SlideShare a Scribd company logo
1 of 37
Download to read offline
Mesoscopic multiclass traffic flow modeling
on multi-lane sections
Guillaume Costeseque∗, Aur´elien Duret
Inria Sophia-Antipolis M´editerran´ee
& Universit´e de Lyon-IFSTTAR-ENTPE, LICIT
TRB Annual Meeting 2016, Washington DC
January 12, 2016
G. Costeseque∗
, A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 1 / 23
Motivations
Example: congested off-ramp
*
G. Costeseque∗
, A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 2 / 23
Motivations
Example: congested off-ramp
*
Requirements for modeling the upstream section:
1 multiclass
2 non-FIFO
* [Richmond Bridge, c Bay Area Council]
G. Costeseque∗
, A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 2 / 23
Motivations
Outline
1 Theoretical background
2 Mesoscopic formulation of multiclass multilane models
3 Numerical scheme
4 Conclusion and perspectives
G. Costeseque∗
, A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 3 / 23
Theoretical background
Outline
1 Theoretical background
2 Mesoscopic formulation of multiclass multilane models
3 Numerical scheme
4 Conclusion and perspectives
G. Costeseque∗
, A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 4 / 23
Theoretical background Macroscopic models
Three representations of traffic flow
Moskowitz’ surface
Flow
x
t
N
x
See also [Moskowitz(1959), Makigami et al(1971), Laval and Leclercq(2013)]
G. Costeseque∗
, A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 5 / 23
Theoretical background Mesoscopic resolution
Mesoscopic resolution of the LWR model
Lagrangian-Space Eulerian
Meso Macro
n − x t − x
CL
Variables
Pace p := 1
v Density k
Headway h := 1
q = H(p) Flow q = Q(k)
Equation ∂np − ∂x H(p) = 0 ∂tk + ∂x Q(k) = 0
HJ
Variable
Passing time T Label N
T(n, x) =
x
−∞
p(n, ξ)dξ N(t, x) =
+∞
x
k(t, ξ)dξ
Equation ∂nT − H (∂x T) = 0 ∂tN − Q (−∂x N) = 0
G. Costeseque∗
, A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 6 / 23
Theoretical background Mesoscopic resolution
Mesoscopic: what for?
Strengths
1 Consistent with micro and macro representations
2 Large scale networks // spatial discontinuities OK
3 Data assimilation (from Eulerian and Lagrangian sensors)
Weakness
1 Single pipe
2 Mono class
3 No capacity drop at junctions
Developments
1 Multilane and multiclass approach
2 Relaxed FIFO assumption
G. Costeseque∗
, A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 7 / 23
Theoretical background Mesoscopic resolution
Mesoscopic: what for?
Strengths
1 Consistent with micro and macro representations
2 Large scale networks // spatial discontinuities OK
3 Data assimilation (from Eulerian and Lagrangian sensors)
Weakness
1 Single pipe
2 Mono class
3 No capacity drop at junctions
Developments
1 Multilane and multiclass approach
2 Relaxed FIFO assumption
−→ Moving bottleneck theory
G. Costeseque∗
, A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 7 / 23
Theoretical background The moving bottleneck theory
Notations
(Eulerian)
vB
−w
−w
vB
k
Q
(N − 1) lanes N lanes
R(vB, qD)
(D) (U)
ξN(t)
x
(U) (D)
vB
kD (N − 1)κ Nκ
qD
NC
Q∗
(vB)
u
G. Costeseque∗
, A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 8 / 23
Mesoscopic formulation of multiclass multilane models
Outline
1 Theoretical background
2 Mesoscopic formulation of multiclass multilane models
3 Numerical scheme
4 Conclusion and perspectives
G. Costeseque∗
, A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 9 / 23
Mesoscopic formulation of multiclass multilane models
Settings
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
Density (veh/m)
0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
Flow(veh/s)
Fundamental Diagrams
Rabbits
Slugs
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
Pace (s/m)
1
1.2
1.4
1.6
1.8
2
2.2
2.4
2.6
2.8
3
Headway(s/veh)
Fundamental Diagrams
Rabbits
Slugs
Stretch of road [x0, x1] (diverge at x1)
composed by N separate lanes
Two classes of users: “rabbits” (I = I1)
and “slugs” (I = I2).
Triangular class-dependent
headway-pace FD
H : (p, I) → H(p, I)
G. Costeseque∗
, A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 10 / 23
Mesoscopic formulation of multiclass multilane models Capacity drop
Capacity drop parameter
vB
k
Q
(D) (U)
kD (N − 1)κ Nκ
NC
(D)
(U)
δ = 1
δ = 0
vB
qD =
1
hB
R(vB, qD)
Introduce parameter δ ∈ [0, 1]
If δ = 0, strictly
non-FIFO
If 0 < δ < 1, reduction
of the passing rate
If δ = 1, strictly FIFO
G. Costeseque∗
, A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 11 / 23
Mesoscopic formulation of multiclass multilane models Capacity drop
Time (s)
40 60 80 100 120 140 160 180
Space(m)
0
100
200
300
400
500
600
700
800
900
1000
Trajectories
T2
(n, x)
T1
(n, x)
Time (s)
40 60 80 100 120 140 160 180
Space(m)
0
100
200
300
400
500
600
700
800
900
1000
Trajectories
T2
(n, x)
T1
(n, x)
δ = 0 δ = 0.4
Time (s)
40 60 80 100 120 140 160 180
Space(m)
0
100
200
300
400
500
600
700
800
900
1000
Trajectories
T2
(n, x)
T
1
(n, x)
Time (s)
40 60 80 100 120 140 160 180
Space(m) 0
100
200
300
400
500
600
700
800
900
1000
Trajectories
T2
(n, x)
T
1
(n, x)
δ = 0.6 δ = 1 (FIFO case)
G. Costeseque∗
, A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 12 / 23
Mesoscopic formulation of multiclass multilane models Expression of the MCML model
System of coupled HJ PDEs
∂nT1 − H (∂x T1, I1) = 0, (rabbits)
∂nT2 − H (∂x T2, I2) = 0, (slugs)
G. Costeseque∗
, A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 13 / 23
Mesoscopic formulation of multiclass multilane models Expression of the MCML model
System of coupled HJ PDEs



∂nT1 − H (∂x T1, I1) = 0, (rabbits)
∂nT2 − H (∂x T2, I2) = 0, (slugs)
H (∂x T1(n, ξ(n)), I1) − (1 − δ) ˙ξ (n∗
2) ∂x T1(n, ξ(n))
≥
N
N − 1
H⊠ (1 − δ) ˙ξ (n∗
2) , I1 , (2 → 1)
G. Costeseque∗
, A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 13 / 23
Mesoscopic formulation of multiclass multilane models Expression of the MCML model
System of coupled HJ PDEs



∂nT1 − H (∂x T1, I1) = 0, (rabbits)
∂nT2 − H (∂x T2, I2) = 0, (slugs)
H (∂x T1(n, ξ(n)), I1) − (1 − δ) ˙ξ (n∗
2) ∂x T1(n, ξ(n))
≥
N
N − 1
H⊠ (1 − δ) ˙ξ (n∗
2) , I1 , (2 → 1)
where
H⊠
(s, I) = inf
p∈Dom(H(·,I))
{H(p, I) − sp}
G. Costeseque∗
, A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 13 / 23
Mesoscopic formulation of multiclass multilane models Expression of the MCML model
System of coupled HJ PDEs



∂nT1 − H (∂x T1, I1) = 0, (rabbits)
∂nT2 − H (∂x T2, I2) = 0, (slugs)
H (∂x T1(n, ξ(n)), I1) − (1 − δ) ˙ξ (n∗
2) ∂x T1(n, ξ(n))
≥
N
N − 1
H⊠ (1 − δ) ˙ξ (n∗
2) , I1 , (2 → 1)
where
H⊠
(s, I) = inf
p∈Dom(H(·,I))
{H(p, I) − sp}
and n∗
i = the nearest leader from class i for vehicle n of class j = i
G. Costeseque∗
, A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 13 / 23
Mesoscopic formulation of multiclass multilane models Expression of the MCML model
System of coupled HJ PDEs



∂nT1 − H (∂x T1, I1) = 0, (rabbits)
∂nT2 − H (∂x T2, I2) = 0, (slugs)
H (∂x T1(n, ξ(n)), I1) − (1 − δ) ˙ξ (n∗
2) ∂x T1(n, ξ(n))
≥
N
N − 1
H⊠ (1 − δ) ˙ξ (n∗
2) , I1 , (2 → 1)
T2 (n, ξ(n)) ≥ T1(n∗
1, ξ(n)) + H (∂x T1(n∗
1, ξ(n)), I2) , (1 → 2)
where
H⊠
(s, I) = inf
p∈Dom(H(·,I))
{H(p, I) − sp}
and n∗
i = the nearest leader from class i for vehicle n of class j = i
G. Costeseque∗
, A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 13 / 23
Numerical scheme
Outline
1 Theoretical background
2 Mesoscopic formulation of multiclass multilane models
3 Numerical scheme
4 Conclusion and perspectives
G. Costeseque∗
, A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 14 / 23
Numerical scheme Lax-Hopf formula for the meso LWR model
Lax-Hopf formula & Dynamic Programming
Finite steps (∆n, ∆x)
∆n = κ ∆x.
n
x + ∆x
x − ∆x
n − ∆n
x
1
κ
x
n
∆x
∆n
T(n, x)
Solution reads:
T(n, x) = max
= free flow
T(n, x − ∆x) +
∆x
u
,
T (n − ∆n, x + ∆x) +
∆x
w
= congested
.
See [Laval and Leclercq(2013)]
G. Costeseque∗
, A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 15 / 23
Numerical scheme Lax-Hopf formulæ for the MCML model
Representation formulæ
∆n
n
x + ∆x
x − ∆x
n − ∆n
x
1
κ
ξT (n)
Ti(n, x)
∆x
x
n
New supply constraint:
Ti (n, x) = max
= free flow
Ti (n, x − ∆x) +
∆x
ui
,
Ti (n − ∆n, x + ∆x) +
∆x
w
= congested
,
coupling condition .
G. Costeseque∗
, A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 16 / 23
Numerical scheme Lax-Hopf formulæ for the MCML model
Representation formulæ
(Coupling conditions)



T1(n, x) = max T1(n, x − ∆x) +
∆x
u1
, T1(n − ∆n, x + ∆x) +
∆x
w
,
T2(n∗
2, x) +
1
1 − δ
hB
T2(n, x) = max T2(n, x − ∆x) +
∆x
u2
, T2(n − ∆n, x + ∆x) +
∆x
w
,
T1(n∗
1, x) + H
T1(n∗
1, x) − T1(n∗
1, x − ∆x)
∆x
, I2
(1)
G. Costeseque∗
, A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 17 / 23
Numerical scheme Simulation with a mixed traffic
Distribution per class: class 1 = 60% and class 2 = 40%
Capacity drop: δ = 0.8
50 100 150 200 250 300 350 400 450 500 550
Time (s)
0
100
200
300
400
500
600
700
800
900
1000Space(m) (alpha, delta) = (0.6, 0.8)
T2
(n, x)
T1
(n, x)
G. Costeseque∗
, A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 18 / 23
Numerical scheme Simulation with a mixed traffic
50 100 150 200 250 300 350 400 450 500 550
Time (s)
0
100
200
300
400
500
600
700
800
900
1000
Space(m)
(alpha, delta) = (0.6, 0.8)
T
1
(n, x)
G. Costeseque∗
, A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 19 / 23
Numerical scheme Simulation with a mixed traffic
Individual travel times
20 40 60 80 100 120 140 160 180 200 220 240
Vehicle label
40
60
80
100
120
140
160
180
Traveltime(s)
Class 1
20 40 60 80 100 120 140 160
Vehicle label
40
60
80
100
120
140
160
180
Traveltime(s)
Class 2
G. Costeseque∗
, A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 20 / 23
Conclusion and perspectives
Outline
1 Theoretical background
2 Mesoscopic formulation of multiclass multilane models
3 Numerical scheme
4 Conclusion and perspectives
G. Costeseque∗
, A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 21 / 23
Conclusion and perspectives
A new event-based mesoscopic model for multi-class traffic flow on
multi-lane sections
Use of theory of moving bottlenecks
Among the perspectives:
Sensitivity analysis w.r.t. δ
Validation with real traffic data
Data assimilation for real-time applications
(→ Aur´elien’s presentation)
G. Costeseque∗
, A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 22 / 23
Conclusion and perspectives
Thanks for your attention
Any question?
guillaume.costeseque@inria.fr
G. Costeseque∗
, A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 23 / 23
References
Some references I
Laval, J. A., Leclercq, L., 2013. The Hamilton–Jacobi partial differential equation
and the three representations of traffic flow. Transportation Research Part B:
Methodological 52, 17–30.
Leclercq, L., B´ecarie, C., 2012. A meso LWR model designed for network
applications. In: Transportation Research Board 91th Annual Meeting. Vol. 118. p.
238.
G. Costeseque∗
, A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 24 / 23
Complements
Mesoscopic resolution of the LWR model
Speed
Time
(i − 1)Space
x
Spacing
Headway
t
(i) Introduce
the pace p :=
1
v
the headway h = H(p)
the passing time
T(n, x) :=
x
−∞
p(n, ξ)dξ.
∂nT = h, (headway)
∂x T = p, (pace)
[Leclercq and B´ecarie(2012), Laval and Leclercq(2013)]
G. Costeseque∗
, A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 25 / 23
Complements
Lax-Hopf formula
1
u
H
p
1
κ
1
C
1
wκ
Assume
H(p) =



1
κ
p +
1
wκ
, if p ≥
1
u
,
+∞, otherwise,
Proposition (Representation formula (Lax-Hopf))
The solution under smooth boundary conditions is given by
T(n, x) = max T(n, 0) +
x
u
= free flow
, T 0, x +
n
κ
+
n
wκ
= congested
. (2)
See [Laval and Leclercq(2013)]
G. Costeseque∗
, A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 26 / 23
Complements
Lax-Hopf formula
0
1
κ
x
n
n
x T(n, x)
T(n, 0)
T(0, x)
G. Costeseque∗
, A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 27 / 23
Complements
Math problem in Eulerian framework
Coupled ODE-PDE problem



∂tk + ∂x (Q(k)) = 0,
Q(k(t, ξN(t))) − ˙ξN(t)k(t, ξN (t)) ≤
N − 1
N
Q∗ ˙ξN(t) ,
˙ξN(t) = min {vb, V (k(t, ξN(t)+))} ,
(3)
with
k(0, x) = k0(x), on R,
ξN(0) = ξ0.
(4)
G. Costeseque∗
, A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 28 / 23
Complements
Math problem in Eulerian framework
Coupled ODE-PDE problem



∂tk + ∂x (Q(k)) = 0,
Q(k(t, ξN(t))) − ˙ξN(t)k(t, ξN (t)) ≤
N − 1
N
Q∗ ˙ξN(t) ,
˙ξN(t) = min {vb, V (k(t, ξN(t)+))} ,
(3)
with
k(0, x) = k0(x), on R,
ξN(0) = ξ0.
(4)
and Q∗ is the Legendre-Fenchel transform of Q
Q∗
(v) := sup
k∈Dom(Q)
{Q(k) − vk} .
G. Costeseque∗
, A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 28 / 23
Complements
Capacity drop parameter
ξN(t)
x
(U) (D)
vB
vB
k
Q
(D) (U)
kD (N − 1)κ Nκ
NC
u
(D)
(U)
δ = 1
δ = 0
vB
qD =
1
hB
R(vB, qD)
−w
−w
Case non−FIFO Case FIFO
(D)
(U)
(U) (D)
Flow
(MB)
(U)
pB =
1
vB
δ = 0 δ = 1
H
1
κ
1
u
hB =
1
qD
1
R(vB, qD)
vB
1
C
1
wκ
vB
R(vB, qD)
p
G. Costeseque∗
, A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 29 / 23
Complements
Mixed Neumann-Dirichlet boundary conditions



∂nTi (n, x0) = ˇgi (n), on [n0, +∞),
∂nTi (n, x1) = ˆgi (n), on [n0, +∞),
Ti (n0, x) = Gi (x), on [x0, x1],
for i ∈ {1, 2} . (5)
x
n
n0
x1
x0
Downstream Supply
Upstream Demand
First trajectory
G. Costeseque∗
, A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 30 / 23

More Related Content

What's hot

A T(1)-type theorem for entangled multilinear Calderon-Zygmund operators
A T(1)-type theorem for entangled multilinear Calderon-Zygmund operatorsA T(1)-type theorem for entangled multilinear Calderon-Zygmund operators
A T(1)-type theorem for entangled multilinear Calderon-Zygmund operatorsVjekoslavKovac1
 
On Twisted Paraproducts and some other Multilinear Singular Integrals
On Twisted Paraproducts and some other Multilinear Singular IntegralsOn Twisted Paraproducts and some other Multilinear Singular Integrals
On Twisted Paraproducts and some other Multilinear Singular IntegralsVjekoslavKovac1
 
Trilinear embedding for divergence-form operators
Trilinear embedding for divergence-form operatorsTrilinear embedding for divergence-form operators
Trilinear embedding for divergence-form operatorsVjekoslavKovac1
 
Micro to macro passage in traffic models including multi-anticipation effect
Micro to macro passage in traffic models including multi-anticipation effectMicro to macro passage in traffic models including multi-anticipation effect
Micro to macro passage in traffic models including multi-anticipation effectGuillaume Costeseque
 
Bellman functions and Lp estimates for paraproducts
Bellman functions and Lp estimates for paraproductsBellman functions and Lp estimates for paraproducts
Bellman functions and Lp estimates for paraproductsVjekoslavKovac1
 
Andreas Eberle
Andreas EberleAndreas Eberle
Andreas EberleBigMC
 
Multilinear singular integrals with entangled structure
Multilinear singular integrals with entangled structureMultilinear singular integrals with entangled structure
Multilinear singular integrals with entangled structureVjekoslavKovac1
 
Multilinear Twisted Paraproducts
Multilinear Twisted ParaproductsMultilinear Twisted Paraproducts
Multilinear Twisted ParaproductsVjekoslavKovac1
 
Quantitative norm convergence of some ergodic averages
Quantitative norm convergence of some ergodic averagesQuantitative norm convergence of some ergodic averages
Quantitative norm convergence of some ergodic averagesVjekoslavKovac1
 
Computational Information Geometry on Matrix Manifolds (ICTP 2013)
Computational Information Geometry on Matrix Manifolds (ICTP 2013)Computational Information Geometry on Matrix Manifolds (ICTP 2013)
Computational Information Geometry on Matrix Manifolds (ICTP 2013)Frank Nielsen
 
Hosoya polynomial, wiener and hyper wiener indices of some regular graphs
Hosoya polynomial, wiener and hyper wiener indices of some regular graphsHosoya polynomial, wiener and hyper wiener indices of some regular graphs
Hosoya polynomial, wiener and hyper wiener indices of some regular graphsieijjournal
 
On generalized dislocated quasi metrics
On generalized dislocated quasi metricsOn generalized dislocated quasi metrics
On generalized dislocated quasi metricsAlexander Decker
 
11.on generalized dislocated quasi metrics
11.on generalized dislocated quasi metrics11.on generalized dislocated quasi metrics
11.on generalized dislocated quasi metricsAlexander Decker
 

What's hot (20)

SASA 2016
SASA 2016SASA 2016
SASA 2016
 
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
 
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
 
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
 
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
 
A T(1)-type theorem for entangled multilinear Calderon-Zygmund operators
A T(1)-type theorem for entangled multilinear Calderon-Zygmund operatorsA T(1)-type theorem for entangled multilinear Calderon-Zygmund operators
A T(1)-type theorem for entangled multilinear Calderon-Zygmund operators
 
On Twisted Paraproducts and some other Multilinear Singular Integrals
On Twisted Paraproducts and some other Multilinear Singular IntegralsOn Twisted Paraproducts and some other Multilinear Singular Integrals
On Twisted Paraproducts and some other Multilinear Singular Integrals
 
Trilinear embedding for divergence-form operators
Trilinear embedding for divergence-form operatorsTrilinear embedding for divergence-form operators
Trilinear embedding for divergence-form operators
 
Micro to macro passage in traffic models including multi-anticipation effect
Micro to macro passage in traffic models including multi-anticipation effectMicro to macro passage in traffic models including multi-anticipation effect
Micro to macro passage in traffic models including multi-anticipation effect
 
CLIM Fall 2017 Course: Statistics for Climate Research, Estimating Curves and...
CLIM Fall 2017 Course: Statistics for Climate Research, Estimating Curves and...CLIM Fall 2017 Course: Statistics for Climate Research, Estimating Curves and...
CLIM Fall 2017 Course: Statistics for Climate Research, Estimating Curves and...
 
Bellman functions and Lp estimates for paraproducts
Bellman functions and Lp estimates for paraproductsBellman functions and Lp estimates for paraproducts
Bellman functions and Lp estimates for paraproducts
 
Andreas Eberle
Andreas EberleAndreas Eberle
Andreas Eberle
 
Multilinear singular integrals with entangled structure
Multilinear singular integrals with entangled structureMultilinear singular integrals with entangled structure
Multilinear singular integrals with entangled structure
 
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
 
Multilinear Twisted Paraproducts
Multilinear Twisted ParaproductsMultilinear Twisted Paraproducts
Multilinear Twisted Paraproducts
 
Quantitative norm convergence of some ergodic averages
Quantitative norm convergence of some ergodic averagesQuantitative norm convergence of some ergodic averages
Quantitative norm convergence of some ergodic averages
 
Computational Information Geometry on Matrix Manifolds (ICTP 2013)
Computational Information Geometry on Matrix Manifolds (ICTP 2013)Computational Information Geometry on Matrix Manifolds (ICTP 2013)
Computational Information Geometry on Matrix Manifolds (ICTP 2013)
 
Hosoya polynomial, wiener and hyper wiener indices of some regular graphs
Hosoya polynomial, wiener and hyper wiener indices of some regular graphsHosoya polynomial, wiener and hyper wiener indices of some regular graphs
Hosoya polynomial, wiener and hyper wiener indices of some regular graphs
 
On generalized dislocated quasi metrics
On generalized dislocated quasi metricsOn generalized dislocated quasi metrics
On generalized dislocated quasi metrics
 
11.on generalized dislocated quasi metrics
11.on generalized dislocated quasi metrics11.on generalized dislocated quasi metrics
11.on generalized dislocated quasi metrics
 

Similar to Mesoscopic multiclass traffic flow modeling on multi-lane sections

MCQMC 2020 talk: Importance Sampling for a Robust and Efficient Multilevel Mo...
MCQMC 2020 talk: Importance Sampling for a Robust and Efficient Multilevel Mo...MCQMC 2020 talk: Importance Sampling for a Robust and Efficient Multilevel Mo...
MCQMC 2020 talk: Importance Sampling for a Robust and Efficient Multilevel Mo...Chiheb Ben Hammouda
 
Computing f-Divergences and Distances of High-Dimensional Probability Density...
Computing f-Divergences and Distances of High-Dimensional Probability Density...Computing f-Divergences and Distances of High-Dimensional Probability Density...
Computing f-Divergences and Distances of High-Dimensional Probability Density...Alexander Litvinenko
 
Common fixed point and weak commuting mappings
Common fixed point and weak commuting mappingsCommon fixed point and weak commuting mappings
Common fixed point and weak commuting mappingsAlexander Decker
 
Low-rank tensor approximation (Introduction)
Low-rank tensor approximation (Introduction)Low-rank tensor approximation (Introduction)
Low-rank tensor approximation (Introduction)Alexander Litvinenko
 
The moving bottleneck problem: a Hamilton-Jacobi approach
The moving bottleneck problem: a Hamilton-Jacobi approachThe moving bottleneck problem: a Hamilton-Jacobi approach
The moving bottleneck problem: a Hamilton-Jacobi approachGuillaume Costeseque
 
orlando_fest
orlando_festorlando_fest
orlando_festAndy Hone
 
On estimating the integrated co volatility using
On estimating the integrated co volatility usingOn estimating the integrated co volatility using
On estimating the integrated co volatility usingkkislas
 
QMC Error SAMSI Tutorial Aug 2017
QMC Error SAMSI Tutorial Aug 2017QMC Error SAMSI Tutorial Aug 2017
QMC Error SAMSI Tutorial Aug 2017Fred J. Hickernell
 
International journal of engineering and mathematical modelling vol2 no3_2015_2
International journal of engineering and mathematical modelling vol2 no3_2015_2International journal of engineering and mathematical modelling vol2 no3_2015_2
International journal of engineering and mathematical modelling vol2 no3_2015_2IJEMM
 
Contribution à l'étude du trafic routier sur réseaux à l'aide des équations d...
Contribution à l'étude du trafic routier sur réseaux à l'aide des équations d...Contribution à l'étude du trafic routier sur réseaux à l'aide des équations d...
Contribution à l'étude du trafic routier sur réseaux à l'aide des équations d...Guillaume Costeseque
 
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...Chiheb Ben Hammouda
 
ON INCREASING OF DENSITY OF ELEMENTS IN A MULTIVIBRATOR ON BIPOLAR TRANSISTORS
ON INCREASING OF DENSITY OF ELEMENTS IN A MULTIVIBRATOR ON BIPOLAR TRANSISTORSON INCREASING OF DENSITY OF ELEMENTS IN A MULTIVIBRATOR ON BIPOLAR TRANSISTORS
ON INCREASING OF DENSITY OF ELEMENTS IN A MULTIVIBRATOR ON BIPOLAR TRANSISTORSijcsitcejournal
 
A common fixed point theorem in cone metric spaces
A common fixed point theorem in cone metric spacesA common fixed point theorem in cone metric spaces
A common fixed point theorem in cone metric spacesAlexander Decker
 
離散値ベクトル再構成手法とその通信応用
離散値ベクトル再構成手法とその通信応用離散値ベクトル再構成手法とその通信応用
離散値ベクトル再構成手法とその通信応用Ryo Hayakawa
 
A Note on “   Geraghty contraction type mappings”
A Note on “   Geraghty contraction type mappings”A Note on “   Geraghty contraction type mappings”
A Note on “   Geraghty contraction type mappings”IOSRJM
 
New Contraction Mappings in Dislocated Quasi - Metric Spaces
New Contraction Mappings in Dislocated Quasi - Metric SpacesNew Contraction Mappings in Dislocated Quasi - Metric Spaces
New Contraction Mappings in Dislocated Quasi - Metric SpacesIJERA Editor
 
Spillover Dynamics for Systemic Risk Measurement Using Spatial Financial Time...
Spillover Dynamics for Systemic Risk Measurement Using Spatial Financial Time...Spillover Dynamics for Systemic Risk Measurement Using Spatial Financial Time...
Spillover Dynamics for Systemic Risk Measurement Using Spatial Financial Time...SYRTO Project
 
SOLVING BVPs OF SINGULARLY PERTURBED DISCRETE SYSTEMS
SOLVING BVPs OF SINGULARLY PERTURBED DISCRETE SYSTEMSSOLVING BVPs OF SINGULARLY PERTURBED DISCRETE SYSTEMS
SOLVING BVPs OF SINGULARLY PERTURBED DISCRETE SYSTEMSTahia ZERIZER
 

Similar to Mesoscopic multiclass traffic flow modeling on multi-lane sections (20)

MCQMC 2020 talk: Importance Sampling for a Robust and Efficient Multilevel Mo...
MCQMC 2020 talk: Importance Sampling for a Robust and Efficient Multilevel Mo...MCQMC 2020 talk: Importance Sampling for a Robust and Efficient Multilevel Mo...
MCQMC 2020 talk: Importance Sampling for a Robust and Efficient Multilevel Mo...
 
Computing f-Divergences and Distances of High-Dimensional Probability Density...
Computing f-Divergences and Distances of High-Dimensional Probability Density...Computing f-Divergences and Distances of High-Dimensional Probability Density...
Computing f-Divergences and Distances of High-Dimensional Probability Density...
 
Common fixed point and weak commuting mappings
Common fixed point and weak commuting mappingsCommon fixed point and weak commuting mappings
Common fixed point and weak commuting mappings
 
Low-rank tensor approximation (Introduction)
Low-rank tensor approximation (Introduction)Low-rank tensor approximation (Introduction)
Low-rank tensor approximation (Introduction)
 
The moving bottleneck problem: a Hamilton-Jacobi approach
The moving bottleneck problem: a Hamilton-Jacobi approachThe moving bottleneck problem: a Hamilton-Jacobi approach
The moving bottleneck problem: a Hamilton-Jacobi approach
 
orlando_fest
orlando_festorlando_fest
orlando_fest
 
On estimating the integrated co volatility using
On estimating the integrated co volatility usingOn estimating the integrated co volatility using
On estimating the integrated co volatility using
 
QMC Error SAMSI Tutorial Aug 2017
QMC Error SAMSI Tutorial Aug 2017QMC Error SAMSI Tutorial Aug 2017
QMC Error SAMSI Tutorial Aug 2017
 
International journal of engineering and mathematical modelling vol2 no3_2015_2
International journal of engineering and mathematical modelling vol2 no3_2015_2International journal of engineering and mathematical modelling vol2 no3_2015_2
International journal of engineering and mathematical modelling vol2 no3_2015_2
 
Contribution à l'étude du trafic routier sur réseaux à l'aide des équations d...
Contribution à l'étude du trafic routier sur réseaux à l'aide des équations d...Contribution à l'étude du trafic routier sur réseaux à l'aide des équations d...
Contribution à l'étude du trafic routier sur réseaux à l'aide des équations d...
 
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...
Seminar Talk: Multilevel Hybrid Split Step Implicit Tau-Leap for Stochastic R...
 
Damiano Pasetto
Damiano PasettoDamiano Pasetto
Damiano Pasetto
 
Climate Extremes Workshop - Extreme Value Theory and the Re-assessment in th...
Climate Extremes Workshop -  Extreme Value Theory and the Re-assessment in th...Climate Extremes Workshop -  Extreme Value Theory and the Re-assessment in th...
Climate Extremes Workshop - Extreme Value Theory and the Re-assessment in th...
 
ON INCREASING OF DENSITY OF ELEMENTS IN A MULTIVIBRATOR ON BIPOLAR TRANSISTORS
ON INCREASING OF DENSITY OF ELEMENTS IN A MULTIVIBRATOR ON BIPOLAR TRANSISTORSON INCREASING OF DENSITY OF ELEMENTS IN A MULTIVIBRATOR ON BIPOLAR TRANSISTORS
ON INCREASING OF DENSITY OF ELEMENTS IN A MULTIVIBRATOR ON BIPOLAR TRANSISTORS
 
A common fixed point theorem in cone metric spaces
A common fixed point theorem in cone metric spacesA common fixed point theorem in cone metric spaces
A common fixed point theorem in cone metric spaces
 
離散値ベクトル再構成手法とその通信応用
離散値ベクトル再構成手法とその通信応用離散値ベクトル再構成手法とその通信応用
離散値ベクトル再構成手法とその通信応用
 
A Note on “   Geraghty contraction type mappings”
A Note on “   Geraghty contraction type mappings”A Note on “   Geraghty contraction type mappings”
A Note on “   Geraghty contraction type mappings”
 
New Contraction Mappings in Dislocated Quasi - Metric Spaces
New Contraction Mappings in Dislocated Quasi - Metric SpacesNew Contraction Mappings in Dislocated Quasi - Metric Spaces
New Contraction Mappings in Dislocated Quasi - Metric Spaces
 
Spillover Dynamics for Systemic Risk Measurement Using Spatial Financial Time...
Spillover Dynamics for Systemic Risk Measurement Using Spatial Financial Time...Spillover Dynamics for Systemic Risk Measurement Using Spatial Financial Time...
Spillover Dynamics for Systemic Risk Measurement Using Spatial Financial Time...
 
SOLVING BVPs OF SINGULARLY PERTURBED DISCRETE SYSTEMS
SOLVING BVPs OF SINGULARLY PERTURBED DISCRETE SYSTEMSSOLVING BVPs OF SINGULARLY PERTURBED DISCRETE SYSTEMS
SOLVING BVPs OF SINGULARLY PERTURBED DISCRETE SYSTEMS
 

More from Guillaume Costeseque

Analyse des données du Registre de preuve de covoiturage à l'échelle régional...
Analyse des données du Registre de preuve de covoiturage à l'échelle régional...Analyse des données du Registre de preuve de covoiturage à l'échelle régional...
Analyse des données du Registre de preuve de covoiturage à l'échelle régional...Guillaume Costeseque
 
Nouvelles mobilités, nouveaux usages, évolutions des marchés
Nouvelles mobilités, nouveaux usages, évolutions des marchésNouvelles mobilités, nouveaux usages, évolutions des marchés
Nouvelles mobilités, nouveaux usages, évolutions des marchésGuillaume Costeseque
 
Schéma numérique basé sur une équation d'Hamilton-Jacobi : modélisation des i...
Schéma numérique basé sur une équation d'Hamilton-Jacobi : modélisation des i...Schéma numérique basé sur une équation d'Hamilton-Jacobi : modélisation des i...
Schéma numérique basé sur une équation d'Hamilton-Jacobi : modélisation des i...Guillaume Costeseque
 
A multi-objective optimization framework for a second order traffic flow mode...
A multi-objective optimization framework for a second order traffic flow mode...A multi-objective optimization framework for a second order traffic flow mode...
A multi-objective optimization framework for a second order traffic flow mode...Guillaume Costeseque
 
Evaluation d'une navette autonome à Nantes 2019
Evaluation d'une navette autonome à Nantes 2019Evaluation d'une navette autonome à Nantes 2019
Evaluation d'une navette autonome à Nantes 2019Guillaume Costeseque
 
TramOpt: plateforme logicielle pour l'optimisation du trafic routier
TramOpt: plateforme logicielle pour l'optimisation du trafic routierTramOpt: plateforme logicielle pour l'optimisation du trafic routier
TramOpt: plateforme logicielle pour l'optimisation du trafic routierGuillaume Costeseque
 
A new solver for the ARZ traffic flow model on a junction
A new solver for the ARZ traffic flow model on a junctionA new solver for the ARZ traffic flow model on a junction
A new solver for the ARZ traffic flow model on a junctionGuillaume Costeseque
 
Some recent developments in the traffic flow variational formulation
Some recent developments in the traffic flow variational formulationSome recent developments in the traffic flow variational formulation
Some recent developments in the traffic flow variational formulationGuillaume Costeseque
 
Representation formula for traffic flow estimation on a network
Representation formula for traffic flow estimation on a networkRepresentation formula for traffic flow estimation on a network
Representation formula for traffic flow estimation on a networkGuillaume Costeseque
 
Hamilton-Jacobi approach for second order traffic flow models
Hamilton-Jacobi approach for second order traffic flow modelsHamilton-Jacobi approach for second order traffic flow models
Hamilton-Jacobi approach for second order traffic flow modelsGuillaume Costeseque
 
Numerical approach for Hamilton-Jacobi equations on a network: application to...
Numerical approach for Hamilton-Jacobi equations on a network: application to...Numerical approach for Hamilton-Jacobi equations on a network: application to...
Numerical approach for Hamilton-Jacobi equations on a network: application to...Guillaume Costeseque
 
Numerical methods for variational principles in traffic
Numerical methods for variational principles in trafficNumerical methods for variational principles in traffic
Numerical methods for variational principles in trafficGuillaume Costeseque
 
Intersection modeling using a convergent scheme based on Hamilton-Jacobi equa...
Intersection modeling using a convergent scheme based on Hamilton-Jacobi equa...Intersection modeling using a convergent scheme based on Hamilton-Jacobi equa...
Intersection modeling using a convergent scheme based on Hamilton-Jacobi equa...Guillaume Costeseque
 
Hamilton-Jacobi equations and Lax-Hopf formulae for traffic flow modeling
Hamilton-Jacobi equations and Lax-Hopf formulae for traffic flow modelingHamilton-Jacobi equations and Lax-Hopf formulae for traffic flow modeling
Hamilton-Jacobi equations and Lax-Hopf formulae for traffic flow modelingGuillaume Costeseque
 
Hamilton-Jacobi equation on networks: generalized Lax-Hopf formula
Hamilton-Jacobi equation on networks: generalized Lax-Hopf formulaHamilton-Jacobi equation on networks: generalized Lax-Hopf formula
Hamilton-Jacobi equation on networks: generalized Lax-Hopf formulaGuillaume Costeseque
 
Road junction modeling using a scheme based on Hamilton-Jacobi equations
Road junction modeling using a scheme based on Hamilton-Jacobi equationsRoad junction modeling using a scheme based on Hamilton-Jacobi equations
Road junction modeling using a scheme based on Hamilton-Jacobi equationsGuillaume Costeseque
 
The impact of source terms in the variational representation of traffic flow
The impact of source terms in the variational representation of traffic flowThe impact of source terms in the variational representation of traffic flow
The impact of source terms in the variational representation of traffic flowGuillaume Costeseque
 
Second order traffic flow models on networks
Second order traffic flow models on networksSecond order traffic flow models on networks
Second order traffic flow models on networksGuillaume Costeseque
 

More from Guillaume Costeseque (20)

Analyse des données du Registre de preuve de covoiturage à l'échelle régional...
Analyse des données du Registre de preuve de covoiturage à l'échelle régional...Analyse des données du Registre de preuve de covoiturage à l'échelle régional...
Analyse des données du Registre de preuve de covoiturage à l'échelle régional...
 
Nouvelles mobilités, nouveaux usages, évolutions des marchés
Nouvelles mobilités, nouveaux usages, évolutions des marchésNouvelles mobilités, nouveaux usages, évolutions des marchés
Nouvelles mobilités, nouveaux usages, évolutions des marchés
 
Cours its-ecn-2021
Cours its-ecn-2021Cours its-ecn-2021
Cours its-ecn-2021
 
Schéma numérique basé sur une équation d'Hamilton-Jacobi : modélisation des i...
Schéma numérique basé sur une équation d'Hamilton-Jacobi : modélisation des i...Schéma numérique basé sur une équation d'Hamilton-Jacobi : modélisation des i...
Schéma numérique basé sur une équation d'Hamilton-Jacobi : modélisation des i...
 
Cours its-ecn-2020
Cours its-ecn-2020Cours its-ecn-2020
Cours its-ecn-2020
 
A multi-objective optimization framework for a second order traffic flow mode...
A multi-objective optimization framework for a second order traffic flow mode...A multi-objective optimization framework for a second order traffic flow mode...
A multi-objective optimization framework for a second order traffic flow mode...
 
Evaluation d'une navette autonome à Nantes 2019
Evaluation d'une navette autonome à Nantes 2019Evaluation d'une navette autonome à Nantes 2019
Evaluation d'une navette autonome à Nantes 2019
 
TramOpt: plateforme logicielle pour l'optimisation du trafic routier
TramOpt: plateforme logicielle pour l'optimisation du trafic routierTramOpt: plateforme logicielle pour l'optimisation du trafic routier
TramOpt: plateforme logicielle pour l'optimisation du trafic routier
 
A new solver for the ARZ traffic flow model on a junction
A new solver for the ARZ traffic flow model on a junctionA new solver for the ARZ traffic flow model on a junction
A new solver for the ARZ traffic flow model on a junction
 
Some recent developments in the traffic flow variational formulation
Some recent developments in the traffic flow variational formulationSome recent developments in the traffic flow variational formulation
Some recent developments in the traffic flow variational formulation
 
Representation formula for traffic flow estimation on a network
Representation formula for traffic flow estimation on a networkRepresentation formula for traffic flow estimation on a network
Representation formula for traffic flow estimation on a network
 
Hamilton-Jacobi approach for second order traffic flow models
Hamilton-Jacobi approach for second order traffic flow modelsHamilton-Jacobi approach for second order traffic flow models
Hamilton-Jacobi approach for second order traffic flow models
 
Numerical approach for Hamilton-Jacobi equations on a network: application to...
Numerical approach for Hamilton-Jacobi equations on a network: application to...Numerical approach for Hamilton-Jacobi equations on a network: application to...
Numerical approach for Hamilton-Jacobi equations on a network: application to...
 
Numerical methods for variational principles in traffic
Numerical methods for variational principles in trafficNumerical methods for variational principles in traffic
Numerical methods for variational principles in traffic
 
Intersection modeling using a convergent scheme based on Hamilton-Jacobi equa...
Intersection modeling using a convergent scheme based on Hamilton-Jacobi equa...Intersection modeling using a convergent scheme based on Hamilton-Jacobi equa...
Intersection modeling using a convergent scheme based on Hamilton-Jacobi equa...
 
Hamilton-Jacobi equations and Lax-Hopf formulae for traffic flow modeling
Hamilton-Jacobi equations and Lax-Hopf formulae for traffic flow modelingHamilton-Jacobi equations and Lax-Hopf formulae for traffic flow modeling
Hamilton-Jacobi equations and Lax-Hopf formulae for traffic flow modeling
 
Hamilton-Jacobi equation on networks: generalized Lax-Hopf formula
Hamilton-Jacobi equation on networks: generalized Lax-Hopf formulaHamilton-Jacobi equation on networks: generalized Lax-Hopf formula
Hamilton-Jacobi equation on networks: generalized Lax-Hopf formula
 
Road junction modeling using a scheme based on Hamilton-Jacobi equations
Road junction modeling using a scheme based on Hamilton-Jacobi equationsRoad junction modeling using a scheme based on Hamilton-Jacobi equations
Road junction modeling using a scheme based on Hamilton-Jacobi equations
 
The impact of source terms in the variational representation of traffic flow
The impact of source terms in the variational representation of traffic flowThe impact of source terms in the variational representation of traffic flow
The impact of source terms in the variational representation of traffic flow
 
Second order traffic flow models on networks
Second order traffic flow models on networksSecond order traffic flow models on networks
Second order traffic flow models on networks
 

Recently uploaded

Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Dr.Costas Sachpazis
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Call Girls in Nagpur High Profile
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINESIVASHANKAR N
 
the ladakh protest in leh ladakh 2024 sonam wangchuk.pptx
the ladakh protest in leh ladakh 2024 sonam wangchuk.pptxthe ladakh protest in leh ladakh 2024 sonam wangchuk.pptx
the ladakh protest in leh ladakh 2024 sonam wangchuk.pptxhumanexperienceaaa
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSISrknatarajan
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxpranjaldaimarysona
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSRajkumarAkumalla
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...
(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...
(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...ranjana rawat
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Dr.Costas Sachpazis
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSSIVASHANKAR N
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...Soham Mondal
 
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...ranjana rawat
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escortsranjana rawat
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).pptssuser5c9d4b1
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCall Girls in Nagpur High Profile
 

Recently uploaded (20)

Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
Sheet Pile Wall Design and Construction: A Practical Guide for Civil Engineer...
 
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
 
Roadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and RoutesRoadmap to Membership of RICS - Pathways and Routes
Roadmap to Membership of RICS - Pathways and Routes
 
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...Top Rated  Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
Top Rated Pune Call Girls Budhwar Peth ⟟ 6297143586 ⟟ Call Me For Genuine Se...
 
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINEMANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
MANUFACTURING PROCESS-II UNIT-2 LATHE MACHINE
 
the ladakh protest in leh ladakh 2024 sonam wangchuk.pptx
the ladakh protest in leh ladakh 2024 sonam wangchuk.pptxthe ladakh protest in leh ladakh 2024 sonam wangchuk.pptx
the ladakh protest in leh ladakh 2024 sonam wangchuk.pptx
 
UNIT-III FMM. DIMENSIONAL ANALYSIS
UNIT-III FMM.        DIMENSIONAL ANALYSISUNIT-III FMM.        DIMENSIONAL ANALYSIS
UNIT-III FMM. DIMENSIONAL ANALYSIS
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptx
 
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
 
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICSHARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
HARDNESS, FRACTURE TOUGHNESS AND STRENGTH OF CERAMICS
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
 
(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...
(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...
(TARA) Talegaon Dabhade Call Girls Just Call 7001035870 [ Cash on Delivery ] ...
 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
 
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
 
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service NashikCollege Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
College Call Girls Nashik Nehal 7001305949 Independent Escort Service Nashik
 

Mesoscopic multiclass traffic flow modeling on multi-lane sections

  • 1. Mesoscopic multiclass traffic flow modeling on multi-lane sections Guillaume Costeseque∗, Aur´elien Duret Inria Sophia-Antipolis M´editerran´ee & Universit´e de Lyon-IFSTTAR-ENTPE, LICIT TRB Annual Meeting 2016, Washington DC January 12, 2016 G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 1 / 23
  • 2. Motivations Example: congested off-ramp * G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 2 / 23
  • 3. Motivations Example: congested off-ramp * Requirements for modeling the upstream section: 1 multiclass 2 non-FIFO * [Richmond Bridge, c Bay Area Council] G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 2 / 23
  • 4. Motivations Outline 1 Theoretical background 2 Mesoscopic formulation of multiclass multilane models 3 Numerical scheme 4 Conclusion and perspectives G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 3 / 23
  • 5. Theoretical background Outline 1 Theoretical background 2 Mesoscopic formulation of multiclass multilane models 3 Numerical scheme 4 Conclusion and perspectives G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 4 / 23
  • 6. Theoretical background Macroscopic models Three representations of traffic flow Moskowitz’ surface Flow x t N x See also [Moskowitz(1959), Makigami et al(1971), Laval and Leclercq(2013)] G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 5 / 23
  • 7. Theoretical background Mesoscopic resolution Mesoscopic resolution of the LWR model Lagrangian-Space Eulerian Meso Macro n − x t − x CL Variables Pace p := 1 v Density k Headway h := 1 q = H(p) Flow q = Q(k) Equation ∂np − ∂x H(p) = 0 ∂tk + ∂x Q(k) = 0 HJ Variable Passing time T Label N T(n, x) = x −∞ p(n, ξ)dξ N(t, x) = +∞ x k(t, ξ)dξ Equation ∂nT − H (∂x T) = 0 ∂tN − Q (−∂x N) = 0 G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 6 / 23
  • 8. Theoretical background Mesoscopic resolution Mesoscopic: what for? Strengths 1 Consistent with micro and macro representations 2 Large scale networks // spatial discontinuities OK 3 Data assimilation (from Eulerian and Lagrangian sensors) Weakness 1 Single pipe 2 Mono class 3 No capacity drop at junctions Developments 1 Multilane and multiclass approach 2 Relaxed FIFO assumption G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 7 / 23
  • 9. Theoretical background Mesoscopic resolution Mesoscopic: what for? Strengths 1 Consistent with micro and macro representations 2 Large scale networks // spatial discontinuities OK 3 Data assimilation (from Eulerian and Lagrangian sensors) Weakness 1 Single pipe 2 Mono class 3 No capacity drop at junctions Developments 1 Multilane and multiclass approach 2 Relaxed FIFO assumption −→ Moving bottleneck theory G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 7 / 23
  • 10. Theoretical background The moving bottleneck theory Notations (Eulerian) vB −w −w vB k Q (N − 1) lanes N lanes R(vB, qD) (D) (U) ξN(t) x (U) (D) vB kD (N − 1)κ Nκ qD NC Q∗ (vB) u G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 8 / 23
  • 11. Mesoscopic formulation of multiclass multilane models Outline 1 Theoretical background 2 Mesoscopic formulation of multiclass multilane models 3 Numerical scheme 4 Conclusion and perspectives G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 9 / 23
  • 12. Mesoscopic formulation of multiclass multilane models Settings 0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2 Density (veh/m) 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 Flow(veh/s) Fundamental Diagrams Rabbits Slugs 0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 Pace (s/m) 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6 2.8 3 Headway(s/veh) Fundamental Diagrams Rabbits Slugs Stretch of road [x0, x1] (diverge at x1) composed by N separate lanes Two classes of users: “rabbits” (I = I1) and “slugs” (I = I2). Triangular class-dependent headway-pace FD H : (p, I) → H(p, I) G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 10 / 23
  • 13. Mesoscopic formulation of multiclass multilane models Capacity drop Capacity drop parameter vB k Q (D) (U) kD (N − 1)κ Nκ NC (D) (U) δ = 1 δ = 0 vB qD = 1 hB R(vB, qD) Introduce parameter δ ∈ [0, 1] If δ = 0, strictly non-FIFO If 0 < δ < 1, reduction of the passing rate If δ = 1, strictly FIFO G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 11 / 23
  • 14. Mesoscopic formulation of multiclass multilane models Capacity drop Time (s) 40 60 80 100 120 140 160 180 Space(m) 0 100 200 300 400 500 600 700 800 900 1000 Trajectories T2 (n, x) T1 (n, x) Time (s) 40 60 80 100 120 140 160 180 Space(m) 0 100 200 300 400 500 600 700 800 900 1000 Trajectories T2 (n, x) T1 (n, x) δ = 0 δ = 0.4 Time (s) 40 60 80 100 120 140 160 180 Space(m) 0 100 200 300 400 500 600 700 800 900 1000 Trajectories T2 (n, x) T 1 (n, x) Time (s) 40 60 80 100 120 140 160 180 Space(m) 0 100 200 300 400 500 600 700 800 900 1000 Trajectories T2 (n, x) T 1 (n, x) δ = 0.6 δ = 1 (FIFO case) G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 12 / 23
  • 15. Mesoscopic formulation of multiclass multilane models Expression of the MCML model System of coupled HJ PDEs ∂nT1 − H (∂x T1, I1) = 0, (rabbits) ∂nT2 − H (∂x T2, I2) = 0, (slugs) G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 13 / 23
  • 16. Mesoscopic formulation of multiclass multilane models Expression of the MCML model System of coupled HJ PDEs    ∂nT1 − H (∂x T1, I1) = 0, (rabbits) ∂nT2 − H (∂x T2, I2) = 0, (slugs) H (∂x T1(n, ξ(n)), I1) − (1 − δ) ˙ξ (n∗ 2) ∂x T1(n, ξ(n)) ≥ N N − 1 H⊠ (1 − δ) ˙ξ (n∗ 2) , I1 , (2 → 1) G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 13 / 23
  • 17. Mesoscopic formulation of multiclass multilane models Expression of the MCML model System of coupled HJ PDEs    ∂nT1 − H (∂x T1, I1) = 0, (rabbits) ∂nT2 − H (∂x T2, I2) = 0, (slugs) H (∂x T1(n, ξ(n)), I1) − (1 − δ) ˙ξ (n∗ 2) ∂x T1(n, ξ(n)) ≥ N N − 1 H⊠ (1 − δ) ˙ξ (n∗ 2) , I1 , (2 → 1) where H⊠ (s, I) = inf p∈Dom(H(·,I)) {H(p, I) − sp} G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 13 / 23
  • 18. Mesoscopic formulation of multiclass multilane models Expression of the MCML model System of coupled HJ PDEs    ∂nT1 − H (∂x T1, I1) = 0, (rabbits) ∂nT2 − H (∂x T2, I2) = 0, (slugs) H (∂x T1(n, ξ(n)), I1) − (1 − δ) ˙ξ (n∗ 2) ∂x T1(n, ξ(n)) ≥ N N − 1 H⊠ (1 − δ) ˙ξ (n∗ 2) , I1 , (2 → 1) where H⊠ (s, I) = inf p∈Dom(H(·,I)) {H(p, I) − sp} and n∗ i = the nearest leader from class i for vehicle n of class j = i G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 13 / 23
  • 19. Mesoscopic formulation of multiclass multilane models Expression of the MCML model System of coupled HJ PDEs    ∂nT1 − H (∂x T1, I1) = 0, (rabbits) ∂nT2 − H (∂x T2, I2) = 0, (slugs) H (∂x T1(n, ξ(n)), I1) − (1 − δ) ˙ξ (n∗ 2) ∂x T1(n, ξ(n)) ≥ N N − 1 H⊠ (1 − δ) ˙ξ (n∗ 2) , I1 , (2 → 1) T2 (n, ξ(n)) ≥ T1(n∗ 1, ξ(n)) + H (∂x T1(n∗ 1, ξ(n)), I2) , (1 → 2) where H⊠ (s, I) = inf p∈Dom(H(·,I)) {H(p, I) − sp} and n∗ i = the nearest leader from class i for vehicle n of class j = i G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 13 / 23
  • 20. Numerical scheme Outline 1 Theoretical background 2 Mesoscopic formulation of multiclass multilane models 3 Numerical scheme 4 Conclusion and perspectives G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 14 / 23
  • 21. Numerical scheme Lax-Hopf formula for the meso LWR model Lax-Hopf formula & Dynamic Programming Finite steps (∆n, ∆x) ∆n = κ ∆x. n x + ∆x x − ∆x n − ∆n x 1 κ x n ∆x ∆n T(n, x) Solution reads: T(n, x) = max = free flow T(n, x − ∆x) + ∆x u , T (n − ∆n, x + ∆x) + ∆x w = congested . See [Laval and Leclercq(2013)] G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 15 / 23
  • 22. Numerical scheme Lax-Hopf formulæ for the MCML model Representation formulæ ∆n n x + ∆x x − ∆x n − ∆n x 1 κ ξT (n) Ti(n, x) ∆x x n New supply constraint: Ti (n, x) = max = free flow Ti (n, x − ∆x) + ∆x ui , Ti (n − ∆n, x + ∆x) + ∆x w = congested , coupling condition . G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 16 / 23
  • 23. Numerical scheme Lax-Hopf formulæ for the MCML model Representation formulæ (Coupling conditions)    T1(n, x) = max T1(n, x − ∆x) + ∆x u1 , T1(n − ∆n, x + ∆x) + ∆x w , T2(n∗ 2, x) + 1 1 − δ hB T2(n, x) = max T2(n, x − ∆x) + ∆x u2 , T2(n − ∆n, x + ∆x) + ∆x w , T1(n∗ 1, x) + H T1(n∗ 1, x) − T1(n∗ 1, x − ∆x) ∆x , I2 (1) G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 17 / 23
  • 24. Numerical scheme Simulation with a mixed traffic Distribution per class: class 1 = 60% and class 2 = 40% Capacity drop: δ = 0.8 50 100 150 200 250 300 350 400 450 500 550 Time (s) 0 100 200 300 400 500 600 700 800 900 1000Space(m) (alpha, delta) = (0.6, 0.8) T2 (n, x) T1 (n, x) G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 18 / 23
  • 25. Numerical scheme Simulation with a mixed traffic 50 100 150 200 250 300 350 400 450 500 550 Time (s) 0 100 200 300 400 500 600 700 800 900 1000 Space(m) (alpha, delta) = (0.6, 0.8) T 1 (n, x) G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 19 / 23
  • 26. Numerical scheme Simulation with a mixed traffic Individual travel times 20 40 60 80 100 120 140 160 180 200 220 240 Vehicle label 40 60 80 100 120 140 160 180 Traveltime(s) Class 1 20 40 60 80 100 120 140 160 Vehicle label 40 60 80 100 120 140 160 180 Traveltime(s) Class 2 G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 20 / 23
  • 27. Conclusion and perspectives Outline 1 Theoretical background 2 Mesoscopic formulation of multiclass multilane models 3 Numerical scheme 4 Conclusion and perspectives G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 21 / 23
  • 28. Conclusion and perspectives A new event-based mesoscopic model for multi-class traffic flow on multi-lane sections Use of theory of moving bottlenecks Among the perspectives: Sensitivity analysis w.r.t. δ Validation with real traffic data Data assimilation for real-time applications (→ Aur´elien’s presentation) G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 22 / 23
  • 29. Conclusion and perspectives Thanks for your attention Any question? guillaume.costeseque@inria.fr G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 23 / 23
  • 30. References Some references I Laval, J. A., Leclercq, L., 2013. The Hamilton–Jacobi partial differential equation and the three representations of traffic flow. Transportation Research Part B: Methodological 52, 17–30. Leclercq, L., B´ecarie, C., 2012. A meso LWR model designed for network applications. In: Transportation Research Board 91th Annual Meeting. Vol. 118. p. 238. G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 24 / 23
  • 31. Complements Mesoscopic resolution of the LWR model Speed Time (i − 1)Space x Spacing Headway t (i) Introduce the pace p := 1 v the headway h = H(p) the passing time T(n, x) := x −∞ p(n, ξ)dξ. ∂nT = h, (headway) ∂x T = p, (pace) [Leclercq and B´ecarie(2012), Laval and Leclercq(2013)] G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 25 / 23
  • 32. Complements Lax-Hopf formula 1 u H p 1 κ 1 C 1 wκ Assume H(p) =    1 κ p + 1 wκ , if p ≥ 1 u , +∞, otherwise, Proposition (Representation formula (Lax-Hopf)) The solution under smooth boundary conditions is given by T(n, x) = max T(n, 0) + x u = free flow , T 0, x + n κ + n wκ = congested . (2) See [Laval and Leclercq(2013)] G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 26 / 23
  • 33. Complements Lax-Hopf formula 0 1 κ x n n x T(n, x) T(n, 0) T(0, x) G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 27 / 23
  • 34. Complements Math problem in Eulerian framework Coupled ODE-PDE problem    ∂tk + ∂x (Q(k)) = 0, Q(k(t, ξN(t))) − ˙ξN(t)k(t, ξN (t)) ≤ N − 1 N Q∗ ˙ξN(t) , ˙ξN(t) = min {vb, V (k(t, ξN(t)+))} , (3) with k(0, x) = k0(x), on R, ξN(0) = ξ0. (4) G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 28 / 23
  • 35. Complements Math problem in Eulerian framework Coupled ODE-PDE problem    ∂tk + ∂x (Q(k)) = 0, Q(k(t, ξN(t))) − ˙ξN(t)k(t, ξN (t)) ≤ N − 1 N Q∗ ˙ξN(t) , ˙ξN(t) = min {vb, V (k(t, ξN(t)+))} , (3) with k(0, x) = k0(x), on R, ξN(0) = ξ0. (4) and Q∗ is the Legendre-Fenchel transform of Q Q∗ (v) := sup k∈Dom(Q) {Q(k) − vk} . G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 28 / 23
  • 36. Complements Capacity drop parameter ξN(t) x (U) (D) vB vB k Q (D) (U) kD (N − 1)κ Nκ NC u (D) (U) δ = 1 δ = 0 vB qD = 1 hB R(vB, qD) −w −w Case non−FIFO Case FIFO (D) (U) (U) (D) Flow (MB) (U) pB = 1 vB δ = 0 δ = 1 H 1 κ 1 u hB = 1 qD 1 R(vB, qD) vB 1 C 1 wκ vB R(vB, qD) p G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 29 / 23
  • 37. Complements Mixed Neumann-Dirichlet boundary conditions    ∂nTi (n, x0) = ˇgi (n), on [n0, +∞), ∂nTi (n, x1) = ˆgi (n), on [n0, +∞), Ti (n0, x) = Gi (x), on [x0, x1], for i ∈ {1, 2} . (5) x n n0 x1 x0 Downstream Supply Upstream Demand First trajectory G. Costeseque∗ , A. Duret Meso Multiclass HJ model Washington DC, Jan. 12 2016 30 / 23