SlideShare a Scribd company logo
1 of 22
BLOTTING TECHNIQUES
D.INDRAJA
• Blotting is used in molecular biology for the identification of proteins and nucleic acids and is widely
used for diagnostic purposes.
• This technique immobilizes the molecule of interest on a support, which is a nitrocellulosic membrane or
nylon.
• It uses hybridization techniques for the identification of the specific nucleic acids and genes.
• The blotting technique is a tool used in the identification of biomolecules such ad DNA, mRNA and
protein during different stages of gene expression
• Southern blotting was introduced by Edwin Southern in 1975 as a method to detect specific sequences of
DNA in DNA samples. The other blotting techniques emerged from this method have been termed as
Northern (for RNA), Western (for proteins), Eastern (for post-translational protein modifications)
• TYPES OF BLOTTING TECHNIQUES
• Southern blotting(DNA)
• Northern blotting(RNA)
• Western blotting(proteins), Far western blott(protein-protein interaction)
• Eastern blotting, Far eastern blott (lipds)
• Dotblot (bio molecules)
Southern Blot
• Southern Blot is the analytical technique used in molecular biology, immunogenetics and other
molecular methods to detect or identify DNA of interest from a mixture of DNA sample or a specific
base sequence within a strand of DNA.
• The technique was developed by a molecular biologist E.M. Southern in 1975 for analysing the related
genes in a DNA restriction fragment and thus named as Southern blotting in his honour
Principle of Southern Blot
• The process involves the transfer of electrophoresis-separated DNA fragments to a carrier membrane
which is usually nitrocellulose and the subsequent detection of the target DNA fragment by probe
hybridization.
• Hybridization Hybridization refers to the process of forming a double-stranded DNA
molecule between a single-stranded DNA probe and a single-stranded target DNA. Since the probe and
target DNA are complementary to each other, the reaction is specific which aids in the detection of the
specific DNA fragment.
• Key point If some of the DNA fragments are larger than 15 kb, then prior to blotting, the gel
may be treated with an acid, such as dilute HCl. This depurinates the DNA fragments, breaking the DNA
into smaller pieces, thereby allowing more efficient transfer from the gel to membrane
Steps Involved in Southern Blot
1.Extraction and purification of DNA from cells
• DNA is first separated from target cells following standard methods of genomic
DNA extraction and then purified.
2.Restriction Digestion or DNA Fragmentation
• Restriction endonucleases are used to cut high-molecular-weight DNA strands
into smaller fragments. One or more restriction enzymes can be used to achieve
such fragments.
3.Separation by Electrophoresis
• The separation may be done by agarose gel electrophoresis in which the
negatively charged DNA fragments move towards the positively charged anode,
the distance moved depending upon its size.
5.Denaturation
• DNA is then denatured with a mild alkali such as an alkaline solution of NaOH.
This causes the double stranded DNA to become single-stranded, making them
suitable for hybridization. DNA is then neutralized with NaCl to prevent re-
hybridization before addition of the probe.
6.Blotting
• The denatured fragments are then transferred onto a nylon or
nitrocellulose filter membrane which is done by placing the gel on top of a
buffer saturated filter paper, then laying nitrocellulose filter membrane on
the top of gel. Finally some dry filter papers are placed on top of the
membrane. Fragments are pulled towards the nitrocellulose filter
membrane by capillary action and result in the contact print of the gel.
7.Baking
• The nitrocellulose membrane is removed from the blotting stack, and the
membrane with single stranded DNA bands attached on to it is baked in a
vacuum or regular oven at 80 °C for 2-3 hours or exposed to ultraviolet
radiation to permanently attach the transferred DNA onto the membrane.
8.Hybridization
• The membrane is then exposed to a hybridization probe which is a single
DNA fragment with a specific sequence whose presence in the target DNA
is to be determined. The probe DNA is labeled so that it can be detected,
usually by incorporating radioactivity or tagging the molecule with a
fluorescent or chromogenic dye.
9.Washing of unbound probes
• After hybridization, the membrane is thoroughly washed with a
buffer to remove the probe that is bound nonspecifically or any
unbound probes present.
10.Autoradiograph
• The hybridized regions are detected autoradiographically by
placing the nitrocellulose membrane in contact with a
photographic film which shows the hybridized DNA molecules.
The pattern of hybridization is visualized on X-ray film by
autoradiography in case of a radioactive or fluorescent probe is
used or by the development of color on the membrane if a
chromogenic detection method is used
Excess probe is
washed off
Applications of Southern Blot
• Identifying specific DNA in a DNA sample.
• Preparation of RFLP (Restriction Fragment Length Polymorphism) maps
• Detection of mutations, deletions or gene rearrangements in DNA
• For criminal identification and DNA fingerprinting (VNTR)
• Detection and identification of trans gene in transgenic individual
• Mapping of restriction sites
• For diagnosis of infectious diseases
• Prognosis of cancer and prenatal diagnosis of genetic diseases
• Determination of the molecular weight of a restriction fragment and to measure relative amounts in
different samples.
Northern blotting
• The technique that is used in molecular biology research to study gene expression by detection of RNA
or isolated mRNA in a sample is called northern blotting (RNA blotting).
• It is a classical method for analysis of the size and steady state level of a specific RNA in a complex
sample.
• Northern blotting is a technique for detection of specific RNA sequences. Northern blotting was
developed by James Alwine and George Stark at Stanford University (1979) and was named such by
analogy to Southern blotting
• The Northern blot involves the size separation of RNA in gels like that of DNA. Because we wish to
determine the native size of the RNA transcript (and because RNA is single stranded) no restriction
enzymes are ever used.
• Key point Because most RNA is single stranded and can fold into various conformations through
intra-molecular base pairing, the electrophoresis separation is more haphazard and the bands are often
less sharp, compared to that of double stranded DNA.
• Steps Involved in Northern Blot
1. RNA isloation
• RNA is isolated from several biological samples (e.g. various tissues,
various developmental stages of same tissue etc.) by standard methods of
islolation
• The tissue or culture sample collected is first homogenized. The samples
may be representative of different types of culture for comparison or it can
be for the study of different stages of growth inside the culture.
2. Separation by Electrophoresis
• Sample’s are loaded on gel and the RNA samples are separated according
to their size on an agarose gel
• The RNA samples are most commonly separated on agarose gels
containing formaldehyde as a denaturing agent for the RNA to limit
secondary structure
• Denaturing agent (formaldehyde or glyoxal/DMSO) disrupts the secondary
structure.
• Separation of RNA is better in glyoxal/DMSO system as sharper band for
specific RNA is detected by hybridization.
3. Transfer of RNA to a membrane
• Nitrocellulose and nylons are commonly used membranes. (Nylon
membrane are more durable)
• RNA are transferred via capillary or vacuum transfer. Vacuum transfer
are more efficient but require special transfer apparatus.
• Electrophoretic transfer method is available only for nylon membrane
due to low concentration of salts required to bind the RNA.
• Transferred RNA are then immobilized to membrane by baking at 80 °C
or through UV crosslinking in case of nylon membrane.
4. Hybridization and Washing
• Hybridization is performed using radio or fluorescently labelled probe to
identify specific RNA immobilization.
• Pre-hybridization blocks single stranded probe from binding on non-
specific sites on the membrane.
• Hybridization solution should contain 50% formamide to ensure
hybridization at lower temperature and minimize RNA degradation.
• The membrane is washed in the buffer containing lower concentration of
salt to remove excess probes
5. Visualization
• Detection of specific transcript through autoradiography.
• Membranes are place over X-ray film.
• The X-ray film darkens where fragments are corresponding to the radioactive
probes.
APPLICATIONS
• A standard for the study of gene expression at the level of mRNA (messenger RNA transcripts)
• Detection of mRNA transcript size
• Study RNA degradation
• Study RNA splicing
• Study RNA half-life
• Often used to confirm and check transgenic / knockout mice (animals)
Disadvantages
• Time consuming (Only one gene can be analyzed at a time).
• RNA degradation risks because of RNases contamination in work environment.
• Relatively expensive for large scale analysis as huge amount of RNA and reagents are required.
Western blotting
• Western blot is the analytical technique used in molecular biology, immunogenetics and other molecular
biology to detect specific proteins in a sample of tissue homogenate or extract.
• Western blotting is called so as the procedure is similar to Southern blotting.
• While Southern blotting is done to detect DNA, Western blotting is done for the detection of proteins.
• Western blotting is also called protein immunoblotting because an antibody is used to specifically detect
its antigen
• Western blotting was first described by G.stark in 1979. It was in 1981 when W. Neal Burnette
developed an improved version of the method and gave the name “western blotting”
• Principle
• Western blotting (protein blotting or immunoblotting) is a rapid and sensitive assay for detection and
characterization of proteins. It is based on the principle of immunochromatography where proteins are
separated into polyacrylamide gel according to their molecular weight.
• The protein thus separated are then transferred or electrotransferred onto nitrocellulose membrane and
are detected using specific primary antibody and secondary enzyme labeled antibody and substrate.
• Steps Involved in Western Blot
1. Extraction of Protein
• Cell lysate is most common sample for western blotting.
• Protein is extracted from cell by mechanical or chemical lysis of cell. This
step is also known as tissue preparation.
• To prevent denaturing of protein protease inhibitor is used.
• The concentration of protein is determined by spectroscopy.
• When sufficient amount of protein sample is obtained, it is diluted in loading
buffer containing glycerol which helps to sink the sample in well.
• Tracking dye (bromothymol blue) is also added in sample to monitor the
movement of proteins.
2. Gel electrophoresis
• The sample is loaded in well of SDS-PAGE Sodium dodecyl sulfate- poly-
acrylamide gel electrophoresis.
• The proteins are separated on the basis of electric charge, isoelectric point,
molecular weight, or combination of these all.
• The small size protein moves faster than large size protein.
• Protein are negatively charged, so they move toward positive (anode) pole as
electric current is applied.
3. Blotting
• The nitrocellulose membrane is placed on the gel. The separated protein from gel get
transferred to nitrocellulose paper by capillary action. This type of blotting is time
consuming and may take 1-2 days
• For fast and more efficient transfer of desired protein from the gel to nitrocellulose
paper electro-blotting can be used.
• In electro-blotting nitrocellulose membrane is sandwich between gel and cassette of
filter paper and then electric current is passed through the gel causing transfer of
protein to the membrane.
4. Blocking
• Blocking is very important step in western blotting.
• Antibodies are also protein so they are likely to bind the nitrocellulose paper. So
before adding the primary antibody the membrane is non-specifically saturated or
masked by using casein or Bovine serum albumin (BSA)
5. Treatment with Primary Antibody
• The primary antibody (1° Ab) is specific to desired protein so it form Ag-Ab complex
6.Treatment with secondary antibody
• The secondary antibody is enzyme labelled. For eg. alkaline phosphatase or
Horseradish peroxidase (HRP) is labelled with secondary antibody.
• Secondary antibody (2° Ab) is antibody against primary antibody (anti-antibody) so it
can bind with Ag-Ab complex.
7. Treatment with suitable substrate
• To visualize the enzyme action, the reaction mixture is incubated with
specific substrate.
• The enzyme convert the substrate to give visible colored product, so
band of color can be visualized in the membrane.
• Western blotting is also a quantitative test to determine the amount of
protein in sample
Detection can be done by other methods such as:
•Colorimetric detection
•Radioactive detection
•Chemiluminescent detection
•Fluorescent detection
Applications:
• To determine the size and amount of protein in given sample.
• Disease diagnosis: detects antibody against virus or bacteria in serum.
• Western blotting technique is the confirmatory test for HIV. It detects anti HIV antibody inpatient's
serum.
• Useful to detect defective proteins. For eg Prions disease.
• Definitive test for Creutzfeldt-Jacob disease Lyme disease Hepatitis B and Herpes
Eastern Blotting
• Developed by Towbin in 1979
• The eastern blot is a biochemical technique used to analyze protein post translational modifications
(PTM) such as lipids, phosphomoieties and glycoconjugates.
• It is most often used to detect carbohydrate epitopes
• Thus, eastern blotting can be considered an extension of the biochemical technique of western blotting.
• Multiple techniques have been described by the term eastern blotting, most use proteins blotted from
SDS-PAGE gel on to a nitrocellulose membrane
• Transferred proteins are analyzed for post-translational modifications using probes that may detect lipids,
carbohydrate, phosphorylation or any other protein modification
• Eastern blotting should be used to refer to methods that detect their targets through specific interaction of
the PTM and the probe, distinguishing them from a standard far-western blot.
• In principle, eastern blotting is similar to lectin blotting (i.e. detection of carbohydrate epitopes on
proteins or lipids).
DOT BLOT TECHNIQUE
• This technique is used to detect the presence of a given sequence of DNA/RNA in the non-
fractionated(not subjected to electrophoresis) DNA sample
• DNA from many samples can be tested in a single test.
• A Dot blot (or Slot blot) is a technique used to detect biomolecules.
• It represents a simplification of the northern blot, Southern blot, or western blot methods. In a dot blot
the biomolecules to be detected are not first separated
• Instead, a mixture containing the molecule to be detected is applied directly on a membrane as a dot.
• Then is spotted through circular templates directly onto the membrane or paper substrate.
• Then followed by detection by either nucleotide probes (for a northern blot and Southern blot) or
antibodies (for a western blot).
• It offers no information on the size of the target biomolecule. Furthermore, if two molecules of different
sizes are detected, they will still appear as a single dot.
• Can only confirm the presence or absence of a biomolecule.
Blotting techniques

More Related Content

What's hot (20)

Blotting techniques
Blotting techniquesBlotting techniques
Blotting techniques
 
Blotting techniques
Blotting techniquesBlotting techniques
Blotting techniques
 
2 d gel electrophoresis
2 d gel electrophoresis2 d gel electrophoresis
2 d gel electrophoresis
 
Dot blotting
Dot blottingDot blotting
Dot blotting
 
PCR, RT-PCR and qPCR
PCR, RT-PCR and qPCRPCR, RT-PCR and qPCR
PCR, RT-PCR and qPCR
 
Northern blotting
Northern blotting Northern blotting
Northern blotting
 
Pcr and its types
Pcr and its typesPcr and its types
Pcr and its types
 
Polymerase Chain Reaction
Polymerase Chain ReactionPolymerase Chain Reaction
Polymerase Chain Reaction
 
Chromosome walking
Chromosome walkingChromosome walking
Chromosome walking
 
Exprssion vector
Exprssion vectorExprssion vector
Exprssion vector
 
Post transcriptional modification
Post transcriptional modificationPost transcriptional modification
Post transcriptional modification
 
Random Amplified polymorphic DNA. RAPD
Random Amplified polymorphic DNA. RAPDRandom Amplified polymorphic DNA. RAPD
Random Amplified polymorphic DNA. RAPD
 
Chemical method of transformation
Chemical method of transformation Chemical method of transformation
Chemical method of transformation
 
Gene cloning
Gene cloningGene cloning
Gene cloning
 
Prokaryotic Replication presentation
Prokaryotic Replication presentationProkaryotic Replication presentation
Prokaryotic Replication presentation
 
Colony hybridisation
Colony hybridisation Colony hybridisation
Colony hybridisation
 
Shuttle vector
Shuttle vectorShuttle vector
Shuttle vector
 
Western blotting
Western blottingWestern blotting
Western blotting
 
Sanger sequencing
Sanger sequencing Sanger sequencing
Sanger sequencing
 
Dna ligase
Dna ligaseDna ligase
Dna ligase
 

Similar to Blotting techniques

BLOTTING TECHNIQUES FOR RNA, DNA AND PROTEINS.pptx
BLOTTING TECHNIQUES FOR RNA, DNA AND PROTEINS.pptxBLOTTING TECHNIQUES FOR RNA, DNA AND PROTEINS.pptx
BLOTTING TECHNIQUES FOR RNA, DNA AND PROTEINS.pptxTadiwanasheMagombe
 
Blotting southern,northern, western techniques
Blotting southern,northern, western techniquesBlotting southern,northern, western techniques
Blotting southern,northern, western techniquesveeralxmi
 
Dna finger printing
Dna finger printingDna finger printing
Dna finger printingAFSATH
 
Lecture 3 southern blotting
Lecture 3 southern blotting Lecture 3 southern blotting
Lecture 3 southern blotting Dr Vishnu Kumar
 
blottingtechniques.pptx different types of blotting technique
blottingtechniques.pptx different types of blotting techniqueblottingtechniques.pptx different types of blotting technique
blottingtechniques.pptx different types of blotting techniqueTamannaNaidu
 
blotting techniques southern northern Western
blotting techniques southern northern Westernblotting techniques southern northern Western
blotting techniques southern northern WesternTamannaNaidu
 
Blotting Techniques.pptx
Blotting Techniques.pptxBlotting Techniques.pptx
Blotting Techniques.pptxSruthyPB3
 
VBC-321_BLOTTING_TECHNIQUES.pptx
VBC-321_BLOTTING_TECHNIQUES.pptxVBC-321_BLOTTING_TECHNIQUES.pptx
VBC-321_BLOTTING_TECHNIQUES.pptxSajadBhat46
 
Blotting techniques in Biotechnology
Blotting techniques in BiotechnologyBlotting techniques in Biotechnology
Blotting techniques in BiotechnologyGourab Ray
 
Souther and northern blotting systems
Souther and northern blotting systemsSouther and northern blotting systems
Souther and northern blotting systemsAnkit R. Chaudhary
 
Genetic methods of microbial taxonomy
Genetic methods of microbial taxonomyGenetic methods of microbial taxonomy
Genetic methods of microbial taxonomyKARTHIK REDDY C A
 
Types of different blotting techniques.pptx
Types of different blotting techniques.pptxTypes of different blotting techniques.pptx
Types of different blotting techniques.pptxkhadijarafiq2012
 

Similar to Blotting techniques (20)

Blotting techniques1
Blotting techniques1Blotting techniques1
Blotting techniques1
 
BLOTTING TECHNIQUES FOR RNA, DNA AND PROTEINS.pptx
BLOTTING TECHNIQUES FOR RNA, DNA AND PROTEINS.pptxBLOTTING TECHNIQUES FOR RNA, DNA AND PROTEINS.pptx
BLOTTING TECHNIQUES FOR RNA, DNA AND PROTEINS.pptx
 
Blotting southern,northern, western techniques
Blotting southern,northern, western techniquesBlotting southern,northern, western techniques
Blotting southern,northern, western techniques
 
Blotting
Blotting Blotting
Blotting
 
Dna finger printing
Dna finger printingDna finger printing
Dna finger printing
 
Lecture 3 southern blotting
Lecture 3 southern blotting Lecture 3 southern blotting
Lecture 3 southern blotting
 
blottingtechniques.pptx different types of blotting technique
blottingtechniques.pptx different types of blotting techniqueblottingtechniques.pptx different types of blotting technique
blottingtechniques.pptx different types of blotting technique
 
blotting techniques southern northern Western
blotting techniques southern northern Westernblotting techniques southern northern Western
blotting techniques southern northern Western
 
Blotting Techniques.pptx
Blotting Techniques.pptxBlotting Techniques.pptx
Blotting Techniques.pptx
 
VBC-321_BLOTTING_TECHNIQUES.pptx
VBC-321_BLOTTING_TECHNIQUES.pptxVBC-321_BLOTTING_TECHNIQUES.pptx
VBC-321_BLOTTING_TECHNIQUES.pptx
 
Blotting techniques
Blotting techniquesBlotting techniques
Blotting techniques
 
Blotting techniques in Biotechnology
Blotting techniques in BiotechnologyBlotting techniques in Biotechnology
Blotting techniques in Biotechnology
 
Blotting techniques
Blotting techniquesBlotting techniques
Blotting techniques
 
Souther and northern blotting systems
Souther and northern blotting systemsSouther and northern blotting systems
Souther and northern blotting systems
 
Blotting techniques
Blotting techniquesBlotting techniques
Blotting techniques
 
Nucleic acid probes
Nucleic acid probesNucleic acid probes
Nucleic acid probes
 
DOC-20180125-WA0038.pptx
DOC-20180125-WA0038.pptxDOC-20180125-WA0038.pptx
DOC-20180125-WA0038.pptx
 
Blotting
BlottingBlotting
Blotting
 
Genetic methods of microbial taxonomy
Genetic methods of microbial taxonomyGenetic methods of microbial taxonomy
Genetic methods of microbial taxonomy
 
Types of different blotting techniques.pptx
Types of different blotting techniques.pptxTypes of different blotting techniques.pptx
Types of different blotting techniques.pptx
 

More from IndrajaDoradla

Cell cell interactions
Cell cell interactionsCell cell interactions
Cell cell interactionsIndrajaDoradla
 
Chemical composition of plasma membrane
Chemical composition of plasma membraneChemical composition of plasma membrane
Chemical composition of plasma membraneIndrajaDoradla
 
Fundementals of bioprocess
Fundementals of bioprocessFundementals of bioprocess
Fundementals of bioprocessIndrajaDoradla
 
Serological methods for detection of viruses
Serological methods for detection of viruses Serological methods for detection of viruses
Serological methods for detection of viruses IndrajaDoradla
 
Fattyacids classification, structure and properties
Fattyacids classification, structure and propertiesFattyacids classification, structure and properties
Fattyacids classification, structure and propertiesIndrajaDoradla
 
Structural level of organization of proteins
Structural level of organization of proteinsStructural level of organization of proteins
Structural level of organization of proteinsIndrajaDoradla
 
prion diseases(Scrapie and cjd)
prion diseases(Scrapie and cjd)prion diseases(Scrapie and cjd)
prion diseases(Scrapie and cjd)IndrajaDoradla
 
viroid diseases (potato spindle tuber viroid disease),coconut cadang cadang v...
viroid diseases (potato spindle tuber viroid disease),coconut cadang cadang v...viroid diseases (potato spindle tuber viroid disease),coconut cadang cadang v...
viroid diseases (potato spindle tuber viroid disease),coconut cadang cadang v...IndrajaDoradla
 
Polymerase chain reaction
Polymerase chain reactionPolymerase chain reaction
Polymerase chain reactionIndrajaDoradla
 
Up stream controllable elements
Up stream controllable elementsUp stream controllable elements
Up stream controllable elementsIndrajaDoradla
 
control of gene expression by sigma factor and post transcriptional control
control of gene expression by sigma factor and post transcriptional controlcontrol of gene expression by sigma factor and post transcriptional control
control of gene expression by sigma factor and post transcriptional controlIndrajaDoradla
 
differernt types of Operon concepts
differernt types of Operon conceptsdifferernt types of Operon concepts
differernt types of Operon conceptsIndrajaDoradla
 
transgenic animals with desired traits
transgenic animals with desired traitstransgenic animals with desired traits
transgenic animals with desired traitsIndrajaDoradla
 
production of recombinant proteins
production of recombinant proteinsproduction of recombinant proteins
production of recombinant proteinsIndrajaDoradla
 
development of transgenic plants with desired gene
development of transgenic plants with desired genedevelopment of transgenic plants with desired gene
development of transgenic plants with desired geneIndrajaDoradla
 

More from IndrajaDoradla (20)

Cell cell interactions
Cell cell interactionsCell cell interactions
Cell cell interactions
 
Media
MediaMedia
Media
 
Chemical composition of plasma membrane
Chemical composition of plasma membraneChemical composition of plasma membrane
Chemical composition of plasma membrane
 
Fundementals of bioprocess
Fundementals of bioprocessFundementals of bioprocess
Fundementals of bioprocess
 
Serological methods for detection of viruses
Serological methods for detection of viruses Serological methods for detection of viruses
Serological methods for detection of viruses
 
Fattyacids classification, structure and properties
Fattyacids classification, structure and propertiesFattyacids classification, structure and properties
Fattyacids classification, structure and properties
 
Structural level of organization of proteins
Structural level of organization of proteinsStructural level of organization of proteins
Structural level of organization of proteins
 
prion diseases(Scrapie and cjd)
prion diseases(Scrapie and cjd)prion diseases(Scrapie and cjd)
prion diseases(Scrapie and cjd)
 
viroid diseases (potato spindle tuber viroid disease),coconut cadang cadang v...
viroid diseases (potato spindle tuber viroid disease),coconut cadang cadang v...viroid diseases (potato spindle tuber viroid disease),coconut cadang cadang v...
viroid diseases (potato spindle tuber viroid disease),coconut cadang cadang v...
 
TUMOR SUPRESSOR GENES
TUMOR SUPRESSOR GENESTUMOR SUPRESSOR GENES
TUMOR SUPRESSOR GENES
 
Cloning strategies
Cloning strategiesCloning strategies
Cloning strategies
 
Polymerase chain reaction
Polymerase chain reactionPolymerase chain reaction
Polymerase chain reaction
 
Homeotic genes
Homeotic genesHomeotic genes
Homeotic genes
 
Up stream controllable elements
Up stream controllable elementsUp stream controllable elements
Up stream controllable elements
 
Dna binding motiffs
Dna binding motiffsDna binding motiffs
Dna binding motiffs
 
control of gene expression by sigma factor and post transcriptional control
control of gene expression by sigma factor and post transcriptional controlcontrol of gene expression by sigma factor and post transcriptional control
control of gene expression by sigma factor and post transcriptional control
 
differernt types of Operon concepts
differernt types of Operon conceptsdifferernt types of Operon concepts
differernt types of Operon concepts
 
transgenic animals with desired traits
transgenic animals with desired traitstransgenic animals with desired traits
transgenic animals with desired traits
 
production of recombinant proteins
production of recombinant proteinsproduction of recombinant proteins
production of recombinant proteins
 
development of transgenic plants with desired gene
development of transgenic plants with desired genedevelopment of transgenic plants with desired gene
development of transgenic plants with desired gene
 

Recently uploaded

GBSN - Biochemistry (Unit 2) Basic concept of organic chemistry
GBSN - Biochemistry (Unit 2) Basic concept of organic chemistry GBSN - Biochemistry (Unit 2) Basic concept of organic chemistry
GBSN - Biochemistry (Unit 2) Basic concept of organic chemistry Areesha Ahmad
 
Genome Projects : Human, Rice,Wheat,E coli and Arabidopsis.
Genome Projects : Human, Rice,Wheat,E coli and Arabidopsis.Genome Projects : Human, Rice,Wheat,E coli and Arabidopsis.
Genome Projects : Human, Rice,Wheat,E coli and Arabidopsis.Cherry
 
Site specific recombination and transposition.........pdf
Site specific recombination and transposition.........pdfSite specific recombination and transposition.........pdf
Site specific recombination and transposition.........pdfCherry
 
Digital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptxDigital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptxMohamedFarag457087
 
Terpineol and it's characterization pptx
Terpineol and it's characterization pptxTerpineol and it's characterization pptx
Terpineol and it's characterization pptxMuhammadRazzaq31
 
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....muralinath2
 
Climate Change Impacts on Terrestrial and Aquatic Ecosystems.pptx
Climate Change Impacts on Terrestrial and Aquatic Ecosystems.pptxClimate Change Impacts on Terrestrial and Aquatic Ecosystems.pptx
Climate Change Impacts on Terrestrial and Aquatic Ecosystems.pptxDiariAli
 
COMPOSTING : types of compost, merits and demerits
COMPOSTING : types of compost, merits and demeritsCOMPOSTING : types of compost, merits and demerits
COMPOSTING : types of compost, merits and demeritsCherry
 
Genome sequencing,shotgun sequencing.pptx
Genome sequencing,shotgun sequencing.pptxGenome sequencing,shotgun sequencing.pptx
Genome sequencing,shotgun sequencing.pptxCherry
 
Module for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learningModule for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learninglevieagacer
 
CYTOGENETIC MAP................ ppt.pptx
CYTOGENETIC MAP................ ppt.pptxCYTOGENETIC MAP................ ppt.pptx
CYTOGENETIC MAP................ ppt.pptxCherry
 
Efficient spin-up of Earth System Models usingsequence acceleration
Efficient spin-up of Earth System Models usingsequence accelerationEfficient spin-up of Earth System Models usingsequence acceleration
Efficient spin-up of Earth System Models usingsequence accelerationSérgio Sacani
 
Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS ESCORT SERVICE In Bhiwan...
Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS  ESCORT SERVICE In Bhiwan...Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS  ESCORT SERVICE In Bhiwan...
Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS ESCORT SERVICE In Bhiwan...Monika Rani
 
GBSN - Microbiology (Unit 3)Defense Mechanism of the body
GBSN - Microbiology (Unit 3)Defense Mechanism of the body GBSN - Microbiology (Unit 3)Defense Mechanism of the body
GBSN - Microbiology (Unit 3)Defense Mechanism of the body Areesha Ahmad
 
development of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virusdevelopment of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virusNazaninKarimi6
 
FAIRSpectra - Enabling the FAIRification of Analytical Science
FAIRSpectra - Enabling the FAIRification of Analytical ScienceFAIRSpectra - Enabling the FAIRification of Analytical Science
FAIRSpectra - Enabling the FAIRification of Analytical ScienceAlex Henderson
 
Gwalior ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Gwalior ESCORT SERVICE❤CALL GIRL
Gwalior ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Gwalior ESCORT SERVICE❤CALL GIRLGwalior ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Gwalior ESCORT SERVICE❤CALL GIRL
Gwalior ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Gwalior ESCORT SERVICE❤CALL GIRLkantirani197
 

Recently uploaded (20)

Clean In Place(CIP).pptx .
Clean In Place(CIP).pptx                 .Clean In Place(CIP).pptx                 .
Clean In Place(CIP).pptx .
 
GBSN - Biochemistry (Unit 2) Basic concept of organic chemistry
GBSN - Biochemistry (Unit 2) Basic concept of organic chemistry GBSN - Biochemistry (Unit 2) Basic concept of organic chemistry
GBSN - Biochemistry (Unit 2) Basic concept of organic chemistry
 
Genome Projects : Human, Rice,Wheat,E coli and Arabidopsis.
Genome Projects : Human, Rice,Wheat,E coli and Arabidopsis.Genome Projects : Human, Rice,Wheat,E coli and Arabidopsis.
Genome Projects : Human, Rice,Wheat,E coli and Arabidopsis.
 
Site specific recombination and transposition.........pdf
Site specific recombination and transposition.........pdfSite specific recombination and transposition.........pdf
Site specific recombination and transposition.........pdf
 
PATNA CALL GIRLS 8617370543 LOW PRICE ESCORT SERVICE
PATNA CALL GIRLS 8617370543 LOW PRICE ESCORT SERVICEPATNA CALL GIRLS 8617370543 LOW PRICE ESCORT SERVICE
PATNA CALL GIRLS 8617370543 LOW PRICE ESCORT SERVICE
 
Digital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptxDigital Dentistry.Digital Dentistryvv.pptx
Digital Dentistry.Digital Dentistryvv.pptx
 
Terpineol and it's characterization pptx
Terpineol and it's characterization pptxTerpineol and it's characterization pptx
Terpineol and it's characterization pptx
 
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
Human & Veterinary Respiratory Physilogy_DR.E.Muralinath_Associate Professor....
 
Climate Change Impacts on Terrestrial and Aquatic Ecosystems.pptx
Climate Change Impacts on Terrestrial and Aquatic Ecosystems.pptxClimate Change Impacts on Terrestrial and Aquatic Ecosystems.pptx
Climate Change Impacts on Terrestrial and Aquatic Ecosystems.pptx
 
COMPOSTING : types of compost, merits and demerits
COMPOSTING : types of compost, merits and demeritsCOMPOSTING : types of compost, merits and demerits
COMPOSTING : types of compost, merits and demerits
 
Genome sequencing,shotgun sequencing.pptx
Genome sequencing,shotgun sequencing.pptxGenome sequencing,shotgun sequencing.pptx
Genome sequencing,shotgun sequencing.pptx
 
Module for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learningModule for Grade 9 for Asynchronous/Distance learning
Module for Grade 9 for Asynchronous/Distance learning
 
CYTOGENETIC MAP................ ppt.pptx
CYTOGENETIC MAP................ ppt.pptxCYTOGENETIC MAP................ ppt.pptx
CYTOGENETIC MAP................ ppt.pptx
 
Efficient spin-up of Earth System Models usingsequence acceleration
Efficient spin-up of Earth System Models usingsequence accelerationEfficient spin-up of Earth System Models usingsequence acceleration
Efficient spin-up of Earth System Models usingsequence acceleration
 
Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS ESCORT SERVICE In Bhiwan...
Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS  ESCORT SERVICE In Bhiwan...Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS  ESCORT SERVICE In Bhiwan...
Bhiwandi Bhiwandi ❤CALL GIRL 7870993772 ❤CALL GIRLS ESCORT SERVICE In Bhiwan...
 
GBSN - Microbiology (Unit 3)Defense Mechanism of the body
GBSN - Microbiology (Unit 3)Defense Mechanism of the body GBSN - Microbiology (Unit 3)Defense Mechanism of the body
GBSN - Microbiology (Unit 3)Defense Mechanism of the body
 
Site Acceptance Test .
Site Acceptance Test                    .Site Acceptance Test                    .
Site Acceptance Test .
 
development of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virusdevelopment of diagnostic enzyme assay to detect leuser virus
development of diagnostic enzyme assay to detect leuser virus
 
FAIRSpectra - Enabling the FAIRification of Analytical Science
FAIRSpectra - Enabling the FAIRification of Analytical ScienceFAIRSpectra - Enabling the FAIRification of Analytical Science
FAIRSpectra - Enabling the FAIRification of Analytical Science
 
Gwalior ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Gwalior ESCORT SERVICE❤CALL GIRL
Gwalior ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Gwalior ESCORT SERVICE❤CALL GIRLGwalior ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Gwalior ESCORT SERVICE❤CALL GIRL
Gwalior ❤CALL GIRL 84099*07087 ❤CALL GIRLS IN Gwalior ESCORT SERVICE❤CALL GIRL
 

Blotting techniques

  • 2. • Blotting is used in molecular biology for the identification of proteins and nucleic acids and is widely used for diagnostic purposes. • This technique immobilizes the molecule of interest on a support, which is a nitrocellulosic membrane or nylon. • It uses hybridization techniques for the identification of the specific nucleic acids and genes. • The blotting technique is a tool used in the identification of biomolecules such ad DNA, mRNA and protein during different stages of gene expression • Southern blotting was introduced by Edwin Southern in 1975 as a method to detect specific sequences of DNA in DNA samples. The other blotting techniques emerged from this method have been termed as Northern (for RNA), Western (for proteins), Eastern (for post-translational protein modifications) • TYPES OF BLOTTING TECHNIQUES • Southern blotting(DNA) • Northern blotting(RNA) • Western blotting(proteins), Far western blott(protein-protein interaction) • Eastern blotting, Far eastern blott (lipds) • Dotblot (bio molecules)
  • 3. Southern Blot • Southern Blot is the analytical technique used in molecular biology, immunogenetics and other molecular methods to detect or identify DNA of interest from a mixture of DNA sample or a specific base sequence within a strand of DNA. • The technique was developed by a molecular biologist E.M. Southern in 1975 for analysing the related genes in a DNA restriction fragment and thus named as Southern blotting in his honour Principle of Southern Blot • The process involves the transfer of electrophoresis-separated DNA fragments to a carrier membrane which is usually nitrocellulose and the subsequent detection of the target DNA fragment by probe hybridization. • Hybridization Hybridization refers to the process of forming a double-stranded DNA molecule between a single-stranded DNA probe and a single-stranded target DNA. Since the probe and target DNA are complementary to each other, the reaction is specific which aids in the detection of the specific DNA fragment. • Key point If some of the DNA fragments are larger than 15 kb, then prior to blotting, the gel may be treated with an acid, such as dilute HCl. This depurinates the DNA fragments, breaking the DNA into smaller pieces, thereby allowing more efficient transfer from the gel to membrane
  • 4. Steps Involved in Southern Blot 1.Extraction and purification of DNA from cells • DNA is first separated from target cells following standard methods of genomic DNA extraction and then purified. 2.Restriction Digestion or DNA Fragmentation • Restriction endonucleases are used to cut high-molecular-weight DNA strands into smaller fragments. One or more restriction enzymes can be used to achieve such fragments. 3.Separation by Electrophoresis • The separation may be done by agarose gel electrophoresis in which the negatively charged DNA fragments move towards the positively charged anode, the distance moved depending upon its size. 5.Denaturation • DNA is then denatured with a mild alkali such as an alkaline solution of NaOH. This causes the double stranded DNA to become single-stranded, making them suitable for hybridization. DNA is then neutralized with NaCl to prevent re- hybridization before addition of the probe.
  • 5. 6.Blotting • The denatured fragments are then transferred onto a nylon or nitrocellulose filter membrane which is done by placing the gel on top of a buffer saturated filter paper, then laying nitrocellulose filter membrane on the top of gel. Finally some dry filter papers are placed on top of the membrane. Fragments are pulled towards the nitrocellulose filter membrane by capillary action and result in the contact print of the gel. 7.Baking • The nitrocellulose membrane is removed from the blotting stack, and the membrane with single stranded DNA bands attached on to it is baked in a vacuum or regular oven at 80 °C for 2-3 hours or exposed to ultraviolet radiation to permanently attach the transferred DNA onto the membrane. 8.Hybridization • The membrane is then exposed to a hybridization probe which is a single DNA fragment with a specific sequence whose presence in the target DNA is to be determined. The probe DNA is labeled so that it can be detected, usually by incorporating radioactivity or tagging the molecule with a fluorescent or chromogenic dye.
  • 6. 9.Washing of unbound probes • After hybridization, the membrane is thoroughly washed with a buffer to remove the probe that is bound nonspecifically or any unbound probes present. 10.Autoradiograph • The hybridized regions are detected autoradiographically by placing the nitrocellulose membrane in contact with a photographic film which shows the hybridized DNA molecules. The pattern of hybridization is visualized on X-ray film by autoradiography in case of a radioactive or fluorescent probe is used or by the development of color on the membrane if a chromogenic detection method is used Excess probe is washed off
  • 7.
  • 8. Applications of Southern Blot • Identifying specific DNA in a DNA sample. • Preparation of RFLP (Restriction Fragment Length Polymorphism) maps • Detection of mutations, deletions or gene rearrangements in DNA • For criminal identification and DNA fingerprinting (VNTR) • Detection and identification of trans gene in transgenic individual • Mapping of restriction sites • For diagnosis of infectious diseases • Prognosis of cancer and prenatal diagnosis of genetic diseases • Determination of the molecular weight of a restriction fragment and to measure relative amounts in different samples.
  • 9. Northern blotting • The technique that is used in molecular biology research to study gene expression by detection of RNA or isolated mRNA in a sample is called northern blotting (RNA blotting). • It is a classical method for analysis of the size and steady state level of a specific RNA in a complex sample. • Northern blotting is a technique for detection of specific RNA sequences. Northern blotting was developed by James Alwine and George Stark at Stanford University (1979) and was named such by analogy to Southern blotting • The Northern blot involves the size separation of RNA in gels like that of DNA. Because we wish to determine the native size of the RNA transcript (and because RNA is single stranded) no restriction enzymes are ever used. • Key point Because most RNA is single stranded and can fold into various conformations through intra-molecular base pairing, the electrophoresis separation is more haphazard and the bands are often less sharp, compared to that of double stranded DNA.
  • 10. • Steps Involved in Northern Blot 1. RNA isloation • RNA is isolated from several biological samples (e.g. various tissues, various developmental stages of same tissue etc.) by standard methods of islolation • The tissue or culture sample collected is first homogenized. The samples may be representative of different types of culture for comparison or it can be for the study of different stages of growth inside the culture. 2. Separation by Electrophoresis • Sample’s are loaded on gel and the RNA samples are separated according to their size on an agarose gel • The RNA samples are most commonly separated on agarose gels containing formaldehyde as a denaturing agent for the RNA to limit secondary structure • Denaturing agent (formaldehyde or glyoxal/DMSO) disrupts the secondary structure. • Separation of RNA is better in glyoxal/DMSO system as sharper band for specific RNA is detected by hybridization.
  • 11. 3. Transfer of RNA to a membrane • Nitrocellulose and nylons are commonly used membranes. (Nylon membrane are more durable) • RNA are transferred via capillary or vacuum transfer. Vacuum transfer are more efficient but require special transfer apparatus. • Electrophoretic transfer method is available only for nylon membrane due to low concentration of salts required to bind the RNA. • Transferred RNA are then immobilized to membrane by baking at 80 °C or through UV crosslinking in case of nylon membrane. 4. Hybridization and Washing • Hybridization is performed using radio or fluorescently labelled probe to identify specific RNA immobilization. • Pre-hybridization blocks single stranded probe from binding on non- specific sites on the membrane. • Hybridization solution should contain 50% formamide to ensure hybridization at lower temperature and minimize RNA degradation. • The membrane is washed in the buffer containing lower concentration of salt to remove excess probes
  • 12. 5. Visualization • Detection of specific transcript through autoradiography. • Membranes are place over X-ray film. • The X-ray film darkens where fragments are corresponding to the radioactive probes.
  • 13. APPLICATIONS • A standard for the study of gene expression at the level of mRNA (messenger RNA transcripts) • Detection of mRNA transcript size • Study RNA degradation • Study RNA splicing • Study RNA half-life • Often used to confirm and check transgenic / knockout mice (animals) Disadvantages • Time consuming (Only one gene can be analyzed at a time). • RNA degradation risks because of RNases contamination in work environment. • Relatively expensive for large scale analysis as huge amount of RNA and reagents are required.
  • 14. Western blotting • Western blot is the analytical technique used in molecular biology, immunogenetics and other molecular biology to detect specific proteins in a sample of tissue homogenate or extract. • Western blotting is called so as the procedure is similar to Southern blotting. • While Southern blotting is done to detect DNA, Western blotting is done for the detection of proteins. • Western blotting is also called protein immunoblotting because an antibody is used to specifically detect its antigen • Western blotting was first described by G.stark in 1979. It was in 1981 when W. Neal Burnette developed an improved version of the method and gave the name “western blotting” • Principle • Western blotting (protein blotting or immunoblotting) is a rapid and sensitive assay for detection and characterization of proteins. It is based on the principle of immunochromatography where proteins are separated into polyacrylamide gel according to their molecular weight. • The protein thus separated are then transferred or electrotransferred onto nitrocellulose membrane and are detected using specific primary antibody and secondary enzyme labeled antibody and substrate.
  • 15. • Steps Involved in Western Blot 1. Extraction of Protein • Cell lysate is most common sample for western blotting. • Protein is extracted from cell by mechanical or chemical lysis of cell. This step is also known as tissue preparation. • To prevent denaturing of protein protease inhibitor is used. • The concentration of protein is determined by spectroscopy. • When sufficient amount of protein sample is obtained, it is diluted in loading buffer containing glycerol which helps to sink the sample in well. • Tracking dye (bromothymol blue) is also added in sample to monitor the movement of proteins. 2. Gel electrophoresis • The sample is loaded in well of SDS-PAGE Sodium dodecyl sulfate- poly- acrylamide gel electrophoresis. • The proteins are separated on the basis of electric charge, isoelectric point, molecular weight, or combination of these all. • The small size protein moves faster than large size protein. • Protein are negatively charged, so they move toward positive (anode) pole as electric current is applied.
  • 16. 3. Blotting • The nitrocellulose membrane is placed on the gel. The separated protein from gel get transferred to nitrocellulose paper by capillary action. This type of blotting is time consuming and may take 1-2 days • For fast and more efficient transfer of desired protein from the gel to nitrocellulose paper electro-blotting can be used. • In electro-blotting nitrocellulose membrane is sandwich between gel and cassette of filter paper and then electric current is passed through the gel causing transfer of protein to the membrane. 4. Blocking • Blocking is very important step in western blotting. • Antibodies are also protein so they are likely to bind the nitrocellulose paper. So before adding the primary antibody the membrane is non-specifically saturated or masked by using casein or Bovine serum albumin (BSA) 5. Treatment with Primary Antibody • The primary antibody (1° Ab) is specific to desired protein so it form Ag-Ab complex 6.Treatment with secondary antibody • The secondary antibody is enzyme labelled. For eg. alkaline phosphatase or Horseradish peroxidase (HRP) is labelled with secondary antibody. • Secondary antibody (2° Ab) is antibody against primary antibody (anti-antibody) so it can bind with Ag-Ab complex.
  • 17. 7. Treatment with suitable substrate • To visualize the enzyme action, the reaction mixture is incubated with specific substrate. • The enzyme convert the substrate to give visible colored product, so band of color can be visualized in the membrane. • Western blotting is also a quantitative test to determine the amount of protein in sample Detection can be done by other methods such as: •Colorimetric detection •Radioactive detection •Chemiluminescent detection •Fluorescent detection
  • 18.
  • 19. Applications: • To determine the size and amount of protein in given sample. • Disease diagnosis: detects antibody against virus or bacteria in serum. • Western blotting technique is the confirmatory test for HIV. It detects anti HIV antibody inpatient's serum. • Useful to detect defective proteins. For eg Prions disease. • Definitive test for Creutzfeldt-Jacob disease Lyme disease Hepatitis B and Herpes
  • 20. Eastern Blotting • Developed by Towbin in 1979 • The eastern blot is a biochemical technique used to analyze protein post translational modifications (PTM) such as lipids, phosphomoieties and glycoconjugates. • It is most often used to detect carbohydrate epitopes • Thus, eastern blotting can be considered an extension of the biochemical technique of western blotting. • Multiple techniques have been described by the term eastern blotting, most use proteins blotted from SDS-PAGE gel on to a nitrocellulose membrane • Transferred proteins are analyzed for post-translational modifications using probes that may detect lipids, carbohydrate, phosphorylation or any other protein modification • Eastern blotting should be used to refer to methods that detect their targets through specific interaction of the PTM and the probe, distinguishing them from a standard far-western blot. • In principle, eastern blotting is similar to lectin blotting (i.e. detection of carbohydrate epitopes on proteins or lipids).
  • 21. DOT BLOT TECHNIQUE • This technique is used to detect the presence of a given sequence of DNA/RNA in the non- fractionated(not subjected to electrophoresis) DNA sample • DNA from many samples can be tested in a single test. • A Dot blot (or Slot blot) is a technique used to detect biomolecules. • It represents a simplification of the northern blot, Southern blot, or western blot methods. In a dot blot the biomolecules to be detected are not first separated • Instead, a mixture containing the molecule to be detected is applied directly on a membrane as a dot. • Then is spotted through circular templates directly onto the membrane or paper substrate. • Then followed by detection by either nucleotide probes (for a northern blot and Southern blot) or antibodies (for a western blot). • It offers no information on the size of the target biomolecule. Furthermore, if two molecules of different sizes are detected, they will still appear as a single dot. • Can only confirm the presence or absence of a biomolecule.