SlideShare a Scribd company logo
1 of 4
Download to read offline
CIE Biology GCSE
18: Variation and selection
Notes
www.pmt.education
Variation
Variation refers to the differences between each organism in a species. Variation is beneficial to a
species as it allows natural selection to occur and reduces the risk of extinction from disease. There are
two types of variation: genetic variation and phenotypic variation.
● Genetic variation - each organism in a species has a different set of DNA, which is due to genetic
variation. Genetic variation is increased during meiosis, which produces gametes. Each gamete
has a different set of alleles, which means that when the two gametes fuse an entirely new set
of genes are produced.
● Phenotypic variation - The phenotype of an organism refers to its observable characteristics,
such as height or hair colour. Phenotypical variation can be caused by both genetic and
environmental factors. For example, the potential height of an organism is decided in genes
which come from the parents, although some organisms will never reach this height as they do
not receive enough nutrients from their environment.
Variation can be continuous and discontinuous. Continuous variation results in a range of phenotypes
between two extremes, for example height or weight. Discontinuous variation, however, is limited to a
discrete number of categories, such as blood group, which is limited to A, B, AB, or O in humans.
Discontinuous variation is mainly caused by genes alone.
Mutations:
Mutations are genetic changes which result in a change in the sequence of DNA bases. These changes
can occur due to a variety of factors, including exposure to some chemicals and ionising radiation. If the
mutation occurs at a particular allele, this allele may be altered, changing how it functions. This is how
new alleles are formed.
An example of this is sickle-cell anemia: sickle-cell anemia is a condition where red blood cells
become sickle shaped. Sickle cells carry less oxygen and can block blood vessels. This condition
is caused by a mutation in the beta-haemoglobin gene, which alters the allele which produces
haemoglobin (protein). This allele is recessive; thus, it is only present in the phenotype if two
copies of this allele are present (homozygous). The mutation can also have positive effects;
people who are homozygous or heterozygous, i.e. have one sickle-cell allele and one un-
mutated allele, are immune to malaria, as the malaria parasite cannot infect the sickle-shaped
cells. Sickle-cell anemia is therefore commonly found in areas where malaria is common. This
shows that natural selection for this gene is occurring in these areas, as those with the gene do
not catch the disease and are more likely to survive. This allows this allele to be preserved.
www.pmt.education
Adaptations
Adaptive features are inherited functional features that help the organism by increasing its
fitness, which is the ability of the organism to survive and reproduce in its environment.
Xerophytes are plants that are adapted to live in very dry climates, such as cacti. They have a
number of adaptive features that help to increase survival by reducing water loss:
● Fewer stomata - water vapour diffuses out of the plant via the stomata, thus less water
is lost if there are fewer stomata. Stomata are also sunken in pits in the leaf, which
allows bubbles of moist air to be trapped around them. This lowers the water potential
gradient, so less water is lost from the leaf.
● Small, rolled leaves or spines - this reduces the surface area of the leaf and traps
moisture to lower the water potential gradient, reducing water loss.
● Deep roots - this allows plants to absorb water from the soil. Roots are also adapted to
absorb lots of water when it rains for storage, e.g. in monsoon seasons.
● Thick waxy cuticle - this provides a waterproof barrier around the leaf to prevent water
loss.
Hydrophytes, in contrast, are plants which are adapted to live in very wet conditions and
includes species such as the water lily and the lotus. These plants are adapted differently to
xerophytes as they do not need to minimize water loss:
● Leaf shape - leaves are usually large and flat to have a large surface area which
promotes water loss.
● Stomata - positioned on the top of the leaf where the sun hits. There is also a large
number of stomata, which are usually open to allow water vapour to diffuse out of the
leaf.
● Thin/no waxy cuticle - water loss does not need to be restricted by this layer in
hydrophytes.
● Small root system - as there is a large amount of water reliably available, root systems
can be shallow, and water can diffuse directly into the stem.
www.pmt.education
Selection
Natural selection is where organisms with favourable alleles and advantageous characteristics
have a higher probability of surviving and reproducing. This is due to competition within a
population for resources and mates. As there is variation in the alleles of each species, each
organism within a species has different traits, some positive and some negative. Those with
more positive traits can adapt to the environment more effectively and are thus is more likely
to survive and produce many offspring, which inherit these alleles. Over time, negative
characteristics are lost from the species as organisms with those characteristics are not able
reproduce to pass on their alleles. This is known as evolution. Evolution allows a population to
become more adapted to its environment over time, as a result of natural selection.
Antibiotic resistance:
Some bacterial strains become resistant to antibiotics as a result of natural selection:
1. A mutation occurs in a bacterial cell allele which makes it resistant to an antibiotic.
2. When that antibiotic is administered, this cell is not killed, whereas cells which have not
become resistant are killed.
3. The resistant cell can therefore survive and reproduce, passing on the resistant allele to
produce more resistant bacteria.
Selective breeding:
Selective breeding is where humans select animals or plants with desirable features and breed
these together to make more offspring with these desirable features. This process is repeated
over many generations. As this breeding is controlled by humans, it is known as artificial
selection.
An example of selective breeding of animals is the German Shepherd. These dogs were
originally bred as working dogs to herd sheep as they are known for their intelligence and
agility. Humans selectively breed these dogs to exaggerate desirable qualities, such as their
sloping backs and large ears. This involves crossing dogs which show these traits so that the
alleles are passed on to their offspring. Farmers also selectively breed crops. For example,
bananas are selectively bred for their size, shape and easiness to peel. This means that plants
which express these characteristics are bred to produce more offspring with desirable
characteristics.
www.pmt.education

More Related Content

Similar to Summary Notes - Topic 18 Variation and Selection - CIE Biology IGCSE.pdf

concepts of Variation.pptx in humans full
concepts of Variation.pptx in humans fullconcepts of Variation.pptx in humans full
concepts of Variation.pptx in humans full
RaheemPhillips2
 

Similar to Summary Notes - Topic 18 Variation and Selection - CIE Biology IGCSE.pdf (20)

Plant and growth development in agronomy
Plant and growth development in agronomyPlant and growth development in agronomy
Plant and growth development in agronomy
 
concepts of Variation.pptx in humans full
concepts of Variation.pptx in humans fullconcepts of Variation.pptx in humans full
concepts of Variation.pptx in humans full
 
5.2 natural selection
5.2 natural selection5.2 natural selection
5.2 natural selection
 
Evolution
EvolutionEvolution
Evolution
 
Evolution
EvolutionEvolution
Evolution
 
Natural selection, genetic drift, gene flow
Natural selection, genetic drift, gene flowNatural selection, genetic drift, gene flow
Natural selection, genetic drift, gene flow
 
edexcel gcse core science, biology one (B1)
edexcel gcse core science, biology one (B1)edexcel gcse core science, biology one (B1)
edexcel gcse core science, biology one (B1)
 
BIOLOGY INVESTIGATORY PROJECT ON ADAPTATION IN ANIMALS AND PLANTS
BIOLOGY INVESTIGATORY PROJECT ON ADAPTATION IN ANIMALS AND PLANTSBIOLOGY INVESTIGATORY PROJECT ON ADAPTATION IN ANIMALS AND PLANTS
BIOLOGY INVESTIGATORY PROJECT ON ADAPTATION IN ANIMALS AND PLANTS
 
Adaptive & protective tissue system in plants
Adaptive & protective tissue system in plantsAdaptive & protective tissue system in plants
Adaptive & protective tissue system in plants
 
Plants
PlantsPlants
Plants
 
mutation-final.ppt
mutation-final.pptmutation-final.ppt
mutation-final.ppt
 
Chapter 4 prokaryotic profiles micro 1
Chapter 4 prokaryotic profiles micro 1Chapter 4 prokaryotic profiles micro 1
Chapter 4 prokaryotic profiles micro 1
 
Evolution.ppt
Evolution.pptEvolution.ppt
Evolution.ppt
 
Variation (Genetics)
Variation (Genetics)Variation (Genetics)
Variation (Genetics)
 
2.-Cell-structers.pdf
2.-Cell-structers.pdf2.-Cell-structers.pdf
2.-Cell-structers.pdf
 
Chapt04 lecture
Chapt04 lectureChapt04 lecture
Chapt04 lecture
 
Agro-physiological basis of variation in yield.pptx
Agro-physiological basis of variation in yield.pptxAgro-physiological basis of variation in yield.pptx
Agro-physiological basis of variation in yield.pptx
 
Agro-physiological basis of variation in yield.pptx
Agro-physiological basis of variation in yield.pptxAgro-physiological basis of variation in yield.pptx
Agro-physiological basis of variation in yield.pptx
 
Population Genetics.pptx
Population Genetics.pptxPopulation Genetics.pptx
Population Genetics.pptx
 
As variation
As variationAs variation
As variation
 

Recently uploaded

Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...
Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...
Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...
EADTU
 
會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文
會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文
會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文
中 央社
 
會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽
會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽
會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽
中 央社
 

Recently uploaded (20)

An Overview of the Odoo 17 Knowledge App
An Overview of the Odoo 17 Knowledge AppAn Overview of the Odoo 17 Knowledge App
An Overview of the Odoo 17 Knowledge App
 
ANTI PARKISON DRUGS.pptx
ANTI         PARKISON          DRUGS.pptxANTI         PARKISON          DRUGS.pptx
ANTI PARKISON DRUGS.pptx
 
Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...
Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...
Transparency, Recognition and the role of eSealing - Ildiko Mazar and Koen No...
 
VAMOS CUIDAR DO NOSSO PLANETA! .
VAMOS CUIDAR DO NOSSO PLANETA!                    .VAMOS CUIDAR DO NOSSO PLANETA!                    .
VAMOS CUIDAR DO NOSSO PLANETA! .
 
Spring gala 2024 photo slideshow - Celebrating School-Community Partnerships
Spring gala 2024 photo slideshow - Celebrating School-Community PartnershipsSpring gala 2024 photo slideshow - Celebrating School-Community Partnerships
Spring gala 2024 photo slideshow - Celebrating School-Community Partnerships
 
Analyzing and resolving a communication crisis in Dhaka textiles LTD.pptx
Analyzing and resolving a communication crisis in Dhaka textiles LTD.pptxAnalyzing and resolving a communication crisis in Dhaka textiles LTD.pptx
Analyzing and resolving a communication crisis in Dhaka textiles LTD.pptx
 
OSCM Unit 2_Operations Processes & Systems
OSCM Unit 2_Operations Processes & SystemsOSCM Unit 2_Operations Processes & Systems
OSCM Unit 2_Operations Processes & Systems
 
e-Sealing at EADTU by Kamakshi Rajagopal
e-Sealing at EADTU by Kamakshi Rajagopale-Sealing at EADTU by Kamakshi Rajagopal
e-Sealing at EADTU by Kamakshi Rajagopal
 
OS-operating systems- ch05 (CPU Scheduling) ...
OS-operating systems- ch05 (CPU Scheduling) ...OS-operating systems- ch05 (CPU Scheduling) ...
OS-operating systems- ch05 (CPU Scheduling) ...
 
Graduate Outcomes Presentation Slides - English (v3).pptx
Graduate Outcomes Presentation Slides - English (v3).pptxGraduate Outcomes Presentation Slides - English (v3).pptx
Graduate Outcomes Presentation Slides - English (v3).pptx
 
會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文
會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文
會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文會考英文
 
MOOD STABLIZERS DRUGS.pptx
MOOD     STABLIZERS           DRUGS.pptxMOOD     STABLIZERS           DRUGS.pptx
MOOD STABLIZERS DRUGS.pptx
 
How to Send Pro Forma Invoice to Your Customers in Odoo 17
How to Send Pro Forma Invoice to Your Customers in Odoo 17How to Send Pro Forma Invoice to Your Customers in Odoo 17
How to Send Pro Forma Invoice to Your Customers in Odoo 17
 
Observing-Correct-Grammar-in-Making-Definitions.pptx
Observing-Correct-Grammar-in-Making-Definitions.pptxObserving-Correct-Grammar-in-Making-Definitions.pptx
Observing-Correct-Grammar-in-Making-Definitions.pptx
 
When Quality Assurance Meets Innovation in Higher Education - Report launch w...
When Quality Assurance Meets Innovation in Higher Education - Report launch w...When Quality Assurance Meets Innovation in Higher Education - Report launch w...
When Quality Assurance Meets Innovation in Higher Education - Report launch w...
 
Book Review of Run For Your Life Powerpoint
Book Review of Run For Your Life PowerpointBook Review of Run For Your Life Powerpoint
Book Review of Run For Your Life Powerpoint
 
FICTIONAL SALESMAN/SALESMAN SNSW 2024.pdf
FICTIONAL SALESMAN/SALESMAN SNSW 2024.pdfFICTIONAL SALESMAN/SALESMAN SNSW 2024.pdf
FICTIONAL SALESMAN/SALESMAN SNSW 2024.pdf
 
會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽
會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽
會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽會考英聽
 
Improved Approval Flow in Odoo 17 Studio App
Improved Approval Flow in Odoo 17 Studio AppImproved Approval Flow in Odoo 17 Studio App
Improved Approval Flow in Odoo 17 Studio App
 
DEMONSTRATION LESSON IN ENGLISH 4 MATATAG CURRICULUM
DEMONSTRATION LESSON IN ENGLISH 4 MATATAG CURRICULUMDEMONSTRATION LESSON IN ENGLISH 4 MATATAG CURRICULUM
DEMONSTRATION LESSON IN ENGLISH 4 MATATAG CURRICULUM
 

Summary Notes - Topic 18 Variation and Selection - CIE Biology IGCSE.pdf

  • 1. CIE Biology GCSE 18: Variation and selection Notes www.pmt.education
  • 2. Variation Variation refers to the differences between each organism in a species. Variation is beneficial to a species as it allows natural selection to occur and reduces the risk of extinction from disease. There are two types of variation: genetic variation and phenotypic variation. ● Genetic variation - each organism in a species has a different set of DNA, which is due to genetic variation. Genetic variation is increased during meiosis, which produces gametes. Each gamete has a different set of alleles, which means that when the two gametes fuse an entirely new set of genes are produced. ● Phenotypic variation - The phenotype of an organism refers to its observable characteristics, such as height or hair colour. Phenotypical variation can be caused by both genetic and environmental factors. For example, the potential height of an organism is decided in genes which come from the parents, although some organisms will never reach this height as they do not receive enough nutrients from their environment. Variation can be continuous and discontinuous. Continuous variation results in a range of phenotypes between two extremes, for example height or weight. Discontinuous variation, however, is limited to a discrete number of categories, such as blood group, which is limited to A, B, AB, or O in humans. Discontinuous variation is mainly caused by genes alone. Mutations: Mutations are genetic changes which result in a change in the sequence of DNA bases. These changes can occur due to a variety of factors, including exposure to some chemicals and ionising radiation. If the mutation occurs at a particular allele, this allele may be altered, changing how it functions. This is how new alleles are formed. An example of this is sickle-cell anemia: sickle-cell anemia is a condition where red blood cells become sickle shaped. Sickle cells carry less oxygen and can block blood vessels. This condition is caused by a mutation in the beta-haemoglobin gene, which alters the allele which produces haemoglobin (protein). This allele is recessive; thus, it is only present in the phenotype if two copies of this allele are present (homozygous). The mutation can also have positive effects; people who are homozygous or heterozygous, i.e. have one sickle-cell allele and one un- mutated allele, are immune to malaria, as the malaria parasite cannot infect the sickle-shaped cells. Sickle-cell anemia is therefore commonly found in areas where malaria is common. This shows that natural selection for this gene is occurring in these areas, as those with the gene do not catch the disease and are more likely to survive. This allows this allele to be preserved. www.pmt.education
  • 3. Adaptations Adaptive features are inherited functional features that help the organism by increasing its fitness, which is the ability of the organism to survive and reproduce in its environment. Xerophytes are plants that are adapted to live in very dry climates, such as cacti. They have a number of adaptive features that help to increase survival by reducing water loss: ● Fewer stomata - water vapour diffuses out of the plant via the stomata, thus less water is lost if there are fewer stomata. Stomata are also sunken in pits in the leaf, which allows bubbles of moist air to be trapped around them. This lowers the water potential gradient, so less water is lost from the leaf. ● Small, rolled leaves or spines - this reduces the surface area of the leaf and traps moisture to lower the water potential gradient, reducing water loss. ● Deep roots - this allows plants to absorb water from the soil. Roots are also adapted to absorb lots of water when it rains for storage, e.g. in monsoon seasons. ● Thick waxy cuticle - this provides a waterproof barrier around the leaf to prevent water loss. Hydrophytes, in contrast, are plants which are adapted to live in very wet conditions and includes species such as the water lily and the lotus. These plants are adapted differently to xerophytes as they do not need to minimize water loss: ● Leaf shape - leaves are usually large and flat to have a large surface area which promotes water loss. ● Stomata - positioned on the top of the leaf where the sun hits. There is also a large number of stomata, which are usually open to allow water vapour to diffuse out of the leaf. ● Thin/no waxy cuticle - water loss does not need to be restricted by this layer in hydrophytes. ● Small root system - as there is a large amount of water reliably available, root systems can be shallow, and water can diffuse directly into the stem. www.pmt.education
  • 4. Selection Natural selection is where organisms with favourable alleles and advantageous characteristics have a higher probability of surviving and reproducing. This is due to competition within a population for resources and mates. As there is variation in the alleles of each species, each organism within a species has different traits, some positive and some negative. Those with more positive traits can adapt to the environment more effectively and are thus is more likely to survive and produce many offspring, which inherit these alleles. Over time, negative characteristics are lost from the species as organisms with those characteristics are not able reproduce to pass on their alleles. This is known as evolution. Evolution allows a population to become more adapted to its environment over time, as a result of natural selection. Antibiotic resistance: Some bacterial strains become resistant to antibiotics as a result of natural selection: 1. A mutation occurs in a bacterial cell allele which makes it resistant to an antibiotic. 2. When that antibiotic is administered, this cell is not killed, whereas cells which have not become resistant are killed. 3. The resistant cell can therefore survive and reproduce, passing on the resistant allele to produce more resistant bacteria. Selective breeding: Selective breeding is where humans select animals or plants with desirable features and breed these together to make more offspring with these desirable features. This process is repeated over many generations. As this breeding is controlled by humans, it is known as artificial selection. An example of selective breeding of animals is the German Shepherd. These dogs were originally bred as working dogs to herd sheep as they are known for their intelligence and agility. Humans selectively breed these dogs to exaggerate desirable qualities, such as their sloping backs and large ears. This involves crossing dogs which show these traits so that the alleles are passed on to their offspring. Farmers also selectively breed crops. For example, bananas are selectively bred for their size, shape and easiness to peel. This means that plants which express these characteristics are bred to produce more offspring with desirable characteristics. www.pmt.education