Content management process in selected m-agriculture initiatives in India

2,398 views

Published on

Presented by Pier Paolo Ficarelli at the Mobile Plus Conference, Chennai, India, 15-17 September 2011

Published in: Technology, Education
0 Comments
0 Likes
Statistics
Notes
  • Be the first to comment

  • Be the first to like this

No Downloads
Views
Total views
2,398
On SlideShare
0
From Embeds
0
Number of Embeds
19
Actions
Shares
0
Downloads
26
Comments
0
Likes
0
Embeds 0
No embeds

No notes for slide

Content management process in selected m-agriculture initiatives in India

  1. 1. Content Management Process in Selected m-Agriculture Initiatives in India Pier Paolo Ficarelli
  2. 2. What some say about m-Agriculture <ul><li>What is the use of delivering market information to a farmer with a phone, if there is no road to market the produce (IFAD, report 2003) </li></ul><ul><li>M-agriculture is about tools, not about access and dissemination of agricultural information (FAO, Rome 2010) </li></ul><ul><li>We have farmer field schools for extension. Mobiles add no value to it. (CGIAR Researcher, Delhi, 2011) </li></ul><ul><li>Use of mobiles in rural areas is the last tactic for squeezing money at the bottom of the pyramid (GIZ staff, Delhi 2010) </li></ul>
  3. 3. Defining Content Management for ICT <ul><li>Combine information system and information chain concepts (Heeks 2005,2007) </li></ul><ul><li>The Info system describes contextual factors influencing information conveyance to users (design-reality check!) </li></ul><ul><li>The info chain defines relevance as the functional linkages from content all the way through to users </li></ul><ul><li>Feedback from users as a key feature </li></ul>Source: Glendenning & Ficarelli, 2011
  4. 4. Managing Relevant Content Means: <ul><li>Highly processed and refined information relevant to local need and context </li></ul><ul><li>Verifiable, clear and accurate content, delivered timely in an appropriate format and language </li></ul><ul><li>A time and resource intensive process, normally underestimated </li></ul><ul><li>A learning PROCESS that requires continuous improvement </li></ul><ul><li>Co-evolving content & technology apps in the social space of users </li></ul>Source: Glendenning & Ficarelli, 2011
  5. 5. m-Agriculture Case Studies <ul><li>Common features of cases </li></ul><ul><ul><li>Sizable scale </li></ul></ul><ul><ul><li>Targeted to farmers </li></ul></ul><ul><ul><li>Low-cost devices </li></ul></ul><ul><ul><li>Exemplary content generation/delivery mechanisms </li></ul></ul><ul><ul><li>Innovative business models </li></ul></ul><ul><ul><li>Main research questions </li></ul></ul><ul><ul><li>How relevant content is generated and managed by the different initiatives? </li></ul></ul><ul><ul><li>To what extent the initiatives analysed strengthen key extension functions? </li></ul></ul><ul><ul><li>Is human intermediation a key success factor? </li></ul></ul><ul><ul><li>Is digital agro-information made more accessible through ICTs? </li></ul></ul><ul><ul><li>What kind of mobile app and/or media are most suitable for m-agriculture? </li></ul></ul><ul><ul><li>Where does lay the mainstreaming potential for m-Agriculture? </li></ul></ul>
  6. 6. Case 1: Reuters Market Light (RML) <ul><li>Agency: Thomson Reuters (2007) </li></ul><ul><li>Business model: spin off mobile VAS of Thomson Reuters </li></ul><ul><li>Scale: + 15 000 villages 13 states 8 languages (2010) </li></ul><ul><li>Info Type: push model (SMS; voice messages on testing) </li></ul><ul><li>Content sources: various </li></ul>Source: Glendenning & Ficarelli, 2011
  7. 7. Case 2: IFFCO Kisan Sanchar Limited (IKSL) <ul><li>Agency: IFFCO & Bharti Airtel (2007) </li></ul><ul><li>Business model: Partnership with major mobile operator </li></ul><ul><li>Scale: 1 million active users over 18 states </li></ul><ul><li>Info Type: push & pull model (Voice messages + Helpline) </li></ul><ul><li>Content sources: various; content managers, experts </li></ul>
  8. 8. Case 3: Lifelines <ul><li>Agency: OneWorld.net British Telecom & Cisco (2006) </li></ul><ul><li>Business model: funded project </li></ul><ul><li>Scale: 150,000 farmers 2,000 villages in 3 Indian states (2010) </li></ul><ul><li>Info Type: pull model (IVR audio Q&A platform) </li></ul><ul><li>Content sources: Farmers & FAQ Database </li></ul>
  9. 9. Content Management in the Case Studies <ul><li>Need identification </li></ul><ul><li>All initiatives have carried out systematic farmer surveys to identify information gaps </li></ul><ul><li>Sourcing </li></ul><ul><li>Academic/Researcher knowledge and young graduates : Lifelines, IKSL; Hired professionals Databases: RML; International Organizations: IKSL </li></ul><ul><li>Localisation </li></ul><ul><ul><li>Lifelines = Q&A; RML= subscriber details/local data collectors; IKSL= agro-ecological zones/crop calendars </li></ul></ul><ul><li>Format & Adaptation </li></ul><ul><ul><li>IKSL: Fact sheets/voice messages RML: SMS (voice); Lifelines: audio files /transcripts </li></ul></ul><ul><li>Storage and retrieval </li></ul><ul><ul><li>All initiatives rely on the development of their own digital repositories </li></ul></ul><ul><li>Delivery </li></ul><ul><li>Automated daily: IKSL, RML; Q&A: Lifelines, IKSL with human intermediation </li></ul><ul><li>Learning & Feedback </li></ul><ul><li>Lifelines IKSL: Internal quality audits; RML: ? </li></ul>
  10. 10. Content Management: Key Challenges <ul><li>Format </li></ul><ul><ul><li>Limits of SMS and voice messages on mobile for agro-advisory: Videos? Audio + Pictures? </li></ul></ul><ul><li>Sourcing </li></ul><ul><ul><li>Content is dispersed and scattered: Agri-Google? Experts: 24H Access? Motivation? </li></ul></ul><ul><ul><li>Access </li></ul></ul><ul><ul><li>Identified trend is towards close access of digital repositories: Regulations? </li></ul></ul><ul><ul><li>Localisation </li></ul></ul><ul><ul><li>Mainly based on outsiders’ knowledge and area criteria: Farmer knowledge? </li></ul></ul><ul><ul><li>Quality </li></ul></ul><ul><ul><li>It is delegated to experts and relies on implicit knowledge: External validation? </li></ul></ul><ul><li>Feedback </li></ul><ul><ul><li>Client satisfaction mainly anecdotal/based on sample surveys: Sufficient? </li></ul></ul><ul><ul><li>“ Infomediaries” </li></ul></ul><ul><li>Info-need articulation and advice translation require human facilitation: Viable? </li></ul>
  11. 11. m-Agriculture: Mainstreaming Potential <ul><li>Agro-information dissemination </li></ul><ul><li>All initiatives seem very successful in the delivery of micro-information, otherwise unavailable to farmers (weather, local market prices, pest & disease alerts, agro-news, standard agricultural practices, government programmes etc.) </li></ul><ul><li>Scale of farmer outreach </li></ul><ul><li>All initiatives have shown the capacity of reaching and delivering some agro-advisory services to a large number of farmers in their field and in potentially viable way </li></ul><ul><li>Farmer-Expert links </li></ul><ul><li>Some initiatives show the possibility of facilitating direct expert – famer linkages and customisation of agro-information to farmer demands through Q&A at a scale </li></ul><ul><li>Customisation of Information </li></ul><ul><li>All initiative are showing the potential of “personalising” information based on farmer profiles in digital form </li></ul><ul><li>Use of different media </li></ul><ul><ul><li>All initiatives indicates the potential of mobile as a multipurpose communication platform to increase effectiveness of content delivery and interactivity for farmers and field staff </li></ul></ul>
  12. 12. m- Agriculture: Success Factors? Bottom-up integration into existing service models Viability and affordability Mobile operator or mobile VAS involvement PPP arrangements Content validation mechanisms Youth entrepreneurship development Innovation and R&D
  13. 13. Why keep engaging with m-Agriculture The problem with the world is not that people know too little, but that they know many things that ain't so Mark Twain

×