SlideShare a Scribd company logo
1 of 7
Download to read offline
Analytical approach to polarisation nonreciprocity of Sagnac fibre ring interferometer
Roman Kurbatov
romuald75@mail.ru
Polarisation nonreciprocity (PNR) [1, 2] is the fundamental accuracy limit of Sagnac fibre ring
interferometer (FRI) playing the principal role in high-grade fibre optic gyro (FOG) [3]. Fig. 1 sketches
FRI scheme of commercial small size FOG, which may have highly birefringent (Hi-Bi) optical
components.
Fig. 1. Sagnac FRI scheme of commercial FOG.
At splices, optical axes of components are slightly rotated with respect to each other due to technology
imperfection (imperfect splices, one of PNR sources). Input lightguide and coil fibre may be polarizing
(PZ). Channel waveguides of integrated optic chip (IOC) may be done by proton-exchanged (PE)
technology being PZ, having the intensity polarisation extinction ratio (PER) ๐œบ ๐Ÿ
= ๐Ÿ๐ŸŽโˆ’๐Ÿ“
โˆ’ ๐Ÿ๐ŸŽโˆ’๐Ÿ–
, and
possessing the extremely large birefringence order of 0.01 [4]. Polarisation mode coupling (PMC) in coil
fibre, input lightguide, and IOC waveguides also yields PNR, along with mutual interferences of spurious
waves from all these PMC kinds and with those from imperfect splices. Below only coil fibre PMC is taken
into account (i.e., splices input lightguide and IOC waveguides are perfect and, generally, birefringent), as
it is usually done in all known literature.
Fig. 1 explains the concept of minimal FRI, which is equivalent to minimal configuration FRI
from Ref. [1]. Also, minimal FRI means isotropic IOC waveguides. This leads to decoherence absence
within them (decoherence is the x- and y-waves coherence loss). Instead of term โ€œdecoherenceโ€, common
for quantum measurement theory [5], term โ€œdepolarisationโ€ is used for this phenomenon in the literature,
but it also includes x- and y-waves intensities equalisation, additionally to decoherence.
Quasi-minimal FRI is minimal one plus input lightguide and, generally, IOC waveguides
anisotropy.
Amplitude PNR (APNR) was established in Ref. [2] (APNR ~ ๐œบ ๐Ÿ
), along with more expected
smaller intensity PNR (IPNR ~ ๐œบ ๐Ÿ
). Both are suppressed when ๐œบ = ๐ŸŽ, but this is not the practical case. In
the literature, the following expressions are known for PNR of minimal FRI (Fig. 1):
๐‘ท๐‘ต๐‘น ๐Ÿ~ ๐’” ๐Ÿ ๐œบ ๐Ÿ
๐’‰โˆš๐‘ณ ๐’…๐’†๐’„ ๐‘ณ ๐‘บ๐‘ญโ„ , ๐‘ท๐‘ต๐‘น ๐Ÿ,๐Ÿ‘~ ๐’” ๐Ÿ,๐Ÿ‘ ๐œบโˆš๐’‰๐‘ณ ๐’…๐’†๐’„ ๐‘บ๐‘ญโ„ , (1)
where ๐‘ณ ๐’…๐’†๐’„~ ๐€ ๐ŸŽ
๐Ÿ (๐‘ฉ๐šซ๐€)โ„ is decoherence length (โ€œdepolarisationโ€ length in the literature), ๐€ ๐ŸŽ is the light mean
wavelength, ๐’‰ is so called h-parameter of the coil fibre, ๐‘บ๐‘ญ โ‰ก ๐Ÿ’๐…๐‘น๐‘ณ ๐€ ๐ŸŽ ๐’„โ„ is the scale factor of FRI, ๐’” ๐ŸŽโˆ’๐Ÿ‘
are the light normalised Stokes parameters ( ๐’” ๐ŸŽ = ๐Ÿ), ๐‘ฉ is coil fibre birefringence, ๐‘ณ and ๐‘น its length and
radius, ๐šซ๐€ is the light spectral bandwidth. For large enough ๐‘ฉ and ๐šซ๐€, one provides ๐‘ณ ๐’…๐’†๐’„ โ‰ช ๐‘ณ. It is the
purpose of this study to derive consistently Eq. (1), which is still not done in the literature.
2. GENERAL RELATIONSHIPS FOR PNR
Elsewhere [6] it is shown that for practically interesting small PNR, one may yield PNR in the
form of rotation rate error, ๐‘ท๐‘ต๐‘น = ๐‘ท๐‘ต๐‘น ๐Ÿ + ๐‘ท๐‘ต๐‘น ๐Ÿ + ๐‘ท๐‘ต๐‘น ๐Ÿ‘, where
๐‘ท๐‘ต๐‘น ๐Ÿโˆ’๐Ÿ‘ = ๐’” ๐Ÿโˆ’๐Ÿ‘
โˆซ ๐’…๐€๐‘บ(๐€)๐ˆ๐ฆ๐‘จ ๐ŸŽโˆ’๐Ÿ‘(๐€,๐’•)
๐‘บ๐‘ญ โˆ‘ ๐’” ๐’Œ โˆซ ๐’…๐€๐‘บ(๐€)๐‘๐ž๐‘จ ๐’Œ(๐€,๐’•)๐Ÿ‘
๐’Œ=๐ŸŽ
. (2)
Here ๐‘บ(๐€) is the light spectral intensity, ๐Ÿ๐‘จ ๐ŸŽ โ‰ก |๐‘ด ๐Ÿ๐Ÿ| ๐Ÿ
+ |๐‘ด ๐Ÿ๐Ÿ| ๐Ÿ
+ ๐Ÿ๐‘น๐’†(๐‘ด ๐Ÿ๐Ÿ ๐‘ด ๐Ÿ๐Ÿ
โˆ—
), ๐Ÿ๐‘จ ๐ŸŽ โ‰ก |๐‘ด ๐Ÿ๐Ÿ| ๐Ÿ
โˆ’ |๐‘ด ๐Ÿ๐Ÿ| ๐Ÿ
+
๐Ÿ๐’Š๐‘ฐ๐’Ž(๐‘ด ๐Ÿ๐Ÿ ๐‘ด ๐Ÿ๐Ÿ
โˆ—
), ๐Ÿ๐‘จ ๐Ÿ โ‰ก ๐‘ด ๐Ÿ๐Ÿ
โˆ—
๐‘ด ๐Ÿ๐Ÿ + ๐‘ด ๐Ÿ๐Ÿ ๐‘ด ๐Ÿ๐Ÿ
โˆ—
+ ๐‘ด ๐Ÿ๐Ÿ
โˆ—
๐‘ด ๐Ÿ๐Ÿ + ๐‘ด ๐Ÿ๐Ÿ ๐‘ด ๐Ÿ๐Ÿ
โˆ—
, 2๐‘จ ๐Ÿ‘ โ‰ก ๐’Š(๐‘ด ๐Ÿ๐Ÿ
โˆ—
๐‘ด ๐Ÿ๐Ÿ โˆ’ ๐‘ด ๐Ÿ๐Ÿ ๐‘ด ๐Ÿ๐Ÿ
โˆ—
) +
๐’Š(๐‘ด ๐Ÿ๐Ÿ
โˆ—
๐‘ด ๐Ÿ๐Ÿ โˆ’ ๐‘ด ๐Ÿ๐Ÿ ๐‘ด ๐Ÿ๐Ÿ
โˆ—
). Here ๐‘ด = ๐‘ด ๐’„๐’˜
is Jones matrix for cw-waves (clockwise). For minimal and quasi-
minimal FRI from Fig. 1, one has for counter-clockwise (ccw) waves ๐‘ด ๐’„๐’„๐’˜
= (๐‘ด ๐’„๐’˜) ๐‘ป
(โ€œTโ€ is transposing
operation). Thus, the problem is to determine the values ๐‘จ ๐ŸŽโˆ’๐Ÿ‘(๐Ž, ๐’•) i.e. ๐‘ด๐’Š,๐’‹(๐Ž, ๐’•).
Below, simplified analytical models are treated for perfect splices (Fig. 1) and for input lightguide
without polarisation mode coupling (PMC), which is perfect input lightguide (treating the model with
imperfect splices is the future step). Thus, only PMC in fibre coil is assumed as the source of PNR here.
More complex problems could be treated only numerically, while presented below analytical approach,
besides the illustrative purposes, provides the basis for numerical models checking.
3. Polarisation mode coupling in PZ-fibre and its Jones matrix
Fibre Jones matrix could be derived from polarisation mode coupling (PMC) equations in the form
of [7], generalised for the case of PZ-fibre:
[๐’… ๐’…๐’›โ„ + ๐ƒ ๐’™ ๐Ÿโ„ + ๐’Š๐œท ๐’™(๐€)]๐’‚ ๐’™(๐€, ๐’›) = ๐’Š๐’„ ๐’™,๐’š(๐’›)๐’‚ ๐’š(๐€, ๐’›), [ ๐’… ๐’…๐’›โ„ + ๐ƒ ๐’š
๐Ÿโ„ + ๐’Š๐œท ๐’š
( ๐€)] ๐’‚ ๐’š( ๐€, ๐’›) = ๐’Š๐’„ ๐’š,๐’™( ๐’›) ๐’‚ ๐’™( ๐€, ๐’›).
(3)
In the case of ๐ƒ ๐’™,๐’š = ๐ŸŽ, the total optical power |๐’‚ ๐’™(๐€, ๐’›)| ๐Ÿ
+ |๐’‚ ๐’š(๐€, ๐’›)|
๐Ÿ
= ๐’„๐’๐’๐’”๐’•, so one must set ๐’„ ๐’™,๐’š(๐’›) =
๐’„ ๐’š,๐’™
โˆ— (๐’›). Obviously, dichroism do not break this condition, because it does not influence the PMC sources
(i.e., the functions ๐’„ ๐’™,๐’š(๐’›) and ๐’„ ๐’š,๐’™(๐’›)). Also, for weak-guiding fibres, which are used in FOG, their two
polarisation fundamental modes have almost the same electrical (and magnetic) fields with quasi-Gaussian
distributions, ๐’† ๐’™(๐’™, ๐’š) โ‰ˆ ๐’† ๐’š(๐’™, ๐’š) โ‰ˆ ๐’†(๐’™, ๐’š), which is the real function, so
๐’„ ๐’™,๐’š(๐’›) = ๐’„ ๐’š,๐’™
โˆ— (๐’›) โ‰ˆ ๐’„(๐’›) โ‰ก โˆซ ๐’…๐’™๐’…๐’š๐œน๐’ ๐Ÿ(๐’™, ๐’š, ๐’›)๐’† ๐Ÿ(๐’™, ๐’š) โˆซ ๐’…๐’™๐’…๐’š๐’† ๐Ÿ(๐’™, ๐’š)โ„ ,
where ๐œน๐’ ๐Ÿ(๐’™, ๐’š, ๐’›) is dielectric tensor perturbation due to external or internal sources [7], varying with ๐’›
randomly, and leading to randomly distributed PMC. Thus, the latter could be described by real random
function ๐’„(๐’›) for both equations (3). For their solution, one may represent the amplitudes ๐’‚ ๐’™,๐’š(๐’›) as
๐’‚ ๐’™,๐’š(๐€, ๐’›) = ๐‘จ ๐’™,๐’š(๐€, ๐’›)๐’†๐’™๐’‘{โˆ’[๐ƒ ๐’™,๐’š ๐Ÿโ„ + ๐’Š๐œท ๐’™,๐’š(๐€)]๐’›},
so equations (3) will be rewritten as ๐’…๐‘จ ๐’™(๐€, ๐’›) ๐’…๐’›โ„ = ๐’Š๐’„(๐’›)๐‘จ ๐’š(๐€, ๐’›)๐’†๐’™๐’‘{[โˆ’ ๐ƒ ๐Ÿโ„ + ๐’Šโˆ†๐œท(๐€)]๐’›}, ๐’…๐‘จ ๐’š(๐€, ๐’›) ๐’…๐’›โ„ =
๐’Š๐’„(๐’›)๐‘จ ๐’™(๐€, ๐’›)๐’†๐’™๐’‘{[๐ƒ ๐Ÿโ„ โˆ’ ๐’Šโˆ†๐œท(๐€)]๐’›}, and solved as
๐‘จ ๐’™(๐€, ๐’›) = ๐‘จ ๐’™(๐€, ๐ŸŽ) + ๐’Š โˆซ ๐’…๐’”๐’„(๐’”)๐‘จ ๐’š(๐€, ๐’”)๐’†๐’™๐’‘{[โˆ’ ๐ƒ ๐Ÿโ„ + ๐’Šโˆ†๐œท(๐€)]๐’”}
๐’›
๐ŸŽ
,
๐‘จ ๐’š(๐€, ๐’›) = ๐‘จ ๐’š(๐€, ๐ŸŽ) + ๐’Š โˆซ ๐’…๐’”๐’„(๐’”)๐‘จ ๐’™(๐€, ๐’”)๐’†๐’™๐’‘{[๐ƒ ๐Ÿโ„ โˆ’ ๐’Šโˆ†๐œท(๐€)]๐’”}
๐’›
๐ŸŽ
,
(4)
where ๐ƒ โ‰ก ๐ƒ ๐’š โˆ’ ๐ƒ ๐’™ is the fibre dichroism ( ๐ƒ ๐’™,๐’š are x- and y-modes losses), โˆ†๐œท(๐€) โ‰ก ๐œท ๐’™(๐€) โˆ’ ๐œท ๐’š(๐€) is the fibre
modal birefringence at optical frequency ๐€. Here an optical frequency ๐€-dependence is introduced
explicitly in order to stress the polychromatic nature of light and the waveguide dispersion of optical
components. However, the dichroism ๐ƒ is left independent on ๐€, because practical PZ-fibre is the
component with dichroism only within the finite spectral range (window), being often in complicated
dependence on ๐€, so some minimal ๐ƒ-value within this window is assumed. In the first order of PMC, (4)
could be rewritten as
๐‘จ ๐’™(๐€, ๐’›) = ๐‘จ ๐’™(๐€, ๐ŸŽ) + ๐’Š๐‘จ ๐’š(๐€, ๐ŸŽ) โˆซ ๐’…๐’”๐’„(๐’”)๐’†๐’™๐’‘{[โˆ’ ๐ƒ ๐Ÿโ„ + ๐’Šโˆ†๐œท(๐€)]๐’”}
๐’›
๐ŸŽ
,
๐‘จ ๐’š(๐€, ๐’›) = ๐‘จ ๐’š(๐€, ๐ŸŽ) + ๐’Š๐‘จ ๐’™(๐€, ๐ŸŽ) โˆซ ๐’…๐’”๐’„(๐’”)๐’†๐’™๐’‘{[๐ƒ ๐Ÿโ„ โˆ’ ๐’Šโˆ†๐œท(๐€)]๐’”}
๐’›
๐ŸŽ
,
(5)
Here, under integrals in (4), ๐‘จ ๐’š(๐€, ๐’”) โ‰ˆ ๐‘จ ๐’š(๐€, ๐ŸŽ) is set. For PZ-fibre, one, thus, yields the following Jones
matrix:
๐‘ญ(๐€) = (
๐’‚(๐€, ๐‘ณ) ๐’Š๐’‚(๐€, ๐‘ณ)๐’Œ ๐Ÿ(๐€)
๐’Š๐‘ฎ(๐‘ณ)๐’‚โˆ—(๐€, ๐‘ณ)๐’Œ ๐Ÿ(๐€) ๐‘ฎ(๐‘ณ)๐’‚โˆ—(๐€, ๐‘ณ)
), (6)
where ๐’Œ ๐Ÿ(๐€) = โˆซ ๐’…๐’›๐’„(๐’›)๐‘ฎ(๐’›)๐’‚(๐€, โˆ’๐Ÿ๐’›)
๐‘ณ
๐ŸŽ
, ๐’Œ ๐Ÿ(๐€) = โˆซ ๐’…๐’›๐’„(๐’›)๐‘ฎโˆ’๐Ÿ(๐’›)๐’‚(๐€, ๐Ÿ๐’›)
๐‘ณ
๐ŸŽ
, ๐‘ฎ(๐’™) = ๐’†๐’™๐’‘(โˆ’ ๐ƒ๐’™ ๐Ÿโ„ ), ๐’‚(๐€, ๐’™) =
๐’†๐’™๐’‘[โˆ’๐’Š ๐œŸ๐œท(๐€)๐’™ ๐Ÿโ„ ]. A multiplier ๐’†๐’™๐’‘{โˆ’๐’Š[๐œท ๐’™(๐€) + ๐œท ๐’š(๐€)] ๐‘ณ ๐Ÿโ„ โˆ’ ๐ƒ ๐’™ ๐‘ณ ๐Ÿโ„ } is omitted, the same for all ๐‘ญ๐’Š,๐’‹(๐€), so
it does not lead to PNR. For ๐ƒ ๐’™,๐’š = ๐ŸŽ (usual case of lossless polarisation maintaining fibre) one has the
matrix elements from [8].
4. Hi-Bi fibre characterising by h-parameter
Conventional characteristic of Hi-Bi fibre is h-parameter [9], which characterises the fibre when
only one input field component is excited, say, ๐‘ฌ ๐’™(๐€). This parameter could be measured as the ratio of
output intensities โŒฉ๐‘ท ๐’™,๐’šโŒช = โŒฉ|๐‘ฌ ๐’™,๐’š(๐€)|
๐Ÿฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…
โŒช, where the angle brackets are the averaging over ensemble of large
number of fibres and
(โ€ฆ )ฬ…ฬ…ฬ…ฬ…ฬ… โ‰ก โˆซ ๐’…๐€(โ€ฆ )๐‘บ(๐€)
โˆž
๐ŸŽ
is the averaging over spectrum. For the case โŒฉ๐‘ท ๐’šโŒช โ‰ช โŒฉ๐‘ท ๐’™โŒช, which should correspond to small PNR, h-
parameter is defined in the following approximate form [9]:
๐’‰ โ‰ˆ ๐‘ณโˆ’๐Ÿ โŒฉ๐‘ท ๐’šโŒช โŒฉ๐‘ท ๐’™โŒชโ„ . (7)
Using (6), one may yield โŒฉ๐‘ท ๐’™โŒช โ‰ˆ โŒฉ|๐’‚(๐€, ๐‘ณ)| ๐Ÿฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…โŒช = โˆซ ๐’…๐€๐‘บ(๐€)
โˆž
๐ŸŽ
and the following:
โŒฉ๐‘ท ๐’šโŒช โ‰ˆ โŒฉ|๐’Œ ๐Ÿ(๐€)| ๐Ÿฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…โŒช = โˆซ ๐’…๐’›๐’…๐’™โŒฉ๐’„(๐’›)๐’„(๐’™)โŒชะ“(๐’› + ๐’™)๐’†๐’™๐’‘[๐’Š๐œŸ๐œท(๐€)(๐’› โˆ’ ๐’™)]ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…
๐‘ณ
๐ŸŽ
=
= โˆซ ๐’…๐’›๐’…๐’™๐‘ช(๐’› โˆ’ ๐’™)ะ“(๐’› + ๐’™)๐œช(๐’› โˆ’ ๐’™)
๐‘ณ
๐ŸŽ
, (8)
where ๐‘ช(๐’› โˆ’ ๐’™) = โŒฉ๐’„(๐’›)๐’„(๐’™)โŒช is PMC autocorrelation function ( ๐’„(๐’›) is assumed stationary). Also, ๐œช(๐’š) โ‰ก
๐’†๐’™๐’‘[๐’Š๐œŸ๐œท(๐€)๐’š]ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…. For its calculating, one may implement the decomposition ๐œŸ๐œท(๐€) โ‰ˆ ๐œŸ๐œท ๐ŸŽ + ๐‘ซ(๐€ โˆ’ ๐€ ๐ŸŽ) [9],
where ๐œŸ๐œท ๐ŸŽ = ๐œŸ๐œท(๐€ ๐ŸŽ), ๐‘ซ = (๐’…๐œŸ๐œท ๐’…๐€โ„ )] ๐€ ๐ŸŽ
. For Panda-type fibres, one has ๐œŸ๐œท(๐€) โ‰ˆ ๐Ÿ๐…๐‘ฉ ๐€โ„ ( ๐‘ฉ โ‰ก ๐’ ๐’™ โˆ’ ๐’ ๐’š is
fibre material birefringence), so ๐‘ซ โ‰ˆ โˆ’ ๐Ÿ๐…๐‘ฉ ๐€โ„ ๐ŸŽ
๐Ÿ
. As a result,
๐œช(๐’š) โ‰ˆ ๐’†๐’™๐’‘(๐’Š๐œŸ๐œท ๐ŸŽ ๐’š)๐‘ฎ(๐’š), (9)
where ๐‘ฎ(๐’š) = ๐’†๐’™๐’‘[๐’Š๐‘ซ(๐€ โˆ’ ๐€ ๐ŸŽ)๐’š]ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ… is complex coherence function. Thus, one may rewrite (7) in the form
๐’‰ โ‰ˆ
๐Ÿ
๐‘ณ
โˆซ ๐’…๐’–๐‘ช(๐’–)๐œช(๐’–) โˆซ ๐’…๐’—ะ“(๐’—)
๐‘ณ
๐ŸŽ
๐‘ณ
โˆ’๐‘ณ
โ‰ˆ [
๐Ÿโˆ’๐‘ฎ ๐Ÿ(๐‘ณ)
๐ƒ๐‘ณ
] โˆซ ๐’…๐’–๐‘ช(๐’–)๐’(๐’–)
+โˆž
โˆ’โˆž
, (10)
where in (8), variables were changed as ๐’– = ๐’› โˆ’ ๐’™ and ๐Ÿ๐’— = ๐’› + ๐’™. Usually, their integration limits are
determined according to some a little bit complex procedure (see [10]), but here it is set that ๐’– is range
from โ€“ ๐‘ณ (minimal possible value of ๐’› โˆ’ ๐’™) to +๐‘ณ (maximal possible value of ๐’› โˆ’ ๐’™), while ๐’— ranges from ๐ŸŽ
to +๐‘ณ. Also, ๐’(๐’š) โ‰ก ๐‘ถ(๐’š) โˆซ ๐’…๐€๐‘บ(๐€)
โˆž
๐ŸŽ
โ„ , so a normalised coherence function could be introduced:
๐’ˆ(๐’š) โ‰ก ๐‘ฎ(๐’š) โˆซ ๐’…๐€๐‘บ(๐€)
โˆž
๐ŸŽ
โ„ = โˆซ ๐’…๐€๐’†๐’™๐’‘[๐’Š๐‘ซ(๐€ โˆ’ ๐€ ๐ŸŽ)๐’š]๐‘บ(๐€)
โˆž
๐ŸŽ
โˆซ ๐’…๐€๐‘บ(๐€)
โˆž
๐ŸŽ
โ„ . (11)
so ๐’(๐’–) = ๐’†๐’™๐’‘(๐’Š๐œŸ๐œท ๐ŸŽ ๐’–)๐’ˆ(๐’–). For PM-fibre ( ๐ƒ = ๐ŸŽ) and for practical PZ-fibre ( ๐‘ฎ ๐Ÿ(๐‘ณ) โ‰ˆ ๐ŸŽ) one has the
following:
๐’‰ ๐‘ท๐‘ด โ‰ˆ โˆซ ๐’…๐’–๐‘ช(๐’–)๐’(๐’–)
+โˆž
โˆ’โˆž
, ๐’‰ ๐‘ท๐’ โ‰ˆ ๐’‰ ๐‘ท๐‘ด ๐ƒ๐‘ณโ„ ,
which means that ๐’‰ ๐‘ท๐‘ด ๐’‰ ๐‘ท๐’ โ‰ซ ๐Ÿโ„ . This was observed experimentally in the form of extremely small h-
parameter which could belong only to PZ-fibre [11]. Also, this means that โŒฉ๐‘ท ๐’šโŒช-value of PM-fibre is
proportional to ๐‘ณ, while for PZ-fibre it is constant, because the feeding of โŒฉ๐‘ท ๐’šโŒช by โŒฉ๐‘ท ๐’™โŒช through PMC is
counter-balanced by attenuation of โŒฉ๐‘ท ๐’šโŒช.
Expression (10) contains the normalised coherence function ๐’ˆ(๐’–). For symmetrical spectra relative
to the central frequency ๐Ž ๐ŸŽ, from (11), one has
๐ˆ๐ฆ๐’ˆ(๐’š) =
โˆซ ๐’…๐€๐’”๐’Š๐’[๐‘ซ(๐€ โˆ’ ๐€ ๐ŸŽ)๐’š]๐‘บ(๐€)
โˆž
๐ŸŽ
โˆซ ๐’…๐€๐‘บ(๐€)
โˆž
๐ŸŽ
= [๐‘บ(๐€) โ†’ ๐‘บ(๐€ โˆ’ ๐€ ๐ŸŽ)] =
โˆซ ๐’…๐€๐’”๐’Š๐’(๐‘ซ๐€๐’š)๐‘บ(๐€)
โˆž
โˆ’๐€ ๐ŸŽ
โˆซ ๐’…๐€๐‘บ(๐€)
โˆž
๐ŸŽ
โ‰ˆ
โ‰ˆ (๐€ ๐ŸŽ โ‰ซ ๐œน๐€) โ‰ˆ ๐œน๐€
โˆซ ๐’…๐’–๐ฌ๐ข๐ง(๐‘ซ๐’–๐œน๐€๐’š)๐‘บ(๐’–)
โˆž
โˆ’โˆž
โˆซ ๐’…๐€๐‘บ(๐€)
โˆž
๐ŸŽ
โ‰ˆ ๐ŸŽ,
because sinus is the odd function, while symmetrical spectrum ๐‘บ(๐€) is the even function. In this case,
๐’ˆ(๐’š) =
โˆซ ๐’…๐€๐œ๐จ๐ฌ[๐‘ซ(๐€โˆ’๐€ ๐ŸŽ)๐’š]๐‘บ(๐€)
โˆž
๐ŸŽ
โˆซ ๐’…๐€๐‘บ(๐€)
โˆž
๐ŸŽ
โ‰ˆ
โˆซ ๐’…๐’–๐œ๐จ๐ฌ(๐‘ซ๐’–๐œน๐€๐’š)๐‘บ(๐’–)
โˆž
โˆ’โˆž
โˆซ ๐’…๐’–๐‘บ(๐’–)
โˆž
โˆ’โˆž
.
For example, Gaussian spectrum yields
๐’ˆ(๐’š) โ‰ˆ
โˆซ ๐’…๐’–๐’„๐’๐’”(๐‘ซ๐’–๐šซ๐€๐’š)๐’†๐’™๐’‘(โˆ’๐’– ๐Ÿ)
โˆž
โˆ’โˆž
โˆซ ๐’…๐’–๐’†๐’™๐’‘(โˆ’๐’– ๐Ÿ)
โˆž
โˆ’โˆž
= (
๐Ÿ
๐‘ซ๐šซ๐€
โ‰ก ๐‘ณ ๐’…๐’†๐’„) = ๐’†๐’™๐’‘[โˆ’(๐’š ๐‘ณ ๐’…๐’†๐’„โ„ ) ๐Ÿ].
For Panda-type fibres, one has ๐‘ซ โ‰ˆ โˆ’ ๐Ÿ๐…๐‘ฉ ๐€โ„ ๐ŸŽ
๐Ÿ
, so ๐‘ณ ๐’…๐’†๐’„ โ‰ˆ ๐€ ๐ŸŽ
๐Ÿ (๐…๐œŸ๐€๐‘ฉ)โ„ . Thus, ๐’ˆ(๐’š) could be set ๐’ˆ(๐’š) โ‰ˆ ๐ŸŽ for
|๐’š| > ๐Ÿ‘๐‘ณ ๐œธ. For modern typical values ๐œŸ๐€ = ๐Ÿ‘๐ŸŽ nm and ๐‘ฉ = ๐Ÿ’ร—๐Ÿ๐ŸŽโˆ’๐Ÿ’
, one has only ๐‘ณ ๐œธ โ‰ˆ ๐Ÿ”๐Ÿ’ mm. This is the
reason why PNR was managed to be reduced dramatically, according to Eq. (1).
Similar to this, one may yield the function ๐’ˆ(๐’š) for some other spectra, also yielding non-zero
values only in the small region near ๐’š = ๐ŸŽ.
As for PMC correlation function ๐‘ช(๐’–), the simplest case is delta-correlated ๐‘ช(๐’–) = ๐‘ช ๐ŸŽ ๐œน(๐’–), so
๐’‰ ๐‘ท๐‘ด โ‰ˆ ๐‘ช ๐ŸŽ โ‰ˆ ๐ƒ๐‘ณ๐’‰ ๐‘ท๐’. There is no dependence on birefringence and light spectrum parameters. This is the
case of anisotropic Rayleigh scattering, which is the fundamental limit of fibre polarisation maintaining
(PM) ability [12]. However, experimental results reveal considerably lower PM ability, depending on
birefringence as ๐’‰ ๐‘ท๐‘ด โ‰ˆ ๐Ÿ๐‘ช ๐ŸŽ (๐Ÿ + ๐œŸ๐œท ๐ŸŽ
๐Ÿ
๐’ ๐’„
๐Ÿ
)โ„ [13], and for Hi-Bi fibres with ๐œŸ๐œท ๐ŸŽ ๐’ ๐’„ โ‰ซ ๐Ÿ, so ๐’‰ ๐‘ท๐‘ด โ‰ˆ ๐Ÿ๐‘ช ๐ŸŽ ๐œŸ๐œท ๐ŸŽ
โˆ’๐Ÿ
๐’ ๐’„
โˆ’๐Ÿ
.
Thus, for ๐‘ช(๐’–) one should use another model with correlation length ๐’ ๐’„ larger than the beat length. Assume
that ๐‘ช(๐’–) is independent on ๐ƒ, so the case ๐ƒ = ๐ŸŽ is enough (PM-fibre). Consider (10) for two extreme cases
of ๐’ ๐’„ โ‰ช ๐‘ณ ๐’…๐’†๐’„ and ๐’ ๐’„ โ‰ซ ๐‘ณ ๐’…๐’†๐’„:
๐’‰(๐’ ๐’„ โ‰ช ๐‘ณ ๐œธ) โ‰ˆ ๐Ÿ โˆซ ๐’…๐’–๐‘ช(๐’–)๐’„๐’๐’”(๐œŸ๐œท ๐ŸŽ ๐’–)
+โˆž
๐ŸŽ
, ๐’‰(๐’ ๐’„ โ‰ซ ๐‘ณ ๐œธ) โ‰ˆ ๐‘ช ๐ŸŽ ๐’ ๐’„
โˆ’๐Ÿ
โˆซ ๐’…๐’–๐’ˆ(๐’–)๐’†๐’™๐’‘(๐’Š๐œŸ๐œท ๐ŸŽ ๐’–)
+โˆž
โˆ’โˆž
.
First expression is presented in [13, 14, 15], being conventional until in [12] a coherence function ๐’ˆ(๐’–) was
taken into account. For exponential correlator [12]
๐‘ช(๐’–) = ๐’ ๐’„
โˆ’๐Ÿ
๐’†๐’™๐’‘(โˆ’ |๐’–| ๐’ ๐’„โ„ ) (12)
with correlation length ๐’ ๐’„ one yields
๐’‰(๐’ ๐’„ โ‰ช ๐‘ณ ๐œธ) โ‰ˆ ๐Ÿ๐‘ช ๐ŸŽ (๐Ÿ + ๐œŸ๐œท ๐ŸŽ
๐Ÿ
๐’ ๐’„
๐Ÿ
)โ„ , ๐’‰(๐’ ๐’„ โ‰ซ ๐‘ณ ๐œธ) โ‰ˆ (๐‘ช ๐ŸŽ ๐‘ณ ๐œธ ๐’ ๐’„โ„ )[๐‘บ(๐ŸŽ)๐…๐šซ๐€ โˆซ ๐’…๐€๐‘บ(๐€)
โˆž
๐ŸŽ
โ„ ]. (13)
In particular, for Gaussian spectrum, ๐’‰(๐’ ๐’„ โ‰ซ ๐‘ณ ๐œธ) โ‰ˆ (๐‘ช ๐ŸŽ ๐‘ณ ๐œธ ๐’ ๐’„โ„ )๐’†๐’™๐’‘[โˆ’(๐€ ๐ŸŽ ๐šซ๐€โ„ ) ๐Ÿ], which is too unrealistic,
unlike the expression for ๐’‰(๐’ ๐’„ โ‰ช ๐‘ณ ๐œธ), already appeared above as the experimental result. Moreover, another
possible functions ๐‘ช(๐’–) (Gaussian, Lorenzian, rectangular etc.) also will not lead to reasonable results
neither for ๐’ ๐’„ โ‰ช ๐‘ณ ๐œธ, nor for ๐’ ๐’„ โ‰ซ ๐‘ณ ๐œธ.
Exponential correlator means the following: if singular perturbation of fibre occurs at some point
๐’› ๐ŸŽ โ‰ซ ๐’ ๐’„ within the fibre, corresponding fibre distortion ๐’„ ๐ŸŽ decays as ๐’„ ๐ŸŽ ๐’†๐’™๐’‘[โˆ’ (๐’› โˆ’ ๐’› ๐ŸŽ) ๐’ ๐’„โ„ ]. Such distortion
could be yielded from ODE with singular imperfection source at point ๐’› ๐ŸŽ in the right-hand side
(๐’… ๐’…๐’›โ„ + ๐’ ๐’„
โˆ’๐Ÿ)๐’„(๐’›) = ๐’„ ๐ŸŽ ๐’ ๐’„
โˆ’๐Ÿ
๐œน(๐’› โˆ’ ๐’› ๐ŸŽ).
In practice, one has continuously distributed PMC random source along the whole fibre ๐œป(๐’›). Similar ODE
with such noise source in right-hand side has the form
(๐’… ๐’…๐’›โ„ + ๐’ ๐’„
โˆ’๐Ÿ)๐’„(๐’›) = ๐’„ ๐ŸŽ ๐’ ๐’„
โˆ’๐Ÿ
๐œป(๐’›).
If noise source is delta-correlated, i.e. โŒฉ๐œป(๐’›)๐œป(๐’™)โŒช = โŒฉ๐œป(๐’› โˆ’ ๐’™)๐œป(๐ŸŽ)โŒช = ๐œป ๐ŸŽ
๐Ÿ
๐œน(๐’› โˆ’ ๐’™), one yields required auto-
correlator (12) [16]. All of this will be used below for PNR estimations.
Note also that the condition ๐’ ๐’„ โ‰ช ๐‘ณ ๐œธ should be correct for those of Hi-Bi solid-core microstructured
fibres that are already implemented in FOG, because they donโ€™t demonstrate really exotic features that
more sophisticated fibre microstructures do for some other applications.
PNR calculating
Consider FRI with perfect input lightguide and IOC (without PMC), along with perfect splices.
Coil PM-fibre, input lightguide and IOC Jones matrices have the form [12], according to (6)
๐‘ญ(๐€) = [
๐’‚(๐‘ณ, ๐€) ๐’Š๐’Œ(๐€)
๐’Š๐’Œโˆ—(๐€) ๐’‚(โˆ’๐‘ณ, ๐€)
], ๐‘ญ๐’Š๐’(๐€) = [
๐’‚๐’Š๐’(๐‘ณ๐’Š๐’, ๐€) ๐ŸŽ
๐ŸŽ ๐‘ฎ๐’Š๐’(๐‘ณ๐’Š๐’)๐’‚๐’Š๐’(โˆ’๐‘ณ๐’Š๐’, ๐€)
],
๐‘ฐ๐‘ถ๐‘ช(๐€) =
๐Ÿ
โˆš๐Ÿ
[
๐’‚ ๐‘ฐ๐‘ถ๐‘ช(๐‘ณ ๐‘ฐ๐‘ถ๐‘ช, ๐€) ๐ŸŽ
๐ŸŽ ๐œบ๐’‚ ๐‘ฐ๐‘ถ๐‘ช(โˆ’๐‘ณ ๐‘ฐ๐‘ถ๐‘ช, ๐€)
].
Here, according to the above, it is assumed that only coil fibre possesses PMC. FRI Jones matrix for cw-
wave, thus, could be written as
๐‘ด = ๐‘ญ๐’Š๐’
๐‘ป
ร—๐‘ฐ๐‘ถ๐‘ช ๐‘ป
ร—๐‘ญร—๐‘ฐ๐‘ถ๐‘ชร—๐‘ญ๐’Š๐’
with elements ๐‘ด ๐Ÿ๐Ÿ(๐€) = ๐‘จ(๐€)๐’‚(๐‘ณ, ๐€), ๐‘ด ๐Ÿ๐Ÿ(๐€) = ๐’Š๐œบ๐‘ฎ๐’Š๐’(๐‘ณ๐’Š๐’)๐’Œ(๐€), ๐‘ด ๐Ÿ๐Ÿ(๐€) = โˆ’๐’Šร—๐‘ด ๐Ÿ๐Ÿ
โˆ— (๐€), ๐‘ด ๐Ÿ๐Ÿ(๐€) =
๐œบ ๐Ÿ
๐‘จ(๐€)๐‘ฎ๐’Š๐’
๐Ÿ
(๐‘ณ๐’Š๐’)๐‘ด ๐Ÿ๐Ÿ
โˆ—
(๐€), ๐‘จ(๐€) โ‰ก ๐’‚๐’Š๐’
๐Ÿ
(๐‘ณ๐’Š๐’, ๐€)๐’‚ ๐‘ฐ๐‘ถ๐‘ช
๐Ÿ
(๐‘ณ ๐‘ฐ๐‘ถ๐‘ช, ๐€). Value of ๐‘ท๐‘ต๐‘น ๐Ÿ is determined from Eq. (2), and for
its mean value one has
๐‘ท๐‘ต๐‘น ๐Ÿ = ๐Ÿ๐œบ ๐Ÿ
๐‘ฎ๐’Š๐’
๐Ÿ
(๐‘ณ๐’Š๐’) โˆซ ๐’…๐€๐‘บ(๐€)๐‘ฐ๐’Ž๐’Œ(๐€)๐‘น๐’†๐’Œ(๐€) =
= โˆ’๐œบ ๐Ÿ
๐‘ฎ๐’Š๐’
๐Ÿ
(๐‘ณ๐’Š๐’)๐‘ฐ๐’Ž โˆซ ๐’…๐’›๐’…๐’™๐’„(๐’›)๐’„(๐’™)๐ž๐ฑ๐ฉ[๐Ÿ๐’Š๐šซ๐œท ๐ŸŽ(๐‘ณ โˆ’ ๐’› โˆ’ ๐’™)]ะ“(๐‘ณ โˆ’ ๐’› โˆ’ ๐’™)
๐‘ณ
๐ŸŽ
. (14)
For RMS error, the following could be written:
๐ˆ(๐‘ท๐‘ต๐‘น ๐Ÿ) = ๐Ÿ๐œบ ๐Ÿ
๐‘ฎ๐’Š๐’
๐Ÿ
(๐‘ณ๐’Š๐’)โˆšโˆซ ๐’…๐€๐’…๐€/ ๐‘บ(๐€)๐‘บ(๐€/)โŒฉ๐‘ฐ๐’Ž๐‘ฒ(๐€)๐‘น๐’†๐‘ฒ(๐€)๐‘ฐ๐’Ž๐‘ฒ(๐€/)๐‘น๐’†๐‘ฒ(๐€/)โŒช, (15)
where ๐‘ฒ(๐€) โ‰ก ๐’‚(๐‘ณ, ๐€)๐’Œ(๐€). In Ref. [8], it is mentioned that ๐‘ฐ๐’Ž๐‘ฒ(๐€) and ๐‘น๐’†๐‘ฒ(๐€) are uncorrelated. This
could be proved by above methods implemented for h-parameter, yielding โŒฉ๐‘ฐ๐’Ž๐‘ฒ(๐€)๐‘น๐’†๐‘ฒ(๐€)โŒช โ‰ˆ ๐ŸŽ. Thus,
โŒฉ๐‘ฐ๐’Ž๐‘ฒ(๐€)๐‘น๐’†๐‘ฒ(๐€)๐‘ฐ๐’Ž๐‘ฒ(๐€/
)๐‘น๐’†๐‘ฒ(๐€/
)โŒช โ‰ˆ โŒฉ๐‘ฐ๐’Ž๐‘ฒ(๐€)๐‘ฐ๐’Ž๐‘ฒ(๐€/
)โŒชโŒฉ๐‘น๐’†๐‘ฒ(๐€)๐‘น๐’†๐‘ฒ(๐€/
)โŒช.
Consequently, the integral from Eq. (15) may be written as
โˆซ ๐’…๐’›๐’…๐’™๐’…๐’’๐’…๐’‘๐‘ช(๐’› โˆ’ ๐’™)๐‘ช(๐’’ โˆ’ ๐’‘)๐‘ฐ(๐’› โˆ’ ๐’’)๐‘ฐ(๐’™ โˆ’ ๐’‘)
๐‘ณ
๐ŸŽ
,
where ๐‘ฐ(๐’”) โ‰ก ๐ˆ๐ฆ[๐’†๐’™๐’‘(๐’Š๐œŸ๐œท ๐ŸŽ ๐’”)ะ“(๐’”)] (values with ๐’› + ๐’’ and ๐’™ + ๐’‘ yield zeros). Because of ๐’ ๐’„ โ‰ช ๐‘ณ ๐œธ (see
above), correlators ๐‘ช(๐’› โˆ’ ๐’™) and ๐‘ช(๐’’ โˆ’ ๐’‘) are similar to Dirac delta-functions for ะ“(๐’› โˆ’ ๐’’) and ะ“(๐’™ โˆ’ ๐’‘), so
it is possible to write ะ“(๐’™ โˆ’ ๐’‘) โ‰ˆ ะ“(๐’› โˆ’ ๐’’). Unfortunately, this is not the case for values like ๐’‚(๐’› โˆ’ ๐’’, ๐€) and
๐’‚(๐’™ โˆ’ ๐’‘, ๐€), because ๐’ ๐’„ ๐šซ๐œท ๐ŸŽ โ‰ซ ๐Ÿ. For symmetric spectrum, one, thus, has the following:
โˆซ ๐’…๐€๐’…๐€/
๐‘บ(๐€)๐‘บ(๐€/
)โŒฉ๐‘ฐ๐’Ž๐‘ฒ(๐€)๐‘ฐ๐’Ž๐‘ฒ(๐€/
)โŒชโŒฉ๐‘น๐’†๐‘ฒ(๐€)๐‘น๐’†๐‘ฒ(๐€/
)โŒช โ‰ˆ
โ‰ˆ
๐Ÿ
๐Ÿ
๐‘น๐’† โˆซ ๐’…๐’›๐’…๐’’
๐‘ณ
๐ŸŽ
ะ“ ๐Ÿ(๐’› โˆ’ ๐’’)๐‘ฏ(๐’›)๐‘ฏโˆ—(๐’’) โ‰ˆ
๐Ÿ
๐Ÿ
๐‘ณ โˆซ ๐’…๐’–
โˆž
๐ŸŽ
ะ“ ๐Ÿ(๐’–). (16)
Here the following was used:
๐‘ฏ(๐’›) โ‰ก โˆซ ๐’…๐’™๐‘ช(๐’› โˆ’ ๐’™)๐’†๐’™๐’‘[๐’Š๐œŸ๐œท ๐ŸŽ(๐’› โˆ’ ๐’™)]
๐‘ณ
๐ŸŽ
โ‰ˆ ๐’‰ โˆ’ ๐’‰(๐Ÿ + ๐’Š๐œŸ๐œท ๐ŸŽ ๐’ ๐’„)๐’†๐’™๐’‘[โˆ’(๐’ ๐’„
โˆ’๐Ÿ
โˆ’ ๐’Š๐œŸ๐œท ๐ŸŽ)๐’›] โ‰ˆ ๐’‰. (17)
This integral could be taken directly, i.e. substituting Eq. (12) for ๐‘ช(๐’› โˆ’ ๐’™) and dividing the integration as
โˆซ ๐’…๐’™(โ€ฆ )
๐’›
๐ŸŽ
+ โˆซ ๐’…๐’™(โ€ฆ )
๐‘ณ
๐’›
, so for the first of them ๐‘ช(๐’› โˆ’ ๐’™) = ๐’ ๐’„
โˆ’๐Ÿ
๐’†๐’™๐’‘[โˆ’ (๐’› โˆ’ ๐’™) ๐’ ๐’„โ„ ], while for the second one
๐‘ช(๐’› โˆ’ ๐’™) = ๐’ ๐’„
โˆ’๐Ÿ
๐’†๐’™๐’‘[โˆ’ (๐’™ โˆ’ ๐’›) ๐’ ๐’„โ„ ]. The last approximation in (17) is made in the sense of integrating in Eq.
(16), i.e. ๐’‰ will contribute into integral much larger than ๐’‰(๐Ÿ + ๐’Š๐œŸ๐œท ๐ŸŽ ๐’ ๐’„)๐’†๐’™๐’‘[โˆ’(๐’ ๐’„
โˆ’๐Ÿ
โˆ’ ๐’Š๐œŸ๐œท ๐ŸŽ)๐’›], because the
latter is zero for ๐’› > ๐’ ๐’„. Thus, for Gaussian spectrum, Eq. (16) yields
๐ˆ(๐‘ท๐‘ต๐‘น ๐Ÿ) = ๐œบ ๐Ÿ
๐‘ฎ๐’Š๐’
๐Ÿ
(๐‘ณ๐’Š๐’)โˆš๐Ÿ๐‘ณ โˆซ ๐’…๐’–
โˆž
๐ŸŽ
ะ“ ๐Ÿ(๐’–) = ๐œบ ๐Ÿ
๐‘ฎ๐’Š๐’
๐Ÿ
(๐‘ณ๐’Š๐’)โˆš๐Ÿ๐‘ณ โˆซ ๐’…๐’–
โˆž
๐ŸŽ
๐’†๐’™๐’‘[โˆ’๐Ÿ(๐’– ๐‘ณ ๐’…๐’†๐’„โ„ ) ๐Ÿ] =
= ๐ŸŽ. ๐Ÿ“๐œบ ๐Ÿ
๐‘ฎ๐’Š๐’
๐Ÿ
(๐‘ณ๐’Š๐’)โˆšโˆš ๐…๐‘ณ๐‘ณ ๐’…๐’†๐’„ โ‰ˆ ๐ŸŽ. ๐Ÿ”๐Ÿ•๐œบ ๐Ÿ
๐‘ฎ๐’Š๐’
๐Ÿ
(๐‘ณ๐’Š๐’)โˆš๐‘ณ๐‘ณ ๐’…๐’†๐’„
This agrees well with result from (1) in the absence of input lightguide ( ๐‘ฎ๐’Š๐’
๐Ÿ
(๐‘ณ๐’Š๐’) = ๐Ÿ). For other spectra,
coefficient 0.67 will be replaced by some other ones, order of unity.
For ๐‘ท๐‘ต๐‘น ๐Ÿ value from Eq. (2), using the above described method, one has
๐‘ท๐‘ต๐‘น ๐Ÿ = ๐‘ท๐‘ต๐‘น ๐Ÿ
(๐’ƒ๐’†๐’ˆ)
+ ๐‘ท๐‘ต๐‘น ๐Ÿ
(๐’†๐’๐’…)
,
๐‘ท๐‘ต๐‘น ๐Ÿ
(๐’ƒ๐’†๐’ˆ)
โ‰ก ๐œบ๐‘ฎ๐’Š๐’(๐‘ณ๐’Š๐’)๐‘น๐’† โˆซ ๐’…๐’›๐’„(๐’›)๐’†๐’™๐’‘(โˆ’๐’Š๐œŸ๐œท ๐ŸŽ ๐’›)ะ“(๐’› + ๐’› ๐ŸŽ)
๐‘ณ
๐ŸŽ
,
๐‘ท๐‘ต๐‘น ๐Ÿ
(๐’†๐’๐’…)
= โˆ’๐œบ๐‘ฎ๐’Š๐’(๐‘ณ๐’Š๐’)๐‘น๐’† โˆซ ๐’…๐’›๐’„(๐’›)๐’†๐’™๐’‘(โˆ’๐’Š๐œŸ๐œท ๐ŸŽ ๐’›)ะ“(๐‘ณ โˆ’ ๐’› โˆ’ ๐’› ๐ŸŽ)
๐‘ณ
๐ŸŽ
,
where ๐’› ๐ŸŽ โ‰ก (๐‘ฉ๐’Š๐’ ๐‘ณ๐’Š๐’ + ๐‘ฉ ๐‘ฐ๐‘ถ๐‘ช ๐‘ณ ๐‘ฐ๐‘ถ๐‘ช) ๐‘ฉโ„ . These are two independent contributions to ๐‘ท๐‘ต๐‘น ๐Ÿ from coil fibre initial
and final sections of the length order of ๐‘ณ ๐’…๐’†๐’„ โ‰ช ๐‘ณ (basic coherence zones) where ะ“(๐’› + ๐’› ๐ŸŽ) and ะ“(๐‘ณ โˆ’ ๐’› โˆ’ ๐’› ๐ŸŽ)
may be non-zero. For ๐’› ๐ŸŽ โ‰ซ ๐‘ณ ๐’…๐’†๐’„, one may write ะ“(๐’› + ๐’› ๐ŸŽ) โ‰ˆ ะ“(๐‘ณ โˆ’ ๐’› โˆ’ ๐’› ๐ŸŽ) โ‰ˆ ๐ŸŽ (basic coherence zones
switching off [17], when x- and y-waves enter the coil being completely incoherent), and, thus, ๐‘ท๐‘ต๐‘น ๐Ÿ โ‰ˆ ๐ŸŽ.
For ๐’› ๐ŸŽ = ๐ŸŽ, using the above described procedures, one yields
๐‘ท๐‘ต๐‘น ๐Ÿ,๐Ÿ‘~ ๐’” ๐Ÿ,๐Ÿ‘ ๐œบ๐‘ฎ๐’Š๐’(๐‘ณ๐’Š๐’)โˆš๐’‰๐‘ณ ๐’…๐’†๐’„ ๐‘บ๐‘ญโ„
which agrees with that from Eq. (1) for minimal FRI ( ๐‘ฎ๐’Š๐’(๐‘ณ๐’Š๐’) = ๐Ÿ).
Similar to this, one may treat minimal FRI with PM-coil and ๐œฝ ๐Ÿ,๐Ÿ = ๐Ÿ’๐Ÿ“ ๐ŸŽ
at output splices (Fig. 1),
yielding the following:
๐ˆ ๐’Ž๐’Š๐’,๐Ÿ’๐Ÿ“(๐‘ท๐‘ต๐‘น ๐Ÿ) ~ ๐Ÿ’๐’” ๐Ÿ ๐œบ ๐Ÿ
โˆš๐’‰๐‘ณ ๐’…๐’†๐’„ ๐‘บ๐‘ญโ„ , ๐ˆ ๐’Ž๐’Š๐’,๐Ÿ’๐Ÿ“(๐‘ท๐‘ต๐‘น ๐Ÿ) ~ ๐Ÿ’๐’” ๐Ÿ ๐œบ๐’‰โˆš๐‘ณ ๐’…๐’†๐’„ ๐‘ณ ๐‘บ๐‘ญโ„ , ๐ˆ ๐’Ž๐’Š๐’,๐Ÿ’๐Ÿ“(๐‘ท๐‘ต๐‘น ๐Ÿ‘) ~ ๐Ÿ๐’” ๐Ÿ‘ ๐œบโˆš๐’‰๐‘ณ ๐’…๐’†๐’„ ๐‘บ๐‘ญโ„ .
For ๐ˆ ๐’Ž๐’Š๐’,๐Ÿ’๐Ÿ“(๐‘ท๐‘ต๐‘น ๐Ÿ,๐Ÿ), one yields smaller values than in Eq. (1), but ๐ˆ ๐’Ž๐’Š๐’,๐Ÿ’๐Ÿ“(๐‘ท๐‘ต๐‘น ๐Ÿ‘) = 2๐ˆ ๐’Ž๐’Š๐’(๐‘ท๐‘ต๐‘น ๐Ÿ‘), where
๐ˆ ๐’Ž๐’Š๐’(๐‘ท๐‘ต๐‘น ๐Ÿ‘) is from Eq. (1). This may be treated as PNR reduction for ๐‘ท๐‘ต๐‘น ๐Ÿ,๐Ÿ, but not for ๐‘ท๐‘ต๐‘น ๐Ÿ‘.
References
1. R. Ulrich, โ€œFibre-optic rotation sensing with low driftโ€, Opt. Lett. 5, 173 (1980).
2. E. C. Kintner, โ€œPolarisation control in optical-fibre gyroscopesโ€, Opt. Lett. 6, 154 (1981).
3. G.B. Malykin, On the ultimate sensitivity of fiber-optic gyroscopes, Tech. Phys. (2009) 415-418.
4. M.L. Bortz, M.M. Fejer, Annealed proton-exchanged LiNbO3 waveguides, Opt. Lett. (1991) 1844-1846.
5. M. Schlosshauer, โ€œDecoherence, the measurement problem, and interpretations of quantum mechanicsโ€, Rev. Mod. Phys. 76,
1267 (2004).
7. R.A. Kurbatov. Properties of partially polarised thermal-type light for polarisation non-reciprocity characterising of Sagnac fibre
ring interferometer, 2017.
6. W. K. Burns, C. Chen, R. P. Moeller, โ€œFibre-optic gyroscopes with broad-band sourcesโ€, J. Lightwave Technol. 1, 98 (1983).
7. J. Sakai, T. Kimura, Polarization behavior in multiply perturbed single-mode fibers, IEEE J. Quant. El. Pp. 59-65, 1982.
8. S. M. Kozel, V. N. Listvin, S. V. Shatalin, R. V. Yushkaitis, โ€œEffect of random inhomogeneities in a fibre lightguide on the null
shift in a ring interferometerโ€, Opt. and Spectroscopy 61, 814 (1986).
9. K. Takada, K. Okamoto, J. Noda, โ€œPolarisation mode coupling with a broadband source in birefringent polarisation-maintaining
fibres", J. Opt. Soc. Am. A. 2, 753 (1985).
10. L. Mandel and E. Wolf, Optical coherence and quantum optics, Cambridge University Press, 1995.
11. T. Hosaka, Y. Sasaki, K. Okamoto, 3-km long single-polarisation single-mode fibre, Electron. Lett. (1984) 1023-1024.
12. K. Takada, K. Okamoto,, Y. Sasaki, J. Noda, โ€œUltimate limit of polarization cross talk in birefringent polarization-maintaining
fibersโ€, JOSA A, p. 1594, 1986.
13. J. Noda, K. Okamoto, K. Sasaki, โ€œPolarisation-maintaining fibres and their applicationsโ€, J. Lightwave Technol. 4, 1071
(1986).
14. I. P. Kaminow โ€œPolarization in optical fibersโ€, IEEE J. Quant. El. pp. 15-22, 1981.
15. K. Okamoto, Y. Sasaki, N. Shibata, โ€œMode coupling effects in stress-applied single polarization fibersโ€ IEEE J. Quant. El. p.
1890,1982.
16. M. Lax, โ€œFluctuations from the nonequilibrium steady stateโ€, Rev. Mod. Phys. 32, 25 (1960).
17. E. Jones, J.W. Parker, Bias reduction by polarisation dispersion in the fibre-optic gyroscope, Electron. Lett. (1986) 54-56.

More Related Content

What's hot

Applications of Homotopy perturbation Method and Sumudu Transform for Solving...
Applications of Homotopy perturbation Method and Sumudu Transform for Solving...Applications of Homotopy perturbation Method and Sumudu Transform for Solving...
Applications of Homotopy perturbation Method and Sumudu Transform for Solving...IJRES Journal
ย 
Eh4 energy harvesting due to random excitations and optimal design
Eh4   energy harvesting due to random excitations and optimal designEh4   energy harvesting due to random excitations and optimal design
Eh4 energy harvesting due to random excitations and optimal designUniversity of Glasgow
ย 
Senior Research
Senior ResearchSenior Research
Senior ResearchJacob Mullins
ย 
ON APPROACH OF OPTIMIZATION OF FORMATION OF INHOMOGENOUS DISTRIBUTIONS OF DOP...
ON APPROACH OF OPTIMIZATION OF FORMATION OF INHOMOGENOUS DISTRIBUTIONS OF DOP...ON APPROACH OF OPTIMIZATION OF FORMATION OF INHOMOGENOUS DISTRIBUTIONS OF DOP...
ON APPROACH OF OPTIMIZATION OF FORMATION OF INHOMOGENOUS DISTRIBUTIONS OF DOP...ijcsa
ย 
Base excitation of dynamic systems
Base excitation of dynamic systemsBase excitation of dynamic systems
Base excitation of dynamic systemsUniversity of Glasgow
ย 
Dynamic response of oscillators to general excitations
Dynamic response of oscillators to general excitationsDynamic response of oscillators to general excitations
Dynamic response of oscillators to general excitationsUniversity of Glasgow
ย 
FDTD Presentation
FDTD PresentationFDTD Presentation
FDTD PresentationReece Boston
ย 
TM plane wave scattering from finite rectangular grooves in a conducting plan...
TM plane wave scattering from finite rectangular grooves in a conducting plan...TM plane wave scattering from finite rectangular grooves in a conducting plan...
TM plane wave scattering from finite rectangular grooves in a conducting plan...Yong Heui Cho
ย 
2009 measurement of focal ratio degradation in optical fibers used in astronomy
2009 measurement of focal ratio degradation in optical fibers used in astronomy2009 measurement of focal ratio degradation in optical fibers used in astronomy
2009 measurement of focal ratio degradation in optical fibers used in astronomySiddartha Verma
ย 
EH1 - Reduced-order modelling for vibration energy harvesting
EH1 - Reduced-order modelling for vibration energy harvestingEH1 - Reduced-order modelling for vibration energy harvesting
EH1 - Reduced-order modelling for vibration energy harvestingUniversity of Glasgow
ย 
Dynamic stiffness and eigenvalues of nonlocal nano beams
Dynamic stiffness and eigenvalues of nonlocal nano beamsDynamic stiffness and eigenvalues of nonlocal nano beams
Dynamic stiffness and eigenvalues of nonlocal nano beamsUniversity of Glasgow
ย 
The vibration error of the fiber optic gyroscope rotation rate and methods of...
The vibration error of the fiber optic gyroscope rotation rate and methods of...The vibration error of the fiber optic gyroscope rotation rate and methods of...
The vibration error of the fiber optic gyroscope rotation rate and methods of...Kurbatov Roman
ย 
Fourier-transform analysis of a ridge waveguide and a rectangular coaxial line
Fourier-transform analysis of a ridge waveguide and a rectangular coaxial lineFourier-transform analysis of a ridge waveguide and a rectangular coaxial line
Fourier-transform analysis of a ridge waveguide and a rectangular coaxial lineYong Heui Cho
ย 
Performance of Spiked Population Models for Spectrum Sensing
Performance of Spiked Population Models for Spectrum SensingPerformance of Spiked Population Models for Spectrum Sensing
Performance of Spiked Population Models for Spectrum SensingPolytechnique Montreal
ย 
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...ijfcstjournal
ย 
2017-03, ICASSP, Projection-based Dual Averaging for Stochastic Sparse Optimi...
2017-03, ICASSP, Projection-based Dual Averaging for Stochastic Sparse Optimi...2017-03, ICASSP, Projection-based Dual Averaging for Stochastic Sparse Optimi...
2017-03, ICASSP, Projection-based Dual Averaging for Stochastic Sparse Optimi...asahiushio1
ย 
Waveguide beamprop
Waveguide beampropWaveguide beamprop
Waveguide beampropeiacqer
ย 
Hysteresis,Compumag
Hysteresis,CompumagHysteresis,Compumag
Hysteresis,CompumagJohn Paul
ย 
2017-12, Keio University, Projection-based Regularized Dual Averaging for Sto...
2017-12, Keio University, Projection-based Regularized Dual Averaging for Sto...2017-12, Keio University, Projection-based Regularized Dual Averaging for Sto...
2017-12, Keio University, Projection-based Regularized Dual Averaging for Sto...asahiushio1
ย 

What's hot (20)

Applications of Homotopy perturbation Method and Sumudu Transform for Solving...
Applications of Homotopy perturbation Method and Sumudu Transform for Solving...Applications of Homotopy perturbation Method and Sumudu Transform for Solving...
Applications of Homotopy perturbation Method and Sumudu Transform for Solving...
ย 
Eh4 energy harvesting due to random excitations and optimal design
Eh4   energy harvesting due to random excitations and optimal designEh4   energy harvesting due to random excitations and optimal design
Eh4 energy harvesting due to random excitations and optimal design
ย 
Senior Research
Senior ResearchSenior Research
Senior Research
ย 
ON APPROACH OF OPTIMIZATION OF FORMATION OF INHOMOGENOUS DISTRIBUTIONS OF DOP...
ON APPROACH OF OPTIMIZATION OF FORMATION OF INHOMOGENOUS DISTRIBUTIONS OF DOP...ON APPROACH OF OPTIMIZATION OF FORMATION OF INHOMOGENOUS DISTRIBUTIONS OF DOP...
ON APPROACH OF OPTIMIZATION OF FORMATION OF INHOMOGENOUS DISTRIBUTIONS OF DOP...
ย 
Base excitation of dynamic systems
Base excitation of dynamic systemsBase excitation of dynamic systems
Base excitation of dynamic systems
ย 
Dynamic response of oscillators to general excitations
Dynamic response of oscillators to general excitationsDynamic response of oscillators to general excitations
Dynamic response of oscillators to general excitations
ย 
FDTD Presentation
FDTD PresentationFDTD Presentation
FDTD Presentation
ย 
TM plane wave scattering from finite rectangular grooves in a conducting plan...
TM plane wave scattering from finite rectangular grooves in a conducting plan...TM plane wave scattering from finite rectangular grooves in a conducting plan...
TM plane wave scattering from finite rectangular grooves in a conducting plan...
ย 
2009 measurement of focal ratio degradation in optical fibers used in astronomy
2009 measurement of focal ratio degradation in optical fibers used in astronomy2009 measurement of focal ratio degradation in optical fibers used in astronomy
2009 measurement of focal ratio degradation in optical fibers used in astronomy
ย 
EH1 - Reduced-order modelling for vibration energy harvesting
EH1 - Reduced-order modelling for vibration energy harvestingEH1 - Reduced-order modelling for vibration energy harvesting
EH1 - Reduced-order modelling for vibration energy harvesting
ย 
Fdtd
FdtdFdtd
Fdtd
ย 
Dynamic stiffness and eigenvalues of nonlocal nano beams
Dynamic stiffness and eigenvalues of nonlocal nano beamsDynamic stiffness and eigenvalues of nonlocal nano beams
Dynamic stiffness and eigenvalues of nonlocal nano beams
ย 
The vibration error of the fiber optic gyroscope rotation rate and methods of...
The vibration error of the fiber optic gyroscope rotation rate and methods of...The vibration error of the fiber optic gyroscope rotation rate and methods of...
The vibration error of the fiber optic gyroscope rotation rate and methods of...
ย 
Fourier-transform analysis of a ridge waveguide and a rectangular coaxial line
Fourier-transform analysis of a ridge waveguide and a rectangular coaxial lineFourier-transform analysis of a ridge waveguide and a rectangular coaxial line
Fourier-transform analysis of a ridge waveguide and a rectangular coaxial line
ย 
Performance of Spiked Population Models for Spectrum Sensing
Performance of Spiked Population Models for Spectrum SensingPerformance of Spiked Population Models for Spectrum Sensing
Performance of Spiked Population Models for Spectrum Sensing
ย 
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...
ON APPROACH TO DECREASE DIMENSIONS OF FIELD-EFFECT TRANSISTORS FRAMEWORK ELEM...
ย 
2017-03, ICASSP, Projection-based Dual Averaging for Stochastic Sparse Optimi...
2017-03, ICASSP, Projection-based Dual Averaging for Stochastic Sparse Optimi...2017-03, ICASSP, Projection-based Dual Averaging for Stochastic Sparse Optimi...
2017-03, ICASSP, Projection-based Dual Averaging for Stochastic Sparse Optimi...
ย 
Waveguide beamprop
Waveguide beampropWaveguide beamprop
Waveguide beamprop
ย 
Hysteresis,Compumag
Hysteresis,CompumagHysteresis,Compumag
Hysteresis,Compumag
ย 
2017-12, Keio University, Projection-based Regularized Dual Averaging for Sto...
2017-12, Keio University, Projection-based Regularized Dual Averaging for Sto...2017-12, Keio University, Projection-based Regularized Dual Averaging for Sto...
2017-12, Keio University, Projection-based Regularized Dual Averaging for Sto...
ย 

Similar to Analytical approach to polarisation nonreciprocity of Sagnac fibre ring interferometer

Polarisation non-reciprocity cancelling in Sagnac fibre ring interferometer: ...
Polarisation non-reciprocity cancelling in Sagnac fibre ring interferometer: ...Polarisation non-reciprocity cancelling in Sagnac fibre ring interferometer: ...
Polarisation non-reciprocity cancelling in Sagnac fibre ring interferometer: ...Kurbatov Roman
ย 
Eliminating polarisation nonreciprocity of small size sagnac fibre ring inter...
Eliminating polarisation nonreciprocity of small size sagnac fibre ring inter...Eliminating polarisation nonreciprocity of small size sagnac fibre ring inter...
Eliminating polarisation nonreciprocity of small size sagnac fibre ring inter...Kurbatov Roman
ย 
Simulation and Analysis of Multisoliton Generation Using a PANDA Ring Resonat...
Simulation and Analysis of Multisoliton Generation Using a PANDA Ring Resonat...Simulation and Analysis of Multisoliton Generation Using a PANDA Ring Resonat...
Simulation and Analysis of Multisoliton Generation Using a PANDA Ring Resonat...University of Malaya (UM)
ย 
Characterization of Carrier Lifetime
Characterization of Carrier LifetimeCharacterization of Carrier Lifetime
Characterization of Carrier Lifetimepaneliya sagar
ย 
Da36615618
Da36615618Da36615618
Da36615618IJERA Editor
ย 
On Approach to Increase Integration Rate of Elements of an Operational Amplif...
On Approach to Increase Integration Rate of Elements of an Operational Amplif...On Approach to Increase Integration Rate of Elements of an Operational Amplif...
On Approach to Increase Integration Rate of Elements of an Operational Amplif...BRNSS Publication Hub
ย 
Higher-Order Squeezing of a Generic Quadratically-Coupled Optomechanical System
Higher-Order Squeezing of a Generic Quadratically-Coupled Optomechanical SystemHigher-Order Squeezing of a Generic Quadratically-Coupled Optomechanical System
Higher-Order Squeezing of a Generic Quadratically-Coupled Optomechanical SystemIOSRJAP
ย 
Performance Analysis of PAPR Reduction in MIMO-OFDM
Performance Analysis of PAPR Reduction in MIMO-OFDMPerformance Analysis of PAPR Reduction in MIMO-OFDM
Performance Analysis of PAPR Reduction in MIMO-OFDMIJARBEST JOURNAL
ย 
E05731721
E05731721E05731721
E05731721IOSR-JEN
ย 
Transmission Line Model for Patch Antenna on Metameterial Substrate
Transmission Line Model for Patch Antenna on Metameterial SubstrateTransmission Line Model for Patch Antenna on Metameterial Substrate
Transmission Line Model for Patch Antenna on Metameterial SubstrateIOSR Journals
ย 
Limitation of Maasive MIMO in Antenna Correlation
Limitation of Maasive MIMO in Antenna CorrelationLimitation of Maasive MIMO in Antenna Correlation
Limitation of Maasive MIMO in Antenna CorrelationVARUN KUMAR
ย 
Performance Comparison of Energy Detection Based Spectrum Sensing for Cogniti...
Performance Comparison of Energy Detection Based Spectrum Sensing for Cogniti...Performance Comparison of Energy Detection Based Spectrum Sensing for Cogniti...
Performance Comparison of Energy Detection Based Spectrum Sensing for Cogniti...irjes
ย 
Fully-Polarimetric_Phased_Array_Far_Field_Modeling_2015SECONWorkshop_JHucks
Fully-Polarimetric_Phased_Array_Far_Field_Modeling_2015SECONWorkshop_JHucksFully-Polarimetric_Phased_Array_Far_Field_Modeling_2015SECONWorkshop_JHucks
Fully-Polarimetric_Phased_Array_Far_Field_Modeling_2015SECONWorkshop_JHucksJoseph Hucks, Ph.D.
ย 
Channel and clipping level estimation for ofdm in io t โ€“based networks a review
Channel and clipping level estimation for ofdm in io t โ€“based networks a reviewChannel and clipping level estimation for ofdm in io t โ€“based networks a review
Channel and clipping level estimation for ofdm in io t โ€“based networks a reviewIJARIIT
ย 
K147897
K147897K147897
K147897irjes
ย 
GPR Probing of Smoothly Layered Subsurface Medium: 3D Analytical Model
GPR Probing of Smoothly Layered Subsurface Medium: 3D Analytical ModelGPR Probing of Smoothly Layered Subsurface Medium: 3D Analytical Model
GPR Probing of Smoothly Layered Subsurface Medium: 3D Analytical ModelLeonid Krinitsky
ย 
Economia01
Economia01Economia01
Economia01Crist Oviedo
ย 

Similar to Analytical approach to polarisation nonreciprocity of Sagnac fibre ring interferometer (20)

Polarisation non-reciprocity cancelling in Sagnac fibre ring interferometer: ...
Polarisation non-reciprocity cancelling in Sagnac fibre ring interferometer: ...Polarisation non-reciprocity cancelling in Sagnac fibre ring interferometer: ...
Polarisation non-reciprocity cancelling in Sagnac fibre ring interferometer: ...
ย 
Eliminating polarisation nonreciprocity of small size sagnac fibre ring inter...
Eliminating polarisation nonreciprocity of small size sagnac fibre ring inter...Eliminating polarisation nonreciprocity of small size sagnac fibre ring inter...
Eliminating polarisation nonreciprocity of small size sagnac fibre ring inter...
ย 
Simulation and Analysis of Multisoliton Generation Using a PANDA Ring Resonat...
Simulation and Analysis of Multisoliton Generation Using a PANDA Ring Resonat...Simulation and Analysis of Multisoliton Generation Using a PANDA Ring Resonat...
Simulation and Analysis of Multisoliton Generation Using a PANDA Ring Resonat...
ย 
Characterization of Carrier Lifetime
Characterization of Carrier LifetimeCharacterization of Carrier Lifetime
Characterization of Carrier Lifetime
ย 
06_AJMS_17_18_RA.pdf
06_AJMS_17_18_RA.pdf06_AJMS_17_18_RA.pdf
06_AJMS_17_18_RA.pdf
ย 
06_AJMS_17_18_RA.pdf
06_AJMS_17_18_RA.pdf06_AJMS_17_18_RA.pdf
06_AJMS_17_18_RA.pdf
ย 
Da36615618
Da36615618Da36615618
Da36615618
ย 
On Approach to Increase Integration Rate of Elements of an Operational Amplif...
On Approach to Increase Integration Rate of Elements of an Operational Amplif...On Approach to Increase Integration Rate of Elements of an Operational Amplif...
On Approach to Increase Integration Rate of Elements of an Operational Amplif...
ย 
Higher-Order Squeezing of a Generic Quadratically-Coupled Optomechanical System
Higher-Order Squeezing of a Generic Quadratically-Coupled Optomechanical SystemHigher-Order Squeezing of a Generic Quadratically-Coupled Optomechanical System
Higher-Order Squeezing of a Generic Quadratically-Coupled Optomechanical System
ย 
Performance Analysis of PAPR Reduction in MIMO-OFDM
Performance Analysis of PAPR Reduction in MIMO-OFDMPerformance Analysis of PAPR Reduction in MIMO-OFDM
Performance Analysis of PAPR Reduction in MIMO-OFDM
ย 
E05731721
E05731721E05731721
E05731721
ย 
Transmission Line Model for Patch Antenna on Metameterial Substrate
Transmission Line Model for Patch Antenna on Metameterial SubstrateTransmission Line Model for Patch Antenna on Metameterial Substrate
Transmission Line Model for Patch Antenna on Metameterial Substrate
ย 
Limitation of Maasive MIMO in Antenna Correlation
Limitation of Maasive MIMO in Antenna CorrelationLimitation of Maasive MIMO in Antenna Correlation
Limitation of Maasive MIMO in Antenna Correlation
ย 
Performance Comparison of Energy Detection Based Spectrum Sensing for Cogniti...
Performance Comparison of Energy Detection Based Spectrum Sensing for Cogniti...Performance Comparison of Energy Detection Based Spectrum Sensing for Cogniti...
Performance Comparison of Energy Detection Based Spectrum Sensing for Cogniti...
ย 
Fully-Polarimetric_Phased_Array_Far_Field_Modeling_2015SECONWorkshop_JHucks
Fully-Polarimetric_Phased_Array_Far_Field_Modeling_2015SECONWorkshop_JHucksFully-Polarimetric_Phased_Array_Far_Field_Modeling_2015SECONWorkshop_JHucks
Fully-Polarimetric_Phased_Array_Far_Field_Modeling_2015SECONWorkshop_JHucks
ย 
J011138795
J011138795J011138795
J011138795
ย 
Channel and clipping level estimation for ofdm in io t โ€“based networks a review
Channel and clipping level estimation for ofdm in io t โ€“based networks a reviewChannel and clipping level estimation for ofdm in io t โ€“based networks a review
Channel and clipping level estimation for ofdm in io t โ€“based networks a review
ย 
K147897
K147897K147897
K147897
ย 
GPR Probing of Smoothly Layered Subsurface Medium: 3D Analytical Model
GPR Probing of Smoothly Layered Subsurface Medium: 3D Analytical ModelGPR Probing of Smoothly Layered Subsurface Medium: 3D Analytical Model
GPR Probing of Smoothly Layered Subsurface Medium: 3D Analytical Model
ย 
Economia01
Economia01Economia01
Economia01
ย 

More from Kurbatov Roman

Weakly guiding fibres simulation with gnu octave
Weakly guiding fibres simulation with gnu octaveWeakly guiding fibres simulation with gnu octave
Weakly guiding fibres simulation with gnu octaveKurbatov Roman
ย 
New optical w fiber panda for fiber optic gyroscope sensitive coil
New optical w fiber panda for fiber optic gyroscope sensitive coilNew optical w fiber panda for fiber optic gyroscope sensitive coil
New optical w fiber panda for fiber optic gyroscope sensitive coilKurbatov Roman
ย 
Radiation resistant fibers with depressed claddings for fiber optic gyro sens...
Radiation resistant fibers with depressed claddings for fiber optic gyro sens...Radiation resistant fibers with depressed claddings for fiber optic gyro sens...
Radiation resistant fibers with depressed claddings for fiber optic gyro sens...Kurbatov Roman
ย 
New optical w fiber panda for fiber optic gyroscope sensitive coil
New optical w fiber panda for fiber optic gyroscope sensitive coilNew optical w fiber panda for fiber optic gyroscope sensitive coil
New optical w fiber panda for fiber optic gyroscope sensitive coilKurbatov Roman
ย 
Suppression of polarization errors
Suppression of polarization errorsSuppression of polarization errors
Suppression of polarization errorsKurbatov Roman
ย 
Fiber polarizer based on w lightguide panda
Fiber polarizer based on w lightguide pandaFiber polarizer based on w lightguide panda
Fiber polarizer based on w lightguide pandaKurbatov Roman
ย 
Temperature characteristics of fiber optic gyroscope sensing coils
Temperature characteristics of fiber  optic gyroscope sensing coilsTemperature characteristics of fiber  optic gyroscope sensing coils
Temperature characteristics of fiber optic gyroscope sensing coilsKurbatov Roman
ย 
Methods of improving the accuracy of fiber optic gyros
Methods of improving the accuracy of fiber optic gyrosMethods of improving the accuracy of fiber optic gyros
Methods of improving the accuracy of fiber optic gyrosKurbatov Roman
ย 

More from Kurbatov Roman (8)

Weakly guiding fibres simulation with gnu octave
Weakly guiding fibres simulation with gnu octaveWeakly guiding fibres simulation with gnu octave
Weakly guiding fibres simulation with gnu octave
ย 
New optical w fiber panda for fiber optic gyroscope sensitive coil
New optical w fiber panda for fiber optic gyroscope sensitive coilNew optical w fiber panda for fiber optic gyroscope sensitive coil
New optical w fiber panda for fiber optic gyroscope sensitive coil
ย 
Radiation resistant fibers with depressed claddings for fiber optic gyro sens...
Radiation resistant fibers with depressed claddings for fiber optic gyro sens...Radiation resistant fibers with depressed claddings for fiber optic gyro sens...
Radiation resistant fibers with depressed claddings for fiber optic gyro sens...
ย 
New optical w fiber panda for fiber optic gyroscope sensitive coil
New optical w fiber panda for fiber optic gyroscope sensitive coilNew optical w fiber panda for fiber optic gyroscope sensitive coil
New optical w fiber panda for fiber optic gyroscope sensitive coil
ย 
Suppression of polarization errors
Suppression of polarization errorsSuppression of polarization errors
Suppression of polarization errors
ย 
Fiber polarizer based on w lightguide panda
Fiber polarizer based on w lightguide pandaFiber polarizer based on w lightguide panda
Fiber polarizer based on w lightguide panda
ย 
Temperature characteristics of fiber optic gyroscope sensing coils
Temperature characteristics of fiber  optic gyroscope sensing coilsTemperature characteristics of fiber  optic gyroscope sensing coils
Temperature characteristics of fiber optic gyroscope sensing coils
ย 
Methods of improving the accuracy of fiber optic gyros
Methods of improving the accuracy of fiber optic gyrosMethods of improving the accuracy of fiber optic gyros
Methods of improving the accuracy of fiber optic gyros
ย 

Recently uploaded

๐Ÿ‘‰ Yavatmal Call Girls Service Just Call ๐Ÿ‘๐Ÿ‘„6378878445 ๐Ÿ‘๐Ÿ‘„ Top Class Call Girl S...
๐Ÿ‘‰ Yavatmal Call Girls Service Just Call ๐Ÿ‘๐Ÿ‘„6378878445 ๐Ÿ‘๐Ÿ‘„ Top Class Call Girl S...๐Ÿ‘‰ Yavatmal Call Girls Service Just Call ๐Ÿ‘๐Ÿ‘„6378878445 ๐Ÿ‘๐Ÿ‘„ Top Class Call Girl S...
๐Ÿ‘‰ Yavatmal Call Girls Service Just Call ๐Ÿ‘๐Ÿ‘„6378878445 ๐Ÿ‘๐Ÿ‘„ Top Class Call Girl S...manju garg
ย 
Hospital management system project report.pdf
Hospital management system project report.pdfHospital management system project report.pdf
Hospital management system project report.pdfKamal Acharya
ย 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptxJIT KUMAR GUPTA
ย 
Query optimization and processing for advanced database systems
Query optimization and processing for advanced database systemsQuery optimization and processing for advanced database systems
Query optimization and processing for advanced database systemsmeharikiros2
ย 
Hostel management system project report..pdf
Hostel management system project report..pdfHostel management system project report..pdf
Hostel management system project report..pdfKamal Acharya
ย 
Computer Networks Basics of Network Devices
Computer Networks  Basics of Network DevicesComputer Networks  Basics of Network Devices
Computer Networks Basics of Network DevicesChandrakantDivate1
ย 
Ground Improvement Technique: Earth Reinforcement
Ground Improvement Technique: Earth ReinforcementGround Improvement Technique: Earth Reinforcement
Ground Improvement Technique: Earth ReinforcementDr. Deepak Mudgal
ย 
Employee leave management system project.
Employee leave management system project.Employee leave management system project.
Employee leave management system project.Kamal Acharya
ย 
Worksharing and 3D Modeling with Revit.pptx
Worksharing and 3D Modeling with Revit.pptxWorksharing and 3D Modeling with Revit.pptx
Worksharing and 3D Modeling with Revit.pptxMustafa Ahmed
ย 
Basic Electronics for diploma students as per technical education Kerala Syll...
Basic Electronics for diploma students as per technical education Kerala Syll...Basic Electronics for diploma students as per technical education Kerala Syll...
Basic Electronics for diploma students as per technical education Kerala Syll...ppkakm
ย 
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdfAldoGarca30
ย 
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKARHAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKARKOUSTAV SARKAR
ย 
Theory of Time 2024 (Universal Theory for Everything)
Theory of Time 2024 (Universal Theory for Everything)Theory of Time 2024 (Universal Theory for Everything)
Theory of Time 2024 (Universal Theory for Everything)Ramkumar k
ย 
fitting shop and tools used in fitting shop .ppt
fitting shop and tools used in fitting shop .pptfitting shop and tools used in fitting shop .ppt
fitting shop and tools used in fitting shop .pptAfnanAhmad53
ย 
UNIT 4 PTRP final Convergence in probability.pptx
UNIT 4 PTRP final Convergence in probability.pptxUNIT 4 PTRP final Convergence in probability.pptx
UNIT 4 PTRP final Convergence in probability.pptxkalpana413121
ย 
Introduction to Robotics in Mechanical Engineering.pptx
Introduction to Robotics in Mechanical Engineering.pptxIntroduction to Robotics in Mechanical Engineering.pptx
Introduction to Robotics in Mechanical Engineering.pptxhublikarsn
ย 
Linux Systems Programming: Inter Process Communication (IPC) using Pipes
Linux Systems Programming: Inter Process Communication (IPC) using PipesLinux Systems Programming: Inter Process Communication (IPC) using Pipes
Linux Systems Programming: Inter Process Communication (IPC) using PipesRashidFaridChishti
ย 
Introduction to Data Visualization,Matplotlib.pdf
Introduction to Data Visualization,Matplotlib.pdfIntroduction to Data Visualization,Matplotlib.pdf
Introduction to Data Visualization,Matplotlib.pdfsumitt6_25730773
ย 
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...drmkjayanthikannan
ย 
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxS1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxSCMS School of Architecture
ย 

Recently uploaded (20)

๐Ÿ‘‰ Yavatmal Call Girls Service Just Call ๐Ÿ‘๐Ÿ‘„6378878445 ๐Ÿ‘๐Ÿ‘„ Top Class Call Girl S...
๐Ÿ‘‰ Yavatmal Call Girls Service Just Call ๐Ÿ‘๐Ÿ‘„6378878445 ๐Ÿ‘๐Ÿ‘„ Top Class Call Girl S...๐Ÿ‘‰ Yavatmal Call Girls Service Just Call ๐Ÿ‘๐Ÿ‘„6378878445 ๐Ÿ‘๐Ÿ‘„ Top Class Call Girl S...
๐Ÿ‘‰ Yavatmal Call Girls Service Just Call ๐Ÿ‘๐Ÿ‘„6378878445 ๐Ÿ‘๐Ÿ‘„ Top Class Call Girl S...
ย 
Hospital management system project report.pdf
Hospital management system project report.pdfHospital management system project report.pdf
Hospital management system project report.pdf
ย 
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
COST-EFFETIVE  and Energy Efficient BUILDINGS ptxCOST-EFFETIVE  and Energy Efficient BUILDINGS ptx
COST-EFFETIVE and Energy Efficient BUILDINGS ptx
ย 
Query optimization and processing for advanced database systems
Query optimization and processing for advanced database systemsQuery optimization and processing for advanced database systems
Query optimization and processing for advanced database systems
ย 
Hostel management system project report..pdf
Hostel management system project report..pdfHostel management system project report..pdf
Hostel management system project report..pdf
ย 
Computer Networks Basics of Network Devices
Computer Networks  Basics of Network DevicesComputer Networks  Basics of Network Devices
Computer Networks Basics of Network Devices
ย 
Ground Improvement Technique: Earth Reinforcement
Ground Improvement Technique: Earth ReinforcementGround Improvement Technique: Earth Reinforcement
Ground Improvement Technique: Earth Reinforcement
ย 
Employee leave management system project.
Employee leave management system project.Employee leave management system project.
Employee leave management system project.
ย 
Worksharing and 3D Modeling with Revit.pptx
Worksharing and 3D Modeling with Revit.pptxWorksharing and 3D Modeling with Revit.pptx
Worksharing and 3D Modeling with Revit.pptx
ย 
Basic Electronics for diploma students as per technical education Kerala Syll...
Basic Electronics for diploma students as per technical education Kerala Syll...Basic Electronics for diploma students as per technical education Kerala Syll...
Basic Electronics for diploma students as per technical education Kerala Syll...
ย 
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
ย 
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKARHAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
HAND TOOLS USED AT ELECTRONICS WORK PRESENTED BY KOUSTAV SARKAR
ย 
Theory of Time 2024 (Universal Theory for Everything)
Theory of Time 2024 (Universal Theory for Everything)Theory of Time 2024 (Universal Theory for Everything)
Theory of Time 2024 (Universal Theory for Everything)
ย 
fitting shop and tools used in fitting shop .ppt
fitting shop and tools used in fitting shop .pptfitting shop and tools used in fitting shop .ppt
fitting shop and tools used in fitting shop .ppt
ย 
UNIT 4 PTRP final Convergence in probability.pptx
UNIT 4 PTRP final Convergence in probability.pptxUNIT 4 PTRP final Convergence in probability.pptx
UNIT 4 PTRP final Convergence in probability.pptx
ย 
Introduction to Robotics in Mechanical Engineering.pptx
Introduction to Robotics in Mechanical Engineering.pptxIntroduction to Robotics in Mechanical Engineering.pptx
Introduction to Robotics in Mechanical Engineering.pptx
ย 
Linux Systems Programming: Inter Process Communication (IPC) using Pipes
Linux Systems Programming: Inter Process Communication (IPC) using PipesLinux Systems Programming: Inter Process Communication (IPC) using Pipes
Linux Systems Programming: Inter Process Communication (IPC) using Pipes
ย 
Introduction to Data Visualization,Matplotlib.pdf
Introduction to Data Visualization,Matplotlib.pdfIntroduction to Data Visualization,Matplotlib.pdf
Introduction to Data Visualization,Matplotlib.pdf
ย 
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
ย 
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptxS1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
S1S2 B.Arch MGU - HOA1&2 Module 3 -Temple Architecture of Kerala.pptx
ย 

Analytical approach to polarisation nonreciprocity of Sagnac fibre ring interferometer

  • 1. Analytical approach to polarisation nonreciprocity of Sagnac fibre ring interferometer Roman Kurbatov romuald75@mail.ru Polarisation nonreciprocity (PNR) [1, 2] is the fundamental accuracy limit of Sagnac fibre ring interferometer (FRI) playing the principal role in high-grade fibre optic gyro (FOG) [3]. Fig. 1 sketches FRI scheme of commercial small size FOG, which may have highly birefringent (Hi-Bi) optical components. Fig. 1. Sagnac FRI scheme of commercial FOG. At splices, optical axes of components are slightly rotated with respect to each other due to technology imperfection (imperfect splices, one of PNR sources). Input lightguide and coil fibre may be polarizing (PZ). Channel waveguides of integrated optic chip (IOC) may be done by proton-exchanged (PE) technology being PZ, having the intensity polarisation extinction ratio (PER) ๐œบ ๐Ÿ = ๐Ÿ๐ŸŽโˆ’๐Ÿ“ โˆ’ ๐Ÿ๐ŸŽโˆ’๐Ÿ– , and possessing the extremely large birefringence order of 0.01 [4]. Polarisation mode coupling (PMC) in coil fibre, input lightguide, and IOC waveguides also yields PNR, along with mutual interferences of spurious waves from all these PMC kinds and with those from imperfect splices. Below only coil fibre PMC is taken into account (i.e., splices input lightguide and IOC waveguides are perfect and, generally, birefringent), as it is usually done in all known literature. Fig. 1 explains the concept of minimal FRI, which is equivalent to minimal configuration FRI from Ref. [1]. Also, minimal FRI means isotropic IOC waveguides. This leads to decoherence absence within them (decoherence is the x- and y-waves coherence loss). Instead of term โ€œdecoherenceโ€, common for quantum measurement theory [5], term โ€œdepolarisationโ€ is used for this phenomenon in the literature, but it also includes x- and y-waves intensities equalisation, additionally to decoherence. Quasi-minimal FRI is minimal one plus input lightguide and, generally, IOC waveguides anisotropy. Amplitude PNR (APNR) was established in Ref. [2] (APNR ~ ๐œบ ๐Ÿ ), along with more expected smaller intensity PNR (IPNR ~ ๐œบ ๐Ÿ ). Both are suppressed when ๐œบ = ๐ŸŽ, but this is not the practical case. In the literature, the following expressions are known for PNR of minimal FRI (Fig. 1): ๐‘ท๐‘ต๐‘น ๐Ÿ~ ๐’” ๐Ÿ ๐œบ ๐Ÿ ๐’‰โˆš๐‘ณ ๐’…๐’†๐’„ ๐‘ณ ๐‘บ๐‘ญโ„ , ๐‘ท๐‘ต๐‘น ๐Ÿ,๐Ÿ‘~ ๐’” ๐Ÿ,๐Ÿ‘ ๐œบโˆš๐’‰๐‘ณ ๐’…๐’†๐’„ ๐‘บ๐‘ญโ„ , (1) where ๐‘ณ ๐’…๐’†๐’„~ ๐€ ๐ŸŽ ๐Ÿ (๐‘ฉ๐šซ๐€)โ„ is decoherence length (โ€œdepolarisationโ€ length in the literature), ๐€ ๐ŸŽ is the light mean wavelength, ๐’‰ is so called h-parameter of the coil fibre, ๐‘บ๐‘ญ โ‰ก ๐Ÿ’๐…๐‘น๐‘ณ ๐€ ๐ŸŽ ๐’„โ„ is the scale factor of FRI, ๐’” ๐ŸŽโˆ’๐Ÿ‘ are the light normalised Stokes parameters ( ๐’” ๐ŸŽ = ๐Ÿ), ๐‘ฉ is coil fibre birefringence, ๐‘ณ and ๐‘น its length and radius, ๐šซ๐€ is the light spectral bandwidth. For large enough ๐‘ฉ and ๐šซ๐€, one provides ๐‘ณ ๐’…๐’†๐’„ โ‰ช ๐‘ณ. It is the purpose of this study to derive consistently Eq. (1), which is still not done in the literature. 2. GENERAL RELATIONSHIPS FOR PNR Elsewhere [6] it is shown that for practically interesting small PNR, one may yield PNR in the form of rotation rate error, ๐‘ท๐‘ต๐‘น = ๐‘ท๐‘ต๐‘น ๐Ÿ + ๐‘ท๐‘ต๐‘น ๐Ÿ + ๐‘ท๐‘ต๐‘น ๐Ÿ‘, where
  • 2. ๐‘ท๐‘ต๐‘น ๐Ÿโˆ’๐Ÿ‘ = ๐’” ๐Ÿโˆ’๐Ÿ‘ โˆซ ๐’…๐€๐‘บ(๐€)๐ˆ๐ฆ๐‘จ ๐ŸŽโˆ’๐Ÿ‘(๐€,๐’•) ๐‘บ๐‘ญ โˆ‘ ๐’” ๐’Œ โˆซ ๐’…๐€๐‘บ(๐€)๐‘๐ž๐‘จ ๐’Œ(๐€,๐’•)๐Ÿ‘ ๐’Œ=๐ŸŽ . (2) Here ๐‘บ(๐€) is the light spectral intensity, ๐Ÿ๐‘จ ๐ŸŽ โ‰ก |๐‘ด ๐Ÿ๐Ÿ| ๐Ÿ + |๐‘ด ๐Ÿ๐Ÿ| ๐Ÿ + ๐Ÿ๐‘น๐’†(๐‘ด ๐Ÿ๐Ÿ ๐‘ด ๐Ÿ๐Ÿ โˆ— ), ๐Ÿ๐‘จ ๐ŸŽ โ‰ก |๐‘ด ๐Ÿ๐Ÿ| ๐Ÿ โˆ’ |๐‘ด ๐Ÿ๐Ÿ| ๐Ÿ + ๐Ÿ๐’Š๐‘ฐ๐’Ž(๐‘ด ๐Ÿ๐Ÿ ๐‘ด ๐Ÿ๐Ÿ โˆ— ), ๐Ÿ๐‘จ ๐Ÿ โ‰ก ๐‘ด ๐Ÿ๐Ÿ โˆ— ๐‘ด ๐Ÿ๐Ÿ + ๐‘ด ๐Ÿ๐Ÿ ๐‘ด ๐Ÿ๐Ÿ โˆ— + ๐‘ด ๐Ÿ๐Ÿ โˆ— ๐‘ด ๐Ÿ๐Ÿ + ๐‘ด ๐Ÿ๐Ÿ ๐‘ด ๐Ÿ๐Ÿ โˆ— , 2๐‘จ ๐Ÿ‘ โ‰ก ๐’Š(๐‘ด ๐Ÿ๐Ÿ โˆ— ๐‘ด ๐Ÿ๐Ÿ โˆ’ ๐‘ด ๐Ÿ๐Ÿ ๐‘ด ๐Ÿ๐Ÿ โˆ— ) + ๐’Š(๐‘ด ๐Ÿ๐Ÿ โˆ— ๐‘ด ๐Ÿ๐Ÿ โˆ’ ๐‘ด ๐Ÿ๐Ÿ ๐‘ด ๐Ÿ๐Ÿ โˆ— ). Here ๐‘ด = ๐‘ด ๐’„๐’˜ is Jones matrix for cw-waves (clockwise). For minimal and quasi- minimal FRI from Fig. 1, one has for counter-clockwise (ccw) waves ๐‘ด ๐’„๐’„๐’˜ = (๐‘ด ๐’„๐’˜) ๐‘ป (โ€œTโ€ is transposing operation). Thus, the problem is to determine the values ๐‘จ ๐ŸŽโˆ’๐Ÿ‘(๐Ž, ๐’•) i.e. ๐‘ด๐’Š,๐’‹(๐Ž, ๐’•). Below, simplified analytical models are treated for perfect splices (Fig. 1) and for input lightguide without polarisation mode coupling (PMC), which is perfect input lightguide (treating the model with imperfect splices is the future step). Thus, only PMC in fibre coil is assumed as the source of PNR here. More complex problems could be treated only numerically, while presented below analytical approach, besides the illustrative purposes, provides the basis for numerical models checking. 3. Polarisation mode coupling in PZ-fibre and its Jones matrix Fibre Jones matrix could be derived from polarisation mode coupling (PMC) equations in the form of [7], generalised for the case of PZ-fibre: [๐’… ๐’…๐’›โ„ + ๐ƒ ๐’™ ๐Ÿโ„ + ๐’Š๐œท ๐’™(๐€)]๐’‚ ๐’™(๐€, ๐’›) = ๐’Š๐’„ ๐’™,๐’š(๐’›)๐’‚ ๐’š(๐€, ๐’›), [ ๐’… ๐’…๐’›โ„ + ๐ƒ ๐’š ๐Ÿโ„ + ๐’Š๐œท ๐’š ( ๐€)] ๐’‚ ๐’š( ๐€, ๐’›) = ๐’Š๐’„ ๐’š,๐’™( ๐’›) ๐’‚ ๐’™( ๐€, ๐’›). (3) In the case of ๐ƒ ๐’™,๐’š = ๐ŸŽ, the total optical power |๐’‚ ๐’™(๐€, ๐’›)| ๐Ÿ + |๐’‚ ๐’š(๐€, ๐’›)| ๐Ÿ = ๐’„๐’๐’๐’”๐’•, so one must set ๐’„ ๐’™,๐’š(๐’›) = ๐’„ ๐’š,๐’™ โˆ— (๐’›). Obviously, dichroism do not break this condition, because it does not influence the PMC sources (i.e., the functions ๐’„ ๐’™,๐’š(๐’›) and ๐’„ ๐’š,๐’™(๐’›)). Also, for weak-guiding fibres, which are used in FOG, their two polarisation fundamental modes have almost the same electrical (and magnetic) fields with quasi-Gaussian distributions, ๐’† ๐’™(๐’™, ๐’š) โ‰ˆ ๐’† ๐’š(๐’™, ๐’š) โ‰ˆ ๐’†(๐’™, ๐’š), which is the real function, so ๐’„ ๐’™,๐’š(๐’›) = ๐’„ ๐’š,๐’™ โˆ— (๐’›) โ‰ˆ ๐’„(๐’›) โ‰ก โˆซ ๐’…๐’™๐’…๐’š๐œน๐’ ๐Ÿ(๐’™, ๐’š, ๐’›)๐’† ๐Ÿ(๐’™, ๐’š) โˆซ ๐’…๐’™๐’…๐’š๐’† ๐Ÿ(๐’™, ๐’š)โ„ , where ๐œน๐’ ๐Ÿ(๐’™, ๐’š, ๐’›) is dielectric tensor perturbation due to external or internal sources [7], varying with ๐’› randomly, and leading to randomly distributed PMC. Thus, the latter could be described by real random function ๐’„(๐’›) for both equations (3). For their solution, one may represent the amplitudes ๐’‚ ๐’™,๐’š(๐’›) as ๐’‚ ๐’™,๐’š(๐€, ๐’›) = ๐‘จ ๐’™,๐’š(๐€, ๐’›)๐’†๐’™๐’‘{โˆ’[๐ƒ ๐’™,๐’š ๐Ÿโ„ + ๐’Š๐œท ๐’™,๐’š(๐€)]๐’›}, so equations (3) will be rewritten as ๐’…๐‘จ ๐’™(๐€, ๐’›) ๐’…๐’›โ„ = ๐’Š๐’„(๐’›)๐‘จ ๐’š(๐€, ๐’›)๐’†๐’™๐’‘{[โˆ’ ๐ƒ ๐Ÿโ„ + ๐’Šโˆ†๐œท(๐€)]๐’›}, ๐’…๐‘จ ๐’š(๐€, ๐’›) ๐’…๐’›โ„ = ๐’Š๐’„(๐’›)๐‘จ ๐’™(๐€, ๐’›)๐’†๐’™๐’‘{[๐ƒ ๐Ÿโ„ โˆ’ ๐’Šโˆ†๐œท(๐€)]๐’›}, and solved as ๐‘จ ๐’™(๐€, ๐’›) = ๐‘จ ๐’™(๐€, ๐ŸŽ) + ๐’Š โˆซ ๐’…๐’”๐’„(๐’”)๐‘จ ๐’š(๐€, ๐’”)๐’†๐’™๐’‘{[โˆ’ ๐ƒ ๐Ÿโ„ + ๐’Šโˆ†๐œท(๐€)]๐’”} ๐’› ๐ŸŽ , ๐‘จ ๐’š(๐€, ๐’›) = ๐‘จ ๐’š(๐€, ๐ŸŽ) + ๐’Š โˆซ ๐’…๐’”๐’„(๐’”)๐‘จ ๐’™(๐€, ๐’”)๐’†๐’™๐’‘{[๐ƒ ๐Ÿโ„ โˆ’ ๐’Šโˆ†๐œท(๐€)]๐’”} ๐’› ๐ŸŽ , (4) where ๐ƒ โ‰ก ๐ƒ ๐’š โˆ’ ๐ƒ ๐’™ is the fibre dichroism ( ๐ƒ ๐’™,๐’š are x- and y-modes losses), โˆ†๐œท(๐€) โ‰ก ๐œท ๐’™(๐€) โˆ’ ๐œท ๐’š(๐€) is the fibre modal birefringence at optical frequency ๐€. Here an optical frequency ๐€-dependence is introduced explicitly in order to stress the polychromatic nature of light and the waveguide dispersion of optical components. However, the dichroism ๐ƒ is left independent on ๐€, because practical PZ-fibre is the component with dichroism only within the finite spectral range (window), being often in complicated dependence on ๐€, so some minimal ๐ƒ-value within this window is assumed. In the first order of PMC, (4) could be rewritten as ๐‘จ ๐’™(๐€, ๐’›) = ๐‘จ ๐’™(๐€, ๐ŸŽ) + ๐’Š๐‘จ ๐’š(๐€, ๐ŸŽ) โˆซ ๐’…๐’”๐’„(๐’”)๐’†๐’™๐’‘{[โˆ’ ๐ƒ ๐Ÿโ„ + ๐’Šโˆ†๐œท(๐€)]๐’”} ๐’› ๐ŸŽ , ๐‘จ ๐’š(๐€, ๐’›) = ๐‘จ ๐’š(๐€, ๐ŸŽ) + ๐’Š๐‘จ ๐’™(๐€, ๐ŸŽ) โˆซ ๐’…๐’”๐’„(๐’”)๐’†๐’™๐’‘{[๐ƒ ๐Ÿโ„ โˆ’ ๐’Šโˆ†๐œท(๐€)]๐’”} ๐’› ๐ŸŽ , (5)
  • 3. Here, under integrals in (4), ๐‘จ ๐’š(๐€, ๐’”) โ‰ˆ ๐‘จ ๐’š(๐€, ๐ŸŽ) is set. For PZ-fibre, one, thus, yields the following Jones matrix: ๐‘ญ(๐€) = ( ๐’‚(๐€, ๐‘ณ) ๐’Š๐’‚(๐€, ๐‘ณ)๐’Œ ๐Ÿ(๐€) ๐’Š๐‘ฎ(๐‘ณ)๐’‚โˆ—(๐€, ๐‘ณ)๐’Œ ๐Ÿ(๐€) ๐‘ฎ(๐‘ณ)๐’‚โˆ—(๐€, ๐‘ณ) ), (6) where ๐’Œ ๐Ÿ(๐€) = โˆซ ๐’…๐’›๐’„(๐’›)๐‘ฎ(๐’›)๐’‚(๐€, โˆ’๐Ÿ๐’›) ๐‘ณ ๐ŸŽ , ๐’Œ ๐Ÿ(๐€) = โˆซ ๐’…๐’›๐’„(๐’›)๐‘ฎโˆ’๐Ÿ(๐’›)๐’‚(๐€, ๐Ÿ๐’›) ๐‘ณ ๐ŸŽ , ๐‘ฎ(๐’™) = ๐’†๐’™๐’‘(โˆ’ ๐ƒ๐’™ ๐Ÿโ„ ), ๐’‚(๐€, ๐’™) = ๐’†๐’™๐’‘[โˆ’๐’Š ๐œŸ๐œท(๐€)๐’™ ๐Ÿโ„ ]. A multiplier ๐’†๐’™๐’‘{โˆ’๐’Š[๐œท ๐’™(๐€) + ๐œท ๐’š(๐€)] ๐‘ณ ๐Ÿโ„ โˆ’ ๐ƒ ๐’™ ๐‘ณ ๐Ÿโ„ } is omitted, the same for all ๐‘ญ๐’Š,๐’‹(๐€), so it does not lead to PNR. For ๐ƒ ๐’™,๐’š = ๐ŸŽ (usual case of lossless polarisation maintaining fibre) one has the matrix elements from [8]. 4. Hi-Bi fibre characterising by h-parameter Conventional characteristic of Hi-Bi fibre is h-parameter [9], which characterises the fibre when only one input field component is excited, say, ๐‘ฌ ๐’™(๐€). This parameter could be measured as the ratio of output intensities โŒฉ๐‘ท ๐’™,๐’šโŒช = โŒฉ|๐‘ฌ ๐’™,๐’š(๐€)| ๐Ÿฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ… โŒช, where the angle brackets are the averaging over ensemble of large number of fibres and (โ€ฆ )ฬ…ฬ…ฬ…ฬ…ฬ… โ‰ก โˆซ ๐’…๐€(โ€ฆ )๐‘บ(๐€) โˆž ๐ŸŽ is the averaging over spectrum. For the case โŒฉ๐‘ท ๐’šโŒช โ‰ช โŒฉ๐‘ท ๐’™โŒช, which should correspond to small PNR, h- parameter is defined in the following approximate form [9]: ๐’‰ โ‰ˆ ๐‘ณโˆ’๐Ÿ โŒฉ๐‘ท ๐’šโŒช โŒฉ๐‘ท ๐’™โŒชโ„ . (7) Using (6), one may yield โŒฉ๐‘ท ๐’™โŒช โ‰ˆ โŒฉ|๐’‚(๐€, ๐‘ณ)| ๐Ÿฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…โŒช = โˆซ ๐’…๐€๐‘บ(๐€) โˆž ๐ŸŽ and the following: โŒฉ๐‘ท ๐’šโŒช โ‰ˆ โŒฉ|๐’Œ ๐Ÿ(๐€)| ๐Ÿฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…โŒช = โˆซ ๐’…๐’›๐’…๐’™โŒฉ๐’„(๐’›)๐’„(๐’™)โŒชะ“(๐’› + ๐’™)๐’†๐’™๐’‘[๐’Š๐œŸ๐œท(๐€)(๐’› โˆ’ ๐’™)]ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ… ๐‘ณ ๐ŸŽ = = โˆซ ๐’…๐’›๐’…๐’™๐‘ช(๐’› โˆ’ ๐’™)ะ“(๐’› + ๐’™)๐œช(๐’› โˆ’ ๐’™) ๐‘ณ ๐ŸŽ , (8) where ๐‘ช(๐’› โˆ’ ๐’™) = โŒฉ๐’„(๐’›)๐’„(๐’™)โŒช is PMC autocorrelation function ( ๐’„(๐’›) is assumed stationary). Also, ๐œช(๐’š) โ‰ก ๐’†๐’™๐’‘[๐’Š๐œŸ๐œท(๐€)๐’š]ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…. For its calculating, one may implement the decomposition ๐œŸ๐œท(๐€) โ‰ˆ ๐œŸ๐œท ๐ŸŽ + ๐‘ซ(๐€ โˆ’ ๐€ ๐ŸŽ) [9], where ๐œŸ๐œท ๐ŸŽ = ๐œŸ๐œท(๐€ ๐ŸŽ), ๐‘ซ = (๐’…๐œŸ๐œท ๐’…๐€โ„ )] ๐€ ๐ŸŽ . For Panda-type fibres, one has ๐œŸ๐œท(๐€) โ‰ˆ ๐Ÿ๐…๐‘ฉ ๐€โ„ ( ๐‘ฉ โ‰ก ๐’ ๐’™ โˆ’ ๐’ ๐’š is fibre material birefringence), so ๐‘ซ โ‰ˆ โˆ’ ๐Ÿ๐…๐‘ฉ ๐€โ„ ๐ŸŽ ๐Ÿ . As a result, ๐œช(๐’š) โ‰ˆ ๐’†๐’™๐’‘(๐’Š๐œŸ๐œท ๐ŸŽ ๐’š)๐‘ฎ(๐’š), (9) where ๐‘ฎ(๐’š) = ๐’†๐’™๐’‘[๐’Š๐‘ซ(๐€ โˆ’ ๐€ ๐ŸŽ)๐’š]ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ…ฬ… is complex coherence function. Thus, one may rewrite (7) in the form ๐’‰ โ‰ˆ ๐Ÿ ๐‘ณ โˆซ ๐’…๐’–๐‘ช(๐’–)๐œช(๐’–) โˆซ ๐’…๐’—ะ“(๐’—) ๐‘ณ ๐ŸŽ ๐‘ณ โˆ’๐‘ณ โ‰ˆ [ ๐Ÿโˆ’๐‘ฎ ๐Ÿ(๐‘ณ) ๐ƒ๐‘ณ ] โˆซ ๐’…๐’–๐‘ช(๐’–)๐’(๐’–) +โˆž โˆ’โˆž , (10) where in (8), variables were changed as ๐’– = ๐’› โˆ’ ๐’™ and ๐Ÿ๐’— = ๐’› + ๐’™. Usually, their integration limits are determined according to some a little bit complex procedure (see [10]), but here it is set that ๐’– is range from โ€“ ๐‘ณ (minimal possible value of ๐’› โˆ’ ๐’™) to +๐‘ณ (maximal possible value of ๐’› โˆ’ ๐’™), while ๐’— ranges from ๐ŸŽ to +๐‘ณ. Also, ๐’(๐’š) โ‰ก ๐‘ถ(๐’š) โˆซ ๐’…๐€๐‘บ(๐€) โˆž ๐ŸŽ โ„ , so a normalised coherence function could be introduced: ๐’ˆ(๐’š) โ‰ก ๐‘ฎ(๐’š) โˆซ ๐’…๐€๐‘บ(๐€) โˆž ๐ŸŽ โ„ = โˆซ ๐’…๐€๐’†๐’™๐’‘[๐’Š๐‘ซ(๐€ โˆ’ ๐€ ๐ŸŽ)๐’š]๐‘บ(๐€) โˆž ๐ŸŽ โˆซ ๐’…๐€๐‘บ(๐€) โˆž ๐ŸŽ โ„ . (11) so ๐’(๐’–) = ๐’†๐’™๐’‘(๐’Š๐œŸ๐œท ๐ŸŽ ๐’–)๐’ˆ(๐’–). For PM-fibre ( ๐ƒ = ๐ŸŽ) and for practical PZ-fibre ( ๐‘ฎ ๐Ÿ(๐‘ณ) โ‰ˆ ๐ŸŽ) one has the following:
  • 4. ๐’‰ ๐‘ท๐‘ด โ‰ˆ โˆซ ๐’…๐’–๐‘ช(๐’–)๐’(๐’–) +โˆž โˆ’โˆž , ๐’‰ ๐‘ท๐’ โ‰ˆ ๐’‰ ๐‘ท๐‘ด ๐ƒ๐‘ณโ„ , which means that ๐’‰ ๐‘ท๐‘ด ๐’‰ ๐‘ท๐’ โ‰ซ ๐Ÿโ„ . This was observed experimentally in the form of extremely small h- parameter which could belong only to PZ-fibre [11]. Also, this means that โŒฉ๐‘ท ๐’šโŒช-value of PM-fibre is proportional to ๐‘ณ, while for PZ-fibre it is constant, because the feeding of โŒฉ๐‘ท ๐’šโŒช by โŒฉ๐‘ท ๐’™โŒช through PMC is counter-balanced by attenuation of โŒฉ๐‘ท ๐’šโŒช. Expression (10) contains the normalised coherence function ๐’ˆ(๐’–). For symmetrical spectra relative to the central frequency ๐Ž ๐ŸŽ, from (11), one has ๐ˆ๐ฆ๐’ˆ(๐’š) = โˆซ ๐’…๐€๐’”๐’Š๐’[๐‘ซ(๐€ โˆ’ ๐€ ๐ŸŽ)๐’š]๐‘บ(๐€) โˆž ๐ŸŽ โˆซ ๐’…๐€๐‘บ(๐€) โˆž ๐ŸŽ = [๐‘บ(๐€) โ†’ ๐‘บ(๐€ โˆ’ ๐€ ๐ŸŽ)] = โˆซ ๐’…๐€๐’”๐’Š๐’(๐‘ซ๐€๐’š)๐‘บ(๐€) โˆž โˆ’๐€ ๐ŸŽ โˆซ ๐’…๐€๐‘บ(๐€) โˆž ๐ŸŽ โ‰ˆ โ‰ˆ (๐€ ๐ŸŽ โ‰ซ ๐œน๐€) โ‰ˆ ๐œน๐€ โˆซ ๐’…๐’–๐ฌ๐ข๐ง(๐‘ซ๐’–๐œน๐€๐’š)๐‘บ(๐’–) โˆž โˆ’โˆž โˆซ ๐’…๐€๐‘บ(๐€) โˆž ๐ŸŽ โ‰ˆ ๐ŸŽ, because sinus is the odd function, while symmetrical spectrum ๐‘บ(๐€) is the even function. In this case, ๐’ˆ(๐’š) = โˆซ ๐’…๐€๐œ๐จ๐ฌ[๐‘ซ(๐€โˆ’๐€ ๐ŸŽ)๐’š]๐‘บ(๐€) โˆž ๐ŸŽ โˆซ ๐’…๐€๐‘บ(๐€) โˆž ๐ŸŽ โ‰ˆ โˆซ ๐’…๐’–๐œ๐จ๐ฌ(๐‘ซ๐’–๐œน๐€๐’š)๐‘บ(๐’–) โˆž โˆ’โˆž โˆซ ๐’…๐’–๐‘บ(๐’–) โˆž โˆ’โˆž . For example, Gaussian spectrum yields ๐’ˆ(๐’š) โ‰ˆ โˆซ ๐’…๐’–๐’„๐’๐’”(๐‘ซ๐’–๐šซ๐€๐’š)๐’†๐’™๐’‘(โˆ’๐’– ๐Ÿ) โˆž โˆ’โˆž โˆซ ๐’…๐’–๐’†๐’™๐’‘(โˆ’๐’– ๐Ÿ) โˆž โˆ’โˆž = ( ๐Ÿ ๐‘ซ๐šซ๐€ โ‰ก ๐‘ณ ๐’…๐’†๐’„) = ๐’†๐’™๐’‘[โˆ’(๐’š ๐‘ณ ๐’…๐’†๐’„โ„ ) ๐Ÿ]. For Panda-type fibres, one has ๐‘ซ โ‰ˆ โˆ’ ๐Ÿ๐…๐‘ฉ ๐€โ„ ๐ŸŽ ๐Ÿ , so ๐‘ณ ๐’…๐’†๐’„ โ‰ˆ ๐€ ๐ŸŽ ๐Ÿ (๐…๐œŸ๐€๐‘ฉ)โ„ . Thus, ๐’ˆ(๐’š) could be set ๐’ˆ(๐’š) โ‰ˆ ๐ŸŽ for |๐’š| > ๐Ÿ‘๐‘ณ ๐œธ. For modern typical values ๐œŸ๐€ = ๐Ÿ‘๐ŸŽ nm and ๐‘ฉ = ๐Ÿ’ร—๐Ÿ๐ŸŽโˆ’๐Ÿ’ , one has only ๐‘ณ ๐œธ โ‰ˆ ๐Ÿ”๐Ÿ’ mm. This is the reason why PNR was managed to be reduced dramatically, according to Eq. (1). Similar to this, one may yield the function ๐’ˆ(๐’š) for some other spectra, also yielding non-zero values only in the small region near ๐’š = ๐ŸŽ. As for PMC correlation function ๐‘ช(๐’–), the simplest case is delta-correlated ๐‘ช(๐’–) = ๐‘ช ๐ŸŽ ๐œน(๐’–), so ๐’‰ ๐‘ท๐‘ด โ‰ˆ ๐‘ช ๐ŸŽ โ‰ˆ ๐ƒ๐‘ณ๐’‰ ๐‘ท๐’. There is no dependence on birefringence and light spectrum parameters. This is the case of anisotropic Rayleigh scattering, which is the fundamental limit of fibre polarisation maintaining (PM) ability [12]. However, experimental results reveal considerably lower PM ability, depending on birefringence as ๐’‰ ๐‘ท๐‘ด โ‰ˆ ๐Ÿ๐‘ช ๐ŸŽ (๐Ÿ + ๐œŸ๐œท ๐ŸŽ ๐Ÿ ๐’ ๐’„ ๐Ÿ )โ„ [13], and for Hi-Bi fibres with ๐œŸ๐œท ๐ŸŽ ๐’ ๐’„ โ‰ซ ๐Ÿ, so ๐’‰ ๐‘ท๐‘ด โ‰ˆ ๐Ÿ๐‘ช ๐ŸŽ ๐œŸ๐œท ๐ŸŽ โˆ’๐Ÿ ๐’ ๐’„ โˆ’๐Ÿ . Thus, for ๐‘ช(๐’–) one should use another model with correlation length ๐’ ๐’„ larger than the beat length. Assume that ๐‘ช(๐’–) is independent on ๐ƒ, so the case ๐ƒ = ๐ŸŽ is enough (PM-fibre). Consider (10) for two extreme cases of ๐’ ๐’„ โ‰ช ๐‘ณ ๐’…๐’†๐’„ and ๐’ ๐’„ โ‰ซ ๐‘ณ ๐’…๐’†๐’„: ๐’‰(๐’ ๐’„ โ‰ช ๐‘ณ ๐œธ) โ‰ˆ ๐Ÿ โˆซ ๐’…๐’–๐‘ช(๐’–)๐’„๐’๐’”(๐œŸ๐œท ๐ŸŽ ๐’–) +โˆž ๐ŸŽ , ๐’‰(๐’ ๐’„ โ‰ซ ๐‘ณ ๐œธ) โ‰ˆ ๐‘ช ๐ŸŽ ๐’ ๐’„ โˆ’๐Ÿ โˆซ ๐’…๐’–๐’ˆ(๐’–)๐’†๐’™๐’‘(๐’Š๐œŸ๐œท ๐ŸŽ ๐’–) +โˆž โˆ’โˆž . First expression is presented in [13, 14, 15], being conventional until in [12] a coherence function ๐’ˆ(๐’–) was taken into account. For exponential correlator [12] ๐‘ช(๐’–) = ๐’ ๐’„ โˆ’๐Ÿ ๐’†๐’™๐’‘(โˆ’ |๐’–| ๐’ ๐’„โ„ ) (12) with correlation length ๐’ ๐’„ one yields ๐’‰(๐’ ๐’„ โ‰ช ๐‘ณ ๐œธ) โ‰ˆ ๐Ÿ๐‘ช ๐ŸŽ (๐Ÿ + ๐œŸ๐œท ๐ŸŽ ๐Ÿ ๐’ ๐’„ ๐Ÿ )โ„ , ๐’‰(๐’ ๐’„ โ‰ซ ๐‘ณ ๐œธ) โ‰ˆ (๐‘ช ๐ŸŽ ๐‘ณ ๐œธ ๐’ ๐’„โ„ )[๐‘บ(๐ŸŽ)๐…๐šซ๐€ โˆซ ๐’…๐€๐‘บ(๐€) โˆž ๐ŸŽ โ„ ]. (13) In particular, for Gaussian spectrum, ๐’‰(๐’ ๐’„ โ‰ซ ๐‘ณ ๐œธ) โ‰ˆ (๐‘ช ๐ŸŽ ๐‘ณ ๐œธ ๐’ ๐’„โ„ )๐’†๐’™๐’‘[โˆ’(๐€ ๐ŸŽ ๐šซ๐€โ„ ) ๐Ÿ], which is too unrealistic, unlike the expression for ๐’‰(๐’ ๐’„ โ‰ช ๐‘ณ ๐œธ), already appeared above as the experimental result. Moreover, another possible functions ๐‘ช(๐’–) (Gaussian, Lorenzian, rectangular etc.) also will not lead to reasonable results neither for ๐’ ๐’„ โ‰ช ๐‘ณ ๐œธ, nor for ๐’ ๐’„ โ‰ซ ๐‘ณ ๐œธ.
  • 5. Exponential correlator means the following: if singular perturbation of fibre occurs at some point ๐’› ๐ŸŽ โ‰ซ ๐’ ๐’„ within the fibre, corresponding fibre distortion ๐’„ ๐ŸŽ decays as ๐’„ ๐ŸŽ ๐’†๐’™๐’‘[โˆ’ (๐’› โˆ’ ๐’› ๐ŸŽ) ๐’ ๐’„โ„ ]. Such distortion could be yielded from ODE with singular imperfection source at point ๐’› ๐ŸŽ in the right-hand side (๐’… ๐’…๐’›โ„ + ๐’ ๐’„ โˆ’๐Ÿ)๐’„(๐’›) = ๐’„ ๐ŸŽ ๐’ ๐’„ โˆ’๐Ÿ ๐œน(๐’› โˆ’ ๐’› ๐ŸŽ). In practice, one has continuously distributed PMC random source along the whole fibre ๐œป(๐’›). Similar ODE with such noise source in right-hand side has the form (๐’… ๐’…๐’›โ„ + ๐’ ๐’„ โˆ’๐Ÿ)๐’„(๐’›) = ๐’„ ๐ŸŽ ๐’ ๐’„ โˆ’๐Ÿ ๐œป(๐’›). If noise source is delta-correlated, i.e. โŒฉ๐œป(๐’›)๐œป(๐’™)โŒช = โŒฉ๐œป(๐’› โˆ’ ๐’™)๐œป(๐ŸŽ)โŒช = ๐œป ๐ŸŽ ๐Ÿ ๐œน(๐’› โˆ’ ๐’™), one yields required auto- correlator (12) [16]. All of this will be used below for PNR estimations. Note also that the condition ๐’ ๐’„ โ‰ช ๐‘ณ ๐œธ should be correct for those of Hi-Bi solid-core microstructured fibres that are already implemented in FOG, because they donโ€™t demonstrate really exotic features that more sophisticated fibre microstructures do for some other applications. PNR calculating Consider FRI with perfect input lightguide and IOC (without PMC), along with perfect splices. Coil PM-fibre, input lightguide and IOC Jones matrices have the form [12], according to (6) ๐‘ญ(๐€) = [ ๐’‚(๐‘ณ, ๐€) ๐’Š๐’Œ(๐€) ๐’Š๐’Œโˆ—(๐€) ๐’‚(โˆ’๐‘ณ, ๐€) ], ๐‘ญ๐’Š๐’(๐€) = [ ๐’‚๐’Š๐’(๐‘ณ๐’Š๐’, ๐€) ๐ŸŽ ๐ŸŽ ๐‘ฎ๐’Š๐’(๐‘ณ๐’Š๐’)๐’‚๐’Š๐’(โˆ’๐‘ณ๐’Š๐’, ๐€) ], ๐‘ฐ๐‘ถ๐‘ช(๐€) = ๐Ÿ โˆš๐Ÿ [ ๐’‚ ๐‘ฐ๐‘ถ๐‘ช(๐‘ณ ๐‘ฐ๐‘ถ๐‘ช, ๐€) ๐ŸŽ ๐ŸŽ ๐œบ๐’‚ ๐‘ฐ๐‘ถ๐‘ช(โˆ’๐‘ณ ๐‘ฐ๐‘ถ๐‘ช, ๐€) ]. Here, according to the above, it is assumed that only coil fibre possesses PMC. FRI Jones matrix for cw- wave, thus, could be written as ๐‘ด = ๐‘ญ๐’Š๐’ ๐‘ป ร—๐‘ฐ๐‘ถ๐‘ช ๐‘ป ร—๐‘ญร—๐‘ฐ๐‘ถ๐‘ชร—๐‘ญ๐’Š๐’ with elements ๐‘ด ๐Ÿ๐Ÿ(๐€) = ๐‘จ(๐€)๐’‚(๐‘ณ, ๐€), ๐‘ด ๐Ÿ๐Ÿ(๐€) = ๐’Š๐œบ๐‘ฎ๐’Š๐’(๐‘ณ๐’Š๐’)๐’Œ(๐€), ๐‘ด ๐Ÿ๐Ÿ(๐€) = โˆ’๐’Šร—๐‘ด ๐Ÿ๐Ÿ โˆ— (๐€), ๐‘ด ๐Ÿ๐Ÿ(๐€) = ๐œบ ๐Ÿ ๐‘จ(๐€)๐‘ฎ๐’Š๐’ ๐Ÿ (๐‘ณ๐’Š๐’)๐‘ด ๐Ÿ๐Ÿ โˆ— (๐€), ๐‘จ(๐€) โ‰ก ๐’‚๐’Š๐’ ๐Ÿ (๐‘ณ๐’Š๐’, ๐€)๐’‚ ๐‘ฐ๐‘ถ๐‘ช ๐Ÿ (๐‘ณ ๐‘ฐ๐‘ถ๐‘ช, ๐€). Value of ๐‘ท๐‘ต๐‘น ๐Ÿ is determined from Eq. (2), and for its mean value one has ๐‘ท๐‘ต๐‘น ๐Ÿ = ๐Ÿ๐œบ ๐Ÿ ๐‘ฎ๐’Š๐’ ๐Ÿ (๐‘ณ๐’Š๐’) โˆซ ๐’…๐€๐‘บ(๐€)๐‘ฐ๐’Ž๐’Œ(๐€)๐‘น๐’†๐’Œ(๐€) = = โˆ’๐œบ ๐Ÿ ๐‘ฎ๐’Š๐’ ๐Ÿ (๐‘ณ๐’Š๐’)๐‘ฐ๐’Ž โˆซ ๐’…๐’›๐’…๐’™๐’„(๐’›)๐’„(๐’™)๐ž๐ฑ๐ฉ[๐Ÿ๐’Š๐šซ๐œท ๐ŸŽ(๐‘ณ โˆ’ ๐’› โˆ’ ๐’™)]ะ“(๐‘ณ โˆ’ ๐’› โˆ’ ๐’™) ๐‘ณ ๐ŸŽ . (14) For RMS error, the following could be written: ๐ˆ(๐‘ท๐‘ต๐‘น ๐Ÿ) = ๐Ÿ๐œบ ๐Ÿ ๐‘ฎ๐’Š๐’ ๐Ÿ (๐‘ณ๐’Š๐’)โˆšโˆซ ๐’…๐€๐’…๐€/ ๐‘บ(๐€)๐‘บ(๐€/)โŒฉ๐‘ฐ๐’Ž๐‘ฒ(๐€)๐‘น๐’†๐‘ฒ(๐€)๐‘ฐ๐’Ž๐‘ฒ(๐€/)๐‘น๐’†๐‘ฒ(๐€/)โŒช, (15) where ๐‘ฒ(๐€) โ‰ก ๐’‚(๐‘ณ, ๐€)๐’Œ(๐€). In Ref. [8], it is mentioned that ๐‘ฐ๐’Ž๐‘ฒ(๐€) and ๐‘น๐’†๐‘ฒ(๐€) are uncorrelated. This could be proved by above methods implemented for h-parameter, yielding โŒฉ๐‘ฐ๐’Ž๐‘ฒ(๐€)๐‘น๐’†๐‘ฒ(๐€)โŒช โ‰ˆ ๐ŸŽ. Thus, โŒฉ๐‘ฐ๐’Ž๐‘ฒ(๐€)๐‘น๐’†๐‘ฒ(๐€)๐‘ฐ๐’Ž๐‘ฒ(๐€/ )๐‘น๐’†๐‘ฒ(๐€/ )โŒช โ‰ˆ โŒฉ๐‘ฐ๐’Ž๐‘ฒ(๐€)๐‘ฐ๐’Ž๐‘ฒ(๐€/ )โŒชโŒฉ๐‘น๐’†๐‘ฒ(๐€)๐‘น๐’†๐‘ฒ(๐€/ )โŒช. Consequently, the integral from Eq. (15) may be written as โˆซ ๐’…๐’›๐’…๐’™๐’…๐’’๐’…๐’‘๐‘ช(๐’› โˆ’ ๐’™)๐‘ช(๐’’ โˆ’ ๐’‘)๐‘ฐ(๐’› โˆ’ ๐’’)๐‘ฐ(๐’™ โˆ’ ๐’‘) ๐‘ณ ๐ŸŽ ,
  • 6. where ๐‘ฐ(๐’”) โ‰ก ๐ˆ๐ฆ[๐’†๐’™๐’‘(๐’Š๐œŸ๐œท ๐ŸŽ ๐’”)ะ“(๐’”)] (values with ๐’› + ๐’’ and ๐’™ + ๐’‘ yield zeros). Because of ๐’ ๐’„ โ‰ช ๐‘ณ ๐œธ (see above), correlators ๐‘ช(๐’› โˆ’ ๐’™) and ๐‘ช(๐’’ โˆ’ ๐’‘) are similar to Dirac delta-functions for ะ“(๐’› โˆ’ ๐’’) and ะ“(๐’™ โˆ’ ๐’‘), so it is possible to write ะ“(๐’™ โˆ’ ๐’‘) โ‰ˆ ะ“(๐’› โˆ’ ๐’’). Unfortunately, this is not the case for values like ๐’‚(๐’› โˆ’ ๐’’, ๐€) and ๐’‚(๐’™ โˆ’ ๐’‘, ๐€), because ๐’ ๐’„ ๐šซ๐œท ๐ŸŽ โ‰ซ ๐Ÿ. For symmetric spectrum, one, thus, has the following: โˆซ ๐’…๐€๐’…๐€/ ๐‘บ(๐€)๐‘บ(๐€/ )โŒฉ๐‘ฐ๐’Ž๐‘ฒ(๐€)๐‘ฐ๐’Ž๐‘ฒ(๐€/ )โŒชโŒฉ๐‘น๐’†๐‘ฒ(๐€)๐‘น๐’†๐‘ฒ(๐€/ )โŒช โ‰ˆ โ‰ˆ ๐Ÿ ๐Ÿ ๐‘น๐’† โˆซ ๐’…๐’›๐’…๐’’ ๐‘ณ ๐ŸŽ ะ“ ๐Ÿ(๐’› โˆ’ ๐’’)๐‘ฏ(๐’›)๐‘ฏโˆ—(๐’’) โ‰ˆ ๐Ÿ ๐Ÿ ๐‘ณ โˆซ ๐’…๐’– โˆž ๐ŸŽ ะ“ ๐Ÿ(๐’–). (16) Here the following was used: ๐‘ฏ(๐’›) โ‰ก โˆซ ๐’…๐’™๐‘ช(๐’› โˆ’ ๐’™)๐’†๐’™๐’‘[๐’Š๐œŸ๐œท ๐ŸŽ(๐’› โˆ’ ๐’™)] ๐‘ณ ๐ŸŽ โ‰ˆ ๐’‰ โˆ’ ๐’‰(๐Ÿ + ๐’Š๐œŸ๐œท ๐ŸŽ ๐’ ๐’„)๐’†๐’™๐’‘[โˆ’(๐’ ๐’„ โˆ’๐Ÿ โˆ’ ๐’Š๐œŸ๐œท ๐ŸŽ)๐’›] โ‰ˆ ๐’‰. (17) This integral could be taken directly, i.e. substituting Eq. (12) for ๐‘ช(๐’› โˆ’ ๐’™) and dividing the integration as โˆซ ๐’…๐’™(โ€ฆ ) ๐’› ๐ŸŽ + โˆซ ๐’…๐’™(โ€ฆ ) ๐‘ณ ๐’› , so for the first of them ๐‘ช(๐’› โˆ’ ๐’™) = ๐’ ๐’„ โˆ’๐Ÿ ๐’†๐’™๐’‘[โˆ’ (๐’› โˆ’ ๐’™) ๐’ ๐’„โ„ ], while for the second one ๐‘ช(๐’› โˆ’ ๐’™) = ๐’ ๐’„ โˆ’๐Ÿ ๐’†๐’™๐’‘[โˆ’ (๐’™ โˆ’ ๐’›) ๐’ ๐’„โ„ ]. The last approximation in (17) is made in the sense of integrating in Eq. (16), i.e. ๐’‰ will contribute into integral much larger than ๐’‰(๐Ÿ + ๐’Š๐œŸ๐œท ๐ŸŽ ๐’ ๐’„)๐’†๐’™๐’‘[โˆ’(๐’ ๐’„ โˆ’๐Ÿ โˆ’ ๐’Š๐œŸ๐œท ๐ŸŽ)๐’›], because the latter is zero for ๐’› > ๐’ ๐’„. Thus, for Gaussian spectrum, Eq. (16) yields ๐ˆ(๐‘ท๐‘ต๐‘น ๐Ÿ) = ๐œบ ๐Ÿ ๐‘ฎ๐’Š๐’ ๐Ÿ (๐‘ณ๐’Š๐’)โˆš๐Ÿ๐‘ณ โˆซ ๐’…๐’– โˆž ๐ŸŽ ะ“ ๐Ÿ(๐’–) = ๐œบ ๐Ÿ ๐‘ฎ๐’Š๐’ ๐Ÿ (๐‘ณ๐’Š๐’)โˆš๐Ÿ๐‘ณ โˆซ ๐’…๐’– โˆž ๐ŸŽ ๐’†๐’™๐’‘[โˆ’๐Ÿ(๐’– ๐‘ณ ๐’…๐’†๐’„โ„ ) ๐Ÿ] = = ๐ŸŽ. ๐Ÿ“๐œบ ๐Ÿ ๐‘ฎ๐’Š๐’ ๐Ÿ (๐‘ณ๐’Š๐’)โˆšโˆš ๐…๐‘ณ๐‘ณ ๐’…๐’†๐’„ โ‰ˆ ๐ŸŽ. ๐Ÿ”๐Ÿ•๐œบ ๐Ÿ ๐‘ฎ๐’Š๐’ ๐Ÿ (๐‘ณ๐’Š๐’)โˆš๐‘ณ๐‘ณ ๐’…๐’†๐’„ This agrees well with result from (1) in the absence of input lightguide ( ๐‘ฎ๐’Š๐’ ๐Ÿ (๐‘ณ๐’Š๐’) = ๐Ÿ). For other spectra, coefficient 0.67 will be replaced by some other ones, order of unity. For ๐‘ท๐‘ต๐‘น ๐Ÿ value from Eq. (2), using the above described method, one has ๐‘ท๐‘ต๐‘น ๐Ÿ = ๐‘ท๐‘ต๐‘น ๐Ÿ (๐’ƒ๐’†๐’ˆ) + ๐‘ท๐‘ต๐‘น ๐Ÿ (๐’†๐’๐’…) , ๐‘ท๐‘ต๐‘น ๐Ÿ (๐’ƒ๐’†๐’ˆ) โ‰ก ๐œบ๐‘ฎ๐’Š๐’(๐‘ณ๐’Š๐’)๐‘น๐’† โˆซ ๐’…๐’›๐’„(๐’›)๐’†๐’™๐’‘(โˆ’๐’Š๐œŸ๐œท ๐ŸŽ ๐’›)ะ“(๐’› + ๐’› ๐ŸŽ) ๐‘ณ ๐ŸŽ , ๐‘ท๐‘ต๐‘น ๐Ÿ (๐’†๐’๐’…) = โˆ’๐œบ๐‘ฎ๐’Š๐’(๐‘ณ๐’Š๐’)๐‘น๐’† โˆซ ๐’…๐’›๐’„(๐’›)๐’†๐’™๐’‘(โˆ’๐’Š๐œŸ๐œท ๐ŸŽ ๐’›)ะ“(๐‘ณ โˆ’ ๐’› โˆ’ ๐’› ๐ŸŽ) ๐‘ณ ๐ŸŽ , where ๐’› ๐ŸŽ โ‰ก (๐‘ฉ๐’Š๐’ ๐‘ณ๐’Š๐’ + ๐‘ฉ ๐‘ฐ๐‘ถ๐‘ช ๐‘ณ ๐‘ฐ๐‘ถ๐‘ช) ๐‘ฉโ„ . These are two independent contributions to ๐‘ท๐‘ต๐‘น ๐Ÿ from coil fibre initial and final sections of the length order of ๐‘ณ ๐’…๐’†๐’„ โ‰ช ๐‘ณ (basic coherence zones) where ะ“(๐’› + ๐’› ๐ŸŽ) and ะ“(๐‘ณ โˆ’ ๐’› โˆ’ ๐’› ๐ŸŽ) may be non-zero. For ๐’› ๐ŸŽ โ‰ซ ๐‘ณ ๐’…๐’†๐’„, one may write ะ“(๐’› + ๐’› ๐ŸŽ) โ‰ˆ ะ“(๐‘ณ โˆ’ ๐’› โˆ’ ๐’› ๐ŸŽ) โ‰ˆ ๐ŸŽ (basic coherence zones switching off [17], when x- and y-waves enter the coil being completely incoherent), and, thus, ๐‘ท๐‘ต๐‘น ๐Ÿ โ‰ˆ ๐ŸŽ. For ๐’› ๐ŸŽ = ๐ŸŽ, using the above described procedures, one yields ๐‘ท๐‘ต๐‘น ๐Ÿ,๐Ÿ‘~ ๐’” ๐Ÿ,๐Ÿ‘ ๐œบ๐‘ฎ๐’Š๐’(๐‘ณ๐’Š๐’)โˆš๐’‰๐‘ณ ๐’…๐’†๐’„ ๐‘บ๐‘ญโ„ which agrees with that from Eq. (1) for minimal FRI ( ๐‘ฎ๐’Š๐’(๐‘ณ๐’Š๐’) = ๐Ÿ). Similar to this, one may treat minimal FRI with PM-coil and ๐œฝ ๐Ÿ,๐Ÿ = ๐Ÿ’๐Ÿ“ ๐ŸŽ at output splices (Fig. 1), yielding the following: ๐ˆ ๐’Ž๐’Š๐’,๐Ÿ’๐Ÿ“(๐‘ท๐‘ต๐‘น ๐Ÿ) ~ ๐Ÿ’๐’” ๐Ÿ ๐œบ ๐Ÿ โˆš๐’‰๐‘ณ ๐’…๐’†๐’„ ๐‘บ๐‘ญโ„ , ๐ˆ ๐’Ž๐’Š๐’,๐Ÿ’๐Ÿ“(๐‘ท๐‘ต๐‘น ๐Ÿ) ~ ๐Ÿ’๐’” ๐Ÿ ๐œบ๐’‰โˆš๐‘ณ ๐’…๐’†๐’„ ๐‘ณ ๐‘บ๐‘ญโ„ , ๐ˆ ๐’Ž๐’Š๐’,๐Ÿ’๐Ÿ“(๐‘ท๐‘ต๐‘น ๐Ÿ‘) ~ ๐Ÿ๐’” ๐Ÿ‘ ๐œบโˆš๐’‰๐‘ณ ๐’…๐’†๐’„ ๐‘บ๐‘ญโ„ . For ๐ˆ ๐’Ž๐’Š๐’,๐Ÿ’๐Ÿ“(๐‘ท๐‘ต๐‘น ๐Ÿ,๐Ÿ), one yields smaller values than in Eq. (1), but ๐ˆ ๐’Ž๐’Š๐’,๐Ÿ’๐Ÿ“(๐‘ท๐‘ต๐‘น ๐Ÿ‘) = 2๐ˆ ๐’Ž๐’Š๐’(๐‘ท๐‘ต๐‘น ๐Ÿ‘), where ๐ˆ ๐’Ž๐’Š๐’(๐‘ท๐‘ต๐‘น ๐Ÿ‘) is from Eq. (1). This may be treated as PNR reduction for ๐‘ท๐‘ต๐‘น ๐Ÿ,๐Ÿ, but not for ๐‘ท๐‘ต๐‘น ๐Ÿ‘. References 1. R. Ulrich, โ€œFibre-optic rotation sensing with low driftโ€, Opt. Lett. 5, 173 (1980). 2. E. C. Kintner, โ€œPolarisation control in optical-fibre gyroscopesโ€, Opt. Lett. 6, 154 (1981). 3. G.B. Malykin, On the ultimate sensitivity of fiber-optic gyroscopes, Tech. Phys. (2009) 415-418.
  • 7. 4. M.L. Bortz, M.M. Fejer, Annealed proton-exchanged LiNbO3 waveguides, Opt. Lett. (1991) 1844-1846. 5. M. Schlosshauer, โ€œDecoherence, the measurement problem, and interpretations of quantum mechanicsโ€, Rev. Mod. Phys. 76, 1267 (2004). 7. R.A. Kurbatov. Properties of partially polarised thermal-type light for polarisation non-reciprocity characterising of Sagnac fibre ring interferometer, 2017. 6. W. K. Burns, C. Chen, R. P. Moeller, โ€œFibre-optic gyroscopes with broad-band sourcesโ€, J. Lightwave Technol. 1, 98 (1983). 7. J. Sakai, T. Kimura, Polarization behavior in multiply perturbed single-mode fibers, IEEE J. Quant. El. Pp. 59-65, 1982. 8. S. M. Kozel, V. N. Listvin, S. V. Shatalin, R. V. Yushkaitis, โ€œEffect of random inhomogeneities in a fibre lightguide on the null shift in a ring interferometerโ€, Opt. and Spectroscopy 61, 814 (1986). 9. K. Takada, K. Okamoto, J. Noda, โ€œPolarisation mode coupling with a broadband source in birefringent polarisation-maintaining fibres", J. Opt. Soc. Am. A. 2, 753 (1985). 10. L. Mandel and E. Wolf, Optical coherence and quantum optics, Cambridge University Press, 1995. 11. T. Hosaka, Y. Sasaki, K. Okamoto, 3-km long single-polarisation single-mode fibre, Electron. Lett. (1984) 1023-1024. 12. K. Takada, K. Okamoto,, Y. Sasaki, J. Noda, โ€œUltimate limit of polarization cross talk in birefringent polarization-maintaining fibersโ€, JOSA A, p. 1594, 1986. 13. J. Noda, K. Okamoto, K. Sasaki, โ€œPolarisation-maintaining fibres and their applicationsโ€, J. Lightwave Technol. 4, 1071 (1986). 14. I. P. Kaminow โ€œPolarization in optical fibersโ€, IEEE J. Quant. El. pp. 15-22, 1981. 15. K. Okamoto, Y. Sasaki, N. Shibata, โ€œMode coupling effects in stress-applied single polarization fibersโ€ IEEE J. Quant. El. p. 1890,1982. 16. M. Lax, โ€œFluctuations from the nonequilibrium steady stateโ€, Rev. Mod. Phys. 32, 25 (1960). 17. E. Jones, J.W. Parker, Bias reduction by polarisation dispersion in the fibre-optic gyroscope, Electron. Lett. (1986) 54-56.