cas 0.19685 INCH 5 MM Shell Thickness less Pipe Tolerance 12.5% (12.5% NA) 0.4375 INCH 11.1125 MM Shell Thickness less Corrosion Allowance & 12.5%, t (12.5% NA) 0.24065 INCH 6.1125 MM Nozzle Wall Nominal Thickness 0.432 INCH 10.9728 MM Nozzle Wall Thickness less Pipe Tolerance 12.5% 0.378 INCH 9.6012 MM Nozzle Corrosion Allowance, Can 0.19685 INCH 5 MM Nozzle Wall Thick. less Corr. Allowance & 12.5% , tn 0.18115 INCH 4.6012 MM Nozzle Wall Thick.of Internal Projection (less Corr. Allowance & 12.5%), ti 0.18115 INCH 4.6012 MM Reinforced Pad Thickness, te 0 INCH 0 MM Joint Efficiency of Shell, E 1 Joint Efficiency of Nozzle, En 1 Correction Factor, F [UG-37(a)] 1 E1 [Nozzle in solid plate] 1 Shell Outside Diameter, OD 20 INCH 508 MM Shell Inside Diameter in Corroded Condition, 2R = OD - 2 t 19.5187 INCH 495.775 MM Shell Inside Radius in Corroded Condition, R 9.75935 INCH 247.8875 MM Nozzle Outside Diameter, OD 6.625 INCH 168.275 MM Nozzle Inside Diameter, ID 5.761 INCH 146.3294 MM Nozzle Projection beyond Inner Vessel Wall, h = min. (h1,h2) 0 INCH 0 MM h1 = 2.5 t 0.60162 INCH 15.28125 MM h2 = 2.5 ti 0.45287 INCH 11.503 MM Nozzle ID Without Corrosion Allowance & 12.5% , d = OD - 2*tn 6.2627 INCH 159.0726 MM Finished Radius of Circular Opening, Rn 3.13135 INCH 79.5363 MM
  • 33. DESIGN CALCULATIONS OF HEAT EXCHANGER Page : 33 of 136 According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Sheet : 3 of 5 Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant) Rev. : 1 Project : Design & Fabrication of Heat Exchanger for APRC Refinery Date : 11.4.2004 Job No. : 7443-33 Location : Alex. Dwg. No. : 7443-33-1A, Rev. 1 Client : APRC Exchanger : Residue Cooler, Type : AES, TEMA class : R Items : E-323A/B & E-514C/D M4. Nozzle Mark : N1 & N2 6" 150# WNRF (Located at Channel) without reinforcement (cont.) Nozzle Opening Calculation With Reinforcing (cont.) [UG-27(c) & Appendix 1-1] * Outside Diameter of Reinforced Pad (if used) [UG-40(b)&FIG.UG-37.1] Dp1 = 2 d 12.5254 INCH 318.1452 MM Dp2 = 2 (Rn + nozzle wall thk. , tn + vessel wall thk. , t ) 7.1063 INCH 180.5 MM OD of Reinf. Pad, Dp = the greater of Dp1 or Dp2 0 INCH 0 MM Calculating Size of Fillet Welds : [UW-16(c)(2)&FIG.UW-16.1] * For Outward Nozzle Weld [UW-16(c)(2)&FIG.UW-16.1SKETCH (c)] Calculation of tmin. : tmin.1 = 0.75 inch 0.75 INCH 19.05 MM tmin.2 (nozzle wall nominal thickness) 0.432 INCH 10.9728 MM tmin.3 (shell wall thickness) 0.5 INCH 12.7 MM tmin. = lesser of tmin.1, tmin. & tmin.3 0.432 INCH 10.9728 MM Calculation of tc : tc1 = 0.25 inch 0.25 INCH 6.35 MM tc2 = 0.7 t min. 0.3024 INCH 7.68096 MM tc = lesser of tc1 & tc2 0.25 INCH 6.35 MM By Considering Equal Legs Fillet Welds : Leg of Outward Nozzle Weld = SQRT2 * tc 0.35355 INCH 8.980256 MM Use Leg with Dimension E in Dwg. No. 7443-33-1A 0.35433 INCH 9 MM * For Outer Reinforcing Pad Weld (NA) [FIG.UW-16 SKETCH (c)] tmin.1 = 0.75 inch 0.75 INCH 19.05 MM tmin.2 ( te = thk. of reinforcing element) 0 INCH 0 MM tmin.3 ( shell wall thickness) 0.5 INCH 12.7 MM tmin. = lesser of tmin.1, tmin. 2 & tmin.3 0 INCH 0 MM 1/2 t min. 0 INCH 0 MM By Considering Equal Legs Fillet Welds : Leg of Outer Pad Weld = SQRT(2)*(tmin./2) 0 INCH 0 MM Use Leg with Dimension D in Dwg. No. 7443-33-1A 0 INCH 0 MM * Wall Thickness Required : [UG-27(c)(1)] Shell tr = PR / (SE - 0.6 P) 0.04829 INCH 1.226577 MM Nozzle trn = PRn /(SnEn - 0.6 P) 0.01316 INCH 0.334373 MM * Strength Reduction Factors : Sp / Sv 0 fr1 = Sn / Sv 1 fr2 = Sn / Sv 1 fr3 = lesser of Sn/Sv or Sp/Sv 1 fr4 = Sp / Sv 0
  • 34. DESIGN CALCULATIONS OF HEAT EXCHANGER Page : 34 of 136 According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Sheet : 4 of 5 Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant) Rev. : 1 Project : Design & Fabrication of Heat Exchanger for APRC Refinery Date : 11.4.2004 Job No. : 7443-33 Location : Alex. Dwg. No. : 7443-33-1A, Rev. 1 Client : APRC Exchanger : Residue Cooler, Type : AES, TEMA class : R Items : E-323A/B & E-514C/D M4. Nozzle Mark : N1 & N2 6" 150# WNRF (Located at Channel) without reinforcement (cont.) MIN. NOZZLE NECK WALL THICKNESS CHECK PER UG-45 A. Wall Thickness per UG-45(a) : trna = trn + C.A. 0.21001 INCH 5.334373 MM B. Wall Thickness per UG-45(b) : trnb = Min. (trnb1, trnb2, trnb3, trnb 0.245 INCH 6.223 MM Wall Thickness per UG-45(b)(1), trnb1 = Min. (trnb11, trnb12) 0.24514 INCH 6.226577 MM trnb11 = tr + C.A. (tr for shell or head at E=1) 0.24514 INCH 6.226577 MM trnb12 = Min Wall Thickness per UG-16(b), see below 0.2906 INCH 7.38125 MM Wall Thickness per UG-45(b)(2), trnb2 (apply to external pressure only), NA INCH #VALUE! MM Wall Thickness per UG-45(b)(3), trnb3 (apply to internal & external pressure) = Max. (trnb1, trnb2) NA INCH #VALUE! MM Wall Thickness per UG-45(b)(4), trnb4 = Min. thickness of std. wall pipe - 12.5% Max. (icluding CA) 0.245 INCH 6.223 MM (Under tolerance12.5% in accordance with ASME B36.10M) Nominal thickness of std. pipe wall thickness, NPS 6", Sch. Std. 0.28 INCH 7.112 MM Wall Thickness per UG-16(b), trnb12 I - Min. Wall Thickness 1/16" + C.A. 0.25935 INCH 6.5875 MM II - Min. Wall Thickness of Unfired Steam Boilers = 1/4" + C.A. 0.44685 INCH 11.35 MM III - Min. Wall Thickness of Shell/Head in Compressed Air Service, Steam Service, and Water Service = 3/32" + C.A. 0.2906 INCH 7.38125 MM Selected Vessel Service in our case is : Case III (compressed air) So, the Min. Wall Thickness per UG-16(b), trnb12 0.2906 INCH 7.38125 MM The min. nozzle wall thk. = Max. thk. determined by UG-45(a), or by UG-45(b)0.245 INCH 6.223 MM The min. nozzle thk. provided = t (1-0.125) 0.378 INCH 9.6012 MM So, the thickness provided meets the rules of UG-45. OK Since there is no superimposed loads, the vessel doesn't require a calculationon shear stresses caused by UG-22(c).
  • 35. DESIGN CALCULATIONS OF HEAT EXCHANGER Page : 35 of 136 According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Sheet : 5 of 5 Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant) Rev. : 1 Project : Design & Fabrication of Heat Exchanger for APRC Refinery Date : 11.4.2004 Job No. : 7443-33 Location : Alex. Dwg. No. : 7443-33-1A, Rev. 1 Client : APRC Exchanger : Residue Cooler, Type : AES, TEMA class : R Items : E-323A/B & E-514C/D M4. Nozzle Mark : N1 & N2 6" 150# WNRF (Located at Channel) without reinforcement (cont.) Nozzle Opening Calculation Without Reinforcing [UG-37] Area of Reinforcement (without reinforcing Element) : Required Area, A = d tr F + 2 tn tr F(1-fr1) 0.30243 INCH 2 195.1147 MM2 Area Available in Shell, A1: A11 = d (E1 t - F tr) - 2tn (E1 t - F tr)(1-fr1) 1.20469 INCH 2 777.2165 MM2 A12 = 2 (t + tn)(E1 t - F tr) - 2tn (E1 t - F tr)(1-f r1) 0.16227 INCH2 104.6926 MM2 A1 = The Greater of A11 or A12 1.20469 INCH 2 777.2165 MM2 Area Available in Nozzle Projecting Outward, A2 : A21 = 5 (tn - trn) fr2 t 0.20213 INCH 2 130.4049 MM2 A22 = 5 (tn - trn) fr2 tn 0.15215 INCH2 98.16263 MM2 A2 = The Lesser of A21 or A22 0.15215 INCH 2 98.16263 MM2 Area Available in Inward Nozzle, A3 : (Not applicable) A31 = 5 t ti fr2 0.21797 INCH2 140.6242 MM2 A32 = 5 ti ti fr2 0.16408 INCH2 105.8552 MM2 A33 = 2 h ti fr2 0 INCH2 0 MM2 A3 = The Greater of A31, A32 or A33 0 INCH 2 0 MM2 Area Available in Outward Nozzle Weld, A41: A41 = (LEG) 2 fr2 0.12555 INCH2 81 MM2 Area Available in Outer Reinforcing Pad Weld, A42: A42 = (LEG) 2 fr4 0 INCH 2 0 MM2 Area Available in Inward Nozzle Weld, A43 : A43 = (LEG) 2 fr2 0 INCH 2 0 MM2 Area Available in Reinforcing Pad, A5 : (Not applicable) A5 = (Dp - d - 2tn) te fr4 0 INCH2 0 MM2 Total Area Available, AT : AT = A1 + A2 + A41 + A42 + A43 1.48239 INCH 2 956.3792 MM2 AT is greater than A, therefore opening is adequately reinforced. NOTE. No need for Strength Path Calculations.
  • 36. DESIGN CALCULATIONS OF HEAT EXCHANGER Page : 36 of 136 According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Sheet : 1 of 10 Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant) Rev. : 0 Project : Design & Fabrication of Heat Exchanger for APRC Refinery Date : 4.7.2003 Job No. : 7443-33 Location : Alex. Dwg. No. : 7443-33-1A, Rev. 0 Sheet : 5 Client : APRC Exchanger : Residue Cooler, Type : AES Item : E-323A/B & E-514C/D N. Integral Type (WN) Main Shell Flange Thickness (item no. 4) [Appendix 2] [FIG. 2-4, Sketch (6a)] Flange Material, [Attached by Bolts] ASME SA266 ClassSubjected to internal press. Design Temperature (shell side) 302 o F 150 o C Min. Design Metal Temperature, MDMT 53.6 o F 12 o C Bolt-up and Gasket Seating Temperature 86 o F 30 o C Assume no corrosion, C [UG-25] 0.19685 INCH 5 MM Operating Pressure (shell side) 241.477 PSIG 17 Kg/CM2 G Internal Design Pressure, P (MAWP) 284.776 PSIG 20.0483 Kg/CM2 G Allowable Stress of Bolt Material (ASME SA193 Gr. B7), SB : * at design temp.(operating condition), Sb 25000 PSIG 1760 Kg/CM2 G * or at atmospheric temp./bolt-up temp. (gasket seating), Sa 25000 PSIG 1760 Kg/CM2 G Allowable Stress of Flange Material (ASME SA266 Class 2) : * at design temp.(operating condition), SfH 20000 PSIG 1408 Kg/CM2 G * or at atmospheric temp./bolt-up temp. (gasket seating), SfC 20000 PSIG 1408 Kg/CM2 G Allowable Stress of Nozzle neck, Vessel or Pipe wall Material (ASME SA106 Gr. B) : * at design temp.(operating condition), SnH 17100 PSIG 1203.84 Kg/CM2 G * or at atmospheric temp./bolt-up temp.(gasket seating), SnC 17100 PSIG 1203.84 Kg/CM2 G [Table 1A , SubPart 1 , ASME Sec. II , Part D] FIG. 2-4, Sketch (6a) Figure (1) No. of bolts 28 Nominal bolt dia., dB 1 INCH 25.4 MM Bolt Hole, d 1.10236 INCH 28 MM Flange outside diameter, A 26.9685 INCH 685 MM Flange inside diameter, B 19 INCH 482.6 MM Bolt circut diameter (B.C.D.), C = B + 2(g1 + h1+ R) [Appendix 2-3] 24.5276 INCH 623 MM Hup thickness at small end, go = Shell Thickness t 0.5 INCH 12.7 MM Hup thickness at back of flange, g1 (assume g1 = 2 go) 1 INCH 25.4 MM R must not less than 1.5 the bolt hole (see TEMA Table D-5) 1.5 INCH 38 MM Hup length, h (must greater than 1.5 go) [FIG. 2-4, Sketch 6] 1.5748 INCH 40 MM Use max. slope 1:3, h = 3.5 g0 1.73228 INCH 44 MM Slope angle, Y = arc Tan [(g1-go)/h] 16.1001 Degree Fillet radius, r = 0.25 g1 [but not less than 3/16"(4.7625 MM)] [FIG. 2-4, Sketch 6, Note a] 0.25 INCH 6.35 MM Use r 0.23622 INCH 6 MM h1 = r * Tan (45-Y/2) 0.17768 INCH 5 MM E = (A-C)/2 (Check D292 ) 1.22047 INCH 31 MM
  • 37. DESIGN CALCULATIONS OF HEAT EXCHANGER Page : 37 of 136 According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Sheet : 2 of 10 Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant) Rev. : 0 Project : Design & Fabrication of Heat Exchanger for APRC Refinery Date : 4.7.2003 Job No. : 7443-33 Location : Alex. Dwg. No. : 7443-33-1A, Rev. 0 Sheet : 5 Client : APRC Exchanger : Residue Cooler, Type : AES Item : E-323A/B & E-514C/D N. Integral Type (W.N.) Main Shell Flange Thickness, item no. 4 (cont.) [Appendix 2] [FIG. 2-4, Sketch (6a)] [Attached by Bolts] Subjected to internal pressure Nominal shell (pipe) size 20" Pipe Schedule 30 No. of bolts 28 Nominal bolt dia., dB 1 INCH 25.4 MM Bolt diameter at root of thread 0.88189 INCH 22.4 MM Actual cross-sectional area of each bolt, [TEMA Table D-5] 0.551 INCH2 355.483 MM2 Total actual cross-sectional area of bolts, Ab 15.428 INCH2 9953.53 MM2 Flange outside diameter, A 26.9685 INCH 685 MM Flange inside diameter, B 19 INCH 482.6 MM Bolt circut diameter (B.C.D.), C 24.5276 INCH 623 MM Gasket Details: - Flat metal, jacketed asbestos filled, iron or soft steel - Outside diameter = (B.C.D - d) - 2*13 22.0472 INCH 560 MM - Inside diameter = O.D - 2N 20.8661 INCH 530 MM - Width, N 0.59055 INCH 15 MM Gasket Dimensions: Basic gasket seating width, bO = N/2 [Table 2-5.2] 0.29528 INCH 7.5 MM Since bo > 1/4 inch (6.35 MM), [Table 2-5.2] Effective gasket seating width, b = 0.5*SQRT(bO) [Table 2-5.2] 0.2717 INCH 6.90109 MM Gasket Factor, m [Table 2-5.1] 3.75 Min. Seating Stress, y [Table 2-5.1] 7600 PSIG 535.04 Kg/CM2 G Facing Sketch [Table 2-5.1] (1a); Column II Diameter at location of gasket load reaction, G When bo is larger than 1/4", G = O.D.of gasket contact face - 2 b 21.5039 INCH 546.198 MM [Appendix 2-3] N.B. When b < 1/4", the effective gasket seating width, b = bo [Table 2-5.2] N.B. When b > 1/4", the effective gasket seating width, b = 0.5*SQRT(bO) [Table 2-5.2]
  • 38. DESIGN CALCULATIONS OF HEAT EXCHANGER Page : 38 of 136 According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Sheet : 3 of 10 Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant) Rev. : 0 Project : Design & Fabrication of Heat Exchanger for APRC Refinery Date : 4.7.2003 Job No. : 7443-33 Location : Alex. Dwg. No. : 7443-33-1A, Rev. 0 Sheet : 5 Client : APRC Exchanger : Residue Cooler, Type : AES Item : E-323A/B & E-514C/D N. Integral Type (W.N.) Main Shell Flange Thickness, item no. 4 (cont.) [Appendix 2] [FIG. 2-4, Sketch (6a)] [Attached by Bolts] Subjected to internal pressure 1. Bolt loading and size of bolts: [Appendix 2-5(c)] (a) Total hydrostatic end force, H = 0.785 G2 P [Appendix 2-3] 103373 lb 46889.2 Kg (b) Total joint-contact surface compression load, Hp =2b*3.14GmP 39182.8 lb 17773 Kg [Appendix 2-3] (c) Min. required bolt load for operating conditions, Wm1 = H + Hp 142556 lb 64662.2 Kg Min. required bolt load for gasket seating, Wm2 = 3.14 b G y 139426 lb 63242.6 Kg Allowable Bolt Stress at atmospheric temp., Sa 25000 PSIG 1760 Kg/CM2 G Allowable Bolt Stress at design temp., Sb 25000 PSIG 1760 Kg/CM2 G [Table 1A, SubPart 1, ASME Sec. II, Part D] (d) Total cross-sectional area of bolts at root of thread required for: - operating conditions, Am1 = Wm1 / Sb 5.70222 INCH2 3678.84 MM2 - Gasket seating, Am2 = Wm2 / Sa 5.57703 INCH2 3598.08 MM2 [Appendix 2-3] Total required cross-sectional of bolts, Am = the greater of Am1 & Am2 5.70222 INCH2 3678.84 MM2 Actual bolt area Ab 15.428 INCH2 9953.53 MM2 Since area Ab > area Am, the bolts are adequately enough. OK (e) Flange design bolt load, W : - For operating conditions, Wo = Wm1 [Appendix 2-5(d)] 142556 lb 64662.2 Kg - For gasket seating, Wa = 0.5(Am + Ab) * Sa [Appendix 2-5(d)] 264128 lb 119806 Kg 2. Total flange moment for design condition: [Appendix 2-5(c)] Flange Loads: Hydrostatic end force on area inside flange, HD = 0.785 B2 P 80701.4 lb 36605.6 Kg Gasket load (flange design bolt load - total hydrostatic end force), HG Gasket seating force HG = Wm1 - H 39182.8 lb 17773 Kg Difference bet. total hydrostatic end force and the hydrostatic end force on area inside of flange, HT HT = H - HD 22671.4 lb 10283.6 Kg Lever arms: hD = R' + 0.5 g1 [Table 2-6] 2.17768 INCH 55.3131 MM hG = (C - G) / 2 [Table 2-6] 1.51185 INCH 38.4011 MM hT = (R' + g1 + hG) / 2 [Table 2-6] 2.09477 INCH 53.2071 MM Where R' = R + h1 1.67768 INCH 42.6131 MM
  • 39. DESIGN CALCULATIONS OF HEAT EXCHANGER Page : 39 of 136 According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Sheet : 4 of 10 Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant) Rev. : 0 Project : Design & Fabrication of Heat Exchanger for APRC Refinery Date : 4.7.2003 Job No. : 7443-33 Location : Alex. Dwg. No. : 7443-33-1A, Rev. 0 Sheet : 5 Client : APRC Exchanger : Residue Cooler, Type : AES Item : E-323A/B & E-514C/D N. Integral Type (W.N.) Main Shell Flange Thickness, item no. 4 (cont.) [Appendix 2] [FIG. 2-4, Sketch (6a)] [Attached by Bolts] Subjected to internal presure Flange Moments: Component of moment due to HD, MD = HD hD [Appendix 2-3] 175742 lb-in 2024.77 Kg-M Component of moment due to HG, MG = HG hG [Appendix 2-3] 59238.6 lb-in 682.503 Kg-M Component of moment due to HT, MT = HT hT [Appendix 2-3] 47491.3 lb-in 547.16 Kg-M Total moment acting upon the flange, Mo: [Appendix 2-6] - For operating condition MO1 = MD + MG + MT 282472 lb-in 3254.43 Kg-M 23539.3 lb-ft 3. Total flange moment for bolt-up condition (Gasket condition): [Appendix 2-6] Flange Load: HG = WA = 0.5 (Am + Ab) * Sa 264128 lb 119806 Kg Lever Arm., hG = (C - G) / 2 1.51185 INCH 38.4011 MM Flange Moment for gasket condition, MO2 = HG hG = WA (C - G) / 2 (5) 399323 lb-in 4600.7 Kg-M Mo2 * (SfH / SfC ) 399323 lb-in 4600.7 Kg-M 4. MO = The greater of MO1 or MO2 (SfH/SfC) 399323 lb-in 4600.7 Kg-M 33276.9 lb-ft 5. Shape constants for flange: 1.41939 From Appendix 2, FIG. 2-7.1: 1.74578 2.97106 5.71057 6.27534 g1/go 2 ho = SQRT(B go) 3.08221 h/ho 0.56203 From Appendix 2, FIG. 2-7.2: F 0.81225 From Appendix 2, FIG. 2-7.3: V 0.21166 From Appendix 2, FIG. 2-7.6: f 1.02557 d = (U/V) ho go2 (for integral type flanges) [APPENDIX 2-3] 22.8457 INCH3 374374 MM3 e = F / ho (for integral type flanges) [APPENDIX 2-3] 0.26353 INCH-1 0.01038 MM-1 K B A = T K Log k k k = + − + − 2 10 2 1 8 55246 1 1 04720 19448 1 ( . ) ( . . )( ) Z K K = + − 2 1 2 1 Y K K Log K K = − + − ⎡ ⎣ ⎢ ⎤ ⎦ ⎥ 1 2 10 2 1 0 66845 5 71690 1 . . U K Log K K K = + − − − 2 2 1 8 55246 10 1 136136 1 1 ( . ) . ( )( )
  • 40. DESIGN CALCULATIONS OF HEAT EXCHANGER Page : 40 of 136 According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Sheet : 5 of 10 Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant) Rev. : 0 Project : Design & Fabrication of Heat Exchanger for APRC Refinery Date : 4.7.2003 Job No. : 7443-33 Location : Alex. Dwg. No. : 7443-33-1A, Rev. 0 Sheet : 5 Client : APRC Exchanger : Residue Cooler, Type : AES Item : E-323A/B & E-514C/D N. Integral Type (W.N.) Main Shell Flange Thickness, item no. 4 (cont.) [Appendix 2] [FIG. 2-4, Sketch (6a)] [Attached by Bolts] Subjected to internal pressure 6. Calculation of flange actual stresses Assume t 1.45669 INCH 37 MM [Appendix 2-3] 0.928 Where t = flange thickness factor e = F/ ho (for integral type flanges) [Appendix 2-3] 0.26353 INCH-1 0.01038 MM-1 e = FL/ ho (for loose type flanges) [Appendix 2-3] NA F = factor for integral type flanges [Fig. 2-7.2] 0.81225 T = factor involving K [Fig. 2-7.1] 1.74578 d = (U/V) ho go2 [Appendix 2-3] 22.8457 INCH3 374374 MM3 For integral type flange, actual stresses (calculated) : [Fig. 2-4, Sketch (6a)] 1. a. Longitudinal hub stress, operating SH = f Mo / L g1 2 B (6) [Appendix 2-7(a)] 23226.7 PSIG 1635.16 Kg/CM2 G b. Longitudinal hub stress, seating SH = f Mo2 / L g1 2 B (6) [Appendix 2-7(a)] 23226.7 PSIG 1635.16 Kg/CM2 G 2. a. Radial flange stress, operating SR = (1.33 t e +1) Mo / L t2 B (7) [Appendix 2-7(a 16135.7 PSIG 1135.96 Kg/CM2 G b. Radial flange stress, seating SR = (1.33 t e +1) Mo2 / L t2 B (7) [Appendix 2-7(a16135.7 PSIG 1135.96 Kg/CM2 G 3. a. Tangential flange stress, operating ST = (Y Mo / t2 B) - Z SR (8) [Appendix 2-7(a)] 8620.34 PSIG 606.872 Kg/CM2 G b. Tangential flange stress, seating ST = (Y Mo2 / t2 B) - Z SR (8) [Appendix 2-7(a)8620.34 PSIG 606.872 Kg/CM2 G 4. a. Flange stress, operating 0.5 (SH + SR) [Appendix 2-8(a)(4)] 19681.2 PSIG 1385.56 Kg/CM2 G b. Flange stress, seating 0.5 (SH + SR) [Appendix 2-8(a)(4)] 19681.2 PSIG 1385.56 Kg/CM2 G 5. a. Flange stress, operating 0.5 (SH + ST) [Appendix 2-8(a)(4)] 15923.5 PSIG 1121.02 Kg/CM2 G b. Flange stress, seating 0.5 (SH + ST) [Appendix 2-8(a)(4)] 15923.5 PSIG 1121.02 Kg/CM2 G 6. a. Bolt stress, operating = Wm1 / Ab 9240.05 PSIG 650.5 Kg/CM2 G b. Bolt stress, seating = Wm2 / Ab 9037.19 PSIG 636.219 Kg/CM2 G 7. a. Shear stress carried by the fillet weld 0 PSIG 0 Kg/CM2 G 7. Actual Stresses (Calculated) Compared with Allowable Stresses [APPENDIX 2-8] 7.a. For Operating Condition : Allowable design stress of flange at operating condiotion, Sf 20000 PSIG 1408 Kg/CM2 G Allowable design stress of nozzle/vessel at operating condition, Sn 17100 PSIG 1203.84 Kg/CM2 G Assume flange thickness (without C.A), toperating 1.45669 INCH 37 MM Allowable stresses Actual stresses (Calculated ) PSIG Kg/CM2 PSIG Kg/CM2 Longitudinal Hub Stress SH1 = 1.5 Sf [Appendix 2-8(a)(1)(b)] 30000 Longitudinal Hub Stress SH2 = 2 Sn [Appendix 2-8(a)(1)(b)] 34200 The calculated (actual) hub stress SH < SH (min.) allowable 30000 > 23226.7 Radial Flange Stress SR = Sf [Appendix 2-8(a)(2)] 20000 > 16135.7 The calculated (actual) radial stress SR < SR allowable Factor L t T t d e = + + 1 3^
  • 41. DESIGN CALCULATIONS OF HEAT EXCHANGER Page : 41 of 136 According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Sheet : 6 of 10 Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant) Rev. : 0 Project : Design & Fabrication of Heat Exchanger for APRC Refinery Date : 4.7.2003 Job No. : 7443-33 Location : Alex. Dwg. No. : 7443-33-1A, Rev. 0 Sheet : 5 Client : APRC Exchanger : Residue Cooler, Type : AES Item : E-323A/B & E-514C/D N. Integral Type (W.N.) Main Shell Flange Thickness, item no. 4 (cont.) [Appendix 2] [FIG. 2-4, Sketch (6a)] Subjected to internal pressure Tangential Flange Stress ST = Sf [Appendix 2-8(a)(3)] 20000 > 8620.34 The calculated (actual) tangential stress ST < ST allowable 0.5(SH + SR) = Sf 20000 > 19681.2 The calculated (actual) stress < Allowable stress 0.5(SH + ST) = Sf 20000 > 15923.5 The calculated (actual) stress < Allowable stress Bolt stress = Wm1 / Ab 25000 > 9240.05 The calculated (actual) stress < Allowable stress 7.b. For Gasket Seating : Allowable design stress of flange at gasket seating, Sf 20000 PSIG 1408 Kg/CM2 G Allowable design stress of nozzle/vessel at gasket seating, Sn 17100 PSIG 1203.84 Kg/CM2 G Assume flange thickness (without C.A), tgasket 1.45669 INCH 37 MM Allowable stresses Actual stresses (Calculated ) PSIG Kg/CM2 PSIG Kg/CM2 Longitudinal Hub Stress SH1 = 1.5 Sf [Appendix 2-8(a)(1)(b)] 30000 Longitudinal Hub Stress SH2 = 2 Sn [Appendix 2-8(a)(1)(b)] 34200 The calculated (actual) hub stress SH < SH (min.) allowable 30000 > 23226.7 Radial Flange Stress SR = Sf [Appendix 2-8(a)(2)] 20000 > 16135.7 The calculated (actual) radial stress SR < SR allowable Tangential Flange Stress ST = Sf [Appendix 2-8(a)(3)] 20000 > 8620.34 The calculated (actual) tangential stress ST < ST allowable 0.5(SH + SR) = Sf 20000 > 19681.2 The calculated (actual) stress < Allowable stress 0.5(SH + ST) = Sf 20000 > 15923.5 The calculated (actual) stress < Allowable stress Bolt stress = Wm2 / Ab 25000 > 9037.19 The calculated (actual) stress < Allowable stress The min. flange thickness, t = Max. (toperating, tgasket) 1.45669 INCH 37 MM
  • 42. DESIGN CALCULATIONS OF HEAT EXCHANGER Page : 42 of 136 According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Sheet : 7 of 10 Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant) Rev. : 0 Project : Design & Fabrication of Heat Exchanger for APRC Refinery Date : 4.7.2003 Job No. : 7443-33 Location : Alex. Dwg. No. : 7443-33-1A, Rev. 0 Sheet : 5 Client : APRC Exchanger : Residue Cooler, Type : AES Item : E-323A/B & E-514C/D N. Integral Type (W.N.) Main Shell Flange Thickness, item no. 4 (cont.) [Appendix 2] [FIG. 2-4, Sketch (6a)] Subjected to internal pressure Since all actual stresses are less than the allowable stresses, the selection of t = 4.5 inch, is adequate. If an optimum min. thickness of flange is desired, calculations must be operated with a smaller value of t until one of the actual stresses or stress combination is approximately equal to the allowable stress even though other actual stresses are less than the allowable stress for that actual stress. Flange thickness with C.A & RF = t + 2*corrosion all. + raised face 2.04724 INCH 52 MM Use flange thickness for construction 2.16535 INCH 55 MM BOLT SUMMARY Factor K = A/B 1.41939 Gasket width, N 0.59055 INCH 15 MM Total required cross-sectional area of bolts 5.70222 INCH2 3678.84 MM2 Actual bolt cross-sectional area, Ab 15.428 INCH2 9953.53 MM2 Nominal bolt dia., dB 1 INCH 25.4 MM 1. Actual Edge distance, E from drawing = 1/2 (A - C) 1.22047 INCH 31 MM Min. Edge distance, E (for bolt size 0.75") 0.8125 INCH 20.6375 MM Min. Edge distance, E (for bolt size 7/8") 0.9375 INCH 23.8125 MM Min. Edge distance, E (for bolt size 1") 1.0625 INCH 26.9875 MM Min. Edge distance, E (for bolt size 1-1/8") [TEMA Table D-5] 1.125 INCH 28.575 MM Min. Edge distance, E (for bolt size 1-1/4") 1.25 INCH 31.75 MM 2. Actual Bolt spacing, B from drawing 2.74622 INCH 69.7539 MM Min. Bolt spacing, B (for bolt size 0.75") 1.75 INCH 44.45 MM Min. Bolt spacing, B (for bolt size 7/8") 2.0625 INCH 52.3875 MM Min. Bolt spacing, B (for bolt size 1") 2.25 INCH 57.15 MM Min. Bolt spacing, B (for bolt size 1-1/8") [TEMA Table D-5] 2.5 INCH 63.5 MM Min. Bolt spacing, B (for bolt size 1-1/4") 2.8125 INCH 71.4375 MM Max. Recommended bolt spacing, Bmax = 2 dB + 6 t / (m + 0.5) [TEMA RCB-11.224.05651 INCH 103.035 MM 3. Actual Radial distance, Rh from drawing = (C-B)/2-(g1+h1) 1.56693 INCH 39.8 MM Min. Radial distance, Rh (for bolt size 0.75") 1.125 INCH 28.575 MM Min. Radial distance, Rh (for bolt size 7/8") 1.25 INCH 31.75 MM Min. Radial distance, Rh (for bolt size 1") 1.375 INCH 34.925 MM Min. Radial distance, Rh (for bolt size 1-1/8") [TEMA Table D-5] 1.5 INCH 38.1 MM Min. Radial distance, Rh (for bolt size 1-1/4") 1.75 INCH 44.45 MM
  • 43. DESIGN CALCULATIONS OF HEAT EXCHANGER Page : 43 of 136 According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Sheet : 8 of 10 Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant) Rev. : 0 Project : Design & Fabrication of Heat Exchanger for APRC Refinery Date : 4.7.2003 Job No. : 7443-33 Location : Alex. Dwg. No. : 7443-33-1A, Rev. 0 Sheet : 5 Client : APRC Exchanger : Residue Cooler, Type : AES Item : E-323A/B & E-514C/D N. Integral Type (W.N.) Main Shell Flange Thickness, item no. 4 (cont.) [Appendix 2] [FIG. 2-4, Sketch (6a)] FLANGE FACTORS Subjected to internal pressure (a) For Integral Flanges Factor F per Fig. 2-7.2 is then solved by 0.81225 Factor V per Fig. 2-7.3 is then solved by 0.21166 Factor f per Fig. 2-7.6 is then solved by f = C36 / (1 + A) 1.02557 h/SQRT(BGo 0.562026971 The values used in the above equations are solved using Eqs. (1) through (45) below based on the values g1, g0, h and ho as defined by 2-3. When g1 = go, F = 0.908920, V = 0.550103, and f = 1; thus Eqs. (1) through (45) need not be solved. (b) For Loose Hub Flanges Factor FL per Fig. 2-7.4 is solved by 1.435 Factor VL per Fig. 2-7.5 is solved by 0.66229 Factor f per Fig. 2-7.6 is set equal to 1. f = 1 1 The values used in the above equations are solved using Eqs. (1) through (5), (7), (9), (10), (12), (14), (16), (18), (20), (23), and (26) below based on the values of g1, g0, h, and ho as defined by 2-3. go 0.5 INCH 12.7 MM g1 1 INCH 25.4 MM h 1.73228 INCH 44 MM ho = SQRT(B go), Effective hub length 3.08221 INCH 78.2881 MM B 19 INCH 482.6 MM (1) A = (g1/go) - 1 1 (2) C = 43.68(h/ho)4 4.35824 (3) C1 = 1/3 + A/12 0.41667 (4) C2 = 5/42 + 17 A / 336 0.16964 (5) C3 = 1/210 + A/360 0.00754 (6) C4 = 11/360 + 59 A/5040 + (1+3 A)/C 0.96006 (7) C5 = 1/90 + 5 A/1008 - (1+ A)3 /C -1.81953 F E C A C = + 6 1 4 3 2 73 1 [ . ] ( )/ V E C A = + 4 1 4 32 73 1[ . ] ( )/ F C A C A C A A C A C L = + ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ + + ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ + + ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ − − ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ + 1 8 2 1 2 4 1 4 3 1 2 6 1 4 1 1 8 4 1 7 0 1 0 5 1 4 0 7 2 2 7 3 1 . ( ) / V C C C C A L = − − − ⎛ ⎝ ⎜ ⎞ ⎠ ⎟ + 1 4 5 3 2 2 73 1 24 21 18 1 4 3. ( ) /
  • 44. DESIGN CALCULATIONS OF HEAT EXCHANGER Page : 44 of 136 According to ASME Code, Sec. VIII, Div. 1, Edition 2001, Addenda 2002 / TEMA "R" 7th Edition 88. Sheet : 9 of 10 Designed by : Eng. Abdel Halim Galala, Design General Manager (Assistant) Rev. : 0 Project : Design & Fabrication of Heat Exchanger for APRC Refinery Date : 4.7.2003 Job No. : 7443-33 Location : Alex. Dwg. No. : 7443-33-1A, Rev. 0 Sheet : 5 Client : APRC Exchanger : Residue Cooler, Type : AES Item : E-323A/B & E-514C/D N. Integral Type (W.N.) Main Shell Flange Thickness, item no. 4 (cont.) [Appendix 2] [FIG. 2-4, Sketch (6a)] FLANGE FACTORS (CONT.) Subjected to internal pressure (8) C6 = 1/120 + 17 A/5040 +1 /C 0.24116 (9) C7 = 215/2772 + 51 A/1232 + (60/7 + 225 A/14 + 75A2 /7 + 5 A3 /2)/C 8.80529 (10) C8 = 31/6930 + 128 A/45045 + (6/7 + 15 A/7 + 12A2 /7 + 5 A3 /11)/C 1.19331 (11) C9 = 533/30240 + 653 A/73920 + (1/2 + 33 A/14 + 39 A2 /28 + 25 A3 /84)/C 1.06991 (12) C10 = 29/3780 + 3 A/704 - (1/2 + 33 A/14 + 81 A2 /28 + 13 A3 /12)/C -1.55598 (13) C11 = 31/6048 + 1763 A/665280 + (1/2 + 6 A/7 + 15 A2 /28 + 5 A3 /42)/C 0.46941 (14) C12 = 1/2925 + 71 A/300300 + (8/35 + 18 A /35 + 156 A2 /385 + 6 A3 /55)/C 0.28903 (15) C13 = 761/831600 + 937 A/1663200 + (1/35 + 6 A /35 + 11 A2 /70 + 3 A3 /70)/0.09326 (16) C14 = 197/415800 + 103 A/332640 - (1/35 + 6 A /35 + 17 A2 /70 + A3 /10)/C -0.12378 (17) C15 = 233/831600 + 97 A/554400 + (1/35 + 3 A /35 + A2 /14 + 2 A3 /105)/C 0.04744 (18) C16 = C1C7C12 + C2C8C3 + C3C8C2 - (C3 2 C7 + C8 2 C1 + C2 2 C12) 0.46133 (19) C17 = [C4C7C12 + C2C8C13 + C3C8C9 - (C13C7C3 + C8 2 C4 + C12C2C9)] / C16 2.2676 (20) C18 = [C5C7C12 + C2C8C14 + C3C8C10 - (C14C7C3 + C8 2 C5 + C12C2C10)] / C16 -4.32293 (21) C19 = [C6C7C12 + C2C8C15 + C3C8C11 - (C15C7C3 + C8 2 C6 + C12C2C11)] / C16 0.55926 (22) C20 = [C1C9C12 + C4C8C3 + C3C13C2 - (C3 2 C9 + C13C8 C1 + C12C4C2)] / C16 0.0956 (23) C21 = [C1C10C12 + C5C8C3 + C3C14C2 - (C3 2 C10 + C14C8 C1 + C12C5C2)] / C16 -0.11503 (24) C22 = [C1C11C12 + C6C8C3 + C3C15C2 - (C3 2 C11 + C15C8 C1 + C12C6C2)] / C16 0.05056 (25) C23 = [C1C7C13 + C2C9C3 + C4C8C2 - (C3C7C4 + C8C9 C1 + C2 2 C13)] / C16 -0.13119 (26) C24 = [C1C7C14 + C2C10C3 + C5C8C2 - (C3C7C5 + C8C10 C1 + C2 2 C14)] / C16 0.15946 (27) C25 = [C1C7C15 + C2C11C3 + C6C8C2 - (C3C7C6 + C8C11 C1 + C2 2 C15)] / C16 -0.05919 (28) C26 = - (C/4)1/4 -1.02168 (29) C27 = C20 - C17 - 5/12 + C17C26 -4.90543 (30) C28 = C22 - C19 - 1/12 + C19C26 -1.16343 (31) C29 = - (C/4)1/2 -1.04382 (32) C30 = - (C/4)3/4 -1.06644 (33) C31 = 3 A/2 - C17 C30 3.91827 (34) C32 = 1/2 - C19 C30 1.09642 (35) C33 = 0.5 C26C32 + C28C31C29 - (0.5 C30C28 + C32C27C29) -2.03619 (36) C34 = 1/12 + C18 - C21 - C18C26 -8.54118 (37) C35 = - C18 (C/4)3/4 4.61016 (38) C36 = (C28C35C29 - C32C34C29)/C33 2.05114 (39) C37 = [0.5 C26C35 + C34C31C29 - (0.5 C30C34 + C35C27C29)] / C33 -2.16975 (40) E1 = C17C36 + C18 + C19C37 -0.88522 (41) E2 = C20C36 + C21 + C22C37 -0.02864 (42) E3 = C23C36 + C24 + C25C37 0.01881 (43) E4 = 1/4 + C37/12 + C36/4 - E3/5 - 3E2/2 - E1 1.50639 (44) E5 = E1 (1/2 + A/6) + E2(1/4 + 11A/84) + E3(1/70 + A/105) -0.60061 (45) E6 = E5 - C36(7/120 +A/36 + 3A/C) - 1/40 - A/72 - C37(1/60 +A/120 + 1/C) -1.67593