
Be the first to like this
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our User Agreement and Privacy Policy.
Slideshare uses cookies to improve functionality and performance, and to provide you with relevant advertising. If you continue browsing the site, you agree to the use of cookies on this website. See our Privacy Policy and User Agreement for details.
Published on
A novel system of multisoliton generation using nonlinear equations of the propagating signals is presented. This system uses a PANDA ring resonator incorporated with an add/drop filter system. Using resonant conditions, the intense optical fields known as multisolitons can be generated and propagated within a Kerrtype nonlinear medium. The present simulation results show that multisolitons can be controlled by using additional Gaussian pulses input into the add port of the PANDA system. For the soliton pulse in the microring device, a balance should be achieved between dispersion and nonlinear lengths. Chaotic output signals from the PANDA ring resonator are input into the add/drop filter system. Chaotic signals can be filtered by using the add/drop filter system, in which multi dark and bright solitons can be generated. In this work multi dark and bright solitons with an FWHM and an FSR of 425pm and 1.145 nm are generated, respectively, where the Gaussian pulse with a central wavelength of 1.55 μm and power of 600 mW is input into the system.
Clipping is a handy way to collect and organize the most important slides from a presentation. You can keep your great finds in clipboards organized around topics.
Be the first to comment