SlideShare a Scribd company logo
1 of 44
Download to read offline
1
The world leader in serving science
Manoj Kushwaha
Utilizing Very High Resolution
Fine Isotopic Data To Refine
Elemental Composition Determination
2
Accurate Mass Instruments - Orbitrap
• What they are good at?
• Accurate mass qualitative work – when used as the detector for an ion
trap, they can perform accurate mass MSn.
• Quantitation – Scan-to-scan mass accuracy is typically very good with
a deviation across a peak of 1-3 ppm allowing for narrow selection.
• Mass accuracy stability – Typical performance with once a day
external calibration is <3 ppm.
• Resolution – Can provide very high resolution (up to 480,000 or more)
3
High Resolution MS
What is the information High resolution Mass spectrometer provides
Mass accuracy (ppm) – how accurate is the mass spectrometer at predicting
the mass of an analyte relative to it’s theoretical mass.
Example:
Theoretical mass = 222.1125
Predicted by triple quad mass spectrometer = 222.1
Predicted by Q Exactive = 222.1129
Resolution (R) – how capable is mass spectrometer at identifying two
masses from each other.
Example:
Mass 1 = 222.1125
Mass 2 = 222.1237
4
Using High Resolution: Counting Atoms
• Splitting fine isotopes allows for:
• Confirmation of elemental composition
• Confirmation of a component
• What about isotope ratios?
• Can we split elements and count the atoms?
5
Real World Example – Melamine in Albumin
• Melamine analysis in pharmaceutical excipients was a hot
topic following contamination events in China
NN
N N 2H
N 2H
N2H
NN
N OH
OH
OH
NN
N OH
N 2H
OH
NN
N OH
N 2H
N2H
N=6
Melamine
N=5
Ammeline
N=4
Ammelide
N=3
Cyanuric Acid
6
Melamine Injection – Real Data
RT: 0.00 - 8.36
0 5
Time (min)
0
10
20
30
40
50
60
70
80
90
100
RelativeAbundance
2.57
3.45
Melamine_FDA_500ul_02 #271 RT: 2.56913 AV: 1 NL: 1.41E7
F: FTMS + p ESI Full ms [85.00-500.00]
126.4 126.6 126.8 127.0 127.2 127.4 127.6 127.8 128.0 128.2 128.4 128.6 128.8
m/z
0
10
20
30
40
50
60
70
80
90
100
RelativeAbundance
127.07287
C3 H7 N6
128.07614
C2
13C H7 N6
Melamine_FDA_500ul_02 #271 RT: 2.56913 AV: 1 NL: 4.69E5
F: FTMS + p ESI Full ms [85.00-500.00]
128.05 128.10
m/z
0
10
20
30
40
50
60
70
80
90
100
RelativeAbundance
128.07614
C2
13C H7 N6
128.07001
C3 H7 N5
15N 128.08173
C4 H9 N4
15N
Scan at Peak Apex
Clear split of 15N and 13C in the A1 isotope
peak of Melamine.
Does the isotopic ratio match?
Can we count the number of N in a structure?
A1
7
Using High Resolution: Counting Nitrogen
• To count nitrogen we need to measure the isotope ratio of
the 15N signal in A1 [A1,N] and the 13C signal in A1 [A1,C]
• As the number of nitrogen atoms (#N) increases the value of
the ratio [A1,N] / [A1,C] increases
• If we know #C, then we can calculate #N
• We can get a reasonable estimate of #C from:
Relative Abundance 13C
A1,C
A0,C
/ = # C (3 for our case)
Note: This formula provides an estimate only, however it breaks down for as MW increases
(>400 MW) and molecules where carbon makes up less than ~65% of the non-hydrogen atoms.
8
Using High Resolution: Counting Nitrogen
• Estimating the value of #N can be performed by recognizing
that the ratio of 15N to 13C in A1 is reflected by:
• Which gives an equation for #N:
• Our observed 15N/13C ratio calculated a value of 6 nitrogen.
A1,N
A1,C
=
#N X Relative Abundance 15N
#C X Relative Abundance 13C
#N =
A1,N
A1,C Relative Abundance 15N
#C X Relative Abundance 13C
X
9
Using High Resolution: Counting Carbon
Melamine
= 3.3/100* 100/1.08
= 3.05
Relative Abundance 13C
A1,C
A0,C
/ = # C (3 for our case)
10
Using High Resolution: Counting Nitrogen
Melamine
#N =
A1,N
A1,C Relative Abundance 15N
#C X Relative Abundance 13C
X
= 2.3/3.3*3*1.08/0.369
= 6.1
11
F: FTMS + p ESI Full lock ms [140.00-2000.00]
690 700 710 720 730 740 750 760 770 780 790 800 810 820 830 840
m/z
0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
RelativeAbundance
792.5536
776.5591
748.5280
752.5594
768.5543 780.5906
764.5229
796.5852
718.5383702.5433 814.5358728.5592 744.5544
692.5229 835.6172706.5406
C 45
H 79
O 8
N P
-0.21 ppm
HRAM provides Elemental Composition
Using
Spectral Distance
12
Table of Relative Abundance for Common Elements
Name Mass % Abundance
Rel.
Abundance
Δ Most
abundant Name Mass % Abundance
Rel.
Abundance
Δ Most
abundant
1H 1.007825 99.9558 100.0% - 32S 31.972071 94.93 100.0% -
2H 2.014102 0.115 0.12% 1.006277 33S 32.971458 0.76 0.80% 0.999387
3H 3.016049 - 2.008224 34S 33.967867 4.29 4.52% 1.995796
12C 12 98.93 100.0% - 36S 35.967081 0.02 0.02% 3.995010
13C 13.003355 1.07 1.08% 1.003355 35Cl 34.968853 75.78 100.0% -
14C 14.003242 - 2.003242 37Cl 36.965903 24.22 31.96% 1.997050
14N 14.003074 99.632 100.0% - 79Br 78.918338 50.69 100.0% -
15N 15.000109 0.368 0.37% 0.997035 81Br 80.916291 49.31 97.28% 1.997953
16O 15.994915 99.757 100.0% -
17O 16.999132 0.038 0.04% 1.004217
18O 17.999160 0.205 0.21% 2.004245
• A good reference can be found at:
http://www.chem.ualberta.ca/~massspec/atomic_mass_abund.pdf
13
Isotopic Spectral Match – Theoretical vs Experimental
True Identification with High Resolution only!
14
Exactive – Isotope Fidelity
• Early in the peak – Low signal
(1.6e5)
C14H11Cl2NO2 +H: C14 H12 Cl2 N1O2 p(gss, s/p:40) Ch...
296.0 296.5 297.0 297.5 298.0 298.5 299.0 299.5 300.0
m/z
0
10
20
30
40
50
60
70
80
90
100
RelativeAbundance
296.02
298.02
297.03
300.02299.02
RT: 3.40 - 4.01
3.4 3.5 3.6 3.7 3.8 3.9 4.0
Time (min)
0
10
20
30
40
50
60
70
80
90
100
RelativeAbundance
3.72
Theoretical
C14H12Cl2N1O2
296 297 298 299 300
m/z
0
10
20
30
40
50
60
70
80
90
100
RelativeAbundance
296.0242
R=23300
298.0212
R=23600
296.2200
R=22200 297.0274
R=21700 300.0181
R=22300
299.0247
R=20600297.2228
R=19700
65%
16%
10%10%
+10%
-1%
+/-0%+/-0%
Observed
15
Exactive – Isotope Fidelity
• Center of the peak – Signal
(9.8e5)
C14H11Cl2NO2 +H: C14 H12 Cl2 N1O2 p(gss,s/p:40) Ch...
296.0 296.5 297.0 297.5 298.0 298.5 299.0 299.5 300.0
m/z
0
10
20
30
40
50
60
70
80
90
100
RelativeAbundance
296.02
298.02
297.03
300.02299.02
RT: 3.40 - 4.01
3.4 3.5 3.6 3.7 3.8 3.9 4.0
Time (min)
0
10
20
30
40
50
60
70
80
90
100
RelativeAbundance
3.72
296 297 298 299 300
m/z
0
10
20
30
40
50
60
70
80
90
100
RelativeAbundance
R=23500
298.0211
R=23800
297.0276
R=23200 299.0247
R=23600
300.0182
R=23500296.2202
R=19800
297.2407
R=18500
Theoretical
C14H12Cl2N1O2
65%
16%
10%10%
+1%
-3%
+/-0%+/-0%
Observed
16
Exactive – Isotope Fidelity
• Tail of the Peak – 5.3e4
C14H11Cl2NO2 +H: C14 H12 Cl2 N1O2 p(gss, s/p:40) Ch...
296.0 296.5 297.0 297.5 298.0 298.5 299.0 299.5 300.0
m/z
0
10
20
30
40
50
60
70
80
90
100
RelativeAbundance
296.02
298.02
297.03
300.02299.02
RT: 3.40 - 4.01
3.4 3.5 3.6 3.7 3.8 3.9 4.0
Time (min)
0
10
20
30
40
50
60
70
80
90
100
RelativeAbundance
3.72
Theoretical
C14H12Cl2N1O2
296 297 298 299 300
m/z
0
10
20
30
40
50
60
70
80
90
100
RelativeAbundance
R=22800
298.0214
R=22500
299.1621
R=20300
296.2196
R=20000
297.0272
R=16100
299.0255
R=18400
300.0186
R=18000
65%
16%
10%10%
-8%
-3%
+/-0%+/-0%
Observed
17
Calculating Elemental Composition from A0
• For any given accurate mass value, only a finite number of
elemental compositions can be predicted.
• If all elements on the periodic chart and any number of each
were allowed, the possible compositions would be a function
of the observed m/z however it would be a very large
number.
• If we constrain the elements and their allowed ranges we can
begin to determine a reasonable list of possible elemental
compositions.
18
Calculating Elemental Composition from A0
• Example (If you recognize the m/z don’t shout it out…)
385 386 387 388 389 390
m/z
0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
RelativeAbundance
386.2553
387.2522
388.2533
It’s a small pharma molecule so we limit
our elements and set reasonable max
values
Element Max
C 25
H 40
O 6
N 6
S 2
Cl 1
Br 1
F 3
19
Calculating Elemental Composition from A0
• Multiple formulas calculated from A0
385 386 387 388 389 390
m/z
0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
RelativeAbundance
386.2553
387.2522
388.2533
We also apply a limit of 5 ppm tolerance
for any formula we calculate.
Formula
C21 H32 O2 N5
C15 H38 O5 N4 S
C21 H40 O N S2
C16 H35 N5 F3 S
C16 H39 O N4 F S2
C21 H36 N2 F2 S
C18 H33 O3 N5 F
C23 H34 O3 N2
C21 H33 O N2 F3
C20 H36 O6 N
C15 H35 O6 N4 F
C18 H38 O3 N F2 S
A0
A1
A2
20
Calculating Elemental Composition from A0
• Consider the actual mass of natural isotopes.
385 386 387 388 389 390
m/z
0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
RelativeAbundance
386.2553
387.2522
388.2533
∆15N 13C = 0.00632
387.24 387.26
m/z
0
20
40
60
80
100
RelativeAbundance
387.2522
387.2466
N
Requires Resolution
>50,000
21
Calculating Elemental Composition from A0
• Consider the actual mass of natural isotopes.
385 386 387 388 389 390
m/z
0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
RelativeAbundance
386.2553
387.2522
388.2533
∆34S and 2X 13C = 0.01914
389.25 389.30
m/z
0
20
40
60
80
100RelativeAbundance
389.2587
2 13C
No
S
22
Calculating Elemental Composition from A0
• How do we further refine our results?
385 386 387 388 389 390
m/z
0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
RelativeAbundance
386.2553
387.2522
388.2533
Formula
C21 H32 O2 N5
C15 H38 O5 N4 S
C21 H40 O N S2
C16 H35 N5 F3 S
C16 H39 O N4 F S2
C21 H36 N2 F2 S
C18 H33 O3 N5 F
C23 H34 O3 N2
C21 H33 O N2 F3
C20 H36 O6 N
C15 H35 O6 N4 F
C18 H38 O3 N F2 S
23
Calculating Elemental Composition from A0
• How do we further refine our results?
385 386 387 388 389 390
m/z
0
5
10
15
20
25
30
35
40
45
50
55
60
65
70
75
80
85
90
95
100
RelativeAbundance
386.2553
387.2522
388.2533
Formula
C21 H32 O2 N5
C18 H33 O3 N5 F
C23 H34 O3 N2
C21 H33 O N2 F3
C20 H36 O6 N
C15 H35 O6 N4 F
We can further limit the elements (especially
fluorine).
As m/z is odd by nitrogen rule
C23 H34 O3 N2 ruled out
Formula
C21 H32 O2 N5
C23 H34 O3 N2
C20 H36 O6 N
24
If Sulfur is present -Elemental Composition with
Isotope Pattern
• Example – The applied “spectral fit” for a small sulfur
containing molecule require very high resolution.
34S
2 13C
Resolution >50000
25
CoA at - 60,000 Resolution m/z 768
34S and 13C2 not resolved
26
CoA at Different Resolutions, m/z 770
60 K @ m/z 400 100 K @ m/z 400 240 K @ m/z 400
27
311.0 311.5 312.0 312.5 313.0 313.5
m/z
311.1689
312.1715
313.1641
Why Use Ultra High resolution
313.14 313.16 313.18 313.20
m/z
313.1641
313.1741
34S
13C2
Calculated
35,000 Resolution
C17H27O3S
313.10 313.15 313.20 313.25
m/z
313.1669
28
287 288
m/z
0
100
RelativeAbundance
Using Very High Resolution Accurate Mass
HRAMVHRAM
• Accurate mass and
fragmentation are not the
only tools available to us
• Accurate mass gives us
access to elemental
composition
• Very high resolutions bring
even more power to our
ability to determine correct
elemental composition
287.20287.20 287.22287.22
00
100100
RelativeAbundanceRelativeAbundance
287.2033287.2033
287.1970287.1970
287.2063287.2063
287.20 287.22
0
100
RelativeAbundance
287.2033
287.1970
287.2063
C11H24O2N7
C15H28O4N
or
286.1999
287.2028
288.2051
287.2033
286.1999
288.2067
15N
13C
29
Full Scan Data
Isotopic Pattern + VHRAM = Powerful
C10H12O3N3S (0.05 ppm)
254.0 254.5 255.0 255.5 256.0
m/z
0
100
RelativeAbundance
254.0594
255.0627
R=249602
256.0551
R=244902
255.2318
R=200000
254.9491
R=172100
C13H15FS2 (0.11 ppm)
or
255.06 255.07m/z
0
100
RelativeAbundance
1.0063
Theoretical
R=254207
1.0034
0.9970
0.9994
13C
15N 33S
255.055 255.060 255.065
0
100
RelativeAbundance
R=249602
R=248000
R=249300
1.0033
0.9970
0.9993
30
2 AMU
Isolation Offset and Isotopic Pattern
“Normal”isolationissymmetrical“Normal”isolationissymmetrical——“Upanddown”“Upanddown”
Realdataisn’tRealdataisn’t——PatternsusuallyonlygoupfromAPatternsusuallyonlygoupfromA00
m/z
254.0593
253.0107
255.0626
256.0551251.1852 252.2169 257.9676253.2161
251 252 253 254 255 256 257 258
m/z
0
100
RelativeAbundance
250
31
TogettheisotopicpatterninaSIMorafragmentscanaverywideTogettheisotopicpatterninaSIMorafragmentscanaverywide
isolationisrequired.isolationisrequired.
Isolation Offset and Isotopic Pattern
6 AMU
m/z
254.0593
253.0107
255.0626
256.0551251.1852 252.2169 257.9676253.2161
Nothing “good” is here…
We’ve contaminated
our fragmentation!
251 252 253 254 255 256 257 258
m/z
0
100
RelativeAbundance
250
32
251 252 253 254 255 256 257 258
m/z
0
100
RelativeAbundance
250
4 AMU2 AMU
Isolation Offset and Isotopic Pattern
IsolationOffsetontheOrbitrap massspectrometer:Shiftthecenterofisolation,focusIsolationOffsetontheOrbitrap massspectrometer:Shiftthecenterofisolation,focus
onwhatmatters.onwhatmatters.
m/z
254.0593
253.0107
255.0626
256.0551251.1852 252.2169 257.9676253.2161
Offset = 1
33
Isotopic Pattern + VHRAM + Isolation Offset = Unique
No isotope pattern.
Isolation too narrow.
VHRAMHCDMS2
Isolation2
156.0 156.5 157.0 157.5 158.0 158.5
m/z
0
100
RelativeAbundance
156.0123
R=80300S
NH
N O
N2H
O
O
60 80 100 120 140 160 180 200 220 240 260
m/z
0
100
RelativeAbundance
156.0123
R=80300
108.0451
R=9540092.0501
R=103005
99.0559
R=98300
160.0878
R=78200147.0800
R=79200
173.5372
R=70300
188.0829
R=64000
110.0607
R=87000
68.0500
R=114800
254.0606
R=64700
34 COMPANY CONFIDENTIAL
Refining Prediction- Isotopic Pattern + VHRAM + Isolation Offset
Purpose:
To determine the capability of fine isotopic information to refine the minimum and
maximum values of elements in prediction of the elemental composition from very
high resolution data.
Methods:
Mass spectral information was acquired at very high resolutions (>240,000 FWHM
@ m/z 200) for both full scan and fragmentation (MS2) for known components.
The elemental composition was calculated for the full scan observed isotopic pattern
using a two different elemental composition sets, a limited “pre-known” set and a
more relevant “open” set.
Sample Preparation:
Standard samples of 5 compounds were prepared in a solution of 50:50 Water:
Acetonitrile with 0.1% formic acid.
35 COMPANY CONFIDENTIAL
Refining Prediction- Isotopic Pattern + VHRAM + Isolation Offset
Mass Spectrometry:
The analysis was performed on an Orbitrap Fusion Tribrid™ mass spectrometer in
positive mode both Full MS and MS2. Fragmentation data was acquired using HCD
at 25% for Tryptophan, 35% for Ranitidine, 40% for Oxytetracycline, and 60% for
Guanine and Norfloxacin.
The fragmentation was acquired using an isolation offset method. The isolation
width was set to 4 AMU with an offset of 1 AMU for a net isolation of -1 to +3 AMU.
This allowed for fragmentation scans to have isotopes up to A2.
36 COMPANY CONFIDENTIAL
Refining Prediction- Isotopic Pattern + VHRAM + Isolation Offset
The Elemental Composition Subsets – “Pre-Known” and “Open”
TABLE 1. The Elements and Ranges used for Composition Determination.
Element
Pre- Known Set Open Set
Min Max Min Max
C p/2 p+6 1 60
H p/2 p+6 2 180
O p-2 or 0 p+3 0 20
N p-2 or 0 p+2 0 15
S p-2 or 0 if p>0 then p+1, else 0 0 4
P p-2 or 0 if p>0 then p+1, else 0 0 3
F 0 p 0 3
p = the number of atoms present in the known parent structure. For the “Pre-known” list, the
minimum and maximum values were set as an expansion of the known “right” answer. For the
minimum values, 0 was used when the formula provided a minimum value < 0.
37 COMPANY CONFIDENTIAL
Refining Prediction- Isotopic Pattern + VHRAM + Isolation Offset
38 COMPANY CONFIDENTIAL
Refining Prediction- Isotopic Pattern + VHRAM + Isolation Offset
The Elemental Composition Subsets – “Pre-Known” and “Open”
TABLE 3. Elemental Composition Determination – No Fine Isotope Refinement.
Compound
Measured
Accuracy (ppm)
Total Possible Compositions
Pre-Known Open
Ranitidine -0.1 1 50
Tryptophan -0.1 4 7
Oxytetracycline 1.0 2 324
Guanine 0.8 1 6
Norfloxacin 0.5 2 61
39 COMPANY CONFIDENTIAL
Refining Prediction- Isotopic Pattern + VHRAM + Isolation Offset
Utilizing Fine Isotope Data to Refine Elemental Composition
Full scan data was acquired at resolution 480,000 and MS2 acquired at 240,000;
fine isotopic information available from Full scan and Fragment scan was used to
refine the elements in use.
40 COMPANY CONFIDENTIAL
Refining Prediction- Isotopic Pattern + VHRAM + Isolation Offset
TABLE 4. Refinement to Open Set by Direct Elemental Observation
Compound
Refinement from Fine Isotopes
Element Min Max Observation
Ranitidine
S
N
1
1
2
3
Fill scan 33S/34S and 13C/34S ratio
MS2 15N and MS 13C/15N A1 ratio
Tryptophan
N
S
1
0
3
0
MS2 15N and 13C/15N A1 ratio
Full scan lack of 34S in A2
Oxytetracycline
O
S
N
3
0
1
Unchanged
0
Unchanged
MS2 18O and 13C ratio
Full scan lack of 34S in A2
MS2 15N
Guanine
N
S
1
0
Unchanged
0
MS2 15N
Full scan lack of 34S in A2
Norfloxacin
N
O
S
1
1
0
Unchanged
Unchanged
0
MS2 15N
MS2 18O
Full scan lack of 34S in A2
Table 4 shows the detected fine isotope refinement possible by direct observation of
isotopes in fragmentation data for the compounds studied and the resulting improvement
on the possible elemental compositions calculated from the data.
41 COMPANY CONFIDENTIAL
Refining Prediction- Isotopic Pattern + VHRAM + Isolation Offset
Comparison of Performance – Using Fine Isotope Refinement
Elemental compositions were calculated using the fine isotopes observed in MS and MS2
data to refine the minimum and maximum values.
The inclusion of the additional limits significantly reduced the number of possible
compositions that were determined, for example, the total possible compositions
calculated from the HRAM full scan MS data of Oxytetracycline was reduced by almost an
order of magnitude when taking fine isotopic data into consideration.
Compound
Open Set
Pre- Known Set
Original With Fine Isotopes
Ranitidine 50 5 1
Tryptophan 7 1 4
Oxytetracycline 324 84 2
Guanine 6 1 1
Norfloxacin 61 30 2
Table 5. Comparison of the Three Methods for Elemental Composition.
42 COMPANY CONFIDENTIAL
Refining Prediction- Isotopic Pattern + VHRAM + Isolation Offset
Conclusion
The determination of elemental composition from accurate mass alone is insufficient
unless the elemental subset is constrained with a priori knowledge of the answer.
For real world analyses, this prior knowledge doesn’t exist and a more open
elemental composition set must be used. Here we have demonstrated that inclusion
of refinements to the minimum and maximum number of atoms for isotopic elements
by direct observation of fine isotope pattern improves our capability to determine the
composition.
• Accurate mass, even below 1 ppm, is insufficient for correct elemental composition
determination unless a priori knowledge is used.
• Very high resolution can give us access to direct observation of fine isotopes.
• Direct observation of the fine patter can refine the determination of elemental composition.
• Fine isotopic refinement of the elemental subset can be applied to real world scenarios to
improve elemental composition determination
43 COMPANY CONFIDENTIAL
Thank You
Transform Your ScienceTransform Your Science

More Related Content

What's hot

大気蛍光望遠鏡による極高エネルギー宇宙線スペクトルの研究
大気蛍光望遠鏡による極高エネルギー宇宙線スペクトルの研究大気蛍光望遠鏡による極高エネルギー宇宙線スペクトルの研究
大気蛍光望遠鏡による極高エネルギー宇宙線スペクトルの研究Toshihiro FUJII
 
Raqrs06 Borel Talk 8 15 06 White
Raqrs06 Borel Talk 8 15 06 WhiteRaqrs06 Borel Talk 8 15 06 White
Raqrs06 Borel Talk 8 15 06 Whiteguest0030172
 
Backgrounds of current overestimations of ammonia emission and nitrogen depos...
Backgrounds of current overestimations of ammonia emission and nitrogen depos...Backgrounds of current overestimations of ammonia emission and nitrogen depos...
Backgrounds of current overestimations of ammonia emission and nitrogen depos...Egbert Lantinga
 
First results from the full-scale prototype for the Fluorescence detector Arr...
First results from the full-scale prototype for the Fluorescence detector Arr...First results from the full-scale prototype for the Fluorescence detector Arr...
First results from the full-scale prototype for the Fluorescence detector Arr...Toshihiro FUJII
 
CH EN 3453 Heat Transfer 2014 Fall Utah Homework HW 10 Solutions
CH EN 3453 Heat Transfer 2014 Fall Utah Homework HW 10 SolutionsCH EN 3453 Heat Transfer 2014 Fall Utah Homework HW 10 Solutions
CH EN 3453 Heat Transfer 2014 Fall Utah Homework HW 10 Solutionssemihypocrite
 
Mechanics of fluids 5th edition potter solutions manual
Mechanics of fluids 5th edition potter solutions manualMechanics of fluids 5th edition potter solutions manual
Mechanics of fluids 5th edition potter solutions manualGloverTBL
 
The Emergence of New Radical-Cationic Amino Acid Dynamics: The Proton Patches...
The Emergence of New Radical-Cationic Amino Acid Dynamics: The Proton Patches...The Emergence of New Radical-Cationic Amino Acid Dynamics: The Proton Patches...
The Emergence of New Radical-Cationic Amino Acid Dynamics: The Proton Patches...Matthew MacLennan
 
Physics Lab Report
Physics Lab ReportPhysics Lab Report
Physics Lab ReportGary Schultz
 
IA data based, boiling point estimation using molecular model vs carbon fract...
IA data based, boiling point estimation using molecular model vs carbon fract...IA data based, boiling point estimation using molecular model vs carbon fract...
IA data based, boiling point estimation using molecular model vs carbon fract...Lawrence kok
 
Physics Formula list (3)
Physics Formula list (3)Physics Formula list (3)
Physics Formula list (3)WAYNE FERNANDES
 
Lab results presentation thermal radiation
Lab results presentation thermal radiationLab results presentation thermal radiation
Lab results presentation thermal radiationRaulRodriguez159
 
Capitulo 9, 7ma edición
Capitulo 9, 7ma ediciónCapitulo 9, 7ma edición
Capitulo 9, 7ma ediciónSohar Carr
 
Remote Sensing
Remote SensingRemote Sensing
Remote SensingOpenmaps
 
آموزش انتقال حرارت - بخش سوم
آموزش انتقال حرارت - بخش سومآموزش انتقال حرارت - بخش سوم
آموزش انتقال حرارت - بخش سومfaradars
 
Second orderreactiongraph
Second orderreactiongraphSecond orderreactiongraph
Second orderreactiongraphNorth East ISD
 

What's hot (20)

大気蛍光望遠鏡による極高エネルギー宇宙線スペクトルの研究
大気蛍光望遠鏡による極高エネルギー宇宙線スペクトルの研究大気蛍光望遠鏡による極高エネルギー宇宙線スペクトルの研究
大気蛍光望遠鏡による極高エネルギー宇宙線スペクトルの研究
 
Raqrs06 Borel Talk 8 15 06 White
Raqrs06 Borel Talk 8 15 06 WhiteRaqrs06 Borel Talk 8 15 06 White
Raqrs06 Borel Talk 8 15 06 White
 
Capítulo 08 parafusos
Capítulo 08   parafusosCapítulo 08   parafusos
Capítulo 08 parafusos
 
Backgrounds of current overestimations of ammonia emission and nitrogen depos...
Backgrounds of current overestimations of ammonia emission and nitrogen depos...Backgrounds of current overestimations of ammonia emission and nitrogen depos...
Backgrounds of current overestimations of ammonia emission and nitrogen depos...
 
First results from the full-scale prototype for the Fluorescence detector Arr...
First results from the full-scale prototype for the Fluorescence detector Arr...First results from the full-scale prototype for the Fluorescence detector Arr...
First results from the full-scale prototype for the Fluorescence detector Arr...
 
CH EN 3453 Heat Transfer 2014 Fall Utah Homework HW 10 Solutions
CH EN 3453 Heat Transfer 2014 Fall Utah Homework HW 10 SolutionsCH EN 3453 Heat Transfer 2014 Fall Utah Homework HW 10 Solutions
CH EN 3453 Heat Transfer 2014 Fall Utah Homework HW 10 Solutions
 
Mechanics of fluids 5th edition potter solutions manual
Mechanics of fluids 5th edition potter solutions manualMechanics of fluids 5th edition potter solutions manual
Mechanics of fluids 5th edition potter solutions manual
 
Gupta Roy MS Thesis Defense
Gupta Roy MS Thesis DefenseGupta Roy MS Thesis Defense
Gupta Roy MS Thesis Defense
 
The Emergence of New Radical-Cationic Amino Acid Dynamics: The Proton Patches...
The Emergence of New Radical-Cationic Amino Acid Dynamics: The Proton Patches...The Emergence of New Radical-Cationic Amino Acid Dynamics: The Proton Patches...
The Emergence of New Radical-Cationic Amino Acid Dynamics: The Proton Patches...
 
Physics Lab Report
Physics Lab ReportPhysics Lab Report
Physics Lab Report
 
Calculo de acero en vigas ok
Calculo de acero en vigas okCalculo de acero en vigas ok
Calculo de acero en vigas ok
 
IA data based, boiling point estimation using molecular model vs carbon fract...
IA data based, boiling point estimation using molecular model vs carbon fract...IA data based, boiling point estimation using molecular model vs carbon fract...
IA data based, boiling point estimation using molecular model vs carbon fract...
 
3 earth atmosphere
3 earth atmosphere3 earth atmosphere
3 earth atmosphere
 
Physics Formula list (3)
Physics Formula list (3)Physics Formula list (3)
Physics Formula list (3)
 
Relentless Regression
  Relentless Regression  Relentless Regression
Relentless Regression
 
Lab results presentation thermal radiation
Lab results presentation thermal radiationLab results presentation thermal radiation
Lab results presentation thermal radiation
 
Capitulo 9, 7ma edición
Capitulo 9, 7ma ediciónCapitulo 9, 7ma edición
Capitulo 9, 7ma edición
 
Remote Sensing
Remote SensingRemote Sensing
Remote Sensing
 
آموزش انتقال حرارت - بخش سوم
آموزش انتقال حرارت - بخش سومآموزش انتقال حرارت - بخش سوم
آموزش انتقال حرارت - بخش سوم
 
Second orderreactiongraph
Second orderreactiongraphSecond orderreactiongraph
Second orderreactiongraph
 

Similar to Advantage of HRAM

C13 NUCLEAR MAGNETIC RESONANCE
C13 NUCLEAR MAGNETIC RESONANCE C13 NUCLEAR MAGNETIC RESONANCE
C13 NUCLEAR MAGNETIC RESONANCE Sujitlal Bhakta
 
3 Ways the New Thermo Scientific LC MS Triple Quads Improve Residue Analysis
3 Ways the New Thermo Scientific LC MS Triple Quads Improve Residue Analysis3 Ways the New Thermo Scientific LC MS Triple Quads Improve Residue Analysis
3 Ways the New Thermo Scientific LC MS Triple Quads Improve Residue AnalysisThermo Fisher Scientific
 
A next-generation ground array for the detection of ultrahigh-energy cosmic r...
A next-generation ground array for the detection of ultrahigh-energy cosmic r...A next-generation ground array for the detection of ultrahigh-energy cosmic r...
A next-generation ground array for the detection of ultrahigh-energy cosmic r...Toshihiro FUJII
 
Commissioning of Truebeam LINAC
Commissioning of Truebeam LINACCommissioning of Truebeam LINAC
Commissioning of Truebeam LINACVIneeth C
 
Gamma_Ray_Spectroscopy_Using_a_NaI_TI_De.pdf
Gamma_Ray_Spectroscopy_Using_a_NaI_TI_De.pdfGamma_Ray_Spectroscopy_Using_a_NaI_TI_De.pdf
Gamma_Ray_Spectroscopy_Using_a_NaI_TI_De.pdfGromekWaczak
 
Challenges Related to Measuring and Reporting Temperature-Dependent Apparent ...
Challenges Related to Measuring and Reporting Temperature-Dependent Apparent ...Challenges Related to Measuring and Reporting Temperature-Dependent Apparent ...
Challenges Related to Measuring and Reporting Temperature-Dependent Apparent ...RDH Building Science
 
Optical Absoprtion of Thin Film Semiconductors
Optical Absoprtion of Thin Film SemiconductorsOptical Absoprtion of Thin Film Semiconductors
Optical Absoprtion of Thin Film SemiconductorsEnrico Castro
 
Presentation-Vacuum.pptx
Presentation-Vacuum.pptxPresentation-Vacuum.pptx
Presentation-Vacuum.pptxVictorKang12
 
Take Home Quiz on Analytical Chemistry
Take Home Quiz on Analytical ChemistryTake Home Quiz on Analytical Chemistry
Take Home Quiz on Analytical ChemistryJanine Samelo
 
Analysis of the Blade Boundary-Layer Flow of a Marine Propeller with RANSE
Analysis of the Blade Boundary-Layer Flow of a Marine Propeller with RANSEAnalysis of the Blade Boundary-Layer Flow of a Marine Propeller with RANSE
Analysis of the Blade Boundary-Layer Flow of a Marine Propeller with RANSEJoão Baltazar
 
FAST実験3:新型大気蛍光望遠鏡の試験観測報告
FAST実験3:新型大気蛍光望遠鏡の試験観測報告FAST実験3:新型大気蛍光望遠鏡の試験観測報告
FAST実験3:新型大気蛍光望遠鏡の試験観測報告Toshihiro FUJII
 
Problems hydrology lecture_notes
Problems hydrology lecture_notesProblems hydrology lecture_notes
Problems hydrology lecture_notesMikedessie
 
Reserve estimation using kappa
Reserve estimation using kappaReserve estimation using kappa
Reserve estimation using kappaAn Tran
 
Improved Sensitivity and Dynamic Range Using the Clarus SQ 8 GC/MS System for...
Improved Sensitivity and Dynamic Range Using the Clarus SQ 8 GC/MS System for...Improved Sensitivity and Dynamic Range Using the Clarus SQ 8 GC/MS System for...
Improved Sensitivity and Dynamic Range Using the Clarus SQ 8 GC/MS System for...PerkinElmer, Inc.
 
FAST実験7:新型大気蛍光望遠鏡による極高エネルギー宇宙線観測報告
FAST実験7:新型大気蛍光望遠鏡による極高エネルギー宇宙線観測報告FAST実験7:新型大気蛍光望遠鏡による極高エネルギー宇宙線観測報告
FAST実験7:新型大気蛍光望遠鏡による極高エネルギー宇宙線観測報告Toshihiro FUJII
 
Making use of reliability statistics
Making use of reliability statisticsMaking use of reliability statistics
Making use of reliability statisticsAccendo Reliability
 

Similar to Advantage of HRAM (20)

C13 NUCLEAR MAGNETIC RESONANCE
C13 NUCLEAR MAGNETIC RESONANCE C13 NUCLEAR MAGNETIC RESONANCE
C13 NUCLEAR MAGNETIC RESONANCE
 
3 Ways the New Thermo Scientific LC MS Triple Quads Improve Residue Analysis
3 Ways the New Thermo Scientific LC MS Triple Quads Improve Residue Analysis3 Ways the New Thermo Scientific LC MS Triple Quads Improve Residue Analysis
3 Ways the New Thermo Scientific LC MS Triple Quads Improve Residue Analysis
 
19 kröger
19 kröger19 kröger
19 kröger
 
Laserablationicp
LaserablationicpLaserablationicp
Laserablationicp
 
A next-generation ground array for the detection of ultrahigh-energy cosmic r...
A next-generation ground array for the detection of ultrahigh-energy cosmic r...A next-generation ground array for the detection of ultrahigh-energy cosmic r...
A next-generation ground array for the detection of ultrahigh-energy cosmic r...
 
Shi20396 ch03
Shi20396 ch03Shi20396 ch03
Shi20396 ch03
 
Commissioning of Truebeam LINAC
Commissioning of Truebeam LINACCommissioning of Truebeam LINAC
Commissioning of Truebeam LINAC
 
Gamma_Ray_Spectroscopy_Using_a_NaI_TI_De.pdf
Gamma_Ray_Spectroscopy_Using_a_NaI_TI_De.pdfGamma_Ray_Spectroscopy_Using_a_NaI_TI_De.pdf
Gamma_Ray_Spectroscopy_Using_a_NaI_TI_De.pdf
 
Challenges Related to Measuring and Reporting Temperature-Dependent Apparent ...
Challenges Related to Measuring and Reporting Temperature-Dependent Apparent ...Challenges Related to Measuring and Reporting Temperature-Dependent Apparent ...
Challenges Related to Measuring and Reporting Temperature-Dependent Apparent ...
 
Optical Absoprtion of Thin Film Semiconductors
Optical Absoprtion of Thin Film SemiconductorsOptical Absoprtion of Thin Film Semiconductors
Optical Absoprtion of Thin Film Semiconductors
 
Presentation-Vacuum.pptx
Presentation-Vacuum.pptxPresentation-Vacuum.pptx
Presentation-Vacuum.pptx
 
Take Home Quiz on Analytical Chemistry
Take Home Quiz on Analytical ChemistryTake Home Quiz on Analytical Chemistry
Take Home Quiz on Analytical Chemistry
 
Analysis of the Blade Boundary-Layer Flow of a Marine Propeller with RANSE
Analysis of the Blade Boundary-Layer Flow of a Marine Propeller with RANSEAnalysis of the Blade Boundary-Layer Flow of a Marine Propeller with RANSE
Analysis of the Blade Boundary-Layer Flow of a Marine Propeller with RANSE
 
FAST実験3:新型大気蛍光望遠鏡の試験観測報告
FAST実験3:新型大気蛍光望遠鏡の試験観測報告FAST実験3:新型大気蛍光望遠鏡の試験観測報告
FAST実験3:新型大気蛍光望遠鏡の試験観測報告
 
17 session 2 fey - example sensitivity analysis
17 session 2   fey - example sensitivity analysis17 session 2   fey - example sensitivity analysis
17 session 2 fey - example sensitivity analysis
 
Problems hydrology lecture_notes
Problems hydrology lecture_notesProblems hydrology lecture_notes
Problems hydrology lecture_notes
 
Reserve estimation using kappa
Reserve estimation using kappaReserve estimation using kappa
Reserve estimation using kappa
 
Improved Sensitivity and Dynamic Range Using the Clarus SQ 8 GC/MS System for...
Improved Sensitivity and Dynamic Range Using the Clarus SQ 8 GC/MS System for...Improved Sensitivity and Dynamic Range Using the Clarus SQ 8 GC/MS System for...
Improved Sensitivity and Dynamic Range Using the Clarus SQ 8 GC/MS System for...
 
FAST実験7:新型大気蛍光望遠鏡による極高エネルギー宇宙線観測報告
FAST実験7:新型大気蛍光望遠鏡による極高エネルギー宇宙線観測報告FAST実験7:新型大気蛍光望遠鏡による極高エネルギー宇宙線観測報告
FAST実験7:新型大気蛍光望遠鏡による極高エネルギー宇宙線観測報告
 
Making use of reliability statistics
Making use of reliability statisticsMaking use of reliability statistics
Making use of reliability statistics
 

Advantage of HRAM

  • 1. 1 The world leader in serving science Manoj Kushwaha Utilizing Very High Resolution Fine Isotopic Data To Refine Elemental Composition Determination
  • 2. 2 Accurate Mass Instruments - Orbitrap • What they are good at? • Accurate mass qualitative work – when used as the detector for an ion trap, they can perform accurate mass MSn. • Quantitation – Scan-to-scan mass accuracy is typically very good with a deviation across a peak of 1-3 ppm allowing for narrow selection. • Mass accuracy stability – Typical performance with once a day external calibration is <3 ppm. • Resolution – Can provide very high resolution (up to 480,000 or more)
  • 3. 3 High Resolution MS What is the information High resolution Mass spectrometer provides Mass accuracy (ppm) – how accurate is the mass spectrometer at predicting the mass of an analyte relative to it’s theoretical mass. Example: Theoretical mass = 222.1125 Predicted by triple quad mass spectrometer = 222.1 Predicted by Q Exactive = 222.1129 Resolution (R) – how capable is mass spectrometer at identifying two masses from each other. Example: Mass 1 = 222.1125 Mass 2 = 222.1237
  • 4. 4 Using High Resolution: Counting Atoms • Splitting fine isotopes allows for: • Confirmation of elemental composition • Confirmation of a component • What about isotope ratios? • Can we split elements and count the atoms?
  • 5. 5 Real World Example – Melamine in Albumin • Melamine analysis in pharmaceutical excipients was a hot topic following contamination events in China NN N N 2H N 2H N2H NN N OH OH OH NN N OH N 2H OH NN N OH N 2H N2H N=6 Melamine N=5 Ammeline N=4 Ammelide N=3 Cyanuric Acid
  • 6. 6 Melamine Injection – Real Data RT: 0.00 - 8.36 0 5 Time (min) 0 10 20 30 40 50 60 70 80 90 100 RelativeAbundance 2.57 3.45 Melamine_FDA_500ul_02 #271 RT: 2.56913 AV: 1 NL: 1.41E7 F: FTMS + p ESI Full ms [85.00-500.00] 126.4 126.6 126.8 127.0 127.2 127.4 127.6 127.8 128.0 128.2 128.4 128.6 128.8 m/z 0 10 20 30 40 50 60 70 80 90 100 RelativeAbundance 127.07287 C3 H7 N6 128.07614 C2 13C H7 N6 Melamine_FDA_500ul_02 #271 RT: 2.56913 AV: 1 NL: 4.69E5 F: FTMS + p ESI Full ms [85.00-500.00] 128.05 128.10 m/z 0 10 20 30 40 50 60 70 80 90 100 RelativeAbundance 128.07614 C2 13C H7 N6 128.07001 C3 H7 N5 15N 128.08173 C4 H9 N4 15N Scan at Peak Apex Clear split of 15N and 13C in the A1 isotope peak of Melamine. Does the isotopic ratio match? Can we count the number of N in a structure? A1
  • 7. 7 Using High Resolution: Counting Nitrogen • To count nitrogen we need to measure the isotope ratio of the 15N signal in A1 [A1,N] and the 13C signal in A1 [A1,C] • As the number of nitrogen atoms (#N) increases the value of the ratio [A1,N] / [A1,C] increases • If we know #C, then we can calculate #N • We can get a reasonable estimate of #C from: Relative Abundance 13C A1,C A0,C / = # C (3 for our case) Note: This formula provides an estimate only, however it breaks down for as MW increases (>400 MW) and molecules where carbon makes up less than ~65% of the non-hydrogen atoms.
  • 8. 8 Using High Resolution: Counting Nitrogen • Estimating the value of #N can be performed by recognizing that the ratio of 15N to 13C in A1 is reflected by: • Which gives an equation for #N: • Our observed 15N/13C ratio calculated a value of 6 nitrogen. A1,N A1,C = #N X Relative Abundance 15N #C X Relative Abundance 13C #N = A1,N A1,C Relative Abundance 15N #C X Relative Abundance 13C X
  • 9. 9 Using High Resolution: Counting Carbon Melamine = 3.3/100* 100/1.08 = 3.05 Relative Abundance 13C A1,C A0,C / = # C (3 for our case)
  • 10. 10 Using High Resolution: Counting Nitrogen Melamine #N = A1,N A1,C Relative Abundance 15N #C X Relative Abundance 13C X = 2.3/3.3*3*1.08/0.369 = 6.1
  • 11. 11 F: FTMS + p ESI Full lock ms [140.00-2000.00] 690 700 710 720 730 740 750 760 770 780 790 800 810 820 830 840 m/z 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 RelativeAbundance 792.5536 776.5591 748.5280 752.5594 768.5543 780.5906 764.5229 796.5852 718.5383702.5433 814.5358728.5592 744.5544 692.5229 835.6172706.5406 C 45 H 79 O 8 N P -0.21 ppm HRAM provides Elemental Composition Using Spectral Distance
  • 12. 12 Table of Relative Abundance for Common Elements Name Mass % Abundance Rel. Abundance Δ Most abundant Name Mass % Abundance Rel. Abundance Δ Most abundant 1H 1.007825 99.9558 100.0% - 32S 31.972071 94.93 100.0% - 2H 2.014102 0.115 0.12% 1.006277 33S 32.971458 0.76 0.80% 0.999387 3H 3.016049 - 2.008224 34S 33.967867 4.29 4.52% 1.995796 12C 12 98.93 100.0% - 36S 35.967081 0.02 0.02% 3.995010 13C 13.003355 1.07 1.08% 1.003355 35Cl 34.968853 75.78 100.0% - 14C 14.003242 - 2.003242 37Cl 36.965903 24.22 31.96% 1.997050 14N 14.003074 99.632 100.0% - 79Br 78.918338 50.69 100.0% - 15N 15.000109 0.368 0.37% 0.997035 81Br 80.916291 49.31 97.28% 1.997953 16O 15.994915 99.757 100.0% - 17O 16.999132 0.038 0.04% 1.004217 18O 17.999160 0.205 0.21% 2.004245 • A good reference can be found at: http://www.chem.ualberta.ca/~massspec/atomic_mass_abund.pdf
  • 13. 13 Isotopic Spectral Match – Theoretical vs Experimental True Identification with High Resolution only!
  • 14. 14 Exactive – Isotope Fidelity • Early in the peak – Low signal (1.6e5) C14H11Cl2NO2 +H: C14 H12 Cl2 N1O2 p(gss, s/p:40) Ch... 296.0 296.5 297.0 297.5 298.0 298.5 299.0 299.5 300.0 m/z 0 10 20 30 40 50 60 70 80 90 100 RelativeAbundance 296.02 298.02 297.03 300.02299.02 RT: 3.40 - 4.01 3.4 3.5 3.6 3.7 3.8 3.9 4.0 Time (min) 0 10 20 30 40 50 60 70 80 90 100 RelativeAbundance 3.72 Theoretical C14H12Cl2N1O2 296 297 298 299 300 m/z 0 10 20 30 40 50 60 70 80 90 100 RelativeAbundance 296.0242 R=23300 298.0212 R=23600 296.2200 R=22200 297.0274 R=21700 300.0181 R=22300 299.0247 R=20600297.2228 R=19700 65% 16% 10%10% +10% -1% +/-0%+/-0% Observed
  • 15. 15 Exactive – Isotope Fidelity • Center of the peak – Signal (9.8e5) C14H11Cl2NO2 +H: C14 H12 Cl2 N1O2 p(gss,s/p:40) Ch... 296.0 296.5 297.0 297.5 298.0 298.5 299.0 299.5 300.0 m/z 0 10 20 30 40 50 60 70 80 90 100 RelativeAbundance 296.02 298.02 297.03 300.02299.02 RT: 3.40 - 4.01 3.4 3.5 3.6 3.7 3.8 3.9 4.0 Time (min) 0 10 20 30 40 50 60 70 80 90 100 RelativeAbundance 3.72 296 297 298 299 300 m/z 0 10 20 30 40 50 60 70 80 90 100 RelativeAbundance R=23500 298.0211 R=23800 297.0276 R=23200 299.0247 R=23600 300.0182 R=23500296.2202 R=19800 297.2407 R=18500 Theoretical C14H12Cl2N1O2 65% 16% 10%10% +1% -3% +/-0%+/-0% Observed
  • 16. 16 Exactive – Isotope Fidelity • Tail of the Peak – 5.3e4 C14H11Cl2NO2 +H: C14 H12 Cl2 N1O2 p(gss, s/p:40) Ch... 296.0 296.5 297.0 297.5 298.0 298.5 299.0 299.5 300.0 m/z 0 10 20 30 40 50 60 70 80 90 100 RelativeAbundance 296.02 298.02 297.03 300.02299.02 RT: 3.40 - 4.01 3.4 3.5 3.6 3.7 3.8 3.9 4.0 Time (min) 0 10 20 30 40 50 60 70 80 90 100 RelativeAbundance 3.72 Theoretical C14H12Cl2N1O2 296 297 298 299 300 m/z 0 10 20 30 40 50 60 70 80 90 100 RelativeAbundance R=22800 298.0214 R=22500 299.1621 R=20300 296.2196 R=20000 297.0272 R=16100 299.0255 R=18400 300.0186 R=18000 65% 16% 10%10% -8% -3% +/-0%+/-0% Observed
  • 17. 17 Calculating Elemental Composition from A0 • For any given accurate mass value, only a finite number of elemental compositions can be predicted. • If all elements on the periodic chart and any number of each were allowed, the possible compositions would be a function of the observed m/z however it would be a very large number. • If we constrain the elements and their allowed ranges we can begin to determine a reasonable list of possible elemental compositions.
  • 18. 18 Calculating Elemental Composition from A0 • Example (If you recognize the m/z don’t shout it out…) 385 386 387 388 389 390 m/z 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 RelativeAbundance 386.2553 387.2522 388.2533 It’s a small pharma molecule so we limit our elements and set reasonable max values Element Max C 25 H 40 O 6 N 6 S 2 Cl 1 Br 1 F 3
  • 19. 19 Calculating Elemental Composition from A0 • Multiple formulas calculated from A0 385 386 387 388 389 390 m/z 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 RelativeAbundance 386.2553 387.2522 388.2533 We also apply a limit of 5 ppm tolerance for any formula we calculate. Formula C21 H32 O2 N5 C15 H38 O5 N4 S C21 H40 O N S2 C16 H35 N5 F3 S C16 H39 O N4 F S2 C21 H36 N2 F2 S C18 H33 O3 N5 F C23 H34 O3 N2 C21 H33 O N2 F3 C20 H36 O6 N C15 H35 O6 N4 F C18 H38 O3 N F2 S A0 A1 A2
  • 20. 20 Calculating Elemental Composition from A0 • Consider the actual mass of natural isotopes. 385 386 387 388 389 390 m/z 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 RelativeAbundance 386.2553 387.2522 388.2533 ∆15N 13C = 0.00632 387.24 387.26 m/z 0 20 40 60 80 100 RelativeAbundance 387.2522 387.2466 N Requires Resolution >50,000
  • 21. 21 Calculating Elemental Composition from A0 • Consider the actual mass of natural isotopes. 385 386 387 388 389 390 m/z 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 RelativeAbundance 386.2553 387.2522 388.2533 ∆34S and 2X 13C = 0.01914 389.25 389.30 m/z 0 20 40 60 80 100RelativeAbundance 389.2587 2 13C No S
  • 22. 22 Calculating Elemental Composition from A0 • How do we further refine our results? 385 386 387 388 389 390 m/z 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 RelativeAbundance 386.2553 387.2522 388.2533 Formula C21 H32 O2 N5 C15 H38 O5 N4 S C21 H40 O N S2 C16 H35 N5 F3 S C16 H39 O N4 F S2 C21 H36 N2 F2 S C18 H33 O3 N5 F C23 H34 O3 N2 C21 H33 O N2 F3 C20 H36 O6 N C15 H35 O6 N4 F C18 H38 O3 N F2 S
  • 23. 23 Calculating Elemental Composition from A0 • How do we further refine our results? 385 386 387 388 389 390 m/z 0 5 10 15 20 25 30 35 40 45 50 55 60 65 70 75 80 85 90 95 100 RelativeAbundance 386.2553 387.2522 388.2533 Formula C21 H32 O2 N5 C18 H33 O3 N5 F C23 H34 O3 N2 C21 H33 O N2 F3 C20 H36 O6 N C15 H35 O6 N4 F We can further limit the elements (especially fluorine). As m/z is odd by nitrogen rule C23 H34 O3 N2 ruled out Formula C21 H32 O2 N5 C23 H34 O3 N2 C20 H36 O6 N
  • 24. 24 If Sulfur is present -Elemental Composition with Isotope Pattern • Example – The applied “spectral fit” for a small sulfur containing molecule require very high resolution. 34S 2 13C Resolution >50000
  • 25. 25 CoA at - 60,000 Resolution m/z 768 34S and 13C2 not resolved
  • 26. 26 CoA at Different Resolutions, m/z 770 60 K @ m/z 400 100 K @ m/z 400 240 K @ m/z 400
  • 27. 27 311.0 311.5 312.0 312.5 313.0 313.5 m/z 311.1689 312.1715 313.1641 Why Use Ultra High resolution 313.14 313.16 313.18 313.20 m/z 313.1641 313.1741 34S 13C2 Calculated 35,000 Resolution C17H27O3S 313.10 313.15 313.20 313.25 m/z 313.1669
  • 28. 28 287 288 m/z 0 100 RelativeAbundance Using Very High Resolution Accurate Mass HRAMVHRAM • Accurate mass and fragmentation are not the only tools available to us • Accurate mass gives us access to elemental composition • Very high resolutions bring even more power to our ability to determine correct elemental composition 287.20287.20 287.22287.22 00 100100 RelativeAbundanceRelativeAbundance 287.2033287.2033 287.1970287.1970 287.2063287.2063 287.20 287.22 0 100 RelativeAbundance 287.2033 287.1970 287.2063 C11H24O2N7 C15H28O4N or 286.1999 287.2028 288.2051 287.2033 286.1999 288.2067 15N 13C
  • 29. 29 Full Scan Data Isotopic Pattern + VHRAM = Powerful C10H12O3N3S (0.05 ppm) 254.0 254.5 255.0 255.5 256.0 m/z 0 100 RelativeAbundance 254.0594 255.0627 R=249602 256.0551 R=244902 255.2318 R=200000 254.9491 R=172100 C13H15FS2 (0.11 ppm) or 255.06 255.07m/z 0 100 RelativeAbundance 1.0063 Theoretical R=254207 1.0034 0.9970 0.9994 13C 15N 33S 255.055 255.060 255.065 0 100 RelativeAbundance R=249602 R=248000 R=249300 1.0033 0.9970 0.9993
  • 30. 30 2 AMU Isolation Offset and Isotopic Pattern “Normal”isolationissymmetrical“Normal”isolationissymmetrical——“Upanddown”“Upanddown” Realdataisn’tRealdataisn’t——PatternsusuallyonlygoupfromAPatternsusuallyonlygoupfromA00 m/z 254.0593 253.0107 255.0626 256.0551251.1852 252.2169 257.9676253.2161 251 252 253 254 255 256 257 258 m/z 0 100 RelativeAbundance 250
  • 31. 31 TogettheisotopicpatterninaSIMorafragmentscanaverywideTogettheisotopicpatterninaSIMorafragmentscanaverywide isolationisrequired.isolationisrequired. Isolation Offset and Isotopic Pattern 6 AMU m/z 254.0593 253.0107 255.0626 256.0551251.1852 252.2169 257.9676253.2161 Nothing “good” is here… We’ve contaminated our fragmentation! 251 252 253 254 255 256 257 258 m/z 0 100 RelativeAbundance 250
  • 32. 32 251 252 253 254 255 256 257 258 m/z 0 100 RelativeAbundance 250 4 AMU2 AMU Isolation Offset and Isotopic Pattern IsolationOffsetontheOrbitrap massspectrometer:Shiftthecenterofisolation,focusIsolationOffsetontheOrbitrap massspectrometer:Shiftthecenterofisolation,focus onwhatmatters.onwhatmatters. m/z 254.0593 253.0107 255.0626 256.0551251.1852 252.2169 257.9676253.2161 Offset = 1
  • 33. 33 Isotopic Pattern + VHRAM + Isolation Offset = Unique No isotope pattern. Isolation too narrow. VHRAMHCDMS2 Isolation2 156.0 156.5 157.0 157.5 158.0 158.5 m/z 0 100 RelativeAbundance 156.0123 R=80300S NH N O N2H O O 60 80 100 120 140 160 180 200 220 240 260 m/z 0 100 RelativeAbundance 156.0123 R=80300 108.0451 R=9540092.0501 R=103005 99.0559 R=98300 160.0878 R=78200147.0800 R=79200 173.5372 R=70300 188.0829 R=64000 110.0607 R=87000 68.0500 R=114800 254.0606 R=64700
  • 34. 34 COMPANY CONFIDENTIAL Refining Prediction- Isotopic Pattern + VHRAM + Isolation Offset Purpose: To determine the capability of fine isotopic information to refine the minimum and maximum values of elements in prediction of the elemental composition from very high resolution data. Methods: Mass spectral information was acquired at very high resolutions (>240,000 FWHM @ m/z 200) for both full scan and fragmentation (MS2) for known components. The elemental composition was calculated for the full scan observed isotopic pattern using a two different elemental composition sets, a limited “pre-known” set and a more relevant “open” set. Sample Preparation: Standard samples of 5 compounds were prepared in a solution of 50:50 Water: Acetonitrile with 0.1% formic acid.
  • 35. 35 COMPANY CONFIDENTIAL Refining Prediction- Isotopic Pattern + VHRAM + Isolation Offset Mass Spectrometry: The analysis was performed on an Orbitrap Fusion Tribrid™ mass spectrometer in positive mode both Full MS and MS2. Fragmentation data was acquired using HCD at 25% for Tryptophan, 35% for Ranitidine, 40% for Oxytetracycline, and 60% for Guanine and Norfloxacin. The fragmentation was acquired using an isolation offset method. The isolation width was set to 4 AMU with an offset of 1 AMU for a net isolation of -1 to +3 AMU. This allowed for fragmentation scans to have isotopes up to A2.
  • 36. 36 COMPANY CONFIDENTIAL Refining Prediction- Isotopic Pattern + VHRAM + Isolation Offset The Elemental Composition Subsets – “Pre-Known” and “Open” TABLE 1. The Elements and Ranges used for Composition Determination. Element Pre- Known Set Open Set Min Max Min Max C p/2 p+6 1 60 H p/2 p+6 2 180 O p-2 or 0 p+3 0 20 N p-2 or 0 p+2 0 15 S p-2 or 0 if p>0 then p+1, else 0 0 4 P p-2 or 0 if p>0 then p+1, else 0 0 3 F 0 p 0 3 p = the number of atoms present in the known parent structure. For the “Pre-known” list, the minimum and maximum values were set as an expansion of the known “right” answer. For the minimum values, 0 was used when the formula provided a minimum value < 0.
  • 37. 37 COMPANY CONFIDENTIAL Refining Prediction- Isotopic Pattern + VHRAM + Isolation Offset
  • 38. 38 COMPANY CONFIDENTIAL Refining Prediction- Isotopic Pattern + VHRAM + Isolation Offset The Elemental Composition Subsets – “Pre-Known” and “Open” TABLE 3. Elemental Composition Determination – No Fine Isotope Refinement. Compound Measured Accuracy (ppm) Total Possible Compositions Pre-Known Open Ranitidine -0.1 1 50 Tryptophan -0.1 4 7 Oxytetracycline 1.0 2 324 Guanine 0.8 1 6 Norfloxacin 0.5 2 61
  • 39. 39 COMPANY CONFIDENTIAL Refining Prediction- Isotopic Pattern + VHRAM + Isolation Offset Utilizing Fine Isotope Data to Refine Elemental Composition Full scan data was acquired at resolution 480,000 and MS2 acquired at 240,000; fine isotopic information available from Full scan and Fragment scan was used to refine the elements in use.
  • 40. 40 COMPANY CONFIDENTIAL Refining Prediction- Isotopic Pattern + VHRAM + Isolation Offset TABLE 4. Refinement to Open Set by Direct Elemental Observation Compound Refinement from Fine Isotopes Element Min Max Observation Ranitidine S N 1 1 2 3 Fill scan 33S/34S and 13C/34S ratio MS2 15N and MS 13C/15N A1 ratio Tryptophan N S 1 0 3 0 MS2 15N and 13C/15N A1 ratio Full scan lack of 34S in A2 Oxytetracycline O S N 3 0 1 Unchanged 0 Unchanged MS2 18O and 13C ratio Full scan lack of 34S in A2 MS2 15N Guanine N S 1 0 Unchanged 0 MS2 15N Full scan lack of 34S in A2 Norfloxacin N O S 1 1 0 Unchanged Unchanged 0 MS2 15N MS2 18O Full scan lack of 34S in A2 Table 4 shows the detected fine isotope refinement possible by direct observation of isotopes in fragmentation data for the compounds studied and the resulting improvement on the possible elemental compositions calculated from the data.
  • 41. 41 COMPANY CONFIDENTIAL Refining Prediction- Isotopic Pattern + VHRAM + Isolation Offset Comparison of Performance – Using Fine Isotope Refinement Elemental compositions were calculated using the fine isotopes observed in MS and MS2 data to refine the minimum and maximum values. The inclusion of the additional limits significantly reduced the number of possible compositions that were determined, for example, the total possible compositions calculated from the HRAM full scan MS data of Oxytetracycline was reduced by almost an order of magnitude when taking fine isotopic data into consideration. Compound Open Set Pre- Known Set Original With Fine Isotopes Ranitidine 50 5 1 Tryptophan 7 1 4 Oxytetracycline 324 84 2 Guanine 6 1 1 Norfloxacin 61 30 2 Table 5. Comparison of the Three Methods for Elemental Composition.
  • 42. 42 COMPANY CONFIDENTIAL Refining Prediction- Isotopic Pattern + VHRAM + Isolation Offset Conclusion The determination of elemental composition from accurate mass alone is insufficient unless the elemental subset is constrained with a priori knowledge of the answer. For real world analyses, this prior knowledge doesn’t exist and a more open elemental composition set must be used. Here we have demonstrated that inclusion of refinements to the minimum and maximum number of atoms for isotopic elements by direct observation of fine isotope pattern improves our capability to determine the composition. • Accurate mass, even below 1 ppm, is insufficient for correct elemental composition determination unless a priori knowledge is used. • Very high resolution can give us access to direct observation of fine isotopes. • Direct observation of the fine patter can refine the determination of elemental composition. • Fine isotopic refinement of the elemental subset can be applied to real world scenarios to improve elemental composition determination