SlideShare a Scribd company logo
1 of 13
Download to read offline
How to Effect a Composite Rotation of a Vector
via Geometric (Clifford) Algebra
October 14, 2017
James Smith
nitac14b@yahoo.com
https://mx.linkedin.com/in/james-smith-1b195047
Abstract
We show how to express the representation of a composite rotation
in terms that allow the rotation of a vector to be calculated conveniently
via a spreadsheet that uses formulas developed, previously, for a single
rotation. The work presented here (which includes a sample calculation)
also shows how to determine the bivector angle that produces, in a single
operation, the same rotation that is effected by the composite of two
rotations.
“Rotation of the vector v through the bivector angle M1µ1, to produce
the vector v .”
1
Contents
1 Introduction 2
2 A Brief Review of How a Rotation of a Given Vector Can be
Effected via GA 4
3 Identifying the “Representation” of a Composite Rotation 5
4 A Sample Calculation 7
5 Summary 8
6 Appendix: Identifying the Bivector Angle Sσ through which
the Vector v can be Rotated to Produce v in a Single Opera-
tion 12
1 Introduction
Suppose that we rotate some vector v through the bivector angle M1µ1 to
produce the vector that we shall call v (Fig. 1), and that we then rotate v
through the bivector angle M2µ2 to produce the vector that we shall call v .
That sequence of rotations is called the composition of the two rotations. It is
equal to the rotation through some bivector angle Sσ ([1], pp. 89-91). Geometric
Algebra (GA) is a convenient and efficient tool for manipulating rotations—single
as well as composite—as abstract symbols, but what form does a numerical
calculation of a rotation take in a concrete situation? And how can we calculate
the bivector angle Sσ ?
Those are two of the questions that we will address in this document. Our
procedure will make use of single-rotation formulas that were developed in [2].
We’ll begin with a review of how a given vector can be rotated via GA. In that
review, we’ll discuss the important concept of the representation of a rotation,
after which we’ll present an formula that can be implemented in Excel for to
calculate single rotations of a given vector.
Having finished that review, we’ll see how to express the representation of
a composite rotation in terms that can be substituted directly in the formula
for single rotations. We’ll then work a sample problem in which we’ll calculate
the results of successive rotations of a vector. We’ll also calculate the bivector
angle that produces the same rotation in a single operation. The method used
for calculating that bivector angle is presented in the Appendix.
Figure 1: Rotation of the vector v through the bivector angle M2µ2, to produce
the vector v .
Figure 2: Rotation of the vector v through the bivector angle M2µ2, to produce
the vector v .
3
Figure 3: Rotation of v through the bivector angle Sσ, to produce the vector
v in a single operation.
2 A Brief Review of How a Rotation of a Given
Vector Can be Effected via GA
References [3] (pp. 280-286) and [1] (pp. 89-91) derive and explain the following
formula for finding the new vector, w , that results from the rotation of a vector
w through the angle θ with respect to a plane that is parallel to the unit bivector
Q:
Figure 4: Rotation of the vector w through the bivector angle Q1, to produce
the vector w .
4
w = e−Qθ/2
[w] eQθ/2
Notation: RQθ(w)
. (2.1) Notation: RQθ(w) is the
rotation of the vector w by the
bivector angle Qθ.
For our convenience later in this document, we will follow Reference [1] (p. 89)
in saying that the factor e−Qθ/2
represents the rotation RQθ. That factor is a
quaternion, but in GA terms it is a multivector:
e−Qθ/2
= cos
θ
2
− Q sin
θ
2
. (2.2)
As further preparation for work that we’ll do later, we’ll mention that for any
given right-handed reference system with orthonormal basis vectors ˆa, ˆb, and ˆc,
we may express the unit bivector Q as a linear combination of the basis bivectors
ˆaˆb, ˆbˆc, and ˆaˆc :
Q = ˆaˆbqab + ˆbˆcqbc + ˆaˆcqac,
in which qab, qbc, and qac are scalars, and q2
ab + q2
bc + q2
ac = 1.
To present a convenient way of calculating rotations via Excel spreadsheets,
Ref. [2] built upon that idea to write e−Qθ/2
as
e−Qθ/2
= fo − ˆaˆbfab + ˆbˆcfbc + ˆaˆcfac , (2.3)
with fo = cos
θ
2
; fab = qab sin
θ
2
; fbc = qbc sin
θ
2
; and fac = qac sin
θ
2
. Similarly,
eQθ/2
= fo + ˆaˆbfab + ˆbˆcfbc + ˆaˆcfac . (2.4)
Using these expressions for e−Qθ/2
and eQθ/2
, and writing w as w = ˆawa +
ˆbwb + ˆcwc, Eq. (2.1) becomes
w = fo − ˆaˆbfab − ˆbˆcfbc − ˆaˆcfac ˆawa + ˆbwb + ˆcwc fo + ˆaˆbfab + ˆbˆcfbc + ˆaˆcfac .
By expanding and simplifying the right-hand, side we obtain
w = ˆa wa f2
o − f2
ab + f2
bc − f2
ac + wb (-2fofab − 2fbcfac) + wc (-2fofac + 2fabfbc)
+ ˆb wa (2fofab − 2fbcfac) + wb f2
o − f2
ab − f2
bc + f2
ac + wc (-2fofbc − 2fabfac)
+ ˆc wa (2fofac + 2fabfbc) + wb (2fofbc − 2fabfac) + wc f2
o + f2
ab − f2
bc − f2
ac .
(2.5)
Because this result can be implemented conveniently in (for example) a
spreadsheet similar to Ref. [4], the sections that follow will show how to express
the representation of a composite rotation in the form of Eq. (2.3).
3 Identifying the “Representation” of a Com-
posite Rotation
Let’s begin by defining two unit bivectors, M1 and M2:
M1 = ˆaˆbm1ab + ˆbˆcm1bc + ˆaˆcm1ac;
M2 = ˆaˆbm2ab + ˆbˆcm2bc + ˆaˆcm2ac.
5
Now, write the rotation of a vector v by the bivector angle M1µ1 to produce
the vector v :
v = e−M1µ1/2
[v] eM1µ1/2
.
Next, we will rotate v by the bivector angle M2µ2 to produce the vector v :
v = e−M2µ2/2
[v ] eM2µ2/2
.
Combining those two equations,
v = e−M2µ2/2
e−M1µ1/2
[v] eM1µ1/2
eM2µ2/2
.
The vector v was produced from v via the composition of the rotations by
the bivector angles M1µ1 and M2µ1. The representation of that composition
is the product e−M2µ1/2
e−M1µ1/2
. We’ll rewrite the previous equation to
make that idea clearer:
v = e−M2µ2/2
e−M1µ1/2
Representation
of the composition
[v] eM1µ1/2
eM2µ2/2
.
There exists an identifiable bivector angle —we’ll call it Sσ—through which v
could have been rotated to produce v in a single operation rather than through
the composition of rotations through M1µ1 and M2µ2. (See the Appendix.)
But instead of going that route, let’s write e−M1µ1/2
and e−M2µ2/2
in a way
that will enable us to use Eq. (2.3):
e−M1µ1/2
= go − ˆaˆbgab + ˆbˆcgbc + ˆaˆcgac , and
e−M2µ2/2
= ho − ˆaˆbhab + ˆbˆchbc + ˆaˆchac ,
where go = cos
µ1
2
; gab = m1ab sin
µ1
2
; gbc = m1bc sin
µ1
2
; and gac = m1ac sin
µ1
2
,
and ho = cos
µ2
2
; hab = m2ab sin
µ2
2
; hbc = m2bc sin
µ2
2
; and hac = m2ac sin
µ2
2
.
Now, we write the representation of the the composition as
ho − ˆaˆbhab + ˆbˆchbc + ˆaˆchac
e−M2µ2/2
go − ˆaˆbgab + ˆbˆcgbc + ˆaˆcgac
e−M1µ1/2
.
After expanding that product and grouping like terms, the representation of the
composite rotation can be written in a form identical to Eq. (2.3):
Fo − ˆaˆbFab + ˆbˆcFbc + ˆaˆcFac , (3.1)
with
Fo = e−M2µ2/2
e−M1µ1/2
0
= hogo − habgab − hbcgbc − hacgac ,
Fab = hogab + habgo − hbcgac + hacgbc ,
Fbc = hogbc + habgac + hbcgo − hacgab , and
Fac = hogac − habgbc + hbcgab + hacgo .
(3.2)
6
Therefore, with these definitions of Fo, Fab, Fbc, and Fac, v can be
calculated from v (written as ˆava + ˆbvb + ˆcvc) via an equation that is analogous,
term for term, with Eq. (2.5):
v = ˆa va F2
o − F2
ab + F2
bc − F2
ac + vb (-2FoFab − 2FbcFac) + vc (-2FoFac + 2FabFbc)
+ ˆb va (2FoFab − 2FbcFac) + vb F2
o − F2
ab − F2
bc + F2
ac + vc (-2FoFbc − 2FabFac)
+ ˆc va (2FoFac + 2FabFbc) + vb (2FoFbc − 2FabFac) + vc F2
o + F2
ab − F2
bc − F2
ac .
(3.3)
At this point, you may (and should) be objecting that I’ve gotten ahead
of myself. Please recall that Eq. (2.5) was derived starting from the “rotation”
equation ((2.1))
w = e−Qθ/2
[w] eQθ/2
.
The quantities fo, fo, fab, fbc, and fac in Eq. (2.5), for which
e−Qθ/2
= fo − ˆaˆbfab + ˆbˆcfbc + ˆaˆcfac , (3.4)
also meet the condition that
eQθ/2
= fo + ˆaˆbfab + ˆbˆcfbc + ˆaˆcfac . (3.5)
We are not justified in using Fo, Fab, Fbc, and Fac in Eq. (2.5) unless we first
prove that these composite-rotation “F’s”, for which
Fo − ˆaˆbFab + ˆbˆcFbc + ˆaˆcFac = e−M2µ2/2
e−M1µ1/2
, (3.6)
also meet the condition that
Fo + ˆaˆbFab + ˆbˆcFbc + ˆaˆcFac = eM1µ1/2
e−M2µ2/2
. (3.7)
Although more-elegant proofs may well exist, “brute force and ignorance” gets
the job done. We begin by writing eM1µ1/2
e−M2µ2/2
in a way that is analogous
to that which was presented in the text that preceded Eq. (3.1):
go + ˆaˆbgab + ˆbˆcgbc + ˆaˆcgac
eM1µ1/2
ho + ˆaˆbhab + ˆbˆchbc + ˆaˆchac
eM2µ2/2
.
Expanding, simplifying, and regrouping, we fine that eM1µ1/2
e−M2µ2/2
is indeed
equal to Fo + ˆaˆbFab + ˆbˆcFbc + ˆaˆcFac , as required.
4 A Sample Calculation
The vector v =
4
3
ˆa −
4
3
ˆb +
16
3
ˆc is rotated through the bivector angle ˆaˆbπ/2
radians to produce a new vector, v . That vector is then rotated through the
bivector angle
ˆaˆb
√
3
+
ˆbˆc
√
3
−
ˆaˆc
√
3
−
2π
3
to produce vector v . Calculate
7
Figure 5: Rotation of v through the bivector angle ˆaˆbπ/2, to produce the vector
v .
a The vectors v and v , and
b The bivector angle Sσ through which v could have been rotated to produce
v in a single operation.
We begin by calculating vector v . The rotation is diagrammed in Fig. 5
As shown in Fig. 6, v =
4
3
ˆa +
4
3
ˆb +
16
3
ˆc.
We’ll calculate v in two ways: as the rotation of v by the bivector angle
ˆaˆb
√
3
+
ˆbˆc
√
3
−
ˆaˆc
√
3
−
2π
3
, and as the result of the rotation by the composite of
the two individual rotations. The rotation of v by
ˆaˆb
√
3
+
ˆbˆc
√
3
−
ˆaˆc
√
3
−
2π
3
is
diagrammed in Fig. 7. Fig. 8 shows that v =
4
3
ˆa +
16
3
ˆb +
4
3
ˆc.
As we can see from Fig. 9, that result agrees with that which was obtained
by calculating v in a single step, as the composition of the individual rotations.
Fig. 9 also shows that the bivector angle Sσ is ˆbˆc (−π/2), which we can also
write as ˆcˆb (π/2). That rotation is diagrammed in Fig. 10.
5 Summary
We have seen how to express the representation of a composite rotation in terms
that allow the rotation of a vector to be calculated conveniently via a spreadsheet
that used formulas developed in [2] for a single rotation. The work presented
here also shows how to determine the bivector angle that produces, in a single
operation, the same rotation that is effected by the composite of two rotations.
8
Figure 6: A spreadsheet (Ref. [5]) that uses Eq. (2.5) to calculate v as the
rotation of v through the bivector angle ˆaˆbπ/2.
Figure 7: Rotation of v . Note the significance of the negative sign of the scalar
angle: the direction in which v is to be rotated is contrary to the orientation of
the bivector. That significance is clearer in Fig. 10.
9
Figure 8: A spreadsheet (Ref. [5]) that uses Eq. (2.5) to calculate v as the
rotation of v .
10
Figure 9: A spreadsheet (Ref. [6]) that uses Eq. (3.2) to calculate v via the
composite rotation of v.
11
Figure 10: Rotation of v by Sσ to produce v in a single operation. Note the
significance of the negative sign of the scalar angle: the direction in which v
rotated is contrary to the orientation of the bivector ˆbˆc, and contrary also to
the direction of the rotation from ˆb to ˆc.
6 Appendix: Identifying the Bivector Angle Sσ
through which the Vector v can be Rotated
to Produce v in a Single Operation
Let v be an arbitrary vector. We want to identify the bivector angle Sσ through
which the initial vector, v, can be rotated to produce the same vector v that
results from the rotation of v through the composite rotation by M1µ1, then by
M2µ2:
e−M2µ2/2
e−M1µ1/2
[v] eM1µ1/2
eM2µ2/2
= v = e−Sσ/2
[v] eSσ/2
. (6.1)
We want Eq. (6.1) to be true for all vectors v. Therefore, eSσ/2
must be equal to
eM1µ1/2
eM2µ2/2
, and e−Sσ/2
must be equal to e−M1µ1/2
eM2µ2/2
. The
second of those conditions is the same as saying that the representations of
the Sσ rotation and the composite rotation must be equal. We’ll write that
condition using the Fo’s defined in Eq. (3.2), with S expressed in terms of the
unit bivectors ˆaˆb, ˆbˆc, and ˆaˆc:
cos
σ
2
− ˆaˆbSab + ˆbˆcSbc + ˆaˆcSac
S
sin
σ
2
= Fo − ˆaˆbFab + ˆbˆcFbc + ˆaˆcFac .
Now, we want to identify σ and the coefficients of ˆaˆb, ˆbˆc, and ˆaˆc. First, we
note that both sides of the previous equation are multivectors. According to the
postulates of GA, two multivectors A1 and A2 are equal if and only if for every
grade k, A1 k = A2 k. Equating the scalar parts, we see that cos
σ
2
= Fo.
Equating the bivector parts gives ˆaˆbSab + ˆbˆcSbc + ˆaˆcSac sin
σ
2
= ˆaˆbFab +
12
ˆbˆcFbc + ˆaˆcFac. Comparing like terms, Sab = Fab/ sin
σ
2
, Sbc = Fbc/ sin
σ
2
, and
Sac = Fac/ sin
σ
2
.
Why is it correct to identify the
S’s by comparing like terms? In
simple terms, because the unit
bivectors ˆaˆb, ˆbˆc ˆaˆb are
orthogonal. Two linear
combinations of those bivectors
are equal if and only if the
coefficients match, term for
term.
Next, we need to find sin
σ
2
. Although we could do so via sin
σ
2
= 1 − cos2 σ
2
,
for the purposes of this discussion we will use the fact that S is, by definition, a
unit bivector. Therefore, ||S|| = 1, leading to
sin
σ
2
= ˆaˆbFab + ˆbˆcFbc + ˆaˆcFac
= F2
ab + F2
bc + F2
ac .
Now, the question is whether we want to use sin
σ
2
= + F2
ab + F2
bc + F2
ac, or
sin
σ
2
= − F2
ab + F2
bc + F2
ac. The truth is that we can use either: if we use
− F2
ab + F2
bc + F2
ac instead of + F2
ab + F2
bc + F2
ac, then the sign of S changes
as well, leaving the product S sin
σ
2
unaltered.
The choice having been made, we can find the scalar angle σ from the values
of sin
σ
2
and cos
σ
2
, thereby determining the bivector angle Sσ.
References
[1] A. Macdonald, Linear and Geometric Algebra (First Edition) p. 126,
CreateSpace Independent Publishing Platform (Lexington, 2012).
[2] J. A. Smith, 2017, “How to Effect a Desired Rotation of a
Vector about a Given Axis via Geometric (Clifford) Algebra”
http://vixra.org/abs/1708.0462.
[3] D. Hestenes, 1999, New Foundations for Classical Mechanics, (Second
Edition), Kluwer Academic Publishers (Dordrecht/Boston/London).
[4] J. A. Smith, 2017, “Rotation of a Vector about an Axis” (an Excel spread-
sheet), https://drive.google.com/file/d/0B2C4TqxB32RRNHBHV2tpSUhRTUk/view?usp=sharing.
[5] J. A. Smith, 2017, “Rotation by a given bivector angle” (an Excel spread-
sheet), https://drive.google.com/file/d/0B2C4TqxB32RRX2JfcDd5NjZiZ00/view?usp=sharing .
[6] J. A. Smith, 2017, “Composite rotation in GA” (an Excel spreadsheet),
https://drive.google.com/file/d/0B2C4TqxB32RRaktDZktjcExPeUE/view?usp=sharing .
13

More Related Content

What's hot

Three Solutions of the LLP Limiting Case of the Problem of Apollonius via Geo...
Three Solutions of the LLP Limiting Case of the Problem of Apollonius via Geo...Three Solutions of the LLP Limiting Case of the Problem of Apollonius via Geo...
Three Solutions of the LLP Limiting Case of the Problem of Apollonius via Geo...James Smith
 
Additional Solutions of the Limiting Case "CLP" of the Problem of Apollonius ...
Additional Solutions of the Limiting Case "CLP" of the Problem of Apollonius ...Additional Solutions of the Limiting Case "CLP" of the Problem of Apollonius ...
Additional Solutions of the Limiting Case "CLP" of the Problem of Apollonius ...James Smith
 
Solution of a Vector-Triangle Problem Via Geometric (Clifford) Algebra
Solution of a Vector-Triangle Problem Via Geometric (Clifford) AlgebraSolution of a Vector-Triangle Problem Via Geometric (Clifford) Algebra
Solution of a Vector-Triangle Problem Via Geometric (Clifford) AlgebraJames Smith
 
Solution of a Sangaku ``Tangency" Problem via Geometric Algebra
Solution of a Sangaku ``Tangency" Problem via Geometric AlgebraSolution of a Sangaku ``Tangency" Problem via Geometric Algebra
Solution of a Sangaku ``Tangency" Problem via Geometric AlgebraJames Smith
 
3D Curve Project
3D Curve Project3D Curve Project
3D Curve Projectgraphitech
 
An additional brief solution of the CPP limiting case of the Problem of Apoll...
An additional brief solution of the CPP limiting case of the Problem of Apoll...An additional brief solution of the CPP limiting case of the Problem of Apoll...
An additional brief solution of the CPP limiting case of the Problem of Apoll...James Smith
 
METRIC DIMENSION AND UNCERTAINTY OF TRAVERSING ROBOTS IN A NETWORK
METRIC DIMENSION AND UNCERTAINTY OF TRAVERSING ROBOTS IN A NETWORKMETRIC DIMENSION AND UNCERTAINTY OF TRAVERSING ROBOTS IN A NETWORK
METRIC DIMENSION AND UNCERTAINTY OF TRAVERSING ROBOTS IN A NETWORKgraphhoc
 
PERMUTATION LABELING OF JOINS OF KITE GRAPH
PERMUTATION LABELING OF JOINS OF KITE GRAPHPERMUTATION LABELING OF JOINS OF KITE GRAPH
PERMUTATION LABELING OF JOINS OF KITE GRAPHIAEME Publication
 
Lecture 3.5.1 Ellipse as a compressed circle
Lecture 3.5.1 Ellipse as a compressed circleLecture 3.5.1 Ellipse as a compressed circle
Lecture 3.5.1 Ellipse as a compressed circlenarayana dash
 
Stringhighlights2015
Stringhighlights2015Stringhighlights2015
Stringhighlights2015foxtrot jp R
 
Approximating offset curves using B ´ ezier curves with high accuracy
Approximating offset curves using B ´ ezier curves with high accuracyApproximating offset curves using B ´ ezier curves with high accuracy
Approximating offset curves using B ´ ezier curves with high accuracyIJECEIAES
 
A.J.Bruce,S.Duplij,"Double-Graded Supersymmetric Quantum Mechanics", arxiv:19...
A.J.Bruce,S.Duplij,"Double-Graded Supersymmetric Quantum Mechanics", arxiv:19...A.J.Bruce,S.Duplij,"Double-Graded Supersymmetric Quantum Mechanics", arxiv:19...
A.J.Bruce,S.Duplij,"Double-Graded Supersymmetric Quantum Mechanics", arxiv:19...Steven Duplij (Stepan Douplii)
 
1 centroids
1 centroids1 centroids
1 centroidsELIMENG
 
LADDER AND SUBDIVISION OF LADDER GRAPHS WITH PENDANT EDGES ARE ODD GRACEFUL
LADDER AND SUBDIVISION OF LADDER GRAPHS WITH PENDANT EDGES ARE ODD GRACEFULLADDER AND SUBDIVISION OF LADDER GRAPHS WITH PENDANT EDGES ARE ODD GRACEFUL
LADDER AND SUBDIVISION OF LADDER GRAPHS WITH PENDANT EDGES ARE ODD GRACEFULFransiskeran
 
Aircraft Structures for Engineering Students 5th Edition Megson Solutions Manual
Aircraft Structures for Engineering Students 5th Edition Megson Solutions ManualAircraft Structures for Engineering Students 5th Edition Megson Solutions Manual
Aircraft Structures for Engineering Students 5th Edition Megson Solutions ManualRigeler
 
Coons bicubic surface
Coons bicubic surfaceCoons bicubic surface
Coons bicubic surfaceramac123
 
125761583 rahulhggjg
125761583 rahulhggjg125761583 rahulhggjg
125761583 rahulhggjghomeworkping8
 

What's hot (20)

Three Solutions of the LLP Limiting Case of the Problem of Apollonius via Geo...
Three Solutions of the LLP Limiting Case of the Problem of Apollonius via Geo...Three Solutions of the LLP Limiting Case of the Problem of Apollonius via Geo...
Three Solutions of the LLP Limiting Case of the Problem of Apollonius via Geo...
 
Additional Solutions of the Limiting Case "CLP" of the Problem of Apollonius ...
Additional Solutions of the Limiting Case "CLP" of the Problem of Apollonius ...Additional Solutions of the Limiting Case "CLP" of the Problem of Apollonius ...
Additional Solutions of the Limiting Case "CLP" of the Problem of Apollonius ...
 
Solution of a Vector-Triangle Problem Via Geometric (Clifford) Algebra
Solution of a Vector-Triangle Problem Via Geometric (Clifford) AlgebraSolution of a Vector-Triangle Problem Via Geometric (Clifford) Algebra
Solution of a Vector-Triangle Problem Via Geometric (Clifford) Algebra
 
Solution of a Sangaku ``Tangency" Problem via Geometric Algebra
Solution of a Sangaku ``Tangency" Problem via Geometric AlgebraSolution of a Sangaku ``Tangency" Problem via Geometric Algebra
Solution of a Sangaku ``Tangency" Problem via Geometric Algebra
 
3D Curve Project
3D Curve Project3D Curve Project
3D Curve Project
 
An additional brief solution of the CPP limiting case of the Problem of Apoll...
An additional brief solution of the CPP limiting case of the Problem of Apoll...An additional brief solution of the CPP limiting case of the Problem of Apoll...
An additional brief solution of the CPP limiting case of the Problem of Apoll...
 
METRIC DIMENSION AND UNCERTAINTY OF TRAVERSING ROBOTS IN A NETWORK
METRIC DIMENSION AND UNCERTAINTY OF TRAVERSING ROBOTS IN A NETWORKMETRIC DIMENSION AND UNCERTAINTY OF TRAVERSING ROBOTS IN A NETWORK
METRIC DIMENSION AND UNCERTAINTY OF TRAVERSING ROBOTS IN A NETWORK
 
PERMUTATION LABELING OF JOINS OF KITE GRAPH
PERMUTATION LABELING OF JOINS OF KITE GRAPHPERMUTATION LABELING OF JOINS OF KITE GRAPH
PERMUTATION LABELING OF JOINS OF KITE GRAPH
 
Lecture 3.5.1 Ellipse as a compressed circle
Lecture 3.5.1 Ellipse as a compressed circleLecture 3.5.1 Ellipse as a compressed circle
Lecture 3.5.1 Ellipse as a compressed circle
 
Stringhighlights2015
Stringhighlights2015Stringhighlights2015
Stringhighlights2015
 
I027055062
I027055062I027055062
I027055062
 
Approximating offset curves using B ´ ezier curves with high accuracy
Approximating offset curves using B ´ ezier curves with high accuracyApproximating offset curves using B ´ ezier curves with high accuracy
Approximating offset curves using B ´ ezier curves with high accuracy
 
A.J.Bruce,S.Duplij,"Double-Graded Supersymmetric Quantum Mechanics", arxiv:19...
A.J.Bruce,S.Duplij,"Double-Graded Supersymmetric Quantum Mechanics", arxiv:19...A.J.Bruce,S.Duplij,"Double-Graded Supersymmetric Quantum Mechanics", arxiv:19...
A.J.Bruce,S.Duplij,"Double-Graded Supersymmetric Quantum Mechanics", arxiv:19...
 
1 centroids
1 centroids1 centroids
1 centroids
 
LADDER AND SUBDIVISION OF LADDER GRAPHS WITH PENDANT EDGES ARE ODD GRACEFUL
LADDER AND SUBDIVISION OF LADDER GRAPHS WITH PENDANT EDGES ARE ODD GRACEFULLADDER AND SUBDIVISION OF LADDER GRAPHS WITH PENDANT EDGES ARE ODD GRACEFUL
LADDER AND SUBDIVISION OF LADDER GRAPHS WITH PENDANT EDGES ARE ODD GRACEFUL
 
Kriging
KrigingKriging
Kriging
 
Hat04 0203
Hat04 0203Hat04 0203
Hat04 0203
 
Aircraft Structures for Engineering Students 5th Edition Megson Solutions Manual
Aircraft Structures for Engineering Students 5th Edition Megson Solutions ManualAircraft Structures for Engineering Students 5th Edition Megson Solutions Manual
Aircraft Structures for Engineering Students 5th Edition Megson Solutions Manual
 
Coons bicubic surface
Coons bicubic surfaceCoons bicubic surface
Coons bicubic surface
 
125761583 rahulhggjg
125761583 rahulhggjg125761583 rahulhggjg
125761583 rahulhggjg
 

Viewers also liked

El desarrollo de ecuaciones lineales
El desarrollo de ecuaciones linealesEl desarrollo de ecuaciones lineales
El desarrollo de ecuaciones linealesJames Smith
 
Solution Strategies for Equations that Arise in Geometric (Cliff ord) Algebra
Solution Strategies for Equations that Arise in Geometric (Clifford) AlgebraSolution Strategies for Equations that Arise in Geometric (Clifford) Algebra
Solution Strategies for Equations that Arise in Geometric (Cliff ord) AlgebraJames Smith
 
Cómo sumar fracciones algbráicas
Cómo sumar fracciones algbráicasCómo sumar fracciones algbráicas
Cómo sumar fracciones algbráicasJames Smith
 
Construcciones para encontrar la raíz cuadrada y resolver ecuaciones cuadráticas
Construcciones para encontrar la raíz cuadrada y resolver ecuaciones cuadráticasConstrucciones para encontrar la raíz cuadrada y resolver ecuaciones cuadráticas
Construcciones para encontrar la raíz cuadrada y resolver ecuaciones cuadráticasJames Smith
 
A Solution to the Problem of Apollonius Using Vector Dot Products
A Solution to the Problem of Apollonius Using Vector Dot ProductsA Solution to the Problem of Apollonius Using Vector Dot Products
A Solution to the Problem of Apollonius Using Vector Dot ProductsJames Smith
 
Tú sí, puedes, con las ecuaciones simultáneas lineales
Tú sí, puedes, con las ecuaciones simultáneas linealesTú sí, puedes, con las ecuaciones simultáneas lineales
Tú sí, puedes, con las ecuaciones simultáneas linealesJames Smith
 
Técnicas para demostraciones, usando triángulos equilateros
Técnicas para demostraciones, usando triángulos equilaterosTécnicas para demostraciones, usando triángulos equilateros
Técnicas para demostraciones, usando triángulos equilaterosJames Smith
 
Cómo resolver problemas con "triángulos rectángulos simultáneos"
Cómo resolver problemas  con "triángulos rectángulos simultáneos"Cómo resolver problemas  con "triángulos rectángulos simultáneos"
Cómo resolver problemas con "triángulos rectángulos simultáneos"James Smith
 
Cambios de óptica en el curso de un despeje
Cambios de óptica en el curso de un despejeCambios de óptica en el curso de un despeje
Cambios de óptica en el curso de un despejeJames Smith
 
Sismos: Recursos acerca de la inspección y refuerzo de edificios dañados por ...
Sismos: Recursos acerca de la inspección y refuerzo de edificios dañados por ...Sismos: Recursos acerca de la inspección y refuerzo de edificios dañados por ...
Sismos: Recursos acerca de la inspección y refuerzo de edificios dañados por ...James Smith
 
El cálculo de superviviencia
El cálculo de supervivienciaEl cálculo de superviviencia
El cálculo de supervivienciaJames Smith
 
Las Bellezas matemáticas del "Slinky"
Las Bellezas matemáticas del "Slinky"Las Bellezas matemáticas del "Slinky"
Las Bellezas matemáticas del "Slinky"James Smith
 
Modelación matemática de una rueda y eje con momento de incercia variable par...
Modelación matemática de una rueda y eje con momento de incercia variable par...Modelación matemática de una rueda y eje con momento de incercia variable par...
Modelación matemática de una rueda y eje con momento de incercia variable par...James Smith
 
Cómo entender el uso de escalas logarítmicas
Cómo entender el uso de escalas logarítmicasCómo entender el uso de escalas logarítmicas
Cómo entender el uso de escalas logarítmicasJames Smith
 
Proporciones de los radios y distancias en una "cadena de Steiner" de 6 circu...
Proporciones de los radios y distancias en una "cadena de Steiner" de 6 circu...Proporciones de los radios y distancias en una "cadena de Steiner" de 6 circu...
Proporciones de los radios y distancias en una "cadena de Steiner" de 6 circu...James Smith
 
Simpli fied Solutions of the CLP and CCP Limiting Cases of the Problem of Apo...
Simplified Solutions of the CLP and CCP Limiting Cases of the Problem of Apo...Simplified Solutions of the CLP and CCP Limiting Cases of the Problem of Apo...
Simpli fied Solutions of the CLP and CCP Limiting Cases of the Problem of Apo...James Smith
 
Calculating Dimensions for Constructing Super Adobe (Earth Bag) Domes
Calculating Dimensions for Constructing Super Adobe (Earth Bag) DomesCalculating Dimensions for Constructing Super Adobe (Earth Bag) Domes
Calculating Dimensions for Constructing Super Adobe (Earth Bag) DomesJames Smith
 
A Modification of the Lifshitz-Slyozov-Wagner Equation for Predicting Coarsen...
A Modification of the Lifshitz-Slyozov-Wagner Equation for Predicting Coarsen...A Modification of the Lifshitz-Slyozov-Wagner Equation for Predicting Coarsen...
A Modification of the Lifshitz-Slyozov-Wagner Equation for Predicting Coarsen...James Smith
 
Modelando matemáticamente, el "Slinky'' en caída libre
Modelando matemáticamente, el "Slinky'' en caída libreModelando matemáticamente, el "Slinky'' en caída libre
Modelando matemáticamente, el "Slinky'' en caída libreJames Smith
 
Trampas comunes en los exámenes de se selección sobre matemáticas
Trampas comunes en los exámenes de se selección sobre matemáticasTrampas comunes en los exámenes de se selección sobre matemáticas
Trampas comunes en los exámenes de se selección sobre matemáticasJames Smith
 

Viewers also liked (20)

El desarrollo de ecuaciones lineales
El desarrollo de ecuaciones linealesEl desarrollo de ecuaciones lineales
El desarrollo de ecuaciones lineales
 
Solution Strategies for Equations that Arise in Geometric (Cliff ord) Algebra
Solution Strategies for Equations that Arise in Geometric (Clifford) AlgebraSolution Strategies for Equations that Arise in Geometric (Clifford) Algebra
Solution Strategies for Equations that Arise in Geometric (Cliff ord) Algebra
 
Cómo sumar fracciones algbráicas
Cómo sumar fracciones algbráicasCómo sumar fracciones algbráicas
Cómo sumar fracciones algbráicas
 
Construcciones para encontrar la raíz cuadrada y resolver ecuaciones cuadráticas
Construcciones para encontrar la raíz cuadrada y resolver ecuaciones cuadráticasConstrucciones para encontrar la raíz cuadrada y resolver ecuaciones cuadráticas
Construcciones para encontrar la raíz cuadrada y resolver ecuaciones cuadráticas
 
A Solution to the Problem of Apollonius Using Vector Dot Products
A Solution to the Problem of Apollonius Using Vector Dot ProductsA Solution to the Problem of Apollonius Using Vector Dot Products
A Solution to the Problem of Apollonius Using Vector Dot Products
 
Tú sí, puedes, con las ecuaciones simultáneas lineales
Tú sí, puedes, con las ecuaciones simultáneas linealesTú sí, puedes, con las ecuaciones simultáneas lineales
Tú sí, puedes, con las ecuaciones simultáneas lineales
 
Técnicas para demostraciones, usando triángulos equilateros
Técnicas para demostraciones, usando triángulos equilaterosTécnicas para demostraciones, usando triángulos equilateros
Técnicas para demostraciones, usando triángulos equilateros
 
Cómo resolver problemas con "triángulos rectángulos simultáneos"
Cómo resolver problemas  con "triángulos rectángulos simultáneos"Cómo resolver problemas  con "triángulos rectángulos simultáneos"
Cómo resolver problemas con "triángulos rectángulos simultáneos"
 
Cambios de óptica en el curso de un despeje
Cambios de óptica en el curso de un despejeCambios de óptica en el curso de un despeje
Cambios de óptica en el curso de un despeje
 
Sismos: Recursos acerca de la inspección y refuerzo de edificios dañados por ...
Sismos: Recursos acerca de la inspección y refuerzo de edificios dañados por ...Sismos: Recursos acerca de la inspección y refuerzo de edificios dañados por ...
Sismos: Recursos acerca de la inspección y refuerzo de edificios dañados por ...
 
El cálculo de superviviencia
El cálculo de supervivienciaEl cálculo de superviviencia
El cálculo de superviviencia
 
Las Bellezas matemáticas del "Slinky"
Las Bellezas matemáticas del "Slinky"Las Bellezas matemáticas del "Slinky"
Las Bellezas matemáticas del "Slinky"
 
Modelación matemática de una rueda y eje con momento de incercia variable par...
Modelación matemática de una rueda y eje con momento de incercia variable par...Modelación matemática de una rueda y eje con momento de incercia variable par...
Modelación matemática de una rueda y eje con momento de incercia variable par...
 
Cómo entender el uso de escalas logarítmicas
Cómo entender el uso de escalas logarítmicasCómo entender el uso de escalas logarítmicas
Cómo entender el uso de escalas logarítmicas
 
Proporciones de los radios y distancias en una "cadena de Steiner" de 6 circu...
Proporciones de los radios y distancias en una "cadena de Steiner" de 6 circu...Proporciones de los radios y distancias en una "cadena de Steiner" de 6 circu...
Proporciones de los radios y distancias en una "cadena de Steiner" de 6 circu...
 
Simpli fied Solutions of the CLP and CCP Limiting Cases of the Problem of Apo...
Simplified Solutions of the CLP and CCP Limiting Cases of the Problem of Apo...Simplified Solutions of the CLP and CCP Limiting Cases of the Problem of Apo...
Simpli fied Solutions of the CLP and CCP Limiting Cases of the Problem of Apo...
 
Calculating Dimensions for Constructing Super Adobe (Earth Bag) Domes
Calculating Dimensions for Constructing Super Adobe (Earth Bag) DomesCalculating Dimensions for Constructing Super Adobe (Earth Bag) Domes
Calculating Dimensions for Constructing Super Adobe (Earth Bag) Domes
 
A Modification of the Lifshitz-Slyozov-Wagner Equation for Predicting Coarsen...
A Modification of the Lifshitz-Slyozov-Wagner Equation for Predicting Coarsen...A Modification of the Lifshitz-Slyozov-Wagner Equation for Predicting Coarsen...
A Modification of the Lifshitz-Slyozov-Wagner Equation for Predicting Coarsen...
 
Modelando matemáticamente, el "Slinky'' en caída libre
Modelando matemáticamente, el "Slinky'' en caída libreModelando matemáticamente, el "Slinky'' en caída libre
Modelando matemáticamente, el "Slinky'' en caída libre
 
Trampas comunes en los exámenes de se selección sobre matemáticas
Trampas comunes en los exámenes de se selección sobre matemáticasTrampas comunes en los exámenes de se selección sobre matemáticas
Trampas comunes en los exámenes de se selección sobre matemáticas
 

Similar to How to Effect a Composite Rotation of a Vector via Geometric (Clifford) Algebra

Formulas and Spreadsheets for Simple, Composite, and Complex Rotations of Vec...
Formulas and Spreadsheets for Simple, Composite, and Complex Rotations of Vec...Formulas and Spreadsheets for Simple, Composite, and Complex Rotations of Vec...
Formulas and Spreadsheets for Simple, Composite, and Complex Rotations of Vec...James Smith
 
Using a Common Theme to Find Intersections of Spheres with Lines and Planes v...
Using a Common Theme to Find Intersections of Spheres with Lines and Planes v...Using a Common Theme to Find Intersections of Spheres with Lines and Planes v...
Using a Common Theme to Find Intersections of Spheres with Lines and Planes v...James Smith
 
5 prelim determination.pdf
5 prelim determination.pdf5 prelim determination.pdf
5 prelim determination.pdfa a
 
Solution of the Special Case "CLP" of the Problem of Apollonius via Vector Ro...
Solution of the Special Case "CLP" of the Problem of Apollonius via Vector Ro...Solution of the Special Case "CLP" of the Problem of Apollonius via Vector Ro...
Solution of the Special Case "CLP" of the Problem of Apollonius via Vector Ro...James Smith
 
Joukowski's airfoils, introduction to conformal mapping
Joukowski's  airfoils, introduction to conformal mappingJoukowski's  airfoils, introduction to conformal mapping
Joukowski's airfoils, introduction to conformal mappingRAHUL SINHA
 
Steven Duplij, Raimund Vogl, "Polyadic braid operators and higher braiding ga...
Steven Duplij, Raimund Vogl, "Polyadic braid operators and higher braiding ga...Steven Duplij, Raimund Vogl, "Polyadic braid operators and higher braiding ga...
Steven Duplij, Raimund Vogl, "Polyadic braid operators and higher braiding ga...Steven Duplij (Stepan Douplii)
 
Csci101 lect09 vectorized_code
Csci101 lect09 vectorized_codeCsci101 lect09 vectorized_code
Csci101 lect09 vectorized_codeElsayed Hemayed
 
Velo & accel dia by relative velo & accl method
Velo & accel dia by relative velo & accl methodVelo & accel dia by relative velo & accl method
Velo & accel dia by relative velo & accl methodUmesh Ravate
 
Bra and ket notations
Bra and ket notationsBra and ket notations
Bra and ket notationsJoel Joel
 
Steven Duplij, Raimund Vogl, "Polyadic Braid Operators and Higher Braiding Ga...
Steven Duplij, Raimund Vogl, "Polyadic Braid Operators and Higher Braiding Ga...Steven Duplij, Raimund Vogl, "Polyadic Braid Operators and Higher Braiding Ga...
Steven Duplij, Raimund Vogl, "Polyadic Braid Operators and Higher Braiding Ga...Steven Duplij (Stepan Douplii)
 
lec3 Direct Stiffness Approach for Beams and Frames.ppt
lec3 Direct Stiffness Approach for Beams and Frames.pptlec3 Direct Stiffness Approach for Beams and Frames.ppt
lec3 Direct Stiffness Approach for Beams and Frames.pptShaheerRizwan1
 
25 johnarry tonye ngoji 250-263
25 johnarry tonye ngoji 250-26325 johnarry tonye ngoji 250-263
25 johnarry tonye ngoji 250-263Alexander Decker
 
LECTURE_NOTES_ON_HIGH_VOLTAGE_ENGINEERIN.pdf
LECTURE_NOTES_ON_HIGH_VOLTAGE_ENGINEERIN.pdfLECTURE_NOTES_ON_HIGH_VOLTAGE_ENGINEERIN.pdf
LECTURE_NOTES_ON_HIGH_VOLTAGE_ENGINEERIN.pdfanuj298979
 

Similar to How to Effect a Composite Rotation of a Vector via Geometric (Clifford) Algebra (20)

Formulas and Spreadsheets for Simple, Composite, and Complex Rotations of Vec...
Formulas and Spreadsheets for Simple, Composite, and Complex Rotations of Vec...Formulas and Spreadsheets for Simple, Composite, and Complex Rotations of Vec...
Formulas and Spreadsheets for Simple, Composite, and Complex Rotations of Vec...
 
Using a Common Theme to Find Intersections of Spheres with Lines and Planes v...
Using a Common Theme to Find Intersections of Spheres with Lines and Planes v...Using a Common Theme to Find Intersections of Spheres with Lines and Planes v...
Using a Common Theme to Find Intersections of Spheres with Lines and Planes v...
 
5 prelim determination.pdf
5 prelim determination.pdf5 prelim determination.pdf
5 prelim determination.pdf
 
SV-coupledChannelSONaCs-v1.5
SV-coupledChannelSONaCs-v1.5SV-coupledChannelSONaCs-v1.5
SV-coupledChannelSONaCs-v1.5
 
Solution of the Special Case "CLP" of the Problem of Apollonius via Vector Ro...
Solution of the Special Case "CLP" of the Problem of Apollonius via Vector Ro...Solution of the Special Case "CLP" of the Problem of Apollonius via Vector Ro...
Solution of the Special Case "CLP" of the Problem of Apollonius via Vector Ro...
 
precalculus 6.3
precalculus 6.3precalculus 6.3
precalculus 6.3
 
Joukowski's airfoils, introduction to conformal mapping
Joukowski's  airfoils, introduction to conformal mappingJoukowski's  airfoils, introduction to conformal mapping
Joukowski's airfoils, introduction to conformal mapping
 
Pre-Calculus - Vectors
Pre-Calculus - VectorsPre-Calculus - Vectors
Pre-Calculus - Vectors
 
Steven Duplij, Raimund Vogl, "Polyadic braid operators and higher braiding ga...
Steven Duplij, Raimund Vogl, "Polyadic braid operators and higher braiding ga...Steven Duplij, Raimund Vogl, "Polyadic braid operators and higher braiding ga...
Steven Duplij, Raimund Vogl, "Polyadic braid operators and higher braiding ga...
 
Three phase System
Three phase SystemThree phase System
Three phase System
 
Csci101 lect09 vectorized_code
Csci101 lect09 vectorized_codeCsci101 lect09 vectorized_code
Csci101 lect09 vectorized_code
 
Velo & accel dia by relative velo & accl method
Velo & accel dia by relative velo & accl methodVelo & accel dia by relative velo & accl method
Velo & accel dia by relative velo & accl method
 
Bra and ket notations
Bra and ket notationsBra and ket notations
Bra and ket notations
 
1. VECTORS.pptx
1. VECTORS.pptx1. VECTORS.pptx
1. VECTORS.pptx
 
Steven Duplij, Raimund Vogl, "Polyadic Braid Operators and Higher Braiding Ga...
Steven Duplij, Raimund Vogl, "Polyadic Braid Operators and Higher Braiding Ga...Steven Duplij, Raimund Vogl, "Polyadic Braid Operators and Higher Braiding Ga...
Steven Duplij, Raimund Vogl, "Polyadic Braid Operators and Higher Braiding Ga...
 
lec3 Direct Stiffness Approach for Beams and Frames.ppt
lec3 Direct Stiffness Approach for Beams and Frames.pptlec3 Direct Stiffness Approach for Beams and Frames.ppt
lec3 Direct Stiffness Approach for Beams and Frames.ppt
 
Joukowski
JoukowskiJoukowski
Joukowski
 
P1 . norm vector space
P1 . norm vector spaceP1 . norm vector space
P1 . norm vector space
 
25 johnarry tonye ngoji 250-263
25 johnarry tonye ngoji 250-26325 johnarry tonye ngoji 250-263
25 johnarry tonye ngoji 250-263
 
LECTURE_NOTES_ON_HIGH_VOLTAGE_ENGINEERIN.pdf
LECTURE_NOTES_ON_HIGH_VOLTAGE_ENGINEERIN.pdfLECTURE_NOTES_ON_HIGH_VOLTAGE_ENGINEERIN.pdf
LECTURE_NOTES_ON_HIGH_VOLTAGE_ENGINEERIN.pdf
 

More from James Smith

Un acercamiento a los determinantes e inversos de matrices
Un acercamiento a los determinantes e inversos de matricesUn acercamiento a los determinantes e inversos de matrices
Un acercamiento a los determinantes e inversos de matricesJames Smith
 
Understanding the "Chain Rule" for Derivatives by Deriving Your Own Version
Understanding the "Chain Rule" for Derivatives by Deriving Your Own VersionUnderstanding the "Chain Rule" for Derivatives by Deriving Your Own Version
Understanding the "Chain Rule" for Derivatives by Deriving Your Own VersionJames Smith
 
Nuevo Manual de la UNESCO para la Enseñanza de Ciencias
Nuevo Manual de la UNESCO para la Enseñanza de CienciasNuevo Manual de la UNESCO para la Enseñanza de Ciencias
Nuevo Manual de la UNESCO para la Enseñanza de CienciasJames Smith
 
Estimation of the Earth's "Unperturbed" Perihelion from Times of Solstices an...
Estimation of the Earth's "Unperturbed" Perihelion from Times of Solstices an...Estimation of the Earth's "Unperturbed" Perihelion from Times of Solstices an...
Estimation of the Earth's "Unperturbed" Perihelion from Times of Solstices an...James Smith
 
"Rotation of a Rotation" via Geometric (Clifford) Algebra
"Rotation of a Rotation" via Geometric (Clifford) Algebra"Rotation of a Rotation" via Geometric (Clifford) Algebra
"Rotation of a Rotation" via Geometric (Clifford) AlgebraJames Smith
 
Why Does the Atmosphere Rotate? Trajectory of a desorbed molecule
Why Does the Atmosphere Rotate? Trajectory of a desorbed moleculeWhy Does the Atmosphere Rotate? Trajectory of a desorbed molecule
Why Does the Atmosphere Rotate? Trajectory of a desorbed moleculeJames Smith
 
Kepler and Newton vs. Geocentrism, Flat Earth, and the "Vortex"
Kepler and Newton vs. Geocentrism, Flat Earth, and the "Vortex"Kepler and Newton vs. Geocentrism, Flat Earth, and the "Vortex"
Kepler and Newton vs. Geocentrism, Flat Earth, and the "Vortex"James Smith
 
Ejercicios geometría, con respuestas
Ejercicios geometría, con respuestasEjercicios geometría, con respuestas
Ejercicios geometría, con respuestasJames Smith
 

More from James Smith (8)

Un acercamiento a los determinantes e inversos de matrices
Un acercamiento a los determinantes e inversos de matricesUn acercamiento a los determinantes e inversos de matrices
Un acercamiento a los determinantes e inversos de matrices
 
Understanding the "Chain Rule" for Derivatives by Deriving Your Own Version
Understanding the "Chain Rule" for Derivatives by Deriving Your Own VersionUnderstanding the "Chain Rule" for Derivatives by Deriving Your Own Version
Understanding the "Chain Rule" for Derivatives by Deriving Your Own Version
 
Nuevo Manual de la UNESCO para la Enseñanza de Ciencias
Nuevo Manual de la UNESCO para la Enseñanza de CienciasNuevo Manual de la UNESCO para la Enseñanza de Ciencias
Nuevo Manual de la UNESCO para la Enseñanza de Ciencias
 
Estimation of the Earth's "Unperturbed" Perihelion from Times of Solstices an...
Estimation of the Earth's "Unperturbed" Perihelion from Times of Solstices an...Estimation of the Earth's "Unperturbed" Perihelion from Times of Solstices an...
Estimation of the Earth's "Unperturbed" Perihelion from Times of Solstices an...
 
"Rotation of a Rotation" via Geometric (Clifford) Algebra
"Rotation of a Rotation" via Geometric (Clifford) Algebra"Rotation of a Rotation" via Geometric (Clifford) Algebra
"Rotation of a Rotation" via Geometric (Clifford) Algebra
 
Why Does the Atmosphere Rotate? Trajectory of a desorbed molecule
Why Does the Atmosphere Rotate? Trajectory of a desorbed moleculeWhy Does the Atmosphere Rotate? Trajectory of a desorbed molecule
Why Does the Atmosphere Rotate? Trajectory of a desorbed molecule
 
Kepler and Newton vs. Geocentrism, Flat Earth, and the "Vortex"
Kepler and Newton vs. Geocentrism, Flat Earth, and the "Vortex"Kepler and Newton vs. Geocentrism, Flat Earth, and the "Vortex"
Kepler and Newton vs. Geocentrism, Flat Earth, and the "Vortex"
 
Ejercicios geometría, con respuestas
Ejercicios geometría, con respuestasEjercicios geometría, con respuestas
Ejercicios geometría, con respuestas
 

Recently uploaded

Final demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxFinal demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxAvyJaneVismanos
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxOH TEIK BIN
 
Gas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxGas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxDr.Ibrahim Hassaan
 
Capitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptxCapitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptxCapitolTechU
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️9953056974 Low Rate Call Girls In Saket, Delhi NCR
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon AUnboundStockton
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...JhezDiaz1
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxiammrhaywood
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxSayali Powar
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdfssuser54595a
 
Pharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfPharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfMahmoud M. Sallam
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17Celine George
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPCeline George
 
Blooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxBlooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxUnboundStockton
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxthorishapillay1
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Celine George
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsanshu789521
 
Meghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentMeghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentInMediaRes1
 

Recently uploaded (20)

Final demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptxFinal demo Grade 9 for demo Plan dessert.pptx
Final demo Grade 9 for demo Plan dessert.pptx
 
Solving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptxSolving Puzzles Benefits Everyone (English).pptx
Solving Puzzles Benefits Everyone (English).pptx
 
ESSENTIAL of (CS/IT/IS) class 06 (database)
ESSENTIAL of (CS/IT/IS) class 06 (database)ESSENTIAL of (CS/IT/IS) class 06 (database)
ESSENTIAL of (CS/IT/IS) class 06 (database)
 
Gas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxGas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptx
 
Capitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptxCapitol Tech U Doctoral Presentation - April 2024.pptx
Capitol Tech U Doctoral Presentation - April 2024.pptx
 
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
call girls in Kamla Market (DELHI) 🔝 >༒9953330565🔝 genuine Escort Service 🔝✔️✔️
 
Crayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon ACrayon Activity Handout For the Crayon A
Crayon Activity Handout For the Crayon A
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
 
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptxECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
ECONOMIC CONTEXT - PAPER 1 Q3: NEWSPAPERS.pptx
 
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptxPOINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
POINT- BIOCHEMISTRY SEM 2 ENZYMES UNIT 5.pptx
 
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
18-04-UA_REPORT_MEDIALITERAСY_INDEX-DM_23-1-final-eng.pdf
 
Pharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdfPharmacognosy Flower 3. Compositae 2023.pdf
Pharmacognosy Flower 3. Compositae 2023.pdf
 
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdfTataKelola dan KamSiber Kecerdasan Buatan v022.pdf
TataKelola dan KamSiber Kecerdasan Buatan v022.pdf
 
How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17How to Configure Email Server in Odoo 17
How to Configure Email Server in Odoo 17
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERP
 
Blooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docxBlooming Together_ Growing a Community Garden Worksheet.docx
Blooming Together_ Growing a Community Garden Worksheet.docx
 
Proudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptxProudly South Africa powerpoint Thorisha.pptx
Proudly South Africa powerpoint Thorisha.pptx
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17
 
Presiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha electionsPresiding Officer Training module 2024 lok sabha elections
Presiding Officer Training module 2024 lok sabha elections
 
Meghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media ComponentMeghan Sutherland In Media Res Media Component
Meghan Sutherland In Media Res Media Component
 

How to Effect a Composite Rotation of a Vector via Geometric (Clifford) Algebra

  • 1. How to Effect a Composite Rotation of a Vector via Geometric (Clifford) Algebra October 14, 2017 James Smith nitac14b@yahoo.com https://mx.linkedin.com/in/james-smith-1b195047 Abstract We show how to express the representation of a composite rotation in terms that allow the rotation of a vector to be calculated conveniently via a spreadsheet that uses formulas developed, previously, for a single rotation. The work presented here (which includes a sample calculation) also shows how to determine the bivector angle that produces, in a single operation, the same rotation that is effected by the composite of two rotations. “Rotation of the vector v through the bivector angle M1µ1, to produce the vector v .” 1
  • 2. Contents 1 Introduction 2 2 A Brief Review of How a Rotation of a Given Vector Can be Effected via GA 4 3 Identifying the “Representation” of a Composite Rotation 5 4 A Sample Calculation 7 5 Summary 8 6 Appendix: Identifying the Bivector Angle Sσ through which the Vector v can be Rotated to Produce v in a Single Opera- tion 12 1 Introduction Suppose that we rotate some vector v through the bivector angle M1µ1 to produce the vector that we shall call v (Fig. 1), and that we then rotate v through the bivector angle M2µ2 to produce the vector that we shall call v . That sequence of rotations is called the composition of the two rotations. It is equal to the rotation through some bivector angle Sσ ([1], pp. 89-91). Geometric Algebra (GA) is a convenient and efficient tool for manipulating rotations—single as well as composite—as abstract symbols, but what form does a numerical calculation of a rotation take in a concrete situation? And how can we calculate the bivector angle Sσ ? Those are two of the questions that we will address in this document. Our procedure will make use of single-rotation formulas that were developed in [2]. We’ll begin with a review of how a given vector can be rotated via GA. In that review, we’ll discuss the important concept of the representation of a rotation, after which we’ll present an formula that can be implemented in Excel for to calculate single rotations of a given vector. Having finished that review, we’ll see how to express the representation of a composite rotation in terms that can be substituted directly in the formula for single rotations. We’ll then work a sample problem in which we’ll calculate the results of successive rotations of a vector. We’ll also calculate the bivector angle that produces the same rotation in a single operation. The method used for calculating that bivector angle is presented in the Appendix.
  • 3. Figure 1: Rotation of the vector v through the bivector angle M2µ2, to produce the vector v . Figure 2: Rotation of the vector v through the bivector angle M2µ2, to produce the vector v . 3
  • 4. Figure 3: Rotation of v through the bivector angle Sσ, to produce the vector v in a single operation. 2 A Brief Review of How a Rotation of a Given Vector Can be Effected via GA References [3] (pp. 280-286) and [1] (pp. 89-91) derive and explain the following formula for finding the new vector, w , that results from the rotation of a vector w through the angle θ with respect to a plane that is parallel to the unit bivector Q: Figure 4: Rotation of the vector w through the bivector angle Q1, to produce the vector w . 4
  • 5. w = e−Qθ/2 [w] eQθ/2 Notation: RQθ(w) . (2.1) Notation: RQθ(w) is the rotation of the vector w by the bivector angle Qθ. For our convenience later in this document, we will follow Reference [1] (p. 89) in saying that the factor e−Qθ/2 represents the rotation RQθ. That factor is a quaternion, but in GA terms it is a multivector: e−Qθ/2 = cos θ 2 − Q sin θ 2 . (2.2) As further preparation for work that we’ll do later, we’ll mention that for any given right-handed reference system with orthonormal basis vectors ˆa, ˆb, and ˆc, we may express the unit bivector Q as a linear combination of the basis bivectors ˆaˆb, ˆbˆc, and ˆaˆc : Q = ˆaˆbqab + ˆbˆcqbc + ˆaˆcqac, in which qab, qbc, and qac are scalars, and q2 ab + q2 bc + q2 ac = 1. To present a convenient way of calculating rotations via Excel spreadsheets, Ref. [2] built upon that idea to write e−Qθ/2 as e−Qθ/2 = fo − ˆaˆbfab + ˆbˆcfbc + ˆaˆcfac , (2.3) with fo = cos θ 2 ; fab = qab sin θ 2 ; fbc = qbc sin θ 2 ; and fac = qac sin θ 2 . Similarly, eQθ/2 = fo + ˆaˆbfab + ˆbˆcfbc + ˆaˆcfac . (2.4) Using these expressions for e−Qθ/2 and eQθ/2 , and writing w as w = ˆawa + ˆbwb + ˆcwc, Eq. (2.1) becomes w = fo − ˆaˆbfab − ˆbˆcfbc − ˆaˆcfac ˆawa + ˆbwb + ˆcwc fo + ˆaˆbfab + ˆbˆcfbc + ˆaˆcfac . By expanding and simplifying the right-hand, side we obtain w = ˆa wa f2 o − f2 ab + f2 bc − f2 ac + wb (-2fofab − 2fbcfac) + wc (-2fofac + 2fabfbc) + ˆb wa (2fofab − 2fbcfac) + wb f2 o − f2 ab − f2 bc + f2 ac + wc (-2fofbc − 2fabfac) + ˆc wa (2fofac + 2fabfbc) + wb (2fofbc − 2fabfac) + wc f2 o + f2 ab − f2 bc − f2 ac . (2.5) Because this result can be implemented conveniently in (for example) a spreadsheet similar to Ref. [4], the sections that follow will show how to express the representation of a composite rotation in the form of Eq. (2.3). 3 Identifying the “Representation” of a Com- posite Rotation Let’s begin by defining two unit bivectors, M1 and M2: M1 = ˆaˆbm1ab + ˆbˆcm1bc + ˆaˆcm1ac; M2 = ˆaˆbm2ab + ˆbˆcm2bc + ˆaˆcm2ac. 5
  • 6. Now, write the rotation of a vector v by the bivector angle M1µ1 to produce the vector v : v = e−M1µ1/2 [v] eM1µ1/2 . Next, we will rotate v by the bivector angle M2µ2 to produce the vector v : v = e−M2µ2/2 [v ] eM2µ2/2 . Combining those two equations, v = e−M2µ2/2 e−M1µ1/2 [v] eM1µ1/2 eM2µ2/2 . The vector v was produced from v via the composition of the rotations by the bivector angles M1µ1 and M2µ1. The representation of that composition is the product e−M2µ1/2 e−M1µ1/2 . We’ll rewrite the previous equation to make that idea clearer: v = e−M2µ2/2 e−M1µ1/2 Representation of the composition [v] eM1µ1/2 eM2µ2/2 . There exists an identifiable bivector angle —we’ll call it Sσ—through which v could have been rotated to produce v in a single operation rather than through the composition of rotations through M1µ1 and M2µ2. (See the Appendix.) But instead of going that route, let’s write e−M1µ1/2 and e−M2µ2/2 in a way that will enable us to use Eq. (2.3): e−M1µ1/2 = go − ˆaˆbgab + ˆbˆcgbc + ˆaˆcgac , and e−M2µ2/2 = ho − ˆaˆbhab + ˆbˆchbc + ˆaˆchac , where go = cos µ1 2 ; gab = m1ab sin µ1 2 ; gbc = m1bc sin µ1 2 ; and gac = m1ac sin µ1 2 , and ho = cos µ2 2 ; hab = m2ab sin µ2 2 ; hbc = m2bc sin µ2 2 ; and hac = m2ac sin µ2 2 . Now, we write the representation of the the composition as ho − ˆaˆbhab + ˆbˆchbc + ˆaˆchac e−M2µ2/2 go − ˆaˆbgab + ˆbˆcgbc + ˆaˆcgac e−M1µ1/2 . After expanding that product and grouping like terms, the representation of the composite rotation can be written in a form identical to Eq. (2.3): Fo − ˆaˆbFab + ˆbˆcFbc + ˆaˆcFac , (3.1) with Fo = e−M2µ2/2 e−M1µ1/2 0 = hogo − habgab − hbcgbc − hacgac , Fab = hogab + habgo − hbcgac + hacgbc , Fbc = hogbc + habgac + hbcgo − hacgab , and Fac = hogac − habgbc + hbcgab + hacgo . (3.2) 6
  • 7. Therefore, with these definitions of Fo, Fab, Fbc, and Fac, v can be calculated from v (written as ˆava + ˆbvb + ˆcvc) via an equation that is analogous, term for term, with Eq. (2.5): v = ˆa va F2 o − F2 ab + F2 bc − F2 ac + vb (-2FoFab − 2FbcFac) + vc (-2FoFac + 2FabFbc) + ˆb va (2FoFab − 2FbcFac) + vb F2 o − F2 ab − F2 bc + F2 ac + vc (-2FoFbc − 2FabFac) + ˆc va (2FoFac + 2FabFbc) + vb (2FoFbc − 2FabFac) + vc F2 o + F2 ab − F2 bc − F2 ac . (3.3) At this point, you may (and should) be objecting that I’ve gotten ahead of myself. Please recall that Eq. (2.5) was derived starting from the “rotation” equation ((2.1)) w = e−Qθ/2 [w] eQθ/2 . The quantities fo, fo, fab, fbc, and fac in Eq. (2.5), for which e−Qθ/2 = fo − ˆaˆbfab + ˆbˆcfbc + ˆaˆcfac , (3.4) also meet the condition that eQθ/2 = fo + ˆaˆbfab + ˆbˆcfbc + ˆaˆcfac . (3.5) We are not justified in using Fo, Fab, Fbc, and Fac in Eq. (2.5) unless we first prove that these composite-rotation “F’s”, for which Fo − ˆaˆbFab + ˆbˆcFbc + ˆaˆcFac = e−M2µ2/2 e−M1µ1/2 , (3.6) also meet the condition that Fo + ˆaˆbFab + ˆbˆcFbc + ˆaˆcFac = eM1µ1/2 e−M2µ2/2 . (3.7) Although more-elegant proofs may well exist, “brute force and ignorance” gets the job done. We begin by writing eM1µ1/2 e−M2µ2/2 in a way that is analogous to that which was presented in the text that preceded Eq. (3.1): go + ˆaˆbgab + ˆbˆcgbc + ˆaˆcgac eM1µ1/2 ho + ˆaˆbhab + ˆbˆchbc + ˆaˆchac eM2µ2/2 . Expanding, simplifying, and regrouping, we fine that eM1µ1/2 e−M2µ2/2 is indeed equal to Fo + ˆaˆbFab + ˆbˆcFbc + ˆaˆcFac , as required. 4 A Sample Calculation The vector v = 4 3 ˆa − 4 3 ˆb + 16 3 ˆc is rotated through the bivector angle ˆaˆbπ/2 radians to produce a new vector, v . That vector is then rotated through the bivector angle ˆaˆb √ 3 + ˆbˆc √ 3 − ˆaˆc √ 3 − 2π 3 to produce vector v . Calculate 7
  • 8. Figure 5: Rotation of v through the bivector angle ˆaˆbπ/2, to produce the vector v . a The vectors v and v , and b The bivector angle Sσ through which v could have been rotated to produce v in a single operation. We begin by calculating vector v . The rotation is diagrammed in Fig. 5 As shown in Fig. 6, v = 4 3 ˆa + 4 3 ˆb + 16 3 ˆc. We’ll calculate v in two ways: as the rotation of v by the bivector angle ˆaˆb √ 3 + ˆbˆc √ 3 − ˆaˆc √ 3 − 2π 3 , and as the result of the rotation by the composite of the two individual rotations. The rotation of v by ˆaˆb √ 3 + ˆbˆc √ 3 − ˆaˆc √ 3 − 2π 3 is diagrammed in Fig. 7. Fig. 8 shows that v = 4 3 ˆa + 16 3 ˆb + 4 3 ˆc. As we can see from Fig. 9, that result agrees with that which was obtained by calculating v in a single step, as the composition of the individual rotations. Fig. 9 also shows that the bivector angle Sσ is ˆbˆc (−π/2), which we can also write as ˆcˆb (π/2). That rotation is diagrammed in Fig. 10. 5 Summary We have seen how to express the representation of a composite rotation in terms that allow the rotation of a vector to be calculated conveniently via a spreadsheet that used formulas developed in [2] for a single rotation. The work presented here also shows how to determine the bivector angle that produces, in a single operation, the same rotation that is effected by the composite of two rotations. 8
  • 9. Figure 6: A spreadsheet (Ref. [5]) that uses Eq. (2.5) to calculate v as the rotation of v through the bivector angle ˆaˆbπ/2. Figure 7: Rotation of v . Note the significance of the negative sign of the scalar angle: the direction in which v is to be rotated is contrary to the orientation of the bivector. That significance is clearer in Fig. 10. 9
  • 10. Figure 8: A spreadsheet (Ref. [5]) that uses Eq. (2.5) to calculate v as the rotation of v . 10
  • 11. Figure 9: A spreadsheet (Ref. [6]) that uses Eq. (3.2) to calculate v via the composite rotation of v. 11
  • 12. Figure 10: Rotation of v by Sσ to produce v in a single operation. Note the significance of the negative sign of the scalar angle: the direction in which v rotated is contrary to the orientation of the bivector ˆbˆc, and contrary also to the direction of the rotation from ˆb to ˆc. 6 Appendix: Identifying the Bivector Angle Sσ through which the Vector v can be Rotated to Produce v in a Single Operation Let v be an arbitrary vector. We want to identify the bivector angle Sσ through which the initial vector, v, can be rotated to produce the same vector v that results from the rotation of v through the composite rotation by M1µ1, then by M2µ2: e−M2µ2/2 e−M1µ1/2 [v] eM1µ1/2 eM2µ2/2 = v = e−Sσ/2 [v] eSσ/2 . (6.1) We want Eq. (6.1) to be true for all vectors v. Therefore, eSσ/2 must be equal to eM1µ1/2 eM2µ2/2 , and e−Sσ/2 must be equal to e−M1µ1/2 eM2µ2/2 . The second of those conditions is the same as saying that the representations of the Sσ rotation and the composite rotation must be equal. We’ll write that condition using the Fo’s defined in Eq. (3.2), with S expressed in terms of the unit bivectors ˆaˆb, ˆbˆc, and ˆaˆc: cos σ 2 − ˆaˆbSab + ˆbˆcSbc + ˆaˆcSac S sin σ 2 = Fo − ˆaˆbFab + ˆbˆcFbc + ˆaˆcFac . Now, we want to identify σ and the coefficients of ˆaˆb, ˆbˆc, and ˆaˆc. First, we note that both sides of the previous equation are multivectors. According to the postulates of GA, two multivectors A1 and A2 are equal if and only if for every grade k, A1 k = A2 k. Equating the scalar parts, we see that cos σ 2 = Fo. Equating the bivector parts gives ˆaˆbSab + ˆbˆcSbc + ˆaˆcSac sin σ 2 = ˆaˆbFab + 12
  • 13. ˆbˆcFbc + ˆaˆcFac. Comparing like terms, Sab = Fab/ sin σ 2 , Sbc = Fbc/ sin σ 2 , and Sac = Fac/ sin σ 2 . Why is it correct to identify the S’s by comparing like terms? In simple terms, because the unit bivectors ˆaˆb, ˆbˆc ˆaˆb are orthogonal. Two linear combinations of those bivectors are equal if and only if the coefficients match, term for term. Next, we need to find sin σ 2 . Although we could do so via sin σ 2 = 1 − cos2 σ 2 , for the purposes of this discussion we will use the fact that S is, by definition, a unit bivector. Therefore, ||S|| = 1, leading to sin σ 2 = ˆaˆbFab + ˆbˆcFbc + ˆaˆcFac = F2 ab + F2 bc + F2 ac . Now, the question is whether we want to use sin σ 2 = + F2 ab + F2 bc + F2 ac, or sin σ 2 = − F2 ab + F2 bc + F2 ac. The truth is that we can use either: if we use − F2 ab + F2 bc + F2 ac instead of + F2 ab + F2 bc + F2 ac, then the sign of S changes as well, leaving the product S sin σ 2 unaltered. The choice having been made, we can find the scalar angle σ from the values of sin σ 2 and cos σ 2 , thereby determining the bivector angle Sσ. References [1] A. Macdonald, Linear and Geometric Algebra (First Edition) p. 126, CreateSpace Independent Publishing Platform (Lexington, 2012). [2] J. A. Smith, 2017, “How to Effect a Desired Rotation of a Vector about a Given Axis via Geometric (Clifford) Algebra” http://vixra.org/abs/1708.0462. [3] D. Hestenes, 1999, New Foundations for Classical Mechanics, (Second Edition), Kluwer Academic Publishers (Dordrecht/Boston/London). [4] J. A. Smith, 2017, “Rotation of a Vector about an Axis” (an Excel spread- sheet), https://drive.google.com/file/d/0B2C4TqxB32RRNHBHV2tpSUhRTUk/view?usp=sharing. [5] J. A. Smith, 2017, “Rotation by a given bivector angle” (an Excel spread- sheet), https://drive.google.com/file/d/0B2C4TqxB32RRX2JfcDd5NjZiZ00/view?usp=sharing . [6] J. A. Smith, 2017, “Composite rotation in GA” (an Excel spreadsheet), https://drive.google.com/file/d/0B2C4TqxB32RRaktDZktjcExPeUE/view?usp=sharing . 13