SlideShare a Scribd company logo
1 of 30
Download to read offline
Chapter 2. Second-Order Linear ODEs 1
§2.1 Homogeneous Linear ODEs of Second Order
y + p(x)y + q(x)y = r(x), (1)
y + p(x)y + q(x)y = 0, (2)
y(x0) = K0, y (x0) = K1.
Note:
• (2) is called homogeneous.
• If r(x) = 0, then (1) is called nonhomogeneous.
• c1y1 + c2y2 : a linear combination of y1 and y2
• linear, nonlinear
Set L = d2
dx2 + p(x) d
dx
+ q(x), then we write the ODE (1) as
L(y) = r.
L(c1y1 + c2y2) = c1L(y1) + c2L(y2).
Ex. 1. xy + y + xy = 0 : homogeneous linear ODE
2. y y + y 2
= 0 : nonlinear ODE
Theorem 1. Superposition Principle
For a homogeneous linear ODE (2) on open interval I, any linear combina-
tion of two solutions on I is again a solution of (2) on I.
Proof. Let y1 and y2 be solutions of (2) and y = c1y1 + c2y2. Then
y + py + qy
= (c1y1 + c2y2) + p(c1y1 + c2y2) + q(c1y1 + c2y2)
= c1(y1 + py1 + qy1) + c2(y2 + py2 + qy2)
= c10 + c20 = 0.
Hence y = c1y1 + c2y2 is a solution on I.
Computational Science & Engineering (CSE) C. K. Ko
Chapter 2. Second-Order Linear ODEs 2
Example 1. Superposition of Solutions
y1 = cos x and y2 = sin x are solutions of a homogeneous linear
ODE
y + y = 0
for all x. Moreover,
y = c1 cos x + c2 sin x
is also a solution of the ODE.
Example 2. A nonhomogeneous Linear ODE
y1 = 1 + cos x and y2 = 1 + sin x are solutions of a linear nonhomo-
geneous ODE
y + y = 1
for all x. But
y1 + y2 = 2 + cos x + sin x, 2y1 = 2 + 2 cos x
are not solutions of the ODE.
Example 3. A nonlinear ODE
y1 = x2
and y2 = 1 are solutions of a nonlinear ODE
y y − xy = 0
for all x. But
y1 + y2 = x2
+ 1, − y1 = −x2
are not solutions of the ODE.
Computational Science & Engineering (CSE) C. K. Ko
Chapter 2. Second-Order Linear ODEs 3
Definition (General Solution, Basis, Particular Solution)
• y1 and y2 are called linearly independent on an interval I if
k1y1(x) + k2y2(x) = 0, ∀x ∈ I ⇒ k1 = k2 = 0.
Otherwise, that is, for some numbers k, l
y1 = ky2 or y2 = ly1, ∀x ∈ I,
y1 and y2 are called linearly dependent on an interval I.
• In ODE (2), y = c1y1 + c2y2 is a general solution where y1
and y2 are solutions of (2) on an open interval I that are not propor-
tional(linearly independent).
• These y1, y2 (a pair of linearly independent) are called a basis(or
fundamental system) of solutions of (2) on I.
• For specific values of c1 and c2 we obtain a particular solution of (2)
on I.
Example 6. Basis, General Solution, Particular Solution
Solve
y − y = 0, y(0) = 6, y (0) = −2.
Sol. y1(x) = ex
, y2(x) = e−x
: solutions of the ODE(Why!)
y1/y2 = e2x
= const : y1 and y2 are linearly independent.
Hence they form a basis of solutions for all x.
y = c1ex
+ c2e−x
: general solution
y(0) = c1 + c2 = 6, y (0) = c1 − c2 = −2 ⇒ c1 = 2, c2 = 4
∴ y = 2ex
+ 4e−x
: particular solution
Computational Science & Engineering (CSE) C. K. Ko
Chapter 2. Second-Order Linear ODEs 4
[Find a Basis if One Solution is Known.
Reduction of Order]
y + p(x)y + q(x)y = 0 (∗)
Assume that y1 is a solution of (∗) on I.
A second linearly independent solution y2 of (∗) on I ?
(Method of Reduction of Order to a homogeneous linear ODE)
• Set y2 = uy1.
y2 = u y1 + uy1, y2 = u y1 + 2u y1 + uy1 .
Then
(u y1 + 2u y1 + uy1 ) + p(u y1 + uy1) + quy1 = 0
⇒ u y1 + u (2y1 + py1) + u(y1 + py1 + qy1) = 0.
Since y1 + py1 + qy1 = 0, we get
u y1 + u (2y1 + py1) = 0.
• Set U = u . Then
U +
2y1
y1
+ p U = 0.
⇒
dU
U
= −
2y1
y1
+ p dx,
⇒ ln |U| = −2 ln |y1| − p dx, U =
1
y2
1
e− p dx
⇒ u = U dx =
1
y2
1
e− p dx
dx
∴ y2 = y1u = y1
1
y2
1
e− p dx
dx.
Computational Science & Engineering (CSE) C. K. Ko
Chapter 2. Second-Order Linear ODEs 5
Example 7. Reduction of Order if a Solution is known. Basis
Find a basis of solutions of
(x2
− x)y − xy + y = 0.
Note that y1 = x is a solution.
Sol. Since y1 = x is a solution, we set y2 = uy1 = ux.
Notice that
y −
1
x − 1
y +
1
x2 − x
y = 0.
Using the formula, we have
u =
1
y2
1
e− p dx
dx
=
1
x2
e
1
x−1 dx
dx
=
|x − 1|
x2
dx
=
x − 1
x2
dx (why!)
= ln |x| +
1
x
.
∴ y2 = x ln |x| + 1
Since y1 = x and y2 = x ln |x| + 1 are linearly independent, they form
a basis of solutions.
Computational Science & Engineering (CSE) C. K. Ko
Chapter 2. Second-Order Linear ODEs 6
§2.2 Homogeneous Linear ODEs with Constant Coef-
ficients
Consider second-order homogeneous linear ODEs with constant coefficients
y + ay + by = 0. (∗)
Note: y + ky = 0 has a solution y = ce−kx
.
Try y = eλx
as a solution of (∗).
=⇒ (λ2
+ aλ + b)eλx
= 0, ∀x ∈ R.
=⇒ λ2
+ aλ + b = 0 : characteristic equation.
λ = λ1, λ2.
Case I. Two distinct real roots λ1 and λ2.
Since y1 = eλ1x
and y2 = eλ2x
are linearly independent solutions of the
ODE, the general solution of the ODE is
y = c1eλ1x
+ c2eλ2x
.
Example 2. Case of Distinct Real Roots
Solve
y + y − 2y = 0, y(0) = 4, y (0) = −5.
Sol. characteristic equation : λ2
+ λ − 2 = 0, λ = 1, −2.
∴ y = c1ex
+ c2e−2x
.
y(0) = c1 + c2 = 4, y (0) = c1 − 2c2 = −5
=⇒ c1 = 1, c2 = 3
∴ y = ex
+ 3e−2x
.
Computational Science & Engineering (CSE) C. K. Ko
Chapter 2. Second-Order Linear ODEs 7
Case II. Real double root λ = −a
2
.
y1 = e−a
2x
, y2 =?
Let y2 = uy1. Using the formula, we have
u =
1
y2
1
e− p dx
dx
= eax
e−ax
dx
= x.
Thus y2 = xe−a
2x
(another independent solution), and the general solution
is
y = (c1 + c2x)e−ax/2
.
Example 3. Case of a Double Root
Solve
y + 6y + 9y = 0.
Sol. characteristic equation : λ2
+ 6λ + 9 = 0, λ = −3
∴ y = (c1 + c2x)e−3x
.
Computational Science & Engineering (CSE) C. K. Ko
Chapter 2. Second-Order Linear ODEs 8
Case III. Complex roots λ1 = −1
2
a + iω and λ2 = −1
2
a − iω.
Note: Euler formula eit
= cos t + i sin t
eit
=
∞
n=0
(it)n
n!
=
∞
n=0
(it)2n
(2n)!
+
∞
n=0
(it)2n+1
(2n + 1)!
=
∞
n=0
(−1)n
t2n
(2n)!
+ i
∞
n=0
(−1)n
t2n+1
(2n + 1)!
= cos t + i sin t.
We have two linearly independent solutions
y1 = eλ1x
= e−1
2ax
(cos wx + i sin wx),
y2 = eλ2x
= e−1
2ax
(cos wx − i sin wx).
Since the ODE is linear and homogeneous,
1
2
(y1 + y2) = e−1
2ax
cos wx,
1
2i
(y1 − y2) = e−1
2ax
sin wx
are linearly independent solutions.
The general solution is
∴ y = e−1
2ax
(A cos ωx + B sin ωx) .
Example 5. Case of Complex Roots
Solve
y + 0.4y + 9.04y = 0.
Sol. characteristic equation : λ2
+ 0.4λ + 9.04 = 0, λ = −0.2 ± 3i.
∴ y = e−0.2x
(A cos 3x + B sin 3x) .
Computational Science & Engineering (CSE) C. K. Ko
Chapter 2. Second-Order Linear ODEs 9
§2.4 Modeling : Free Oscillations
(Mass-Spring System)
[Setting Up the Model]
• Newton’s second law : Force = Mass × Acceleration = my .
• Hook’s law: F0 = −κs0 where κ > 0 is the spring constant
(or spring modulus).
• In static equilibrium, −κs0 + mg = 0.
• From the position y = 0, the displacement y(t) we pull it down,
my = −ky ⇒ my + κy = 0.
[Undamped System : my + κy = 0]
characteristic equation : mλ2
+ κ = 0
=⇒ λ2
+ ω2
0 = 0, ω0 = κ
m
, λ = ±iω0
∴ y(t) = A cos ω0t + B sin ω0t.
The corresponding motion is called a harmonic oscillation.
Since the trigonometric functions have the period
2π
ω0
, the frequency
(or natural frequency) is
ω0
2π
.
Computational Science & Engineering (CSE) C. K. Ko
Chapter 2. Second-Order Linear ODEs 10
Note:
• cycles/sec = hertz(Hz)
•
y(t) = A cos(ω0t) + B sin(ω0t)
= C[cos(ω0t)
A
C
+ sin(ω0t)
B
C
]
= C[cos(ω0t) cos δ + sin(ω0t) sin δ]
= C cos(ω0t − δ)
where C =
√
A2 + B2, δ = arctan (B/A) .
• A = y(0), B = y (0)/ω0.
• B = 0 ⇒ δ = 0.
Computational Science & Engineering (CSE) C. K. Ko
Chapter 2. Second-Order Linear ODEs 11
Example 1. Undamped Motion. Harmonic Oscillation
• If an iron ball of weight W = 98 nt stretches a spring 1.09 m, how
many cycles per minute will this mass-spring system execute?
• What will its motion be if we pull down the weight an additional 16 cm
and let it start with zero initial velocity?
Sol. By Hook’s law,
98 = 1.09κ ⇒ κ =
98
1.09
= 90(kg/sec).
The mass is m = W/g = 98/9.8 = 10(kg).
∴ frequency:
ω0
2π
=
κ
m
2π
=
3
2π
(Hz)
harmonic oscillation
y(t) = A cos ω0t + B sin ω0t
y(0) = A = 0.16m,
y (0) = ω0B = 0 ⇒ B = 0
∴ y(t) = 0.16 cos 3t (m)
Computational Science & Engineering (CSE) C. K. Ko
Chapter 2. Second-Order Linear ODEs 12
[Damped System]
A damping force is F2 = −cy , c = damping constant.
my = −ky − cy =⇒ my + cy + κy = 0
=⇒ λ2
+
c
m
λ +
κ
m
= 0
=⇒ λ1 = −α + β, λ2 = −α − β,
where α = c
2m
, β = 1
2m
√
c2 − 4mκ.
• Case I. c2
> 4mκ : distinct real roots λ1, λ2 (overdamping)
∴ y(t) = c1e−(α−β)t
+ c2e−(α+β)t
• Case II. c2
= 4mκ : a real double root (critical damping)
∴ y(t) = c1e−αt
+ c2te−αt
• Case III. c2
< 4mκ : complex conjugate roots (underdamping)
β = iω∗
, where ω∗
=
1
2m
4mκ − c2 (> 0)
∴ y(t) = e−αt
(A cos ω∗
t + B sin ω∗
t)
= Ce−αt
cos(ω∗
t − δ),
where C =
√
A2 + B2, tan δ = B/A.
Note that the frequency is
ω∗
2π
and ω∗
−→ ω0 as c −→ 0.
Computational Science & Engineering (CSE) C. K. Ko
Chapter 2. Second-Order Linear ODEs 13
§2.5 Euler-Cauchy Equations
x2
y + axy + by = 0 : Euler-Cauchy equation.
Try y = xm
. Then
[m(m − 1) + am + b]xm
= 0.
m2
+ (a − 1)m + b = 0, m = m1, m2.
• Case 1. Two distinct real roots : m1, m2.
Since y1 = xm1 and y2 = xm2 are linearly independent solutions of
the ODE, the general solution of the ODE is
y = c1xm1 + c2xm2.
• Case 2. Real double root : m1 = m2 = 1
2
(1 − a)
y1 = x
1
2(1−a)
, y2 =?
Let y2 = uy1.
x2
y + axy + by = 0 =⇒ y +
a
x
y +
b
x2
= 0.
Using the formula, we have
u =
1
y2
1
e− p dx
dx = xa−1
x−a
dx = ln x.
Thus y2 = x
1
2(1−a)
ln x (another independent solution) and the gen-
eral solution is
y = (c1 + c2 ln x)x
1
2(1−a)
.
Example 1-2.
Solve (a) x2
y + 1.5xy − 0.5y = 0, (b) x2
y − 5xy + 9y = 0.
Sol. (a) m(m − 1) + 1.5m − 0.5 = m2
+ 0.5m − 0.5 = 0,
m = 0.5, −1 ∴ y = c1
√
x + c2x−1
.
(b) m(m − 1) − 5m + 9 = m2
− 6m + 9 = 0, m = 3.
∴ y = (c1 + c2 ln x)x3
.
Computational Science & Engineering (CSE) C. K. Ko
Chapter 2. Second-Order Linear ODEs 14
• Case 3. Complex roots m1 = 1
2
(1−a)+ωi, m2 = 1
2
(1−a)−ωi.
We have two linearly independent solutions
y1 = xm1 = x
1
2(1−a)
eiω ln x
= x
1
2(1−a)
(cos(ω ln x) + i sin(ω ln x)),
y2 = xm2 = x
1
2(1−a)
e−iω ln x
= x
1
2(1−a)
(cos(ω ln x) − i sin(ω ln x)).
Since the ODE is linear and homogeneous,
1
2
(y1 + y2) = x
1
2(1−a)
cos(ω ln x),
1
2i
(y1 − y2) = x
1
2(1−a)
sin(ω ln x)
are linearly independent solutions.
The general solution is
y = x
1
2(1−a)
[A cos(ω ln x) + B sin(ω ln x)].
Example 3. Case of Complex Roots
Solve
x2
y + 0.6xy + 16.04y = 0.
Sol. m(m − 1) + 0.6m + 16.04 = m2
− 0.4m + 16.04 = 0
⇒ m1 = 0.2 + 4i, m2 = 0.2 − 4i.
∴ y = x0.2
[A cos(4 ln x) + B sin(4 ln x)] .
Computational Science & Engineering (CSE) C. K. Ko
Chapter 2. Second-Order Linear ODEs 15
§2.6 Existence and Uniqueness of Solutions.
Wronskian
y + p(x)y + q(x)y = 0, (1)
y(x0) = K0, y (x0) = K1. (2)
Theorem 1. (Existence and Uniqueness Theorem for IVP)
If p(x) and q(x) are continuous on I and x0 ∈ I,
then the IVP of (1) and (2) has a unique solution y(x) on I.
[Recall]
y1 and y2 are called linearly independent on an interval I if
k1y1(x) + k2y2(x) = 0, ∀x ∈ I ⇒ k1 = k2 = 0.
Otherwise, that is, for some numbers k, l
y1 = ky2 or y2 = ly1, ∀x ∈ I,
y1 and y2 are called linearly dependent on an interval I.
Theorem 2.
Let p(x) and q(x) in (1) be continuous on I. Then
1. Two solutions y1, y2 of (1) on I are linearly dependent on I.
⇐⇒ W (y1, y2) ≡
y1 y2
y1 y2
= y1y2 − y2y1 = 0
at some x0 ∈ I, (W (y1, y2) :Wronskian).
2. If W = 0 at an x0 ∈ I, then W ≡ 0 on I.
Hence, if ∃ x1 ∈ I at which W is not 0, then y1 and y2 are linearly
independent on I.
Computational Science & Engineering (CSE) C. K. Ko
Chapter 2. Second-Order Linear ODEs 16
Proof. 1.(⇒) Let y1, y2 be linearly dependent on I and y1 = ky2.
Then W (y1, y2) = y1y2 − y2y1 = ky2y2 − ky2y2 = 0.
(⇐) Let W (y1, y2) = 0 for some x = x0 ∈ I.
We consider the linear system in the unknowns K1, K2.
K1y1(x0) + K2y2(x0) = 0
K1y1(x0) + K2y2(x0) = 0
(3)
=⇒
y1(x0) y2(x0)
y1(x0) y2(x0)
K1
K2
=
0
0
.
Since
y1(x0) y2(x0)
y1(x0) y2(x0)
= y1y2 − y2y1 = W (y1(x0), y2(x0)) = 0,
∃ not all zero K1 and K2, say, K2
1 + K2
2 = 0.
Then for these constants K1, K2,
˜y(x) = K1y1(x) + K2y2(x)
is a solution of (1) and ˜y(x0) = ˜y (x0) = 0 from (3).
Notice that ˆy ≡ 0 is also a a solution of (1) and ˆy(x0) = ˆy (x0) = 0.
By the uniqueness theorem of solutions,
˜y = ˆy, i.e, K1y1 + K2y2 = 0
=⇒ y1 = −
K2
K1
y2 or y2 = −
K1
K2
y1.
∴ y1 and y2 are linearly dependent.
2. Let W (x0) = 0 at x0 ∈ I. By part (⇐), y1 and y2 are linearly
dependent. Hence W ≡ 0.
Example 1.
W (cos ωx, sin ωx) =
cos ωx sin ωx
−ω sin ωx ω cos ωx
= ω.
∴ cos ωx and sin ωx are linearly independent ⇔ ω = 0
Computational Science & Engineering (CSE) C. K. Ko
Chapter 2. Second-Order Linear ODEs 17
Theorem 3. (Existence of a General Solution)
If p(x) and q(x) are continuous on I, then (1) has a general solution on
I.
Theorem 4. ( A General Solution Includes All Solutions)
If p(x) and q(x) are continuous on I, then every solution y = Y (x) of
(1) is of the form
Y (x) = C1y1(x) + C2y2(x)
where y1, y2 is any basis of solutions of (1) on I.
Hence (1) does not have singular solutions.
Computational Science & Engineering (CSE) C. K. Ko
Chapter 2. Second-Order Linear ODEs 18
§2.7 Nonhomogeneous ODEs
y + p(x)y + q(x)y = r(x). (1)
y + p(x)y + q(x)y = 0. (2)
Definition
A general solution of (1) is a solution of the form
y(x) = yh(x) + yp(x).
Here, yh = c1y1 + c2y2 is a general solution of (2) and yp is any solution
of (1).
Theorem 1.
• solution of (1)+ solution of (2)= solution of (1).
• solution of (1)− solution of (1)= solution of (2).
Theorem 2.
Let p, q, r in (1) be continuous on some open interval I.
Every solution of (1) is obtained by assigning suitable values to c1, c2 in a
solution of the form y(x) = yh(x) + yp(x).
Here, yh is a general solution of (2) and yp is any solution of (1).
[Method of Undetermined Coefficients]
• Choice Rules for yp
(a) Basic rule
r(x) yp(x)
keγx
Ceγx
kxn
(n = 0, 1, , · · · ) Knxn
+ Kn−1xn−1
+ · · · + K1x + K0
k cos ωx ,k sin ωx K cos ωx + M sin ωx
keαx
cos ωx, keαx
sin ωx keαx
(K cos ωx + M sin ωx)
(b) Modification rule(Multiply by x or x2
, · · · )
(c) Sum rule (r(x) = r1(x) + r2(x))
Computational Science & Engineering (CSE) C. K. Ko
Chapter 2. Second-Order Linear ODEs 19
Example 1.
Solve
y + y = 0.001x2
, y(0) = 0, y (0) = 1.5.
Sol. step1. y + y = 0 ⇒ yh = A cos x + B sin x.
step2. yp = K2x2
+ K1x + K0.
yp + yp = 2K2 + K2x2
+ K1x + K0 = 0.001x2
.
∴ yp = 0.001x2
− 0.002.
step3. y = yh + yp = A cos x + B sin x + 0.001x2
− 0.002.
y(0) = 0, y (0) = 1.5 =⇒ A = 0.002, B = 1.5.
∴ y = 0.002 cos x + 1.5 sin x + 0.001x2
− 0.002.
Example 2.
Solve
y + 3y + 2.25y = −10e−1.5x
.
Sol. step1. y +3y +2.25y = 0, λ2
+3λ+2.25 = 0, λ = −1.5.
⇒ yh = (c1 + c2x)e−1.5x
.
step2. yp = Cx2
e−1.5x
(why!).
∴ yp = −5x2
e−1.5x
.
step3. y = yh + yp = (c1 + c2x − 5x2
)e−1.5x
.
Computational Science & Engineering (CSE) C. K. Ko
Chapter 2. Second-Order Linear ODEs 20
Example 3.
Solve the ODE
y + 2y + 5y = e0.5x
+ 40 cos 10x − 190 sin 10x,
y(0) = 0.16, y (0) = 40.08.
Sol. step1. y + 2y + 5y = 0
⇒ λ2
+ 2λ + 5 = 0, λ = −1 ± 2i.
∴ yh = e−x
(A cos 2x + B sin 2x).
step2. yp = Ce0.5x
+ D cos 10x + E sin 10x.
∴ yp = 0.16e0.5x
+ 2 sin 10x.
step3. y = yh + yp = e−x
(A cos 2x + B sin 2x)
+0.16e0.5x
+ 2 sin 10x.
From the initial conditions, A = 0, B = 10, and the solution is
y = 10e−x
sin 2x + 0.16e0.5x
+ 2 sin 10x.
Computational Science & Engineering (CSE) C. K. Ko
Chapter 2. Second-Order Linear ODEs 21
§2.8 Modelling: Forced Oscillations. Resonance
my + cy + ky = r(t) (1)
internal force external force
• r(t) = 0 ⇒ (1): free motion.
• r(t) = 0 ⇒ (1): forced motion with forcing function r(t) (input
or driving force).
• y(t): output or response of the system to the driving force.
[Solving the Nonhomogeneous ODE]
Consider the ODE with a periodic external force r(t) = F0 cos ωt.
my + cy + ky = F0 cos ωt (2)
• Put yp(t) = a cos ωt + b sin ωt.
• Substituting yp, yp, yp into (2), we get
[(k − mω2
)a + ωcb] cos ωt + [−ωca + (k − mω2
)b] sin ωt
=F0 cos ωt
=⇒(k − mω2
)a + ωcb = F0, − ωca + (k − mω2
)b = 0.
Computational Science & Engineering (CSE) C. K. Ko
Chapter 2. Second-Order Linear ODEs 22
• If (k − mω2
)2
+ ω2
c2
= 0,
a =
(k − mω2
)F0
(k − mω2)2 + ω2c2
, b =
ωcF0
(k − mω2)2 + ω2c2
.
• If k/m = ω0(> 0), then k = mω2
0 and we obtain
a =
m(ω2
0 − ω2
)F0
m2(ω2
0 − ω2)2 + ω2c2
, b =
ωcF0
m2(ω2
0 − ω2)2 + ω2c2
.
[Case 1. Undamped Forced Oscillations. Resonance]
• c = 0 ⇒ a = F0/[m(ω2
0 − ω2
)], b = 0
∴ yp(t) =
F0
m(ω2
0 − ω2)
cos ωt =
F0
k[1 − (ω/ω0)2]
cos ωt.
• In equations above, we must assume that ω2
= ω2
0; physically,
the frequency ω/(2π)[cycles/sec] of the driving force
= the natural frequency ω0/(2π)[cycles/sec] of the system.
• From the results in Sec. 2.4 we have the general solution of the ”un-
damped system”
y(t) = C cos(ω0t − δ) +
F0
m(ω2
0 − ω2)
cos ωt.
• Resonance.
• The maximum amplitude of yp is (put cos ωt = 1)
a0 =
F0
k
ρ where ρ =
1
1 − (ω/ω0)2
.
• If ω → ω0, then ρ → ∞ and a0 → ∞.
• This excitation of large oscillations by matching input and natural
frequencies (ω = ω0) is called resonance. ρ: resonance factor.
Computational Science & Engineering (CSE) C. K. Ko
Chapter 2. Second-Order Linear ODEs 23
• ρ/k = a0/F0: the ratio of the amplitudes of yp and of the input
F0 cos ωt.
• If ω = ω0, then the nonhomogeneous ODE becomes
y + ω2
0y =
F0
m
cos ω0t.
From the Modification Rule in Sec. 2.7
yp(t) = t(a cos ω0t + b sin ω0t) =
F0
2mω0
t sin ω0t.
Computational Science & Engineering (CSE) C. K. Ko
Chapter 2. Second-Order Linear ODEs 24
[Case 2. Damped Forced Oscillations]
• If the damping is not negligibly small, we have c > 0 and a damping
term cy . Then the general solution yh of the homogeneous ODE
approaches zero as t → ∞, that is, the trasient solution y =
yh+yp approaches the steady-state solution yp as t → ∞.
• Amplitude of the Steady-State Solution. Practical Resonance
The amplitude will always be finite. But it may have a maximum for
some ω depending on the damping constant c. This may be called
practical resonance.
• Let yp(t) = a cos ωt + b sin ωt = C∗
cos(ωt − η).
C∗
is called the amplitude of yp and η the phase angle or phase
lag. Here,
C∗
= a2 + b2 =
F0
m2(ω2
0 − ω2)2 + ω2c2
,
tan η(ω) =
b
a
=
ωc
m(ω2
0 − ω2)
.
• Let R = m2(ω2
0 − ω2)2 + ω2c2. Then
dC∗
dω
= F0 −
1
2
R−3/2
[2m2
(ω2
0 − ω2
)(−2ω) + 2ωc2
] = 0
⇒ c2
= 2m2
(ω2
0 − ω2
) (ω2
0 = k/m) (15)
⇒ 2m2
ω2
= 2m2
ω2
0 − c2
= 2mk − c2
.
• c2
> 2mk ⇒ (15) has no real solution.
c2
< 2mk ⇒ (15) has a real solution ω = ωmax, where
ω2
max = ω2
0 −
c2
2m2
,
C∗
(ωmax) =
2mF0
c 4m2ω2
0 − c2
=
2mF0
c
√
4mk − c2
.
Computational Science & Engineering (CSE) C. K. Ko
Chapter 2. Second-Order Linear ODEs 25
Example
• Take m = 1, k = 1, hence ω0 = 1, and various values of the
damping constant c.
• Fig. 56 shows the amplification C∗
/F0 as a function of ω.
• Fig. 57 shows the phase angle η:
ω < ω0 ⇒ η < (π/2); ω > ω0 ⇒ η > (π/2).
Computational Science & Engineering (CSE) C. K. Ko
Chapter 2. Second-Order Linear ODEs 26
§2.9 Modelling: Electric Circuits
• Voltage Drops.
• RI Voltage drop for a resistor of resistance R (Ω) (Ohm’s law).
• LI Voltage drop for an inductor of capacitance L (H).
•
Q
C
Voltage drop for a capacitor of capacitance C (F).
Here Q coulombs is the charge on the capacitor; Q(t) = I(t)dt.
• Kirchhoff’s Voltage Law (KVL). The voltage impressed on a
closed loop is equal to the sum of the voltage drops across the
other elements of the loop.
• According to KLV we have in Fig. 60 the ”integro-differential equa-
tion”
LI + RI +
1
C
Idt = E(t) = E0 sin ωt.
Differentiating the above equation, we obtain
LI + RI +
1
C
I = E (t) = E0ω cos ωt. (1)
Computational Science & Engineering (CSE) C. K. Ko
Chapter 2. Second-Order Linear ODEs 27
[Solving the ODE (1) for the Current.
Discussion of Solution]
• A general solution of (1) is the sum I = Ih + Ip.
• Let Ip = a cos ωt + b sin ωt. Then
Lω2
(−a) + Rωb + a/C = E0ω (Cosine terms)
Lω2
(−b) + Rω(−a) + b/C = 0 (Sine terms)
• Introducing the reactance S = ωL − 1
ωC
, we get
− Sa + Rb = E0
− Ra − Sb = 0
=⇒ a =
−E0S
R2 + S2
, b =
E0R
R2 + S2
.
• Ip(t) = I0 sin(ωt − θ) where
I0 = a2 + b2 =
E0
√
R2 + S2
, tan θ = −
a
b
=
S
R
.
• The quantity
√
R2 + S2 is called impedance.
Note that
√
R2 + S2 = E0/I0 is analogous to R = E/I.
• Let Ih = c1eλ1t
+ c2eλ2t
. Then
λ2
+
R
L
λ +
1
LC
= 0, λ1 = −α + β, λ2 = −α − β,
where α =
R
2L
, β =
R2
4L2
−
1
LC
=
1
2L
R2 −
4L
C
.
• Since R > 0, the transient current I = Ih + Ip tends to the
steady-state current Ip as t → ∞.
Computational Science & Engineering (CSE) C. K. Ko
Chapter 2. Second-Order Linear ODEs 28
Example 1. RLC-Circuit
Find the current I(t) in an RLC-circuit with R = 11Ω, L = 0.1H,
C = 10−2
F and E(t) = 100 sin 400t. Assume that current and charge
are zero when t = 0.
Sol. 0.1I + 11I + 100I = 100 · 400 cos 400t.
Ih = c1e−10t
+ c2e−100t
Ip = a cos 400t + b sin 400t
=⇒ Ip = −2.3368 cos 400t + 0.6467 sin 400t
I = Ih + Ip = c1e−10t
+ c2e−100t
−2.3368 cos 400t + 0.6467 sin 400t
initial condition : I(0) = 0, Q(0) = 0
LI + RI +
1
C
Idt = E(t) = E0 sin ωt.
Putting t = 0, LI (0) + RI(0) + 1
C
· 0 = 0 =⇒ I (0) = 0.
I = −0.2776e−10t
+2.6144e−100t
−2.3368 cos 400t+0.6467 sin 400t
[Analogy of Electrical and Mechanical Quantities]
LI + RI +
1
C
I = E0ω cos ωt my + cy + ky = F0 cos ωt
Computational Science & Engineering (CSE) C. K. Ko
Chapter 2. Second-Order Linear ODEs 29
§2.10 Solution by Variation of Parameters
y + p(x)y + q(x)y = r(x) (1)
When yh(x) = c1y1 + c2y2 is the general solution of the ODE
y + p(x)y + q(x)y = 0, (2)
find a solution yp of (1).
• Setting yp = uy1 + vy2, determine u and v. Then
yp = u y1 + uy1 + v y2 + vy2.
• We may impose a second condition:
u y1 + v y2 = 0.
Thus yp = uy1 + vy2 and yp = u y1 + uy1 + v y2 + vy2 .
Substituting yp, yp and yp into (1), we obtain
u(y1 + py1 + qy1
=0
) + v(y2 + py2 + qy2
=0
) + u y1 + v y2 = r
and
u y1 + v y2 = r
u y1 + v y2 = 0.
We solve the linear system:
u = −
y2r
W
, v =
y1r
W
, where W =
y1 y2
y1 y2
.
By integration,
u = −
y2r
W
dx, v =
y1r
W
dx.
∴ yp(x) = −y1
y2r
W
dx + y2
y1r
W
dx
(method of variation of parameters).
Computational Science & Engineering (CSE) C. K. Ko
Chapter 2. Second-Order Linear ODEs 30
Example 1. Method of Variation of Parameters
Solve y + y = sec x.
Sol. The general solution of the homogeneous ODE y + y = 0 is
yh = c1 cos x + c2 sin x.
Let y1 = cos x and y2 = sin x.
Then
W =
cos x sin x
− sin x cos x
= 1.
⇒ yp = −y1
y2r
W
dx + y2
y1r
W
dx
= − cos x sin x
1
cos x
dx + sin x cos x
1
cos x
dx
= cos x ln | cos x| + x sin x.
∴ y = c1 cos x + c2 sin x + cos x ln | cos x| + x sin x.
Computational Science & Engineering (CSE) C. K. Ko

More Related Content

What's hot

Complex numbers And Quadratic Equations
Complex numbers And Quadratic EquationsComplex numbers And Quadratic Equations
Complex numbers And Quadratic EquationsDeepanshu Chowdhary
 
Relasi dan Hasil kali Cartesius
Relasi dan Hasil kali CartesiusRelasi dan Hasil kali Cartesius
Relasi dan Hasil kali CartesiusEman Mendrofa
 
Makalah matematika diskrit 1
Makalah matematika diskrit 1Makalah matematika diskrit 1
Makalah matematika diskrit 1Muh Ikmal
 
Differential Equations
Differential EquationsDifferential Equations
Differential EquationsKrupaSuthar3
 
Relasi Rekursi : Definisi, Contoh, Jenis Relasi Rekursi
Relasi Rekursi : Definisi, Contoh, Jenis Relasi RekursiRelasi Rekursi : Definisi, Contoh, Jenis Relasi Rekursi
Relasi Rekursi : Definisi, Contoh, Jenis Relasi RekursiOnggo Wiryawan
 
Vektor vektor di ruang dimensi 2 dan ruang
Vektor vektor di ruang dimensi 2 dan ruangVektor vektor di ruang dimensi 2 dan ruang
Vektor vektor di ruang dimensi 2 dan ruangSebastian Rizal
 
Introduction to Real Analysis 4th Edition Bartle Solutions Manual
Introduction to Real Analysis 4th Edition Bartle Solutions ManualIntroduction to Real Analysis 4th Edition Bartle Solutions Manual
Introduction to Real Analysis 4th Edition Bartle Solutions ManualDawsonVeronica
 
20. modul integral pak sukani
20. modul integral pak sukani20. modul integral pak sukani
20. modul integral pak sukanisukani
 
Pertemuan 9 (kombinasi, permutasi, peluang)
Pertemuan 9 (kombinasi, permutasi, peluang)Pertemuan 9 (kombinasi, permutasi, peluang)
Pertemuan 9 (kombinasi, permutasi, peluang)reno sutriono
 
Ode powerpoint presentation1
Ode powerpoint presentation1Ode powerpoint presentation1
Ode powerpoint presentation1Pokkarn Narkhede
 
Matematika teknik 06-transformasi linier-eigen value
Matematika teknik 06-transformasi linier-eigen valueMatematika teknik 06-transformasi linier-eigen value
Matematika teknik 06-transformasi linier-eigen valueel sucahyo
 
Application of Integrals
Application of IntegralsApplication of Integrals
Application of Integralssarcia
 
Lecture 02.pdf
Lecture 02.pdfLecture 02.pdf
Lecture 02.pdfjm_gecko
 
Aljabar linear:Kebebasan Linear, Basis, dan Dimensi.ppt
Aljabar linear:Kebebasan Linear, Basis, dan Dimensi.pptAljabar linear:Kebebasan Linear, Basis, dan Dimensi.ppt
Aljabar linear:Kebebasan Linear, Basis, dan Dimensi.pptrahmawarni
 
Lingkaran luar segitiga (circumcircle)
Lingkaran luar segitiga (circumcircle)Lingkaran luar segitiga (circumcircle)
Lingkaran luar segitiga (circumcircle)Muhamad Husni Mubaraq
 

What's hot (20)

Complex numbers And Quadratic Equations
Complex numbers And Quadratic EquationsComplex numbers And Quadratic Equations
Complex numbers And Quadratic Equations
 
Relasi dan Hasil kali Cartesius
Relasi dan Hasil kali CartesiusRelasi dan Hasil kali Cartesius
Relasi dan Hasil kali Cartesius
 
Makalah matematika diskrit 1
Makalah matematika diskrit 1Makalah matematika diskrit 1
Makalah matematika diskrit 1
 
Differential Equations
Differential EquationsDifferential Equations
Differential Equations
 
Relasi Rekursi : Definisi, Contoh, Jenis Relasi Rekursi
Relasi Rekursi : Definisi, Contoh, Jenis Relasi RekursiRelasi Rekursi : Definisi, Contoh, Jenis Relasi Rekursi
Relasi Rekursi : Definisi, Contoh, Jenis Relasi Rekursi
 
Vektor vektor di ruang dimensi 2 dan ruang
Vektor vektor di ruang dimensi 2 dan ruangVektor vektor di ruang dimensi 2 dan ruang
Vektor vektor di ruang dimensi 2 dan ruang
 
Introduction to Real Analysis 4th Edition Bartle Solutions Manual
Introduction to Real Analysis 4th Edition Bartle Solutions ManualIntroduction to Real Analysis 4th Edition Bartle Solutions Manual
Introduction to Real Analysis 4th Edition Bartle Solutions Manual
 
20. modul integral pak sukani
20. modul integral pak sukani20. modul integral pak sukani
20. modul integral pak sukani
 
Pertemuan 9 (kombinasi, permutasi, peluang)
Pertemuan 9 (kombinasi, permutasi, peluang)Pertemuan 9 (kombinasi, permutasi, peluang)
Pertemuan 9 (kombinasi, permutasi, peluang)
 
Ode powerpoint presentation1
Ode powerpoint presentation1Ode powerpoint presentation1
Ode powerpoint presentation1
 
Trigonometri
TrigonometriTrigonometri
Trigonometri
 
Matematika teknik 06-transformasi linier-eigen value
Matematika teknik 06-transformasi linier-eigen valueMatematika teknik 06-transformasi linier-eigen value
Matematika teknik 06-transformasi linier-eigen value
 
Hw5sols
Hw5solsHw5sols
Hw5sols
 
Application of Integrals
Application of IntegralsApplication of Integrals
Application of Integrals
 
Aljabar Linier Bab 4 vektor
Aljabar Linier Bab 4 vektorAljabar Linier Bab 4 vektor
Aljabar Linier Bab 4 vektor
 
Lecture 02.pdf
Lecture 02.pdfLecture 02.pdf
Lecture 02.pdf
 
Ruang inner product
Ruang inner productRuang inner product
Ruang inner product
 
Aljabar linear:Kebebasan Linear, Basis, dan Dimensi.ppt
Aljabar linear:Kebebasan Linear, Basis, dan Dimensi.pptAljabar linear:Kebebasan Linear, Basis, dan Dimensi.ppt
Aljabar linear:Kebebasan Linear, Basis, dan Dimensi.ppt
 
Ppt
PptPpt
Ppt
 
Lingkaran luar segitiga (circumcircle)
Lingkaran luar segitiga (circumcircle)Lingkaran luar segitiga (circumcircle)
Lingkaran luar segitiga (circumcircle)
 

Similar to Second-Order Linear ODE Solutions

Week 8 [compatibility mode]
Week 8 [compatibility mode]Week 8 [compatibility mode]
Week 8 [compatibility mode]Hazrul156
 
Differential equation study guide for exam (formula sheet)
Differential equation study guide for exam (formula sheet)Differential equation study guide for exam (formula sheet)
Differential equation study guide for exam (formula sheet)Dan Al
 
Week 6 [compatibility mode]
Week 6 [compatibility mode]Week 6 [compatibility mode]
Week 6 [compatibility mode]Hazrul156
 
Emat 213 midterm 1 fall 2005
Emat 213 midterm 1 fall 2005Emat 213 midterm 1 fall 2005
Emat 213 midterm 1 fall 2005akabaka12
 
Engr 213 midterm 2b sol 2009
Engr 213 midterm 2b sol 2009Engr 213 midterm 2b sol 2009
Engr 213 midterm 2b sol 2009akabaka12
 
Maths assignment
Maths assignmentMaths assignment
Maths assignmentNtshima
 
Solved exercises double integration
Solved exercises double integrationSolved exercises double integration
Solved exercises double integrationKamel Attar
 
Engr 213 midterm 2a sol 2009
Engr 213 midterm 2a sol 2009Engr 213 midterm 2a sol 2009
Engr 213 midterm 2a sol 2009akabaka12
 
Las funciones L en teoría de números
Las funciones L en teoría de númerosLas funciones L en teoría de números
Las funciones L en teoría de númerosmmasdeu
 
Week 7 [compatibility mode]
Week 7 [compatibility mode]Week 7 [compatibility mode]
Week 7 [compatibility mode]Hazrul156
 
Engr 213 midterm 2a sol 2010
Engr 213 midterm 2a sol 2010Engr 213 midterm 2a sol 2010
Engr 213 midterm 2a sol 2010akabaka12
 
Advanced Engineering Mathematics Solutions Manual.pdf
Advanced Engineering Mathematics Solutions Manual.pdfAdvanced Engineering Mathematics Solutions Manual.pdf
Advanced Engineering Mathematics Solutions Manual.pdfWhitney Anderson
 
48 circle part 1 of 2
48 circle part 1 of 248 circle part 1 of 2
48 circle part 1 of 2tutulk
 
Second order homogeneous linear differential equations
Second order homogeneous linear differential equations Second order homogeneous linear differential equations
Second order homogeneous linear differential equations Viraj Patel
 

Similar to Second-Order Linear ODE Solutions (20)

Week 8 [compatibility mode]
Week 8 [compatibility mode]Week 8 [compatibility mode]
Week 8 [compatibility mode]
 
Differential equation study guide for exam (formula sheet)
Differential equation study guide for exam (formula sheet)Differential equation study guide for exam (formula sheet)
Differential equation study guide for exam (formula sheet)
 
Week 6 [compatibility mode]
Week 6 [compatibility mode]Week 6 [compatibility mode]
Week 6 [compatibility mode]
 
Emat 213 midterm 1 fall 2005
Emat 213 midterm 1 fall 2005Emat 213 midterm 1 fall 2005
Emat 213 midterm 1 fall 2005
 
Engr 213 midterm 2b sol 2009
Engr 213 midterm 2b sol 2009Engr 213 midterm 2b sol 2009
Engr 213 midterm 2b sol 2009
 
Sect5 1
Sect5 1Sect5 1
Sect5 1
 
Maths assignment
Maths assignmentMaths assignment
Maths assignment
 
cursul 3.pdf
cursul 3.pdfcursul 3.pdf
cursul 3.pdf
 
Solved exercises double integration
Solved exercises double integrationSolved exercises double integration
Solved exercises double integration
 
19 3
19 319 3
19 3
 
K12105 sharukh...
K12105 sharukh...K12105 sharukh...
K12105 sharukh...
 
Engr 213 midterm 2a sol 2009
Engr 213 midterm 2a sol 2009Engr 213 midterm 2a sol 2009
Engr 213 midterm 2a sol 2009
 
Las funciones L en teoría de números
Las funciones L en teoría de númerosLas funciones L en teoría de números
Las funciones L en teoría de números
 
Week 7 [compatibility mode]
Week 7 [compatibility mode]Week 7 [compatibility mode]
Week 7 [compatibility mode]
 
Engr 213 midterm 2a sol 2010
Engr 213 midterm 2a sol 2010Engr 213 midterm 2a sol 2010
Engr 213 midterm 2a sol 2010
 
Advanced Engineering Mathematics Solutions Manual.pdf
Advanced Engineering Mathematics Solutions Manual.pdfAdvanced Engineering Mathematics Solutions Manual.pdf
Advanced Engineering Mathematics Solutions Manual.pdf
 
48 circle part 1 of 2
48 circle part 1 of 248 circle part 1 of 2
48 circle part 1 of 2
 
Imc2016 day2-solutions
Imc2016 day2-solutionsImc2016 day2-solutions
Imc2016 day2-solutions
 
Sect5 2
Sect5 2Sect5 2
Sect5 2
 
Second order homogeneous linear differential equations
Second order homogeneous linear differential equations Second order homogeneous linear differential equations
Second order homogeneous linear differential equations
 

Recently uploaded

CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfAsst.prof M.Gokilavani
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escortsranjana rawat
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.eptoze12
 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...srsj9000
 
microprocessor 8085 and its interfacing
microprocessor 8085  and its interfacingmicroprocessor 8085  and its interfacing
microprocessor 8085 and its interfacingjaychoudhary37
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineeringmalavadedarshan25
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...VICTOR MAESTRE RAMIREZ
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AIabhishek36461
 
HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2RajaP95
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130Suhani Kapoor
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVRajaP95
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSCAESB
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxwendy cai
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfAsst.prof M.Gokilavani
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile servicerehmti665
 

Recently uploaded (20)

CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
 
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
(MEERA) Dapodi Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Escorts
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.
 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
 
microprocessor 8085 and its interfacing
microprocessor 8085  and its interfacingmicroprocessor 8085  and its interfacing
microprocessor 8085 and its interfacing
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineering
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AI
 
HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2HARMONY IN THE HUMAN BEING - Unit-II UHV-2
HARMONY IN THE HUMAN BEING - Unit-II UHV-2
 
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Serviceyoung call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentation
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptx
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile service
 

Second-Order Linear ODE Solutions

  • 1. Chapter 2. Second-Order Linear ODEs 1 §2.1 Homogeneous Linear ODEs of Second Order y + p(x)y + q(x)y = r(x), (1) y + p(x)y + q(x)y = 0, (2) y(x0) = K0, y (x0) = K1. Note: • (2) is called homogeneous. • If r(x) = 0, then (1) is called nonhomogeneous. • c1y1 + c2y2 : a linear combination of y1 and y2 • linear, nonlinear Set L = d2 dx2 + p(x) d dx + q(x), then we write the ODE (1) as L(y) = r. L(c1y1 + c2y2) = c1L(y1) + c2L(y2). Ex. 1. xy + y + xy = 0 : homogeneous linear ODE 2. y y + y 2 = 0 : nonlinear ODE Theorem 1. Superposition Principle For a homogeneous linear ODE (2) on open interval I, any linear combina- tion of two solutions on I is again a solution of (2) on I. Proof. Let y1 and y2 be solutions of (2) and y = c1y1 + c2y2. Then y + py + qy = (c1y1 + c2y2) + p(c1y1 + c2y2) + q(c1y1 + c2y2) = c1(y1 + py1 + qy1) + c2(y2 + py2 + qy2) = c10 + c20 = 0. Hence y = c1y1 + c2y2 is a solution on I. Computational Science & Engineering (CSE) C. K. Ko
  • 2. Chapter 2. Second-Order Linear ODEs 2 Example 1. Superposition of Solutions y1 = cos x and y2 = sin x are solutions of a homogeneous linear ODE y + y = 0 for all x. Moreover, y = c1 cos x + c2 sin x is also a solution of the ODE. Example 2. A nonhomogeneous Linear ODE y1 = 1 + cos x and y2 = 1 + sin x are solutions of a linear nonhomo- geneous ODE y + y = 1 for all x. But y1 + y2 = 2 + cos x + sin x, 2y1 = 2 + 2 cos x are not solutions of the ODE. Example 3. A nonlinear ODE y1 = x2 and y2 = 1 are solutions of a nonlinear ODE y y − xy = 0 for all x. But y1 + y2 = x2 + 1, − y1 = −x2 are not solutions of the ODE. Computational Science & Engineering (CSE) C. K. Ko
  • 3. Chapter 2. Second-Order Linear ODEs 3 Definition (General Solution, Basis, Particular Solution) • y1 and y2 are called linearly independent on an interval I if k1y1(x) + k2y2(x) = 0, ∀x ∈ I ⇒ k1 = k2 = 0. Otherwise, that is, for some numbers k, l y1 = ky2 or y2 = ly1, ∀x ∈ I, y1 and y2 are called linearly dependent on an interval I. • In ODE (2), y = c1y1 + c2y2 is a general solution where y1 and y2 are solutions of (2) on an open interval I that are not propor- tional(linearly independent). • These y1, y2 (a pair of linearly independent) are called a basis(or fundamental system) of solutions of (2) on I. • For specific values of c1 and c2 we obtain a particular solution of (2) on I. Example 6. Basis, General Solution, Particular Solution Solve y − y = 0, y(0) = 6, y (0) = −2. Sol. y1(x) = ex , y2(x) = e−x : solutions of the ODE(Why!) y1/y2 = e2x = const : y1 and y2 are linearly independent. Hence they form a basis of solutions for all x. y = c1ex + c2e−x : general solution y(0) = c1 + c2 = 6, y (0) = c1 − c2 = −2 ⇒ c1 = 2, c2 = 4 ∴ y = 2ex + 4e−x : particular solution Computational Science & Engineering (CSE) C. K. Ko
  • 4. Chapter 2. Second-Order Linear ODEs 4 [Find a Basis if One Solution is Known. Reduction of Order] y + p(x)y + q(x)y = 0 (∗) Assume that y1 is a solution of (∗) on I. A second linearly independent solution y2 of (∗) on I ? (Method of Reduction of Order to a homogeneous linear ODE) • Set y2 = uy1. y2 = u y1 + uy1, y2 = u y1 + 2u y1 + uy1 . Then (u y1 + 2u y1 + uy1 ) + p(u y1 + uy1) + quy1 = 0 ⇒ u y1 + u (2y1 + py1) + u(y1 + py1 + qy1) = 0. Since y1 + py1 + qy1 = 0, we get u y1 + u (2y1 + py1) = 0. • Set U = u . Then U + 2y1 y1 + p U = 0. ⇒ dU U = − 2y1 y1 + p dx, ⇒ ln |U| = −2 ln |y1| − p dx, U = 1 y2 1 e− p dx ⇒ u = U dx = 1 y2 1 e− p dx dx ∴ y2 = y1u = y1 1 y2 1 e− p dx dx. Computational Science & Engineering (CSE) C. K. Ko
  • 5. Chapter 2. Second-Order Linear ODEs 5 Example 7. Reduction of Order if a Solution is known. Basis Find a basis of solutions of (x2 − x)y − xy + y = 0. Note that y1 = x is a solution. Sol. Since y1 = x is a solution, we set y2 = uy1 = ux. Notice that y − 1 x − 1 y + 1 x2 − x y = 0. Using the formula, we have u = 1 y2 1 e− p dx dx = 1 x2 e 1 x−1 dx dx = |x − 1| x2 dx = x − 1 x2 dx (why!) = ln |x| + 1 x . ∴ y2 = x ln |x| + 1 Since y1 = x and y2 = x ln |x| + 1 are linearly independent, they form a basis of solutions. Computational Science & Engineering (CSE) C. K. Ko
  • 6. Chapter 2. Second-Order Linear ODEs 6 §2.2 Homogeneous Linear ODEs with Constant Coef- ficients Consider second-order homogeneous linear ODEs with constant coefficients y + ay + by = 0. (∗) Note: y + ky = 0 has a solution y = ce−kx . Try y = eλx as a solution of (∗). =⇒ (λ2 + aλ + b)eλx = 0, ∀x ∈ R. =⇒ λ2 + aλ + b = 0 : characteristic equation. λ = λ1, λ2. Case I. Two distinct real roots λ1 and λ2. Since y1 = eλ1x and y2 = eλ2x are linearly independent solutions of the ODE, the general solution of the ODE is y = c1eλ1x + c2eλ2x . Example 2. Case of Distinct Real Roots Solve y + y − 2y = 0, y(0) = 4, y (0) = −5. Sol. characteristic equation : λ2 + λ − 2 = 0, λ = 1, −2. ∴ y = c1ex + c2e−2x . y(0) = c1 + c2 = 4, y (0) = c1 − 2c2 = −5 =⇒ c1 = 1, c2 = 3 ∴ y = ex + 3e−2x . Computational Science & Engineering (CSE) C. K. Ko
  • 7. Chapter 2. Second-Order Linear ODEs 7 Case II. Real double root λ = −a 2 . y1 = e−a 2x , y2 =? Let y2 = uy1. Using the formula, we have u = 1 y2 1 e− p dx dx = eax e−ax dx = x. Thus y2 = xe−a 2x (another independent solution), and the general solution is y = (c1 + c2x)e−ax/2 . Example 3. Case of a Double Root Solve y + 6y + 9y = 0. Sol. characteristic equation : λ2 + 6λ + 9 = 0, λ = −3 ∴ y = (c1 + c2x)e−3x . Computational Science & Engineering (CSE) C. K. Ko
  • 8. Chapter 2. Second-Order Linear ODEs 8 Case III. Complex roots λ1 = −1 2 a + iω and λ2 = −1 2 a − iω. Note: Euler formula eit = cos t + i sin t eit = ∞ n=0 (it)n n! = ∞ n=0 (it)2n (2n)! + ∞ n=0 (it)2n+1 (2n + 1)! = ∞ n=0 (−1)n t2n (2n)! + i ∞ n=0 (−1)n t2n+1 (2n + 1)! = cos t + i sin t. We have two linearly independent solutions y1 = eλ1x = e−1 2ax (cos wx + i sin wx), y2 = eλ2x = e−1 2ax (cos wx − i sin wx). Since the ODE is linear and homogeneous, 1 2 (y1 + y2) = e−1 2ax cos wx, 1 2i (y1 − y2) = e−1 2ax sin wx are linearly independent solutions. The general solution is ∴ y = e−1 2ax (A cos ωx + B sin ωx) . Example 5. Case of Complex Roots Solve y + 0.4y + 9.04y = 0. Sol. characteristic equation : λ2 + 0.4λ + 9.04 = 0, λ = −0.2 ± 3i. ∴ y = e−0.2x (A cos 3x + B sin 3x) . Computational Science & Engineering (CSE) C. K. Ko
  • 9. Chapter 2. Second-Order Linear ODEs 9 §2.4 Modeling : Free Oscillations (Mass-Spring System) [Setting Up the Model] • Newton’s second law : Force = Mass × Acceleration = my . • Hook’s law: F0 = −κs0 where κ > 0 is the spring constant (or spring modulus). • In static equilibrium, −κs0 + mg = 0. • From the position y = 0, the displacement y(t) we pull it down, my = −ky ⇒ my + κy = 0. [Undamped System : my + κy = 0] characteristic equation : mλ2 + κ = 0 =⇒ λ2 + ω2 0 = 0, ω0 = κ m , λ = ±iω0 ∴ y(t) = A cos ω0t + B sin ω0t. The corresponding motion is called a harmonic oscillation. Since the trigonometric functions have the period 2π ω0 , the frequency (or natural frequency) is ω0 2π . Computational Science & Engineering (CSE) C. K. Ko
  • 10. Chapter 2. Second-Order Linear ODEs 10 Note: • cycles/sec = hertz(Hz) • y(t) = A cos(ω0t) + B sin(ω0t) = C[cos(ω0t) A C + sin(ω0t) B C ] = C[cos(ω0t) cos δ + sin(ω0t) sin δ] = C cos(ω0t − δ) where C = √ A2 + B2, δ = arctan (B/A) . • A = y(0), B = y (0)/ω0. • B = 0 ⇒ δ = 0. Computational Science & Engineering (CSE) C. K. Ko
  • 11. Chapter 2. Second-Order Linear ODEs 11 Example 1. Undamped Motion. Harmonic Oscillation • If an iron ball of weight W = 98 nt stretches a spring 1.09 m, how many cycles per minute will this mass-spring system execute? • What will its motion be if we pull down the weight an additional 16 cm and let it start with zero initial velocity? Sol. By Hook’s law, 98 = 1.09κ ⇒ κ = 98 1.09 = 90(kg/sec). The mass is m = W/g = 98/9.8 = 10(kg). ∴ frequency: ω0 2π = κ m 2π = 3 2π (Hz) harmonic oscillation y(t) = A cos ω0t + B sin ω0t y(0) = A = 0.16m, y (0) = ω0B = 0 ⇒ B = 0 ∴ y(t) = 0.16 cos 3t (m) Computational Science & Engineering (CSE) C. K. Ko
  • 12. Chapter 2. Second-Order Linear ODEs 12 [Damped System] A damping force is F2 = −cy , c = damping constant. my = −ky − cy =⇒ my + cy + κy = 0 =⇒ λ2 + c m λ + κ m = 0 =⇒ λ1 = −α + β, λ2 = −α − β, where α = c 2m , β = 1 2m √ c2 − 4mκ. • Case I. c2 > 4mκ : distinct real roots λ1, λ2 (overdamping) ∴ y(t) = c1e−(α−β)t + c2e−(α+β)t • Case II. c2 = 4mκ : a real double root (critical damping) ∴ y(t) = c1e−αt + c2te−αt • Case III. c2 < 4mκ : complex conjugate roots (underdamping) β = iω∗ , where ω∗ = 1 2m 4mκ − c2 (> 0) ∴ y(t) = e−αt (A cos ω∗ t + B sin ω∗ t) = Ce−αt cos(ω∗ t − δ), where C = √ A2 + B2, tan δ = B/A. Note that the frequency is ω∗ 2π and ω∗ −→ ω0 as c −→ 0. Computational Science & Engineering (CSE) C. K. Ko
  • 13. Chapter 2. Second-Order Linear ODEs 13 §2.5 Euler-Cauchy Equations x2 y + axy + by = 0 : Euler-Cauchy equation. Try y = xm . Then [m(m − 1) + am + b]xm = 0. m2 + (a − 1)m + b = 0, m = m1, m2. • Case 1. Two distinct real roots : m1, m2. Since y1 = xm1 and y2 = xm2 are linearly independent solutions of the ODE, the general solution of the ODE is y = c1xm1 + c2xm2. • Case 2. Real double root : m1 = m2 = 1 2 (1 − a) y1 = x 1 2(1−a) , y2 =? Let y2 = uy1. x2 y + axy + by = 0 =⇒ y + a x y + b x2 = 0. Using the formula, we have u = 1 y2 1 e− p dx dx = xa−1 x−a dx = ln x. Thus y2 = x 1 2(1−a) ln x (another independent solution) and the gen- eral solution is y = (c1 + c2 ln x)x 1 2(1−a) . Example 1-2. Solve (a) x2 y + 1.5xy − 0.5y = 0, (b) x2 y − 5xy + 9y = 0. Sol. (a) m(m − 1) + 1.5m − 0.5 = m2 + 0.5m − 0.5 = 0, m = 0.5, −1 ∴ y = c1 √ x + c2x−1 . (b) m(m − 1) − 5m + 9 = m2 − 6m + 9 = 0, m = 3. ∴ y = (c1 + c2 ln x)x3 . Computational Science & Engineering (CSE) C. K. Ko
  • 14. Chapter 2. Second-Order Linear ODEs 14 • Case 3. Complex roots m1 = 1 2 (1−a)+ωi, m2 = 1 2 (1−a)−ωi. We have two linearly independent solutions y1 = xm1 = x 1 2(1−a) eiω ln x = x 1 2(1−a) (cos(ω ln x) + i sin(ω ln x)), y2 = xm2 = x 1 2(1−a) e−iω ln x = x 1 2(1−a) (cos(ω ln x) − i sin(ω ln x)). Since the ODE is linear and homogeneous, 1 2 (y1 + y2) = x 1 2(1−a) cos(ω ln x), 1 2i (y1 − y2) = x 1 2(1−a) sin(ω ln x) are linearly independent solutions. The general solution is y = x 1 2(1−a) [A cos(ω ln x) + B sin(ω ln x)]. Example 3. Case of Complex Roots Solve x2 y + 0.6xy + 16.04y = 0. Sol. m(m − 1) + 0.6m + 16.04 = m2 − 0.4m + 16.04 = 0 ⇒ m1 = 0.2 + 4i, m2 = 0.2 − 4i. ∴ y = x0.2 [A cos(4 ln x) + B sin(4 ln x)] . Computational Science & Engineering (CSE) C. K. Ko
  • 15. Chapter 2. Second-Order Linear ODEs 15 §2.6 Existence and Uniqueness of Solutions. Wronskian y + p(x)y + q(x)y = 0, (1) y(x0) = K0, y (x0) = K1. (2) Theorem 1. (Existence and Uniqueness Theorem for IVP) If p(x) and q(x) are continuous on I and x0 ∈ I, then the IVP of (1) and (2) has a unique solution y(x) on I. [Recall] y1 and y2 are called linearly independent on an interval I if k1y1(x) + k2y2(x) = 0, ∀x ∈ I ⇒ k1 = k2 = 0. Otherwise, that is, for some numbers k, l y1 = ky2 or y2 = ly1, ∀x ∈ I, y1 and y2 are called linearly dependent on an interval I. Theorem 2. Let p(x) and q(x) in (1) be continuous on I. Then 1. Two solutions y1, y2 of (1) on I are linearly dependent on I. ⇐⇒ W (y1, y2) ≡ y1 y2 y1 y2 = y1y2 − y2y1 = 0 at some x0 ∈ I, (W (y1, y2) :Wronskian). 2. If W = 0 at an x0 ∈ I, then W ≡ 0 on I. Hence, if ∃ x1 ∈ I at which W is not 0, then y1 and y2 are linearly independent on I. Computational Science & Engineering (CSE) C. K. Ko
  • 16. Chapter 2. Second-Order Linear ODEs 16 Proof. 1.(⇒) Let y1, y2 be linearly dependent on I and y1 = ky2. Then W (y1, y2) = y1y2 − y2y1 = ky2y2 − ky2y2 = 0. (⇐) Let W (y1, y2) = 0 for some x = x0 ∈ I. We consider the linear system in the unknowns K1, K2. K1y1(x0) + K2y2(x0) = 0 K1y1(x0) + K2y2(x0) = 0 (3) =⇒ y1(x0) y2(x0) y1(x0) y2(x0) K1 K2 = 0 0 . Since y1(x0) y2(x0) y1(x0) y2(x0) = y1y2 − y2y1 = W (y1(x0), y2(x0)) = 0, ∃ not all zero K1 and K2, say, K2 1 + K2 2 = 0. Then for these constants K1, K2, ˜y(x) = K1y1(x) + K2y2(x) is a solution of (1) and ˜y(x0) = ˜y (x0) = 0 from (3). Notice that ˆy ≡ 0 is also a a solution of (1) and ˆy(x0) = ˆy (x0) = 0. By the uniqueness theorem of solutions, ˜y = ˆy, i.e, K1y1 + K2y2 = 0 =⇒ y1 = − K2 K1 y2 or y2 = − K1 K2 y1. ∴ y1 and y2 are linearly dependent. 2. Let W (x0) = 0 at x0 ∈ I. By part (⇐), y1 and y2 are linearly dependent. Hence W ≡ 0. Example 1. W (cos ωx, sin ωx) = cos ωx sin ωx −ω sin ωx ω cos ωx = ω. ∴ cos ωx and sin ωx are linearly independent ⇔ ω = 0 Computational Science & Engineering (CSE) C. K. Ko
  • 17. Chapter 2. Second-Order Linear ODEs 17 Theorem 3. (Existence of a General Solution) If p(x) and q(x) are continuous on I, then (1) has a general solution on I. Theorem 4. ( A General Solution Includes All Solutions) If p(x) and q(x) are continuous on I, then every solution y = Y (x) of (1) is of the form Y (x) = C1y1(x) + C2y2(x) where y1, y2 is any basis of solutions of (1) on I. Hence (1) does not have singular solutions. Computational Science & Engineering (CSE) C. K. Ko
  • 18. Chapter 2. Second-Order Linear ODEs 18 §2.7 Nonhomogeneous ODEs y + p(x)y + q(x)y = r(x). (1) y + p(x)y + q(x)y = 0. (2) Definition A general solution of (1) is a solution of the form y(x) = yh(x) + yp(x). Here, yh = c1y1 + c2y2 is a general solution of (2) and yp is any solution of (1). Theorem 1. • solution of (1)+ solution of (2)= solution of (1). • solution of (1)− solution of (1)= solution of (2). Theorem 2. Let p, q, r in (1) be continuous on some open interval I. Every solution of (1) is obtained by assigning suitable values to c1, c2 in a solution of the form y(x) = yh(x) + yp(x). Here, yh is a general solution of (2) and yp is any solution of (1). [Method of Undetermined Coefficients] • Choice Rules for yp (a) Basic rule r(x) yp(x) keγx Ceγx kxn (n = 0, 1, , · · · ) Knxn + Kn−1xn−1 + · · · + K1x + K0 k cos ωx ,k sin ωx K cos ωx + M sin ωx keαx cos ωx, keαx sin ωx keαx (K cos ωx + M sin ωx) (b) Modification rule(Multiply by x or x2 , · · · ) (c) Sum rule (r(x) = r1(x) + r2(x)) Computational Science & Engineering (CSE) C. K. Ko
  • 19. Chapter 2. Second-Order Linear ODEs 19 Example 1. Solve y + y = 0.001x2 , y(0) = 0, y (0) = 1.5. Sol. step1. y + y = 0 ⇒ yh = A cos x + B sin x. step2. yp = K2x2 + K1x + K0. yp + yp = 2K2 + K2x2 + K1x + K0 = 0.001x2 . ∴ yp = 0.001x2 − 0.002. step3. y = yh + yp = A cos x + B sin x + 0.001x2 − 0.002. y(0) = 0, y (0) = 1.5 =⇒ A = 0.002, B = 1.5. ∴ y = 0.002 cos x + 1.5 sin x + 0.001x2 − 0.002. Example 2. Solve y + 3y + 2.25y = −10e−1.5x . Sol. step1. y +3y +2.25y = 0, λ2 +3λ+2.25 = 0, λ = −1.5. ⇒ yh = (c1 + c2x)e−1.5x . step2. yp = Cx2 e−1.5x (why!). ∴ yp = −5x2 e−1.5x . step3. y = yh + yp = (c1 + c2x − 5x2 )e−1.5x . Computational Science & Engineering (CSE) C. K. Ko
  • 20. Chapter 2. Second-Order Linear ODEs 20 Example 3. Solve the ODE y + 2y + 5y = e0.5x + 40 cos 10x − 190 sin 10x, y(0) = 0.16, y (0) = 40.08. Sol. step1. y + 2y + 5y = 0 ⇒ λ2 + 2λ + 5 = 0, λ = −1 ± 2i. ∴ yh = e−x (A cos 2x + B sin 2x). step2. yp = Ce0.5x + D cos 10x + E sin 10x. ∴ yp = 0.16e0.5x + 2 sin 10x. step3. y = yh + yp = e−x (A cos 2x + B sin 2x) +0.16e0.5x + 2 sin 10x. From the initial conditions, A = 0, B = 10, and the solution is y = 10e−x sin 2x + 0.16e0.5x + 2 sin 10x. Computational Science & Engineering (CSE) C. K. Ko
  • 21. Chapter 2. Second-Order Linear ODEs 21 §2.8 Modelling: Forced Oscillations. Resonance my + cy + ky = r(t) (1) internal force external force • r(t) = 0 ⇒ (1): free motion. • r(t) = 0 ⇒ (1): forced motion with forcing function r(t) (input or driving force). • y(t): output or response of the system to the driving force. [Solving the Nonhomogeneous ODE] Consider the ODE with a periodic external force r(t) = F0 cos ωt. my + cy + ky = F0 cos ωt (2) • Put yp(t) = a cos ωt + b sin ωt. • Substituting yp, yp, yp into (2), we get [(k − mω2 )a + ωcb] cos ωt + [−ωca + (k − mω2 )b] sin ωt =F0 cos ωt =⇒(k − mω2 )a + ωcb = F0, − ωca + (k − mω2 )b = 0. Computational Science & Engineering (CSE) C. K. Ko
  • 22. Chapter 2. Second-Order Linear ODEs 22 • If (k − mω2 )2 + ω2 c2 = 0, a = (k − mω2 )F0 (k − mω2)2 + ω2c2 , b = ωcF0 (k − mω2)2 + ω2c2 . • If k/m = ω0(> 0), then k = mω2 0 and we obtain a = m(ω2 0 − ω2 )F0 m2(ω2 0 − ω2)2 + ω2c2 , b = ωcF0 m2(ω2 0 − ω2)2 + ω2c2 . [Case 1. Undamped Forced Oscillations. Resonance] • c = 0 ⇒ a = F0/[m(ω2 0 − ω2 )], b = 0 ∴ yp(t) = F0 m(ω2 0 − ω2) cos ωt = F0 k[1 − (ω/ω0)2] cos ωt. • In equations above, we must assume that ω2 = ω2 0; physically, the frequency ω/(2π)[cycles/sec] of the driving force = the natural frequency ω0/(2π)[cycles/sec] of the system. • From the results in Sec. 2.4 we have the general solution of the ”un- damped system” y(t) = C cos(ω0t − δ) + F0 m(ω2 0 − ω2) cos ωt. • Resonance. • The maximum amplitude of yp is (put cos ωt = 1) a0 = F0 k ρ where ρ = 1 1 − (ω/ω0)2 . • If ω → ω0, then ρ → ∞ and a0 → ∞. • This excitation of large oscillations by matching input and natural frequencies (ω = ω0) is called resonance. ρ: resonance factor. Computational Science & Engineering (CSE) C. K. Ko
  • 23. Chapter 2. Second-Order Linear ODEs 23 • ρ/k = a0/F0: the ratio of the amplitudes of yp and of the input F0 cos ωt. • If ω = ω0, then the nonhomogeneous ODE becomes y + ω2 0y = F0 m cos ω0t. From the Modification Rule in Sec. 2.7 yp(t) = t(a cos ω0t + b sin ω0t) = F0 2mω0 t sin ω0t. Computational Science & Engineering (CSE) C. K. Ko
  • 24. Chapter 2. Second-Order Linear ODEs 24 [Case 2. Damped Forced Oscillations] • If the damping is not negligibly small, we have c > 0 and a damping term cy . Then the general solution yh of the homogeneous ODE approaches zero as t → ∞, that is, the trasient solution y = yh+yp approaches the steady-state solution yp as t → ∞. • Amplitude of the Steady-State Solution. Practical Resonance The amplitude will always be finite. But it may have a maximum for some ω depending on the damping constant c. This may be called practical resonance. • Let yp(t) = a cos ωt + b sin ωt = C∗ cos(ωt − η). C∗ is called the amplitude of yp and η the phase angle or phase lag. Here, C∗ = a2 + b2 = F0 m2(ω2 0 − ω2)2 + ω2c2 , tan η(ω) = b a = ωc m(ω2 0 − ω2) . • Let R = m2(ω2 0 − ω2)2 + ω2c2. Then dC∗ dω = F0 − 1 2 R−3/2 [2m2 (ω2 0 − ω2 )(−2ω) + 2ωc2 ] = 0 ⇒ c2 = 2m2 (ω2 0 − ω2 ) (ω2 0 = k/m) (15) ⇒ 2m2 ω2 = 2m2 ω2 0 − c2 = 2mk − c2 . • c2 > 2mk ⇒ (15) has no real solution. c2 < 2mk ⇒ (15) has a real solution ω = ωmax, where ω2 max = ω2 0 − c2 2m2 , C∗ (ωmax) = 2mF0 c 4m2ω2 0 − c2 = 2mF0 c √ 4mk − c2 . Computational Science & Engineering (CSE) C. K. Ko
  • 25. Chapter 2. Second-Order Linear ODEs 25 Example • Take m = 1, k = 1, hence ω0 = 1, and various values of the damping constant c. • Fig. 56 shows the amplification C∗ /F0 as a function of ω. • Fig. 57 shows the phase angle η: ω < ω0 ⇒ η < (π/2); ω > ω0 ⇒ η > (π/2). Computational Science & Engineering (CSE) C. K. Ko
  • 26. Chapter 2. Second-Order Linear ODEs 26 §2.9 Modelling: Electric Circuits • Voltage Drops. • RI Voltage drop for a resistor of resistance R (Ω) (Ohm’s law). • LI Voltage drop for an inductor of capacitance L (H). • Q C Voltage drop for a capacitor of capacitance C (F). Here Q coulombs is the charge on the capacitor; Q(t) = I(t)dt. • Kirchhoff’s Voltage Law (KVL). The voltage impressed on a closed loop is equal to the sum of the voltage drops across the other elements of the loop. • According to KLV we have in Fig. 60 the ”integro-differential equa- tion” LI + RI + 1 C Idt = E(t) = E0 sin ωt. Differentiating the above equation, we obtain LI + RI + 1 C I = E (t) = E0ω cos ωt. (1) Computational Science & Engineering (CSE) C. K. Ko
  • 27. Chapter 2. Second-Order Linear ODEs 27 [Solving the ODE (1) for the Current. Discussion of Solution] • A general solution of (1) is the sum I = Ih + Ip. • Let Ip = a cos ωt + b sin ωt. Then Lω2 (−a) + Rωb + a/C = E0ω (Cosine terms) Lω2 (−b) + Rω(−a) + b/C = 0 (Sine terms) • Introducing the reactance S = ωL − 1 ωC , we get − Sa + Rb = E0 − Ra − Sb = 0 =⇒ a = −E0S R2 + S2 , b = E0R R2 + S2 . • Ip(t) = I0 sin(ωt − θ) where I0 = a2 + b2 = E0 √ R2 + S2 , tan θ = − a b = S R . • The quantity √ R2 + S2 is called impedance. Note that √ R2 + S2 = E0/I0 is analogous to R = E/I. • Let Ih = c1eλ1t + c2eλ2t . Then λ2 + R L λ + 1 LC = 0, λ1 = −α + β, λ2 = −α − β, where α = R 2L , β = R2 4L2 − 1 LC = 1 2L R2 − 4L C . • Since R > 0, the transient current I = Ih + Ip tends to the steady-state current Ip as t → ∞. Computational Science & Engineering (CSE) C. K. Ko
  • 28. Chapter 2. Second-Order Linear ODEs 28 Example 1. RLC-Circuit Find the current I(t) in an RLC-circuit with R = 11Ω, L = 0.1H, C = 10−2 F and E(t) = 100 sin 400t. Assume that current and charge are zero when t = 0. Sol. 0.1I + 11I + 100I = 100 · 400 cos 400t. Ih = c1e−10t + c2e−100t Ip = a cos 400t + b sin 400t =⇒ Ip = −2.3368 cos 400t + 0.6467 sin 400t I = Ih + Ip = c1e−10t + c2e−100t −2.3368 cos 400t + 0.6467 sin 400t initial condition : I(0) = 0, Q(0) = 0 LI + RI + 1 C Idt = E(t) = E0 sin ωt. Putting t = 0, LI (0) + RI(0) + 1 C · 0 = 0 =⇒ I (0) = 0. I = −0.2776e−10t +2.6144e−100t −2.3368 cos 400t+0.6467 sin 400t [Analogy of Electrical and Mechanical Quantities] LI + RI + 1 C I = E0ω cos ωt my + cy + ky = F0 cos ωt Computational Science & Engineering (CSE) C. K. Ko
  • 29. Chapter 2. Second-Order Linear ODEs 29 §2.10 Solution by Variation of Parameters y + p(x)y + q(x)y = r(x) (1) When yh(x) = c1y1 + c2y2 is the general solution of the ODE y + p(x)y + q(x)y = 0, (2) find a solution yp of (1). • Setting yp = uy1 + vy2, determine u and v. Then yp = u y1 + uy1 + v y2 + vy2. • We may impose a second condition: u y1 + v y2 = 0. Thus yp = uy1 + vy2 and yp = u y1 + uy1 + v y2 + vy2 . Substituting yp, yp and yp into (1), we obtain u(y1 + py1 + qy1 =0 ) + v(y2 + py2 + qy2 =0 ) + u y1 + v y2 = r and u y1 + v y2 = r u y1 + v y2 = 0. We solve the linear system: u = − y2r W , v = y1r W , where W = y1 y2 y1 y2 . By integration, u = − y2r W dx, v = y1r W dx. ∴ yp(x) = −y1 y2r W dx + y2 y1r W dx (method of variation of parameters). Computational Science & Engineering (CSE) C. K. Ko
  • 30. Chapter 2. Second-Order Linear ODEs 30 Example 1. Method of Variation of Parameters Solve y + y = sec x. Sol. The general solution of the homogeneous ODE y + y = 0 is yh = c1 cos x + c2 sin x. Let y1 = cos x and y2 = sin x. Then W = cos x sin x − sin x cos x = 1. ⇒ yp = −y1 y2r W dx + y2 y1r W dx = − cos x sin x 1 cos x dx + sin x cos x 1 cos x dx = cos x ln | cos x| + x sin x. ∴ y = c1 cos x + c2 sin x + cos x ln | cos x| + x sin x. Computational Science & Engineering (CSE) C. K. Ko