SlideShare a Scribd company logo
1 of 31
Download to read offline
24/2/2013
CE 370 : Prof. Abdelhamid Charif 1
CE 370
REINFORCED CONCRETE-I
Prof. Abdelhamid Charif
Design of rectangular RC beams
with tension steel only
Design of rectangular beams
• Before the design of an actual beam is attempted,
several important topics are first discussed :
1. Beam proportions
2. Deflection control and minimum thickness
3. Beam self weight
4. Selection of bars
5. Minimum concrete cover
6. Minimum spacing of bars and steel layers
7. Minimum beam width
8. Maximum number of bars in one layer
9. Effective steel depth
2
24/2/2013
CE 370 : Prof. Abdelhamid Charif 2
Beam proportions
• Under transverse loading, the resulting bending stress and deflection
are both inversely proportional to the moment of inertia I
• Thickness is therefore more important in bending than the width
• In normal beams, thickness is greater than width
• Exceptional shallow beams (width greater than thickness) are
sometimes used for architectural reasons only
3
12
3
bhI
I
My 
 12
3
bhI 
Beam proportions
• The most practical and economical beam
section is usually obtained for normal spans
(up to 7.5 m in length), when the ratio of d to
b is in the range of 1.5 to 2.
• For longer spans, better economy is obtained
if deep, narrow sections are used. The depth
may be as large as 3 or 4 times the width
• The overall beam dimensions are selected to
whole inches (multiples of 25 mm). This is
done for simplicity in the use of forms which
are usually available in 1- or 2-inch (25 or 50
mm) increments.
• Shallow beams are used for architectural
reasons (to hide them or reduce floor height)
b
SpanLong
4to3 bbd 
sA
SpanNormal
2to5.1 bbd 
sA
b
b = Width
h = Depth (Thickness)
d = Steel depth
4
24/2/2013
CE 370 : Prof. Abdelhamid Charif 3
Deflection control and minimum thickness
• SBC/ACI codes provide minimum thickness for beams and slabs so
that deflection calculations and checks are not required.
Minimum Thickness for deflection control
L = Span length (center to center)
Simply
supported
One end
continuous
Both ends
continuous Cantilever
Solid one-
way slab
L / 20 L / 24 L / 28 L / 10
Beams
or ribs
L / 16 L / 18.5 L / 21 L / 8
5
• Thickness less than minimum value can be used, but in that case
deflections must be determined and checked (long and tedious)
• Better comply with code minimum thickness
6
One end
continuous
Both ends
continuous
Cantilever
Simply
supported
Minimum Thickness for deflection control
Simply
supported
One end
continuous
Both ends
continuous Cantilever
Solid one-
way slab
L / 20 L / 24 L / 28 L / 10
Beams
or ribs
L / 16 L / 18.5 L / 21 L / 8
Deflection control and minimum thickness
24/2/2013
CE 370 : Prof. Abdelhamid Charif 4
Initial section dimensions
• Overall Thickness h: Assume a minimum overall
thickness (or depth) h equal to or greater than the
minimum thickness specified by the code (unless
deflections are to be calculated and checked).
• Beam Width b: The beam width can be roughly
estimated equal to about one-half of the assumed
value of h.
• Beam self weight (kN/m) :
= b × h × unit weight of concrete
7
Final section dimensions
• After performing reinforcement design, the initial
section dimensions may turn out to be inadequate
• If the reinforcement is less than minimum, this
means that the section dimensions can be reduced.
• If the designed section does not satisfy tension
control condition, then either the section dimensions
must be increased or compression steel provided.
• Increase in thickness is more effective than in width.
• Ultimate moment must be corrected after any
increase in the section dimensions
8
24/2/2013
CE 370 : Prof. Abdelhamid Charif 5
Selection of steel bars
• After the required reinforcing area is calculated, select the bars
that provide (at least) the necessary area.
• It is usually convenient to use bars of one size only in a beam,
although occasionally two sizes are also used.
• Bars for compression steel and stirrups are usually of a
different size (to avoid confusion for workmen).
• We usually choose the bar diameter and determine the
required bar number (Integer equal to or greater than):
bbps
bs
b
b
b
b
s
b
ANA
AA
d
d
A
A
A
N
:isareasteelprovidedActual
baroneofAreaareasteelRequired
diameterBar
4
,
,
2


 
9
Concrete cover
• Reinforcing steel bars must be protected from the surrounding
environment, such as fire and corrosion.
• The reinforcing bar is located at a certain minimum distance
from the surface of concrete so that a protective layer of
concrete, called cover, is available.
10
24/2/2013
CE 370 : Prof. Abdelhamid Charif 6
Why is cover needed ?
a) Bonds reinforcement to concrete
b) Protects reinforcement against
corrosion
c) Protects reinforcement from fire
(over heating causes major steel
strength loss)
d) Larger cover values are used in
foundations, garages, factories,
etc. to account for abrasion,
wear and chemical attacks.
Concrete cover
11
Minimum cover dimensions (ACI / SBC)
• Concrete not exposed to earth or weather :
 Slabs, walls, joists : 20 mm
 Beams, Columns : 40 mm
• Concrete cast against / exposed to earth : 75 mm
Minimum concrete cover
12
24/2/2013
CE 370 : Prof. Abdelhamid Charif 7
Bar spacing and layer spacing
• Whenever possible steel bars
must be arranged in a single layer
• This simplifies analysis and
design calculations, and
optimizes the bending capacity
with a greater lever arm .
• It is frequent however that more
than one steel layer is required
• Spacing between bars in any
layer and spacing between
various layers must comply with
SBC / ACI provisions.
13
Bar arrangement in layers
Bars in layers must be arranged directly above
each other as shown.
14
24/2/2013
CE 370 : Prof. Abdelhamid Charif 8
Bar spacing and layer spacing
SBC / ACI specify maximum spacing of flexural reinforcing bars
in walls & slabs not to be exceeded
15
Main bars and
stirrup arrangement
Net distance between stirrup
and outer main bar:
more)andmm(12diameterbarMain
mm)12to(8diameterStirrup
5.02



b
s
bs
d
d
dd
All spacing requirements must be considered in
determining steel depth and number of steel layers
16
24/2/2013
CE 370 : Prof. Abdelhamid Charif 9
Effective steel depth – One Layer
• Effective steel depth d is
defined as the distance from
the extreme compression fiber
to the centroid of tensile steel
• Case of one steel layer :
2
cover b
s
d
dhd 
17
Effective steel depth – Many layers
• Effective steel depth d is defined as the distance from
the extreme compression fiber to the centroid of
tensile steel.
• Case of many steel layers :
syhd 
ys = Distance from bottom to tension
steel centroid
ys Computed by complying with layer
spacing and cover requirements
18
24/2/2013
CE 370 : Prof. Abdelhamid Charif 10
19
Effective steel depth - Example
• Assume two layers and h = 600 mm
• First (bottom) layer : three bars of 20 mm
• Second layer : two bars of 16 mm
• Stirrup diameter 10 mm
• Maximum aggregate size = 18 mm
mmy
mm
dd
yy
mm
d
dy
bb
b
s
1038102560
25spacingLayer
)25,1833.1(MaxspacingLayer
22
SpacingLayer
60101040
2
Cover
2
21
12
1
1





21
2211
ss
ss
s
s
AA
yAyA
y
yhd




19
2020
Effective steel depth - Example / Cont.
syhd 
mmyhd
mmmm
AA
yAyA
y
s
ss
ss
s
52773600
739.72
21
2211





2
2
2
2
2
1
21
12.402
4
16
2
48.942
4
20
3
10360
mmA
mmA
mmymmy
s
s





20
24/2/2013
CE 370 : Prof. Abdelhamid Charif 11
2121
Effective steel depth - General
Many steel layers (Layer 1 = Bottom)
yi is computed for each layer i
syhd 


si
isi
s
A
yA
y



 
i
ii
bi
ibi
s
n
yn
An
yAn
y
21
Case of same bar diameter in all layers
Each layer i has ni bars and distance yi
2
2
Cover
1,
1
1
1





ibbi
lii
b
s
dd
Syy
d
dy
2222
Minimum beam width
• Given the bar diameter, number of bars,
stirrup diameter, and aggregate size, what is
the minimum beam width to accommodate
the bars in one layer ?
• Width b must accommodate all bars while
satisfying cover and spacing conditions
sizeaggregateMaximum
),25,33.1(MaxSpacingBar


Agg
dAggS bb
 
cover26)1(
cover25.0222)1(
min 

bsbb
bssbb
ddSn-dnb
dddSn-dnb
In practice, beam width b is not less than 200 mm
22
24/2/2013
CE 370 : Prof. Abdelhamid Charif 12
2323
Minimum beam width - Example
• Assume :
• Three bars of 20 mm
• Stirrup diameter 10 mm
• Maximum aggregate size = 18 mm
• Width b must accommodate the three bars
while satisfying cover and spacing conditions
mmb
ddSn-dnb
mmdS
bsbb
bb
23040220106252203
cover26)1(
25),25,1833.1(MaxSpacingBar
min
min



mmb 230min 
23
• Given the beam width, bar diameter, bar spacing, and
stirrup diameter, what is the maximum number of
bars that can be accommodated in one layer ?
Maximum number of bars in one layer
bb
bsb
bb
bsb
bsbbb
bsbb
Sd
ddSb
n
Sd
ddSb
n
ddSSdnb
ddSn-dnb








cover26
cover26
cover26)(
cover26)1(
max
24
24/2/2013
CE 370 : Prof. Abdelhamid Charif 13
• Beam width, bar diameter, stirrup diameter,
and bar spacing are:
Maximum number of bars in one layer
Example
5
88.5
2518
0421810625350
max 




n
n
mmSmmdmmdmmb bsb 251018350 
bb
bsb
Sd
ddSb
n



cover26
25
• The designer must first assume an initial bar diameter
and an initial number of layers, and then deduce the
effective steel depth d.
• Effective steel depth is computed at the steel centroid.
• If bar diameter is not fixed, the effective steel depth for
RC beams may be approximated as follows:
Estimation of layer number
and effective steel depth
mmhd 65One steel layer :
mmhd 90Two steel layers :
26
24/2/2013
CE 370 : Prof. Abdelhamid Charif 14
• After finishing design, the effective bar number, layer number,
and steel depth must be checked with initial assumptions.
• If the effective steel depth is greater than the initial value, the
design is safer than anticipated. New design may be performed
only for economic reasons (if bar number can be reduced).
• If the effective steel depth is less than the initial value, the
design may be unsafe . The deficiency in steel depth may
however be compensated by the provided steel area which
usually is greater than the required value (when choosing bar
number). A moment check is then required and new design has
to be performed if moment check fails (fMn < Mu) .
• It is important not to overestimate the initial steel depth, not
only because of re-design risk, but also because in practice,
smaller values are delivered.
27
Checking effective steel depth
27
28
• It can be both unsafe and uneconomical to perform tensile
steel strain check at the centroid.
• Assuming steel yielding at the centroid requires yielding of all
tension layers. The least tensioned layer with minimum depth
may not yield despite yielding at the centroid.
• It is therefore unsafe to check yielding at the centroid
• Yielding must be checked at the least tensioned layer with
minimum depth dmin
• Performing tension control check at the centroid is
uneconomical. The most tensioned bottom layer with
maximum depth reaches the tension control limit of 0.005
before the centroid.
• Tension control check must be performed at the most
tensioned bottom layer.
Tensile steel strain check with many layers
24/2/2013
CE 370 : Prof. Abdelhamid Charif 15
29
0.003
d
dt
c
Depths Strains
005.0t
yε min
dmin
s
Lumping of tension steel layers at centroid






005.0
:layersMany
005.0:layerOne
min
t
y
t
ε



Required steel
strain checks :
ts
ts
ε
ε




min
min
:layersMany
:layerOne
d , εs = Depth and strain at centroid of steel layers
dt , εt = Depth and strain at bottom layer (max. depth)
dmin , εmin = Depth and strain at minimum depth layer
Assumptions of tension-controlled section (εt ≥ 0.005)
and steel stress equal to yield stress (fs = fy)
must be checked as shown next (in analysis or design).
Checks must be performed, once compression block
depth a and neutral axis depth c have been
determined using the actual steel area.
Neutral axis depth : c = a / β1
30
Tensile steel strain check with many layers
24/2/2013
CE 370 : Prof. Abdelhamid Charif 16
31
• Compute steel strain εmin at
minimum tension depth
and check that εmin ≥ εy
c
cd 
 min
min 003.0
• If εmin < εy : Assumption of
all steel yielding is violated.
Lumping cannot be used. Use
strain compatibility method.
31
Tensile steel strain check with many layers
Yield check at minimum depth layer
d
dt
Yield limit of NA at min depth
dmin
0.003
cy
t
yε
s
y
yy
y
y
d
cc
dc



10003
3
Thus
003.0003.0
:checkdepthN.A.Equivalent
min
min
min




32
• Compute steel strain εt at
bottom layer and check that
εt ≥ 0.005
c
cdt
t

 003.0
• If εt < 0.005 : Section is not
tension controlled. Rejected
by SBC code. Increase
section or re-design with
compression steel
32
Tensile steel strain check with many layers
Tension control check at bottom layer
t
t
tt
tt
d
d
cc
dc
375.0
8
3
005.0Thus
005.0003.0003.0
:checkdepthN.A.Equivalent




d
dt
T.C. limit of NA at bottom layer
dmin
0.003
ct
minε
s
dt
0.005
24/2/2013
CE 370 : Prof. Abdelhamid Charif 17
Strain checks - Summary
• In case of one tension steel layer, perform tension control check
only εt ≥ 0.005
• In case of more than one layer, both yield check at the minimum
tension depth layer (εmin ≥ εy), and tension-control check at the
bottom layer (εt ≥ 0.005) must be performed.
• It is frequent that if the second check is satisfied, the first will
also be satisfied but exceptional cases may exist (shallow beams).
If the yield check is not satisfied, layer lumping cannot be used
and other design methods must be used.
• If the minimum depth strain satisfies tension-control condition,
there is no need to perform the check at the bottom layer (as the
bottom strain is always greater ):
If : εmin ≥ 0.005 then εt ≥ 0.005 (No need to check it)
33
Design of rectangular RC sections
with tension steel only
Compared to analysis, design problems are one hand more difficult
because of the unknown steel area and depth, but easier on the
other hand because of the known steel stress (steel yielding).
Steel depth d has to be estimated according to the expected layer
number and must be checked at the end.
d
b
sA
N.A.
c ca 1
abfC c
'
85.0
'
85.0 cf
ys fAT  bdA
bd
A
s
s




85.0850
850 '
c
y
'
c
ys
ys
'
c
f
df
bf.
fA
afAabf.TC


34
24/2/2013
CE 370 : Prof. Abdelhamid Charif 18
35
7.1
4
11
85.0
:Solution
with,0
7.1
:equationQuadratic
7.1
1
7.1
1
85.02
)(
2
:DesignOptimal:DesignSafe
90.0,005.0:controltensionAssuming
2
2
2
2
2







































'
c
n
y
'
c
u
nny'
c
y
'
c
y
y
u
'
c
y
yu
'
c
y
yysun
unun
t
f
R
f
f
ρ
bd
M
RRf
f
f
f
f
ρf
bd
M
f
f
ρfbdM
f
df
dfρbd
a
dfAMM
MMMM
f


f

f

fff
ff
f
Design of rectangular RC sections
with tension steel only (Cont.)
36
7.1
4
11
85.0
:smallesttheUse
positiveareequationquadraticofsolutionsBoth
satisfiedeasilyusuallyCondition
47.1
4
47.10
7.1
4
1
7.1
4
0
7.1
:equationQuadratic
2
2
2
2
2
2
2


















'
c
n
y
'
c
u
'
c
u
n
'
c
'
c
n
y'
c
yn
y
ny'
c
y
f
R
f
f
ρ
Mbdf
bd
M
Rf
f
R
f
f
fR
f
Rf
f
f
f
f

Design of rectangular RC sections
with tension steel only (Cont.)
24/2/2013
CE 370 : Prof. Abdelhamid Charif 19
Design of rectangular RC sections
with tension steel only (Cont.)
The required steel ratio must comply with the SBC/ACI
minimum limit. it must be greater than or equal to the
minimum steel ratio :









yy
c
ff
f 4.1
,
4
Max
'
min
  bdAs  min,MaxareaSteel 
37
The final required steel area to be adopted is :
• Using this final required steel area, compute the required bar
number, layer number and deduce effective steel depth and
actual provided steel area.
• Check effective steel depth with assumed value
• If the actual steel depth is less than assumed, the design may
be unsafe and moment check is thus necessary.
• Using the actual provided steel area, compute the stress block
and neutral axis depths a and c, and then perform steel strain
checks.
• Perform moment check if necessary (if d < assumed).
• If tension control check fails, re-design.
• With many layers, if yield check fails, use compatibility
method to check moment capacity.
• If required moment check fails (fMn < Mu) re-design.
Design of rectangular RC sections
with tension steel only (Cont.)
38
24/2/2013
CE 370 : Prof. Abdelhamid Charif 20
• After performing reinforcement design, the initial
section dimensions may turn out to be inadequate
• If the reinforcement is less than minimum, this
means that the section dimensions can be reduced.
• If the designed section does not satisfy tension
control condition, then either the section dimensions
must be increased or compression steel provided.
• Increase in thickness is more effective than in width.
• Ultimate moment must be corrected after any
increase in the section dimensions
39
Observations
Design Problem 1
(unknown dimensions)
MPa.420andMPa30Use
supported.betoarekN/m25ofloadliveaand
weight)beamincluding(notloaddead15kN/maif
beamrrectangulasupportedsimplym6.5aDesign
 y
'
c ff
SOLUTION:
Minimum thickness for a simply supported beam is
L/16 . We use a higher value of L/10 = 650 mm
h = 650 mm
40
24/2/2013
CE 370 : Prof. Abdelhamid Charif 21
kN/m07.524650.0325.0weightselfBeam
kN/m24:tunit weighConcrete
mm32550
mm8556565065depthSteel:layeroneAssume
conc
3
conc






hb
h.b
hd
Minimum Thickness for deflection control
Simply
supported
One end
continuous
Both ends
continuous Cantilever
Solid one-
way slab
L / 20 L / 24 L / 28 L / 10
Beams
or ribs
L / 16 L / 18.5 L / 21 L / 8
SOLUTION 1 (continued)
41
kN.m372.85
8
6.570.598
8
kN/m598.70)25(7.1)07.515(4.17.14.1
22




lw
M
LDw
u
u
u
0.90ssume fA
0.00963
307.1
725.34
11
420
3085.0
725.3
58532590.0
1085.372
with
7.1
4
11
85.0
2
6
2


























ρ
bd
M
R
f
R
f
f
ρ
u
n
'
c
n
y
'
c
f
SOLUTION 1 (continued)
Ultimate uniform load and ultimate moment
42
24/2/2013
CE 370 : Prof. Abdelhamid Charif 22
2
,
2
2
26.18473areasteelProvided
OKislayerOnebars283Use
95.2
28
4
5.1831
barsof#bars,mm28Use
mm5.183158532500963.0
mmAA
A
A
ρbdA
bps
b
s
s







586
325
283
64
650
  





















00333.000333.0,00326.0Max
420
4.1
,
4204
30
Max
4.1
,
4
Max
'
min
yy
c
ff
f
SOLUTION 1 (continued)
OK586141040650
2
coverEffective mm
d
dhd b
s 
Questions: What if No of bars = 2.1 ? / if d less than assumed ?
43
Tension-control check
(In case of one layer no need to check steel yield)
mm14.110
85.0
62.93
mm62.93
3253085.0
42026.1847
85.0
1
,






a
c
bf
fA
a '
c
yps
586
325
283
64
650
0.90controlledtensionisSection
OK005.0013.0
013.0
14.110
14.110586
003.0
003.0







f



t
t
t
c
cd
44
Checks must be performed using the actual provided steel area
24/2/2013
CE 370 : Prof. Abdelhamid Charif 23
Moment checking
(Not necessary)
586
325
283
64
650
OKkN.m)85.372(kN.m376.5
kN.m33.4189.0capacitymomentDesign
kN.m33.418N.mm1033.418
2
62.93
58642026.1847
22
6
,























un
n
nn
n
ypsn
MM
M
MM
M
a
dfA
a
dTM
f
f
45
• Design of a 300 x 600 mm rectangular section subjected to
an ultimate bending moment Mu = 300 kN.m
• b = 300 mm h = 600 mm
• Estimate number of layers expected and steel depth
• Expecting two steel layers, the effective steel depth is
estimated as: d = h – 90 = 510 mm
• Assume stirrup diameter of 10 mm and aggregate maximum
size of 20 mm
46
Design Problem 2
(known dimensions)
85.042025 1
'
 MPafMPaf yc
24/2/2013
CE 370 : Prof. Abdelhamid Charif 24
47
0.01147
257.1
272.44
11
420
2585.0
272.4
51030090.0
100.300
with
7.1
4
11
85.0
2
6
2


























ρ
bd
M
R
f
R
f
f
ρ
u
n
'
c
n
y
'
c
f
0.90ssume fA Required steel ratio is given by :
  00333.000333.0,00298.0Max
420
4.1
,
4204
25
Max
4.1
,
4
Max
'
min




















yy
c
ff
f

SOLUTION of Problem 2
48
2
,
2
2
min
96.18846areasteelProvided
bars20-6Use
59.5
20
4
91.1754
barsof#bars,mm20Use
91.175451030001147.0
OK
mmAA
A
A
mmρbdA
ρ
bps
b
s
s









SOLUTION 2 (continued)
Check layer number and effective steel depth
24/2/2013
CE 370 : Prof. Abdelhamid Charif 25
Maximum number of bars in one layer :
443.4
7.2620
042201067.26300
7.26)20,25,2033.1(Max
),25,33.1(MaxSpacingBar
cover26
max 








nn
mmS
dAggS
Sd
ddSb
n
b
bb
bb
bsb
49
SOLUTION 2 (continued)
Using 4 bars per layer, the effective bar spacing will be
greater than 26.7 mm
For six bars, we thus need two layers: 4+2
We may use 3+3, but 4+2 is better, why ?
50
d
300
206
sy
600
SOLUTION 2 (continued)
syhd 

si
isi
s
A
yA
y



 
i
ii
bi
ibi
s
n
yn
An
yAn
y
Case of same bar diameter in all layers
Each layer i has ni bars and distance yi
Effective steel depth :
2
260101040
2
cover 121
b
l
b
s
d
Syymm
d
dy 
24/2/2013
CE 370 : Prof. Abdelhamid Charif 26
51
d
300
206
sy
600
SOLUTION 2 (continued)
mmyhd
mmmm
n
yn
An
yAn
y
s
i
ii
bi
ibi
s
52476600:deptheffectiveCentroid
766.75
24
7.1062604









Effective steel depth :
mm
d
Syy
mm
d
dy
mmS
AggS
b
l
b
s
l
l
7.106207.2660
2
2
60101040
2
cover
7.26)25,2033.1(Max
)25,33.1(MaxSpacingLayer
12
1




Effective steel depth greater than assumed (510 mm): OK
Compression block and NA depths (using actual steel area) are :
mm
a
cmm
bf
fA
a
c
yps
10.146
85.0
1856.124
1856.124
3002585.0
42096.1884
85.0 1
'
,





Strain check (at dmin ) :
OK
c
cd
y 



 0021.000713.0
1.146
1.1463.493
003.0003.0 min
min 
controlTension005.0005.0Since min OKt  
No need to determine bottom steel strain
SOLUTION 2 (continued)
52
mmyhdd
mmyhdd
t 54060600
3.4937.106600:depthsLayer
11
2min2


24/2/2013
CE 370 : Prof. Abdelhamid Charif 27
Moment checking
(Not necessary)
OKkN.m)0.300(kN.m329.1
kN.m68.3659.0capacitymomentDesign
kN.m68.365N.mm1068.365
2
1856.124
52442096.1884
22
6
,























un
n
nn
n
ypsn
MM
M
MM
M
a
dfA
a
dTM
f
f
53
524
300
206
76
600
• Design of a 375 x 900 mm rectangular section subjected
to an ultimate bending moment Mu = 1500 kN.m
• b = 375 mm h = 900 mm
• Expecting two steel layers, the effective steel depth is
estimated as: d = h – 90 = 810 mm
• Assume stirrup diameter of 10 mm and 30 mm for bar
spacing and layer spacing.
54
Design Problem 3
81.035008.009.135420 1
'
 MPafMPaf cy
24/2/2013
CE 370 : Prof. Abdelhamid Charif 28
55
0.01856
357.1
774.64
11
420
3585.0
774.6
81037590.0
100.1500
with
7.1
4
11
85.0
2
6
2


























ρ
bd
M
R
f
R
f
f
ρ
u
n
'
c
n
y
'
c
f
0.90ssume fA Required steel ratio is given by :
  00352.000333.0,00352.0Max
420
4.1
,
4204
35
Max
4.1
,
4
Max
'
min




















yy
c
ff
f

SOLUTION of Problem 3
56
2
,
2
2
min
5.615710areasteelProvided
bars28-10Use
16.9
28
4
6.5637
barsof#bars,mm28Use
6.563781037501856.0
OK
mmAA
A
A
mmρbdA
ρ
bps
b
s
s









SOLUTION 3 (continued)
Check layer number and effective steel depth
24/2/2013
CE 370 : Prof. Abdelhamid Charif 29
Maximum number of bars in one layer :
505.5
3028
0422810630375
)given(30SpacingLayerBar /
cover26
max 







nn
mmSS
Sd
ddSb
n
lb
bb
bsb
57
SOLUTION 3 (continued)
For ten bars, we thus need two layers: 5+5
58
SOLUTION 3 (continued)
syhd 


si
isi
s
A
yA
y



 
i
ii
bi
ibi
s
n
yn
An
yAn
y
Case of same bar diameter in all layers
Each layer i has ni bars and distance yi
Effective steel depth :
2
264141040
2
cover 121
b
l
b
s
d
Syymm
d
dy 
d
375
2810
sy
900
24/2/2013
CE 370 : Prof. Abdelhamid Charif 30
59
SOLUTION 3 (continued)
performedbemustcheckMoment
mm810ofvalueAssumed
80793900:deptheffectiveCentroid
93
255
1225645 21













d
mmyhd
mm
yy
n
yn
An
yAn
y
s
i
ii
bi
ibi
s
Effective steel depth :
mm
d
Syy
mm
d
dy
b
l
b
s
122283064
2
2
64141040
2
cover
12
1


d
375
2810
sy
900
Using the actual steel area provided, the compression block and
neutral axis depths are:
mm
a
cmm
bf
fA
a
c
yps
188.286
81.0
812.231
812.231
3753585.0
4205.6157
85.0 1
'
,





Strain check :
OK
OK
c
cd
t
y






005.0005.000516.0Since
0021.000516.0
188.286
188.286778
003.0003.0
min
min
min


SOLUTION 3 (continued)
60
mmyhd
mmyhd
t 83664900
778122900:depthsLayer
1
2min


24/2/2013
CE 370 : Prof. Abdelhamid Charif 31
Moment checking
requireddesign-reNoOK
kN.m)0.1500(kN.m08.5461
kN.m27.17879.0capacitymomentDesign
kN.m27.1787N.mm1027.1787
2
812.231
8074205.6157
22
6
,
























un
un
n
nn
n
ypsn
MM
MM
M
MM
M
a
dfA
a
dTM
f
f
f
61
The moment check is necessary as the
final steel depth (807) is less than the
initially assumed value (810).
375
807
2810
188.286
a
Thank You
62

More Related Content

What's hot

Chapter 11: Stability of Equilibrium: Columns
Chapter 11: Stability of Equilibrium: ColumnsChapter 11: Stability of Equilibrium: Columns
Chapter 11: Stability of Equilibrium: ColumnsMonark Sutariya
 
Lec06 Analysis and Design of T Beams (Reinforced Concrete Design I & Prof. Ab...
Lec06 Analysis and Design of T Beams (Reinforced Concrete Design I & Prof. Ab...Lec06 Analysis and Design of T Beams (Reinforced Concrete Design I & Prof. Ab...
Lec06 Analysis and Design of T Beams (Reinforced Concrete Design I & Prof. Ab...Hossam Shafiq II
 
Truss for indeterminacy Check
Truss for indeterminacy CheckTruss for indeterminacy Check
Truss for indeterminacy Checkmahafuzshawon
 
Design of rectangular beam by USD
Design of rectangular beam by USDDesign of rectangular beam by USD
Design of rectangular beam by USDSadia Mahjabeen
 
Design of two way slabs(d.d.m.)
Design of two way slabs(d.d.m.)Design of two way slabs(d.d.m.)
Design of two way slabs(d.d.m.)Malika khalil
 
Beam Design and Drawing of RCC Structures
Beam Design and Drawing of RCC StructuresBeam Design and Drawing of RCC Structures
Beam Design and Drawing of RCC StructuresShubham .
 
Design of RCC Column footing
Design of RCC Column footingDesign of RCC Column footing
Design of RCC Column footingArun Kurali
 
Structural Analysis (Solutions) Chapter 9 by Wajahat
Structural Analysis (Solutions) Chapter 9 by WajahatStructural Analysis (Solutions) Chapter 9 by Wajahat
Structural Analysis (Solutions) Chapter 9 by WajahatWajahat Ullah
 
Moment Distribution Method
Moment Distribution MethodMoment Distribution Method
Moment Distribution MethodAnas Share
 
Moment Distribution Method
Moment Distribution MethodMoment Distribution Method
Moment Distribution MethodBhavik A Shah
 
Chapter 2-analysis of statically determinate structures
Chapter 2-analysis of statically determinate structuresChapter 2-analysis of statically determinate structures
Chapter 2-analysis of statically determinate structuresISET NABEUL
 

What's hot (20)

Chapter 11: Stability of Equilibrium: Columns
Chapter 11: Stability of Equilibrium: ColumnsChapter 11: Stability of Equilibrium: Columns
Chapter 11: Stability of Equilibrium: Columns
 
Lecture on ch.3 flexural analysis and design of beams
Lecture on ch.3 flexural analysis and design of beamsLecture on ch.3 flexural analysis and design of beams
Lecture on ch.3 flexural analysis and design of beams
 
Reinforced column design
Reinforced column design Reinforced column design
Reinforced column design
 
Reinforced slab
Reinforced slabReinforced slab
Reinforced slab
 
Lec06 Analysis and Design of T Beams (Reinforced Concrete Design I & Prof. Ab...
Lec06 Analysis and Design of T Beams (Reinforced Concrete Design I & Prof. Ab...Lec06 Analysis and Design of T Beams (Reinforced Concrete Design I & Prof. Ab...
Lec06 Analysis and Design of T Beams (Reinforced Concrete Design I & Prof. Ab...
 
Truss for indeterminacy Check
Truss for indeterminacy CheckTruss for indeterminacy Check
Truss for indeterminacy Check
 
Design of steel beams
Design of steel beamsDesign of steel beams
Design of steel beams
 
One way slab load calculation
One way slab load calculation One way slab load calculation
One way slab load calculation
 
Design of rectangular beam by USD
Design of rectangular beam by USDDesign of rectangular beam by USD
Design of rectangular beam by USD
 
Design of two way slabs(d.d.m.)
Design of two way slabs(d.d.m.)Design of two way slabs(d.d.m.)
Design of two way slabs(d.d.m.)
 
Two way slab
Two way slabTwo way slab
Two way slab
 
Beam Design and Drawing of RCC Structures
Beam Design and Drawing of RCC StructuresBeam Design and Drawing of RCC Structures
Beam Design and Drawing of RCC Structures
 
Design of RCC Column footing
Design of RCC Column footingDesign of RCC Column footing
Design of RCC Column footing
 
Structural Analysis (Solutions) Chapter 9 by Wajahat
Structural Analysis (Solutions) Chapter 9 by WajahatStructural Analysis (Solutions) Chapter 9 by Wajahat
Structural Analysis (Solutions) Chapter 9 by Wajahat
 
Moment Distribution Method
Moment Distribution MethodMoment Distribution Method
Moment Distribution Method
 
Homework 1 (solution )
Homework 1 (solution )Homework 1 (solution )
Homework 1 (solution )
 
Moment Distribution Method
Moment Distribution MethodMoment Distribution Method
Moment Distribution Method
 
Chapter 2-analysis of statically determinate structures
Chapter 2-analysis of statically determinate structuresChapter 2-analysis of statically determinate structures
Chapter 2-analysis of statically determinate structures
 
Design of reinforced concrete beam
Design of reinforced concrete beamDesign of reinforced concrete beam
Design of reinforced concrete beam
 
Column
ColumnColumn
Column
 

Similar to Lec05 Design of Rectangular Beams with Tension Steel only (Reinforced Concrete Design I & Prof. Abdelhamid Charif)

Lec10 Bond and Development Length (Reinforced Concrete Design I & Prof. Abdel...
Lec10 Bond and Development Length (Reinforced Concrete Design I & Prof. Abdel...Lec10 Bond and Development Length (Reinforced Concrete Design I & Prof. Abdel...
Lec10 Bond and Development Length (Reinforced Concrete Design I & Prof. Abdel...Hossam Shafiq II
 
Welcometothepresentationon 131127120041-phpapp01
Welcometothepresentationon 131127120041-phpapp01Welcometothepresentationon 131127120041-phpapp01
Welcometothepresentationon 131127120041-phpapp01Alemu Workeneh
 
Calulation of deflection and crack width according to is 456 2000
Calulation of deflection and crack width according to is 456 2000Calulation of deflection and crack width according to is 456 2000
Calulation of deflection and crack width according to is 456 2000Vikas Mehta
 
Drilling Engineering - Casing Design
Drilling Engineering - Casing DesignDrilling Engineering - Casing Design
Drilling Engineering - Casing DesignJames Craig
 
Steel strucure lec # (11)
Steel strucure lec #  (11)Steel strucure lec #  (11)
Steel strucure lec # (11)Civil Zone
 
Engineering science lesson 6 2
Engineering science lesson 6 2Engineering science lesson 6 2
Engineering science lesson 6 2Shahid Aaqil
 
Lecture-7-Detailing-PHG-A1-Rev-10-2-Nov-16-Print.pptx
Lecture-7-Detailing-PHG-A1-Rev-10-2-Nov-16-Print.pptxLecture-7-Detailing-PHG-A1-Rev-10-2-Nov-16-Print.pptx
Lecture-7-Detailing-PHG-A1-Rev-10-2-Nov-16-Print.pptxAbelMulugeta8
 
Sd i-module2- rajesh sir
Sd i-module2- rajesh sirSd i-module2- rajesh sir
Sd i-module2- rajesh sirSHAMJITH KM
 
Hollow block and ribbed slabs
Hollow block and ribbed slabsHollow block and ribbed slabs
Hollow block and ribbed slabsMohamed Mohsen
 
DSR chap4 shear and bond pdf.pptxxxxxxxxxxxxxxxxxxxxxx
DSR chap4 shear and bond pdf.pptxxxxxxxxxxxxxxxxxxxxxxDSR chap4 shear and bond pdf.pptxxxxxxxxxxxxxxxxxxxxxx
DSR chap4 shear and bond pdf.pptxxxxxxxxxxxxxxxxxxxxxxADITYAPILLAI29
 
Slabs -Design steps
Slabs -Design steps Slabs -Design steps
Slabs -Design steps rohinibjn
 
RCC column_Shortly Axially Loaded column.pptx
RCC column_Shortly Axially Loaded column.pptxRCC column_Shortly Axially Loaded column.pptx
RCC column_Shortly Axially Loaded column.pptxHaswanthKollu
 

Similar to Lec05 Design of Rectangular Beams with Tension Steel only (Reinforced Concrete Design I & Prof. Abdelhamid Charif) (20)

Lec10 Bond and Development Length (Reinforced Concrete Design I & Prof. Abdel...
Lec10 Bond and Development Length (Reinforced Concrete Design I & Prof. Abdel...Lec10 Bond and Development Length (Reinforced Concrete Design I & Prof. Abdel...
Lec10 Bond and Development Length (Reinforced Concrete Design I & Prof. Abdel...
 
Welcometothepresentationon 131127120041-phpapp01
Welcometothepresentationon 131127120041-phpapp01Welcometothepresentationon 131127120041-phpapp01
Welcometothepresentationon 131127120041-phpapp01
 
Calulation of deflection and crack width according to is 456 2000
Calulation of deflection and crack width according to is 456 2000Calulation of deflection and crack width according to is 456 2000
Calulation of deflection and crack width according to is 456 2000
 
0 ne way slab
0 ne way slab0 ne way slab
0 ne way slab
 
Drilling Engineering - Casing Design
Drilling Engineering - Casing DesignDrilling Engineering - Casing Design
Drilling Engineering - Casing Design
 
ONE WAY SLAB DESIGN
ONE WAY SLAB DESIGNONE WAY SLAB DESIGN
ONE WAY SLAB DESIGN
 
One-Way Slab Design
One-Way Slab DesignOne-Way Slab Design
One-Way Slab Design
 
one-way-slab-design.pptx
one-way-slab-design.pptxone-way-slab-design.pptx
one-way-slab-design.pptx
 
Ductile detailing
Ductile detailingDuctile detailing
Ductile detailing
 
Rc detailing-to-ec2
Rc detailing-to-ec2Rc detailing-to-ec2
Rc detailing-to-ec2
 
Steel strucure lec # (11)
Steel strucure lec #  (11)Steel strucure lec #  (11)
Steel strucure lec # (11)
 
BBS Preparation
BBS PreparationBBS Preparation
BBS Preparation
 
Engineering science lesson 6 2
Engineering science lesson 6 2Engineering science lesson 6 2
Engineering science lesson 6 2
 
Lecture-7-Detailing-PHG-A1-Rev-10-2-Nov-16-Print.pptx
Lecture-7-Detailing-PHG-A1-Rev-10-2-Nov-16-Print.pptxLecture-7-Detailing-PHG-A1-Rev-10-2-Nov-16-Print.pptx
Lecture-7-Detailing-PHG-A1-Rev-10-2-Nov-16-Print.pptx
 
Sd i-module2- rajesh sir
Sd i-module2- rajesh sirSd i-module2- rajesh sir
Sd i-module2- rajesh sir
 
Hollow block and ribbed slabs
Hollow block and ribbed slabsHollow block and ribbed slabs
Hollow block and ribbed slabs
 
Design and Manufacturing Homework Help
Design and Manufacturing Homework HelpDesign and Manufacturing Homework Help
Design and Manufacturing Homework Help
 
DSR chap4 shear and bond pdf.pptxxxxxxxxxxxxxxxxxxxxxx
DSR chap4 shear and bond pdf.pptxxxxxxxxxxxxxxxxxxxxxxDSR chap4 shear and bond pdf.pptxxxxxxxxxxxxxxxxxxxxxx
DSR chap4 shear and bond pdf.pptxxxxxxxxxxxxxxxxxxxxxx
 
Slabs -Design steps
Slabs -Design steps Slabs -Design steps
Slabs -Design steps
 
RCC column_Shortly Axially Loaded column.pptx
RCC column_Shortly Axially Loaded column.pptxRCC column_Shortly Axially Loaded column.pptx
RCC column_Shortly Axially Loaded column.pptx
 

More from Hossam Shafiq II

Basics of Foundation Engineering هندسة الأساسات & Eng. Ahmed S. Al-Agha
Basics of Foundation Engineering هندسة الأساسات & Eng. Ahmed S. Al-AghaBasics of Foundation Engineering هندسة الأساسات & Eng. Ahmed S. Al-Agha
Basics of Foundation Engineering هندسة الأساسات & Eng. Ahmed S. Al-AghaHossam Shafiq II
 
Ch8 Truss Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally ...
Ch8 Truss Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally ...Ch8 Truss Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally ...
Ch8 Truss Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally ...Hossam Shafiq II
 
Ch7 Box Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metw...
Ch7 Box Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metw...Ch7 Box Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metw...
Ch7 Box Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metw...Hossam Shafiq II
 
Ch6 Composite Plate Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Pr...
Ch6 Composite Plate Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Pr...Ch6 Composite Plate Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Pr...
Ch6 Composite Plate Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Pr...Hossam Shafiq II
 
Ch5 Plate Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Me...
Ch5 Plate Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Me...Ch5 Plate Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Me...
Ch5 Plate Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Me...Hossam Shafiq II
 
Ch4 Bridge Floors (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally ...
Ch4 Bridge Floors (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally ...Ch4 Bridge Floors (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally ...
Ch4 Bridge Floors (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally ...Hossam Shafiq II
 
Ch3 Design Considerations (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. M...
Ch3 Design Considerations (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. M...Ch3 Design Considerations (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. M...
Ch3 Design Considerations (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. M...Hossam Shafiq II
 
Ch2 Design Loads on Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr....
Ch2 Design Loads on Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr....Ch2 Design Loads on Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr....
Ch2 Design Loads on Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr....Hossam Shafiq II
 
Ch1 Introduction (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally A...
Ch1 Introduction (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally A...Ch1 Introduction (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally A...
Ch1 Introduction (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally A...Hossam Shafiq II
 
Lec05 STRUCTURE SYSTEMS to resist EARTHQUAKE (Earthquake Engineering هندسة ال...
Lec05 STRUCTURE SYSTEMS to resist EARTHQUAKE (Earthquake Engineering هندسة ال...Lec05 STRUCTURE SYSTEMS to resist EARTHQUAKE (Earthquake Engineering هندسة ال...
Lec05 STRUCTURE SYSTEMS to resist EARTHQUAKE (Earthquake Engineering هندسة ال...Hossam Shafiq II
 
Lec04 Earthquake Force Using Response Specturum Method (2) (Earthquake Engine...
Lec04 Earthquake Force Using Response Specturum Method (2) (Earthquake Engine...Lec04 Earthquake Force Using Response Specturum Method (2) (Earthquake Engine...
Lec04 Earthquake Force Using Response Specturum Method (2) (Earthquake Engine...Hossam Shafiq II
 
Lec03 Earthquake Force Using Response Specturum Method (1) (Earthquake Engine...
Lec03 Earthquake Force Using Response Specturum Method (1) (Earthquake Engine...Lec03 Earthquake Force Using Response Specturum Method (1) (Earthquake Engine...
Lec03 Earthquake Force Using Response Specturum Method (1) (Earthquake Engine...Hossam Shafiq II
 
Lec02 Earthquake Damage to Concrete Structure (Earthquake Engineering هندسة ا...
Lec02 Earthquake Damage to Concrete Structure (Earthquake Engineering هندسة ا...Lec02 Earthquake Damage to Concrete Structure (Earthquake Engineering هندسة ا...
Lec02 Earthquake Damage to Concrete Structure (Earthquake Engineering هندسة ا...Hossam Shafiq II
 
Lec01 Design of RC Structures under lateral load (Earthquake Engineering هندس...
Lec01 Design of RC Structures under lateral load (Earthquake Engineering هندس...Lec01 Design of RC Structures under lateral load (Earthquake Engineering هندس...
Lec01 Design of RC Structures under lateral load (Earthquake Engineering هندس...Hossam Shafiq II
 
Lec13 Continuous Beams and One Way Slabs(3) Footings (Reinforced Concrete Des...
Lec13 Continuous Beams and One Way Slabs(3) Footings (Reinforced Concrete Des...Lec13 Continuous Beams and One Way Slabs(3) Footings (Reinforced Concrete Des...
Lec13 Continuous Beams and One Way Slabs(3) Footings (Reinforced Concrete Des...Hossam Shafiq II
 
Lec12 Continuous Beams and One Way Slabs(2) Columns (Reinforced Concrete Desi...
Lec12 Continuous Beams and One Way Slabs(2) Columns (Reinforced Concrete Desi...Lec12 Continuous Beams and One Way Slabs(2) Columns (Reinforced Concrete Desi...
Lec12 Continuous Beams and One Way Slabs(2) Columns (Reinforced Concrete Desi...Hossam Shafiq II
 
Lec09 Shear in RC Beams (Reinforced Concrete Design I & Prof. Abdelhamid Charif)
Lec09 Shear in RC Beams (Reinforced Concrete Design I & Prof. Abdelhamid Charif)Lec09 Shear in RC Beams (Reinforced Concrete Design I & Prof. Abdelhamid Charif)
Lec09 Shear in RC Beams (Reinforced Concrete Design I & Prof. Abdelhamid Charif)Hossam Shafiq II
 
Lec04 Analysis of Rectangular RC Beams (Reinforced Concrete Design I & Prof. ...
Lec04 Analysis of Rectangular RC Beams (Reinforced Concrete Design I & Prof. ...Lec04 Analysis of Rectangular RC Beams (Reinforced Concrete Design I & Prof. ...
Lec04 Analysis of Rectangular RC Beams (Reinforced Concrete Design I & Prof. ...Hossam Shafiq II
 
Lec03 Flexural Behavior of RC Beams (Reinforced Concrete Design I & Prof. Abd...
Lec03 Flexural Behavior of RC Beams (Reinforced Concrete Design I & Prof. Abd...Lec03 Flexural Behavior of RC Beams (Reinforced Concrete Design I & Prof. Abd...
Lec03 Flexural Behavior of RC Beams (Reinforced Concrete Design I & Prof. Abd...Hossam Shafiq II
 
Lec02 Material Properties of Concrete and Steel (Reinforced Concrete Design I...
Lec02 Material Properties of Concrete and Steel (Reinforced Concrete Design I...Lec02 Material Properties of Concrete and Steel (Reinforced Concrete Design I...
Lec02 Material Properties of Concrete and Steel (Reinforced Concrete Design I...Hossam Shafiq II
 

More from Hossam Shafiq II (20)

Basics of Foundation Engineering هندسة الأساسات & Eng. Ahmed S. Al-Agha
Basics of Foundation Engineering هندسة الأساسات & Eng. Ahmed S. Al-AghaBasics of Foundation Engineering هندسة الأساسات & Eng. Ahmed S. Al-Agha
Basics of Foundation Engineering هندسة الأساسات & Eng. Ahmed S. Al-Agha
 
Ch8 Truss Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally ...
Ch8 Truss Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally ...Ch8 Truss Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally ...
Ch8 Truss Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally ...
 
Ch7 Box Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metw...
Ch7 Box Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metw...Ch7 Box Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metw...
Ch7 Box Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metw...
 
Ch6 Composite Plate Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Pr...
Ch6 Composite Plate Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Pr...Ch6 Composite Plate Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Pr...
Ch6 Composite Plate Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Pr...
 
Ch5 Plate Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Me...
Ch5 Plate Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Me...Ch5 Plate Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Me...
Ch5 Plate Girder Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Me...
 
Ch4 Bridge Floors (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally ...
Ch4 Bridge Floors (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally ...Ch4 Bridge Floors (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally ...
Ch4 Bridge Floors (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally ...
 
Ch3 Design Considerations (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. M...
Ch3 Design Considerations (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. M...Ch3 Design Considerations (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. M...
Ch3 Design Considerations (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. M...
 
Ch2 Design Loads on Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr....
Ch2 Design Loads on Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr....Ch2 Design Loads on Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr....
Ch2 Design Loads on Bridges (Steel Bridges تصميم الكباري المعدنية & Prof. Dr....
 
Ch1 Introduction (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally A...
Ch1 Introduction (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally A...Ch1 Introduction (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally A...
Ch1 Introduction (Steel Bridges تصميم الكباري المعدنية & Prof. Dr. Metwally A...
 
Lec05 STRUCTURE SYSTEMS to resist EARTHQUAKE (Earthquake Engineering هندسة ال...
Lec05 STRUCTURE SYSTEMS to resist EARTHQUAKE (Earthquake Engineering هندسة ال...Lec05 STRUCTURE SYSTEMS to resist EARTHQUAKE (Earthquake Engineering هندسة ال...
Lec05 STRUCTURE SYSTEMS to resist EARTHQUAKE (Earthquake Engineering هندسة ال...
 
Lec04 Earthquake Force Using Response Specturum Method (2) (Earthquake Engine...
Lec04 Earthquake Force Using Response Specturum Method (2) (Earthquake Engine...Lec04 Earthquake Force Using Response Specturum Method (2) (Earthquake Engine...
Lec04 Earthquake Force Using Response Specturum Method (2) (Earthquake Engine...
 
Lec03 Earthquake Force Using Response Specturum Method (1) (Earthquake Engine...
Lec03 Earthquake Force Using Response Specturum Method (1) (Earthquake Engine...Lec03 Earthquake Force Using Response Specturum Method (1) (Earthquake Engine...
Lec03 Earthquake Force Using Response Specturum Method (1) (Earthquake Engine...
 
Lec02 Earthquake Damage to Concrete Structure (Earthquake Engineering هندسة ا...
Lec02 Earthquake Damage to Concrete Structure (Earthquake Engineering هندسة ا...Lec02 Earthquake Damage to Concrete Structure (Earthquake Engineering هندسة ا...
Lec02 Earthquake Damage to Concrete Structure (Earthquake Engineering هندسة ا...
 
Lec01 Design of RC Structures under lateral load (Earthquake Engineering هندس...
Lec01 Design of RC Structures under lateral load (Earthquake Engineering هندس...Lec01 Design of RC Structures under lateral load (Earthquake Engineering هندس...
Lec01 Design of RC Structures under lateral load (Earthquake Engineering هندس...
 
Lec13 Continuous Beams and One Way Slabs(3) Footings (Reinforced Concrete Des...
Lec13 Continuous Beams and One Way Slabs(3) Footings (Reinforced Concrete Des...Lec13 Continuous Beams and One Way Slabs(3) Footings (Reinforced Concrete Des...
Lec13 Continuous Beams and One Way Slabs(3) Footings (Reinforced Concrete Des...
 
Lec12 Continuous Beams and One Way Slabs(2) Columns (Reinforced Concrete Desi...
Lec12 Continuous Beams and One Way Slabs(2) Columns (Reinforced Concrete Desi...Lec12 Continuous Beams and One Way Slabs(2) Columns (Reinforced Concrete Desi...
Lec12 Continuous Beams and One Way Slabs(2) Columns (Reinforced Concrete Desi...
 
Lec09 Shear in RC Beams (Reinforced Concrete Design I & Prof. Abdelhamid Charif)
Lec09 Shear in RC Beams (Reinforced Concrete Design I & Prof. Abdelhamid Charif)Lec09 Shear in RC Beams (Reinforced Concrete Design I & Prof. Abdelhamid Charif)
Lec09 Shear in RC Beams (Reinforced Concrete Design I & Prof. Abdelhamid Charif)
 
Lec04 Analysis of Rectangular RC Beams (Reinforced Concrete Design I & Prof. ...
Lec04 Analysis of Rectangular RC Beams (Reinforced Concrete Design I & Prof. ...Lec04 Analysis of Rectangular RC Beams (Reinforced Concrete Design I & Prof. ...
Lec04 Analysis of Rectangular RC Beams (Reinforced Concrete Design I & Prof. ...
 
Lec03 Flexural Behavior of RC Beams (Reinforced Concrete Design I & Prof. Abd...
Lec03 Flexural Behavior of RC Beams (Reinforced Concrete Design I & Prof. Abd...Lec03 Flexural Behavior of RC Beams (Reinforced Concrete Design I & Prof. Abd...
Lec03 Flexural Behavior of RC Beams (Reinforced Concrete Design I & Prof. Abd...
 
Lec02 Material Properties of Concrete and Steel (Reinforced Concrete Design I...
Lec02 Material Properties of Concrete and Steel (Reinforced Concrete Design I...Lec02 Material Properties of Concrete and Steel (Reinforced Concrete Design I...
Lec02 Material Properties of Concrete and Steel (Reinforced Concrete Design I...
 

Recently uploaded

Risk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfRisk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfROCENODodongVILLACER
 
pipeline in computer architecture design
pipeline in computer architecture  designpipeline in computer architecture  design
pipeline in computer architecture designssuser87fa0c1
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...VICTOR MAESTRE RAMIREZ
 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxbritheesh05
 
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)dollysharma2066
 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...srsj9000
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024Mark Billinghurst
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVRajaP95
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfAsst.prof M.Gokilavani
 
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEINFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEroselinkalist12
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx959SahilShah
 
DATA ANALYTICS PPT definition usage example
DATA ANALYTICS PPT definition usage exampleDATA ANALYTICS PPT definition usage example
DATA ANALYTICS PPT definition usage examplePragyanshuParadkar1
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxwendy cai
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxDeepakSakkari2
 
complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...asadnawaz62
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfAsst.prof M.Gokilavani
 
Work Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvWork Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvLewisJB
 

Recently uploaded (20)

Risk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdfRisk Assessment For Installation of Drainage Pipes.pdf
Risk Assessment For Installation of Drainage Pipes.pdf
 
pipeline in computer architecture design
pipeline in computer architecture  designpipeline in computer architecture  design
pipeline in computer architecture design
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...
 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptx
 
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
 
young call girls in Green Park🔝 9953056974 🔝 escort Service
young call girls in Green Park🔝 9953056974 🔝 escort Serviceyoung call girls in Green Park🔝 9953056974 🔝 escort Service
young call girls in Green Park🔝 9953056974 🔝 escort Service
 
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Serviceyoung call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
 
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
 
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEINFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx
 
DATA ANALYTICS PPT definition usage example
DATA ANALYTICS PPT definition usage exampleDATA ANALYTICS PPT definition usage example
DATA ANALYTICS PPT definition usage example
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptx
 
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCRCall Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptx
 
complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
 
Work Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvvWork Experience-Dalton Park.pptxfvvvvvvv
Work Experience-Dalton Park.pptxfvvvvvvv
 

Lec05 Design of Rectangular Beams with Tension Steel only (Reinforced Concrete Design I & Prof. Abdelhamid Charif)

  • 1. 24/2/2013 CE 370 : Prof. Abdelhamid Charif 1 CE 370 REINFORCED CONCRETE-I Prof. Abdelhamid Charif Design of rectangular RC beams with tension steel only Design of rectangular beams • Before the design of an actual beam is attempted, several important topics are first discussed : 1. Beam proportions 2. Deflection control and minimum thickness 3. Beam self weight 4. Selection of bars 5. Minimum concrete cover 6. Minimum spacing of bars and steel layers 7. Minimum beam width 8. Maximum number of bars in one layer 9. Effective steel depth 2
  • 2. 24/2/2013 CE 370 : Prof. Abdelhamid Charif 2 Beam proportions • Under transverse loading, the resulting bending stress and deflection are both inversely proportional to the moment of inertia I • Thickness is therefore more important in bending than the width • In normal beams, thickness is greater than width • Exceptional shallow beams (width greater than thickness) are sometimes used for architectural reasons only 3 12 3 bhI I My   12 3 bhI  Beam proportions • The most practical and economical beam section is usually obtained for normal spans (up to 7.5 m in length), when the ratio of d to b is in the range of 1.5 to 2. • For longer spans, better economy is obtained if deep, narrow sections are used. The depth may be as large as 3 or 4 times the width • The overall beam dimensions are selected to whole inches (multiples of 25 mm). This is done for simplicity in the use of forms which are usually available in 1- or 2-inch (25 or 50 mm) increments. • Shallow beams are used for architectural reasons (to hide them or reduce floor height) b SpanLong 4to3 bbd  sA SpanNormal 2to5.1 bbd  sA b b = Width h = Depth (Thickness) d = Steel depth 4
  • 3. 24/2/2013 CE 370 : Prof. Abdelhamid Charif 3 Deflection control and minimum thickness • SBC/ACI codes provide minimum thickness for beams and slabs so that deflection calculations and checks are not required. Minimum Thickness for deflection control L = Span length (center to center) Simply supported One end continuous Both ends continuous Cantilever Solid one- way slab L / 20 L / 24 L / 28 L / 10 Beams or ribs L / 16 L / 18.5 L / 21 L / 8 5 • Thickness less than minimum value can be used, but in that case deflections must be determined and checked (long and tedious) • Better comply with code minimum thickness 6 One end continuous Both ends continuous Cantilever Simply supported Minimum Thickness for deflection control Simply supported One end continuous Both ends continuous Cantilever Solid one- way slab L / 20 L / 24 L / 28 L / 10 Beams or ribs L / 16 L / 18.5 L / 21 L / 8 Deflection control and minimum thickness
  • 4. 24/2/2013 CE 370 : Prof. Abdelhamid Charif 4 Initial section dimensions • Overall Thickness h: Assume a minimum overall thickness (or depth) h equal to or greater than the minimum thickness specified by the code (unless deflections are to be calculated and checked). • Beam Width b: The beam width can be roughly estimated equal to about one-half of the assumed value of h. • Beam self weight (kN/m) : = b × h × unit weight of concrete 7 Final section dimensions • After performing reinforcement design, the initial section dimensions may turn out to be inadequate • If the reinforcement is less than minimum, this means that the section dimensions can be reduced. • If the designed section does not satisfy tension control condition, then either the section dimensions must be increased or compression steel provided. • Increase in thickness is more effective than in width. • Ultimate moment must be corrected after any increase in the section dimensions 8
  • 5. 24/2/2013 CE 370 : Prof. Abdelhamid Charif 5 Selection of steel bars • After the required reinforcing area is calculated, select the bars that provide (at least) the necessary area. • It is usually convenient to use bars of one size only in a beam, although occasionally two sizes are also used. • Bars for compression steel and stirrups are usually of a different size (to avoid confusion for workmen). • We usually choose the bar diameter and determine the required bar number (Integer equal to or greater than): bbps bs b b b b s b ANA AA d d A A A N :isareasteelprovidedActual baroneofAreaareasteelRequired diameterBar 4 , , 2     9 Concrete cover • Reinforcing steel bars must be protected from the surrounding environment, such as fire and corrosion. • The reinforcing bar is located at a certain minimum distance from the surface of concrete so that a protective layer of concrete, called cover, is available. 10
  • 6. 24/2/2013 CE 370 : Prof. Abdelhamid Charif 6 Why is cover needed ? a) Bonds reinforcement to concrete b) Protects reinforcement against corrosion c) Protects reinforcement from fire (over heating causes major steel strength loss) d) Larger cover values are used in foundations, garages, factories, etc. to account for abrasion, wear and chemical attacks. Concrete cover 11 Minimum cover dimensions (ACI / SBC) • Concrete not exposed to earth or weather :  Slabs, walls, joists : 20 mm  Beams, Columns : 40 mm • Concrete cast against / exposed to earth : 75 mm Minimum concrete cover 12
  • 7. 24/2/2013 CE 370 : Prof. Abdelhamid Charif 7 Bar spacing and layer spacing • Whenever possible steel bars must be arranged in a single layer • This simplifies analysis and design calculations, and optimizes the bending capacity with a greater lever arm . • It is frequent however that more than one steel layer is required • Spacing between bars in any layer and spacing between various layers must comply with SBC / ACI provisions. 13 Bar arrangement in layers Bars in layers must be arranged directly above each other as shown. 14
  • 8. 24/2/2013 CE 370 : Prof. Abdelhamid Charif 8 Bar spacing and layer spacing SBC / ACI specify maximum spacing of flexural reinforcing bars in walls & slabs not to be exceeded 15 Main bars and stirrup arrangement Net distance between stirrup and outer main bar: more)andmm(12diameterbarMain mm)12to(8diameterStirrup 5.02    b s bs d d dd All spacing requirements must be considered in determining steel depth and number of steel layers 16
  • 9. 24/2/2013 CE 370 : Prof. Abdelhamid Charif 9 Effective steel depth – One Layer • Effective steel depth d is defined as the distance from the extreme compression fiber to the centroid of tensile steel • Case of one steel layer : 2 cover b s d dhd  17 Effective steel depth – Many layers • Effective steel depth d is defined as the distance from the extreme compression fiber to the centroid of tensile steel. • Case of many steel layers : syhd  ys = Distance from bottom to tension steel centroid ys Computed by complying with layer spacing and cover requirements 18
  • 10. 24/2/2013 CE 370 : Prof. Abdelhamid Charif 10 19 Effective steel depth - Example • Assume two layers and h = 600 mm • First (bottom) layer : three bars of 20 mm • Second layer : two bars of 16 mm • Stirrup diameter 10 mm • Maximum aggregate size = 18 mm mmy mm dd yy mm d dy bb b s 1038102560 25spacingLayer )25,1833.1(MaxspacingLayer 22 SpacingLayer 60101040 2 Cover 2 21 12 1 1      21 2211 ss ss s s AA yAyA y yhd     19 2020 Effective steel depth - Example / Cont. syhd  mmyhd mmmm AA yAyA y s ss ss s 52773600 739.72 21 2211      2 2 2 2 2 1 21 12.402 4 16 2 48.942 4 20 3 10360 mmA mmA mmymmy s s      20
  • 11. 24/2/2013 CE 370 : Prof. Abdelhamid Charif 11 2121 Effective steel depth - General Many steel layers (Layer 1 = Bottom) yi is computed for each layer i syhd    si isi s A yA y      i ii bi ibi s n yn An yAn y 21 Case of same bar diameter in all layers Each layer i has ni bars and distance yi 2 2 Cover 1, 1 1 1      ibbi lii b s dd Syy d dy 2222 Minimum beam width • Given the bar diameter, number of bars, stirrup diameter, and aggregate size, what is the minimum beam width to accommodate the bars in one layer ? • Width b must accommodate all bars while satisfying cover and spacing conditions sizeaggregateMaximum ),25,33.1(MaxSpacingBar   Agg dAggS bb   cover26)1( cover25.0222)1( min   bsbb bssbb ddSn-dnb dddSn-dnb In practice, beam width b is not less than 200 mm 22
  • 12. 24/2/2013 CE 370 : Prof. Abdelhamid Charif 12 2323 Minimum beam width - Example • Assume : • Three bars of 20 mm • Stirrup diameter 10 mm • Maximum aggregate size = 18 mm • Width b must accommodate the three bars while satisfying cover and spacing conditions mmb ddSn-dnb mmdS bsbb bb 23040220106252203 cover26)1( 25),25,1833.1(MaxSpacingBar min min    mmb 230min  23 • Given the beam width, bar diameter, bar spacing, and stirrup diameter, what is the maximum number of bars that can be accommodated in one layer ? Maximum number of bars in one layer bb bsb bb bsb bsbbb bsbb Sd ddSb n Sd ddSb n ddSSdnb ddSn-dnb         cover26 cover26 cover26)( cover26)1( max 24
  • 13. 24/2/2013 CE 370 : Prof. Abdelhamid Charif 13 • Beam width, bar diameter, stirrup diameter, and bar spacing are: Maximum number of bars in one layer Example 5 88.5 2518 0421810625350 max      n n mmSmmdmmdmmb bsb 251018350  bb bsb Sd ddSb n    cover26 25 • The designer must first assume an initial bar diameter and an initial number of layers, and then deduce the effective steel depth d. • Effective steel depth is computed at the steel centroid. • If bar diameter is not fixed, the effective steel depth for RC beams may be approximated as follows: Estimation of layer number and effective steel depth mmhd 65One steel layer : mmhd 90Two steel layers : 26
  • 14. 24/2/2013 CE 370 : Prof. Abdelhamid Charif 14 • After finishing design, the effective bar number, layer number, and steel depth must be checked with initial assumptions. • If the effective steel depth is greater than the initial value, the design is safer than anticipated. New design may be performed only for economic reasons (if bar number can be reduced). • If the effective steel depth is less than the initial value, the design may be unsafe . The deficiency in steel depth may however be compensated by the provided steel area which usually is greater than the required value (when choosing bar number). A moment check is then required and new design has to be performed if moment check fails (fMn < Mu) . • It is important not to overestimate the initial steel depth, not only because of re-design risk, but also because in practice, smaller values are delivered. 27 Checking effective steel depth 27 28 • It can be both unsafe and uneconomical to perform tensile steel strain check at the centroid. • Assuming steel yielding at the centroid requires yielding of all tension layers. The least tensioned layer with minimum depth may not yield despite yielding at the centroid. • It is therefore unsafe to check yielding at the centroid • Yielding must be checked at the least tensioned layer with minimum depth dmin • Performing tension control check at the centroid is uneconomical. The most tensioned bottom layer with maximum depth reaches the tension control limit of 0.005 before the centroid. • Tension control check must be performed at the most tensioned bottom layer. Tensile steel strain check with many layers
  • 15. 24/2/2013 CE 370 : Prof. Abdelhamid Charif 15 29 0.003 d dt c Depths Strains 005.0t yε min dmin s Lumping of tension steel layers at centroid       005.0 :layersMany 005.0:layerOne min t y t ε    Required steel strain checks : ts ts ε ε     min min :layersMany :layerOne d , εs = Depth and strain at centroid of steel layers dt , εt = Depth and strain at bottom layer (max. depth) dmin , εmin = Depth and strain at minimum depth layer Assumptions of tension-controlled section (εt ≥ 0.005) and steel stress equal to yield stress (fs = fy) must be checked as shown next (in analysis or design). Checks must be performed, once compression block depth a and neutral axis depth c have been determined using the actual steel area. Neutral axis depth : c = a / β1 30 Tensile steel strain check with many layers
  • 16. 24/2/2013 CE 370 : Prof. Abdelhamid Charif 16 31 • Compute steel strain εmin at minimum tension depth and check that εmin ≥ εy c cd   min min 003.0 • If εmin < εy : Assumption of all steel yielding is violated. Lumping cannot be used. Use strain compatibility method. 31 Tensile steel strain check with many layers Yield check at minimum depth layer d dt Yield limit of NA at min depth dmin 0.003 cy t yε s y yy y y d cc dc    10003 3 Thus 003.0003.0 :checkdepthN.A.Equivalent min min min     32 • Compute steel strain εt at bottom layer and check that εt ≥ 0.005 c cdt t   003.0 • If εt < 0.005 : Section is not tension controlled. Rejected by SBC code. Increase section or re-design with compression steel 32 Tensile steel strain check with many layers Tension control check at bottom layer t t tt tt d d cc dc 375.0 8 3 005.0Thus 005.0003.0003.0 :checkdepthN.A.Equivalent     d dt T.C. limit of NA at bottom layer dmin 0.003 ct minε s dt 0.005
  • 17. 24/2/2013 CE 370 : Prof. Abdelhamid Charif 17 Strain checks - Summary • In case of one tension steel layer, perform tension control check only εt ≥ 0.005 • In case of more than one layer, both yield check at the minimum tension depth layer (εmin ≥ εy), and tension-control check at the bottom layer (εt ≥ 0.005) must be performed. • It is frequent that if the second check is satisfied, the first will also be satisfied but exceptional cases may exist (shallow beams). If the yield check is not satisfied, layer lumping cannot be used and other design methods must be used. • If the minimum depth strain satisfies tension-control condition, there is no need to perform the check at the bottom layer (as the bottom strain is always greater ): If : εmin ≥ 0.005 then εt ≥ 0.005 (No need to check it) 33 Design of rectangular RC sections with tension steel only Compared to analysis, design problems are one hand more difficult because of the unknown steel area and depth, but easier on the other hand because of the known steel stress (steel yielding). Steel depth d has to be estimated according to the expected layer number and must be checked at the end. d b sA N.A. c ca 1 abfC c ' 85.0 ' 85.0 cf ys fAT  bdA bd A s s     85.0850 850 ' c y ' c ys ys ' c f df bf. fA afAabf.TC   34
  • 18. 24/2/2013 CE 370 : Prof. Abdelhamid Charif 18 35 7.1 4 11 85.0 :Solution with,0 7.1 :equationQuadratic 7.1 1 7.1 1 85.02 )( 2 :DesignOptimal:DesignSafe 90.0,005.0:controltensionAssuming 2 2 2 2 2                                        ' c n y ' c u nny' c y ' c y y u ' c y yu ' c y yysun unun t f R f f ρ bd M RRf f f f f ρf bd M f f ρfbdM f df dfρbd a dfAMM MMMM f   f  f  fff ff f Design of rectangular RC sections with tension steel only (Cont.) 36 7.1 4 11 85.0 :smallesttheUse positiveareequationquadraticofsolutionsBoth satisfiedeasilyusuallyCondition 47.1 4 47.10 7.1 4 1 7.1 4 0 7.1 :equationQuadratic 2 2 2 2 2 2 2                   ' c n y ' c u ' c u n ' c ' c n y' c yn y ny' c y f R f f ρ Mbdf bd M Rf f R f f fR f Rf f f f f  Design of rectangular RC sections with tension steel only (Cont.)
  • 19. 24/2/2013 CE 370 : Prof. Abdelhamid Charif 19 Design of rectangular RC sections with tension steel only (Cont.) The required steel ratio must comply with the SBC/ACI minimum limit. it must be greater than or equal to the minimum steel ratio :          yy c ff f 4.1 , 4 Max ' min   bdAs  min,MaxareaSteel  37 The final required steel area to be adopted is : • Using this final required steel area, compute the required bar number, layer number and deduce effective steel depth and actual provided steel area. • Check effective steel depth with assumed value • If the actual steel depth is less than assumed, the design may be unsafe and moment check is thus necessary. • Using the actual provided steel area, compute the stress block and neutral axis depths a and c, and then perform steel strain checks. • Perform moment check if necessary (if d < assumed). • If tension control check fails, re-design. • With many layers, if yield check fails, use compatibility method to check moment capacity. • If required moment check fails (fMn < Mu) re-design. Design of rectangular RC sections with tension steel only (Cont.) 38
  • 20. 24/2/2013 CE 370 : Prof. Abdelhamid Charif 20 • After performing reinforcement design, the initial section dimensions may turn out to be inadequate • If the reinforcement is less than minimum, this means that the section dimensions can be reduced. • If the designed section does not satisfy tension control condition, then either the section dimensions must be increased or compression steel provided. • Increase in thickness is more effective than in width. • Ultimate moment must be corrected after any increase in the section dimensions 39 Observations Design Problem 1 (unknown dimensions) MPa.420andMPa30Use supported.betoarekN/m25ofloadliveaand weight)beamincluding(notloaddead15kN/maif beamrrectangulasupportedsimplym6.5aDesign  y ' c ff SOLUTION: Minimum thickness for a simply supported beam is L/16 . We use a higher value of L/10 = 650 mm h = 650 mm 40
  • 21. 24/2/2013 CE 370 : Prof. Abdelhamid Charif 21 kN/m07.524650.0325.0weightselfBeam kN/m24:tunit weighConcrete mm32550 mm8556565065depthSteel:layeroneAssume conc 3 conc       hb h.b hd Minimum Thickness for deflection control Simply supported One end continuous Both ends continuous Cantilever Solid one- way slab L / 20 L / 24 L / 28 L / 10 Beams or ribs L / 16 L / 18.5 L / 21 L / 8 SOLUTION 1 (continued) 41 kN.m372.85 8 6.570.598 8 kN/m598.70)25(7.1)07.515(4.17.14.1 22     lw M LDw u u u 0.90ssume fA 0.00963 307.1 725.34 11 420 3085.0 725.3 58532590.0 1085.372 with 7.1 4 11 85.0 2 6 2                           ρ bd M R f R f f ρ u n ' c n y ' c f SOLUTION 1 (continued) Ultimate uniform load and ultimate moment 42
  • 22. 24/2/2013 CE 370 : Prof. Abdelhamid Charif 22 2 , 2 2 26.18473areasteelProvided OKislayerOnebars283Use 95.2 28 4 5.1831 barsof#bars,mm28Use mm5.183158532500963.0 mmAA A A ρbdA bps b s s        586 325 283 64 650                         00333.000333.0,00326.0Max 420 4.1 , 4204 30 Max 4.1 , 4 Max ' min yy c ff f SOLUTION 1 (continued) OK586141040650 2 coverEffective mm d dhd b s  Questions: What if No of bars = 2.1 ? / if d less than assumed ? 43 Tension-control check (In case of one layer no need to check steel yield) mm14.110 85.0 62.93 mm62.93 3253085.0 42026.1847 85.0 1 ,       a c bf fA a ' c yps 586 325 283 64 650 0.90controlledtensionisSection OK005.0013.0 013.0 14.110 14.110586 003.0 003.0        f    t t t c cd 44 Checks must be performed using the actual provided steel area
  • 23. 24/2/2013 CE 370 : Prof. Abdelhamid Charif 23 Moment checking (Not necessary) 586 325 283 64 650 OKkN.m)85.372(kN.m376.5 kN.m33.4189.0capacitymomentDesign kN.m33.418N.mm1033.418 2 62.93 58642026.1847 22 6 ,                        un n nn n ypsn MM M MM M a dfA a dTM f f 45 • Design of a 300 x 600 mm rectangular section subjected to an ultimate bending moment Mu = 300 kN.m • b = 300 mm h = 600 mm • Estimate number of layers expected and steel depth • Expecting two steel layers, the effective steel depth is estimated as: d = h – 90 = 510 mm • Assume stirrup diameter of 10 mm and aggregate maximum size of 20 mm 46 Design Problem 2 (known dimensions) 85.042025 1 '  MPafMPaf yc
  • 24. 24/2/2013 CE 370 : Prof. Abdelhamid Charif 24 47 0.01147 257.1 272.44 11 420 2585.0 272.4 51030090.0 100.300 with 7.1 4 11 85.0 2 6 2                           ρ bd M R f R f f ρ u n ' c n y ' c f 0.90ssume fA Required steel ratio is given by :   00333.000333.0,00298.0Max 420 4.1 , 4204 25 Max 4.1 , 4 Max ' min                     yy c ff f  SOLUTION of Problem 2 48 2 , 2 2 min 96.18846areasteelProvided bars20-6Use 59.5 20 4 91.1754 barsof#bars,mm20Use 91.175451030001147.0 OK mmAA A A mmρbdA ρ bps b s s          SOLUTION 2 (continued) Check layer number and effective steel depth
  • 25. 24/2/2013 CE 370 : Prof. Abdelhamid Charif 25 Maximum number of bars in one layer : 443.4 7.2620 042201067.26300 7.26)20,25,2033.1(Max ),25,33.1(MaxSpacingBar cover26 max          nn mmS dAggS Sd ddSb n b bb bb bsb 49 SOLUTION 2 (continued) Using 4 bars per layer, the effective bar spacing will be greater than 26.7 mm For six bars, we thus need two layers: 4+2 We may use 3+3, but 4+2 is better, why ? 50 d 300 206 sy 600 SOLUTION 2 (continued) syhd   si isi s A yA y      i ii bi ibi s n yn An yAn y Case of same bar diameter in all layers Each layer i has ni bars and distance yi Effective steel depth : 2 260101040 2 cover 121 b l b s d Syymm d dy 
  • 26. 24/2/2013 CE 370 : Prof. Abdelhamid Charif 26 51 d 300 206 sy 600 SOLUTION 2 (continued) mmyhd mmmm n yn An yAn y s i ii bi ibi s 52476600:deptheffectiveCentroid 766.75 24 7.1062604          Effective steel depth : mm d Syy mm d dy mmS AggS b l b s l l 7.106207.2660 2 2 60101040 2 cover 7.26)25,2033.1(Max )25,33.1(MaxSpacingLayer 12 1     Effective steel depth greater than assumed (510 mm): OK Compression block and NA depths (using actual steel area) are : mm a cmm bf fA a c yps 10.146 85.0 1856.124 1856.124 3002585.0 42096.1884 85.0 1 ' ,      Strain check (at dmin ) : OK c cd y      0021.000713.0 1.146 1.1463.493 003.0003.0 min min  controlTension005.0005.0Since min OKt   No need to determine bottom steel strain SOLUTION 2 (continued) 52 mmyhdd mmyhdd t 54060600 3.4937.106600:depthsLayer 11 2min2  
  • 27. 24/2/2013 CE 370 : Prof. Abdelhamid Charif 27 Moment checking (Not necessary) OKkN.m)0.300(kN.m329.1 kN.m68.3659.0capacitymomentDesign kN.m68.365N.mm1068.365 2 1856.124 52442096.1884 22 6 ,                        un n nn n ypsn MM M MM M a dfA a dTM f f 53 524 300 206 76 600 • Design of a 375 x 900 mm rectangular section subjected to an ultimate bending moment Mu = 1500 kN.m • b = 375 mm h = 900 mm • Expecting two steel layers, the effective steel depth is estimated as: d = h – 90 = 810 mm • Assume stirrup diameter of 10 mm and 30 mm for bar spacing and layer spacing. 54 Design Problem 3 81.035008.009.135420 1 '  MPafMPaf cy
  • 28. 24/2/2013 CE 370 : Prof. Abdelhamid Charif 28 55 0.01856 357.1 774.64 11 420 3585.0 774.6 81037590.0 100.1500 with 7.1 4 11 85.0 2 6 2                           ρ bd M R f R f f ρ u n ' c n y ' c f 0.90ssume fA Required steel ratio is given by :   00352.000333.0,00352.0Max 420 4.1 , 4204 35 Max 4.1 , 4 Max ' min                     yy c ff f  SOLUTION of Problem 3 56 2 , 2 2 min 5.615710areasteelProvided bars28-10Use 16.9 28 4 6.5637 barsof#bars,mm28Use 6.563781037501856.0 OK mmAA A A mmρbdA ρ bps b s s          SOLUTION 3 (continued) Check layer number and effective steel depth
  • 29. 24/2/2013 CE 370 : Prof. Abdelhamid Charif 29 Maximum number of bars in one layer : 505.5 3028 0422810630375 )given(30SpacingLayerBar / cover26 max         nn mmSS Sd ddSb n lb bb bsb 57 SOLUTION 3 (continued) For ten bars, we thus need two layers: 5+5 58 SOLUTION 3 (continued) syhd    si isi s A yA y      i ii bi ibi s n yn An yAn y Case of same bar diameter in all layers Each layer i has ni bars and distance yi Effective steel depth : 2 264141040 2 cover 121 b l b s d Syymm d dy  d 375 2810 sy 900
  • 30. 24/2/2013 CE 370 : Prof. Abdelhamid Charif 30 59 SOLUTION 3 (continued) performedbemustcheckMoment mm810ofvalueAssumed 80793900:deptheffectiveCentroid 93 255 1225645 21              d mmyhd mm yy n yn An yAn y s i ii bi ibi s Effective steel depth : mm d Syy mm d dy b l b s 122283064 2 2 64141040 2 cover 12 1   d 375 2810 sy 900 Using the actual steel area provided, the compression block and neutral axis depths are: mm a cmm bf fA a c yps 188.286 81.0 812.231 812.231 3753585.0 4205.6157 85.0 1 ' ,      Strain check : OK OK c cd t y       005.0005.000516.0Since 0021.000516.0 188.286 188.286778 003.0003.0 min min min   SOLUTION 3 (continued) 60 mmyhd mmyhd t 83664900 778122900:depthsLayer 1 2min  
  • 31. 24/2/2013 CE 370 : Prof. Abdelhamid Charif 31 Moment checking requireddesign-reNoOK kN.m)0.1500(kN.m08.5461 kN.m27.17879.0capacitymomentDesign kN.m27.1787N.mm1027.1787 2 812.231 8074205.6157 22 6 ,                         un un n nn n ypsn MM MM M MM M a dfA a dTM f f f 61 The moment check is necessary as the final steel depth (807) is less than the initially assumed value (810). 375 807 2810 188.286 a Thank You 62