SlideShare a Scribd company logo
1 of 40
Download to read offline
Sch´ema num´erique bas´e sur une ´equation
d’Hamilton-Jacobi: mod´elisation des intersections
Guillaume Costeseque
Joint work with R. Monneau & JP. Lebacque
Ecole des Ponts ParisTech, CERMICS
& IFSTTAR, GRETTIA
GdT ”Math´ematiques pour la mod´elisation des Transports”
29 Novembre 2012 - Marne-la-Vall´ee
G. Costeseque (Universit´e ParisEst) D5 Traffic flow models Marne-la-Vall´ee, Nov. 2012 1 / 40
Outline
1 Introduction
2 Proposed intersection model
3 Numerical simulations
4 Concluding remarks
G. Costeseque (Universit´e ParisEst) D5 Traffic flow models Marne-la-Vall´ee, Nov. 2012 2 / 40
Introduction
Outline
1 Introduction
Traffic flow modelling
Link models
Overview of intersection modelling
2 Proposed intersection model
3 Numerical simulations
4 Concluding remarks
G. Costeseque (Universit´e ParisEst) D5 Traffic flow models Marne-la-Vall´ee, Nov. 2012 3 / 40
Introduction Traffic flow modelling
Objectives
From Papageorgiou and Gentile keynote speeches,
Dynamic Traffic Assignment (DTA) models useful for:
Transport planning (off-line)
Traffic monitoring and control (real-time)
Dynamic Loading Network (DLN) model =
Link model (propagate flows on arcs)
+ Node model (manage flows at intersection)
G. Costeseque (Universit´e ParisEst) D5 Traffic flow models Marne-la-Vall´ee, Nov. 2012 4 / 40
Introduction Link models
LWR model
Introduced by Lighhill, Whitham (1955) and Richards (1956):
Flow dynamics analogy: Kinematic Wave (KW) theory
Conservation law for the vehicles densities:
ρt(x, t) + (Q(x, t))x = 0
Q(x, t) = ρ(x, t)V (x, t)
(1.1)
Assumption of equilibrium & Fundamental Diagram (FD) :
V (x, t) = Ve (ρ(x, t)) (1.2)
x x + ∆x
ρ(x, t)∆x
Q(x, t)∆t Q(x + ∆x, t)∆t
Speed V
ρcrit ρmax
Density ρ
Vmax
Vcrit
G. Costeseque (Universit´e ParisEst) D5 Traffic flow models Marne-la-Vall´ee, Nov. 2012 5 / 40
Introduction Overview of intersection modelling
Intersection modelling
Main congestion points on networks
Still an interesting research point
Jn+l
Jn+2
Jj
Jn+m
J1
Ji
Jn
Many approaches: point-wise VS spatial extended models, equilibrium
VS optimization models, with or without internal states etc.
[Lebacque and Khoshyaran, (2002, 2005, 2009)]
State-of-the-art review:
See [Tamp`ere, Corthout, Catterysse, Immers (2011)]
and [Fl¨otter¨od and Rohde (2011)]
G. Costeseque (Universit´e ParisEst) D5 Traffic flow models Marne-la-Vall´ee, Nov. 2012 6 / 40
Proposed intersection model
Outline
1 Introduction
2 Proposed intersection model
Hamilton-Jacobi equation
Numerical Scheme
Some mathematical results
3 Numerical simulations
4 Concluding remarks
G. Costeseque (Universit´e ParisEst) D5 Traffic flow models Marne-la-Vall´ee, Nov. 2012 7 / 40
Proposed intersection model Hamilton-Jacobi equation
HJ equation: settings
Point-wise intersection without internal state
No distinction on incoming or outgoing roads
No consideration on multiclasses or multilanes
J3
J1
J2
e1
e2
eN
JN
e3
uα := primitive of ρα solution of LWR equation on branch α...
...modulo γα the proportion of flow sent or received by branch α
uα solution of:



uα
t + Hα(uα
x ) = 0 outside the node,
ut + max
α=1,...,N
H−
α (uα
x ) = 0 at the node.
(2.3)
Flow maximization at the node
G. Costeseque (Universit´e ParisEst) D5 Traffic flow models Marne-la-Vall´ee, Nov. 2012 8 / 40
Proposed intersection model Hamilton-Jacobi equation
HJ versus conservation laws
Conservation laws Hamilton-Jacobi
Variable ρα(x, t) uα(x, t)
Concentration in (x, t) Vehicle index in (x, t)
Equation ρα
t + (Qα(ρα))x = 0 uα
t + Hα (uα
x ) = 0
FD / Hamilt. Demand (∆) Decreasing part (H−
α )
Supply (Σ) Increasing part (H+
α )
Qmax
Density ρ
ρcrit ρmax
Flow Q
Qmax
Supply Σ
Density ρ
Demand ∆
Density ρ
ρcrit
ρcrit
ρmax
Qmax
H+
α (p)
pα
0 p
H−
α (p)
G. Costeseque (Universit´e ParisEst) D5 Traffic flow models Marne-la-Vall´ee, Nov. 2012 9 / 40
Proposed intersection model Numerical Scheme
Introduction to the scheme
Assumptions:
Conservation of vehicles
FIFO (First-In-First-Out) sequel
Maximization on the total though-flow
Coefficients γα fixed once for all
G. Costeseque (Universit´e ParisEst) D5 Traffic flow models Marne-la-Vall´ee, Nov. 2012 10 / 40
Proposed intersection model Numerical Scheme
Presentation of the NS
∆x and ∆t = space and time steps satisfying CFL condition
pα,n
i,± (resp. Wα,n
i ) discrete space (resp. time) derivative
Proposition (Numerical Scheme)



Wα,n
i = max (−H+
α (pα,n
i,− ), −H−
α (pα,n
i,+ )), for i ≥ 1, for all α


Un
0 := Uα,n
0 , for all α
Wα,n
0 = max
α=1,...,N
(−H−
α (pα,n
i,+ )),
for i = 0
(2.4)
Passing flow = Minimum between Upstream Demand and
Downstream Supply [Lebacque (1996)]
G. Costeseque (Universit´e ParisEst) D5 Traffic flow models Marne-la-Vall´ee, Nov. 2012 11 / 40
Proposed intersection model Some mathematical results
Some results
From [Costeseque, Monneau, Lebacque (in progress)]:
First main result is Time and Space Gradient estimates
Second main result is the convergence of the numerical solution to
the HJ viscosity solution when (∆t, ∆x) → 0 (under suitable
assumptions)
From [Imbert, Monneau, Zidani (2011)]:
Existence and uniqueness of the viscosity solution for the HJ equation
G. Costeseque (Universit´e ParisEst) D5 Traffic flow models Marne-la-Vall´ee, Nov. 2012 12 / 40
Numerical simulations
Outline
1 Introduction
2 Proposed intersection model
3 Numerical simulations
Example 1: Diverge
Example 2: Merge
4 Concluding remarks
G. Costeseque (Universit´e ParisEst) D5 Traffic flow models Marne-la-Vall´ee, Nov. 2012 13 / 40
Numerical simulations
Initial statements
We assume that the FD is bi-parabolic and we take:
Link flow capacity = free flow speed × critical density
Jam critical density = 20 veh/km/lane
Maximal density = 160 veh/km/lane
Focus on highway on or off-ramps modelling
Coefficients γα for incoming roads are capacity-proportional: see
[Cassidy and Ahn, (2005)], [Bar-Gera and Ahn, (2010)] and [Ni and
Leonard, (2005)]
G. Costeseque (Universit´e ParisEst) D5 Traffic flow models Marne-la-Vall´ee, Nov. 2012 14 / 40
Numerical simulations Example 1: Diverge
Diverge: Simulations
Representation of an off-ramp:
x > 0x < 0
x = 0
ρ1
ρ2
ρ3
Simplest case: one incoming road and two outgoing roads;
Single condition: u1(0, t) = u2(0, t) = u3(0, t) (continuity of the
index at the junction point)
Configuration:
Branch Number of lanes Maximal speed γα
1 2 90 km/h 1
2 2 90 km/h 0.75
3 1 50 km/h 0.25
G. Costeseque (Universit´e ParisEst) D5 Traffic flow models Marne-la-Vall´ee, Nov. 2012 15 / 40
Numerical simulations Example 1: Diverge
Diverge: Fundamental Diagrams
0 50 100 150 200 250 300 350
0
500
1000
1500
2000
2500
3000
3500
4000
Density (veh/km)
Flow(veh/h)
Fundamental diagrams per branch
1
2
3
G. Costeseque (Universit´e ParisEst) D5 Traffic flow models Marne-la-Vall´ee, Nov. 2012 16 / 40
Numerical simulations Example 1: Diverge
Diverge: Initial conditions (t=0s)
−200 −150 −100 −50 0
0
10
20
30
40
50
60
70
Road n° 1 (t= 0s)
Position (m)
Density(veh/km)
0 50 100 150 200
0
10
20
30
40
50
60
70
Road n° 2 (t= 0s)
Position (m)
Density(veh/km)
0 50 100 150 200
0
10
20
30
40
50
60
70
Road n° 3 (t= 0s)
Position (m)
Density(veh/km)
G. Costeseque (Universit´e ParisEst) D5 Traffic flow models Marne-la-Vall´ee, Nov. 2012 17 / 40
Numerical simulations Example 1: Diverge
Diverge: Numerical results (t=5s)
−200 −150 −100 −50 0
0
10
20
30
40
50
60
70
Road n° 1 (t= 5s)
Position (m)
Density(veh/km)
0 50 100 150 200
0
10
20
30
40
50
60
70
Road n° 2 (t= 5s)
Position (m)
Density(veh/km)
0 50 100 150 200
0
10
20
30
40
50
60
70
Road n° 3 (t= 5s)
Position (m)
Density(veh/km)
G. Costeseque (Universit´e ParisEst) D5 Traffic flow models Marne-la-Vall´ee, Nov. 2012 18 / 40
Numerical simulations Example 1: Diverge
Diverge: Numerical results (t=10s)
−200 −150 −100 −50 0
0
10
20
30
40
50
60
70
Road n° 1 (t= 10s)
Position (m)
Density(veh/km)
0 50 100 150 200
0
10
20
30
40
50
60
70
Road n° 2 (t= 10s)
Position (m)
Density(veh/km)
0 50 100 150 200
0
10
20
30
40
50
60
70
Road n° 3 (t= 10s)
Position (m)
Density(veh/km)
G. Costeseque (Universit´e ParisEst) D5 Traffic flow models Marne-la-Vall´ee, Nov. 2012 19 / 40
Numerical simulations Example 1: Diverge
Diverge: Numerical results (t=20s)
−200 −150 −100 −50 0
0
10
20
30
40
50
60
70
Road n° 1 (t= 20s)
Position (m)
Density(veh/km)
0 50 100 150 200
0
10
20
30
40
50
60
70
Road n° 2 (t= 20s)
Position (m)
Density(veh/km)
0 50 100 150 200
0
10
20
30
40
50
60
70
Road n° 3 (t= 20s)
Position (m)
Density(veh/km)
G. Costeseque (Universit´e ParisEst) D5 Traffic flow models Marne-la-Vall´ee, Nov. 2012 20 / 40
Numerical simulations Example 1: Diverge
Diverge: Numerical results (t=30s)
−200 −150 −100 −50 0
0
10
20
30
40
50
60
70
Road n° 1 (t= 30s)
Position (m)
Density(veh/km)
0 50 100 150 200
0
10
20
30
40
50
60
70
Road n° 2 (t= 30s)
Position (m)
Density(veh/km)
0 50 100 150 200
0
10
20
30
40
50
60
70
Road n° 3 (t= 30s)
Position (m)
Density(veh/km)
G. Costeseque (Universit´e ParisEst) D5 Traffic flow models Marne-la-Vall´ee, Nov. 2012 21 / 40
Numerical simulations Example 1: Diverge
Diverge: Cumulative Vehicles Count
0 5 10 15 20 25
0
5
10
15
20
25
30
35
Time (s)
CumulativeNumberofVehicles
CVC on road n°1
Downstream station
Upstream station
−10 0 10 20 30
0
5
10
15
20
25
30
35
Time (s)
CumulativeNumberofVehicles
CVC on road n°2
Downstream station
Upstream station
−10 0 10 20 30
0
5
10
15
20
25
30
35
Time (s)
CumulativeNumberofVehicles
CVC on road n°3
Downstream station
Upstream station
G. Costeseque (Universit´e ParisEst) D5 Traffic flow models Marne-la-Vall´ee, Nov. 2012 22 / 40
Numerical simulations Example 1: Diverge
Diverge: Trajectories
5.42868
6.514427.60015
8.68589
9.77163
10.8574
11.9431
13.0288
14.1146
15.2003
16.286
17.3718
18.4575
19.5433
20.629
21.7147
Trajectories on road n° 1
Time (s)
Position(m)
0 10 20 30
−200
−150
−100
−50
0
−1.47006−0.2934180.8832282.059873.236524.413165.589816.766467.94319.11975
10.2964
11.473
12.6497
13.8263
15.003
16.1796
17.356318.5329
Trajectories on road n° 2
Time (s)
Position(m)
0 10 20 30
0
50
100
150
200
−1.47006−0.2934180.8832282.059873.236524.413165.589816.766467.94319.1197510.2964
11.473
12.6497
13.8263
15.00316.1796
17.3563
18.5329
Trajectories on road n° 3
Time (s)
Position(m)
0 10 20 30
0
50
100
150
200
G. Costeseque (Universit´e ParisEst) D5 Traffic flow models Marne-la-Vall´ee, Nov. 2012 23 / 40
Numerical simulations Example 2: Merge
Merge: Simulations
Representation of an on-ramp:
x > 0x < 0
x = 0
ρ3
ρ2
ρ1
Simplest case: two incoming roads and one outgoing road
Configuration:
Branch Number of lanes Maximal speed γα
1 3 90 km/h 0.8
2 1 70 km/h 0.2
3 3 90 km/h 1
G. Costeseque (Universit´e ParisEst) D5 Traffic flow models Marne-la-Vall´ee, Nov. 2012 24 / 40
Numerical simulations Example 2: Merge
Merge: Fundamental Diagrams
Branch Initial state Final state
1 50 veh/km 4900 veh/h 180 veh/km 4300 veh/h
2 20 veh/km 1400 veh/h 70 veh/km 1100 veh/h
3 30 veh/km 3300 veh/h 605 veh/km 5400 veh/h
0 50 100 150 200 250 300 350 400 450 500
0
1000
2000
3000
4000
5000
6000
Density (veh/km)
Flow(veh/h)
Fundamental diagrams per branch
1
2
3
G. Costeseque (Universit´e ParisEst) D5 Traffic flow models Marne-la-Vall´ee, Nov. 2012 25 / 40
Numerical simulations Example 2: Merge
Merge: Initial conditions (t=0s)
−200 −150 −100 −50 0
50
100
150
Road n° 1 (t= 0s)
Position (m)
Density(veh/km)
−200 −150 −100 −50 0
50
100
150
Road n° 2 (t= 0s)
Position (m)
Density(veh/km)
0 50 100 150 200
50
100
150
Road n° 3 (t= 0s)
Position (m)
Density(veh/km)
G. Costeseque (Universit´e ParisEst) D5 Traffic flow models Marne-la-Vall´ee, Nov. 2012 26 / 40
Numerical simulations Example 2: Merge
Merge: Numerical results (t=20s)
−200 −150 −100 −50 0
50
100
150
Road n° 1 (t= 20s)
Position (m)
Density(veh/km)
−200 −150 −100 −50 0
50
100
150
Road n° 2 (t= 20s)
Position (m)
Density(veh/km)
0 50 100 150 200
50
100
150
Road n° 3 (t= 20s)
Position (m)
Density(veh/km)
G. Costeseque (Universit´e ParisEst) D5 Traffic flow models Marne-la-Vall´ee, Nov. 2012 27 / 40
Numerical simulations Example 2: Merge
Merge: Numerical results (t=50s)
−200 −150 −100 −50 0
50
100
150
Road n° 1 (t= 50s)
Position (m)
Density(veh/km)
−200 −150 −100 −50 0
50
100
150
Road n° 2 (t= 50s)
Position (m)
Density(veh/km)
0 50 100 150 200
50
100
150
Road n° 3 (t= 50s)
Position (m)
Density(veh/km)
G. Costeseque (Universit´e ParisEst) D5 Traffic flow models Marne-la-Vall´ee, Nov. 2012 28 / 40
Numerical simulations Example 2: Merge
Merge: Numerical results (t=100s)
−200 −150 −100 −50 0
50
100
150
Road n° 1 (t= 100s)
Position (m)
Density(veh/km)
−200 −150 −100 −50 0
50
100
150
Road n° 2 (t= 100s)
Position (m)
Density(veh/km)
0 50 100 150 200
50
100
150
Road n° 3 (t= 100s)
Position (m)
Density(veh/km)
G. Costeseque (Universit´e ParisEst) D5 Traffic flow models Marne-la-Vall´ee, Nov. 2012 29 / 40
Numerical simulations Example 2: Merge
Merge: Flow distribution [Daganzo]
0 1000 2000 3000 4000 5000 6000
0
500
1000
1500
2000
2500
3000
Flow Q
1
(veh/h)
FlowQ
2
(veh/h)
Flows distribution at merge
Demand ∆
1
Demand ∆
2
Priority share γ
2
/ γ
1
Supply constraint Σ
3
G. Costeseque (Universit´e ParisEst) D5 Traffic flow models Marne-la-Vall´ee, Nov. 2012 30 / 40
Numerical simulations Example 2: Merge
Merge: Cumulative Vehicles Count
0 100 200 300 400
0
50
100
150
200
250
Time (s)
CumulativeNumberofVehicles
CVC on road n°1
Upstream station
Downstream station
0 100 200 300 400 500
0
50
100
150
200
250
Time (s)
CumulativeNumberofVehicles
CVC on road n°2
Upstream station
Downstream station
−100 0 100 200 300 400
0
50
100
150
200
250
Time (s)
CumulativeNumberofVehicles
CVC on road n°3
Upstream station
Downstream station
G. Costeseque (Universit´e ParisEst) D5 Traffic flow models Marne-la-Vall´ee, Nov. 2012 31 / 40
Numerical simulations Example 2: Merge
Merge: Trajectories
17.36824
34.73648
52.10472
69.47297
86.84121
104.2094
121.5777
138.9459
156.3142
173.6824
191.0507
208.4189
225.7871
243.1554
260.5236
277.8919
295.2601
312.6283
329.9966347.3648
Trajectories on road n° 1
Time (s)
Position(m)
0 50 100 150 200
−200
−150
−100
−50
0
18.30346
36.60692
54.91038
73.21384
91.5173
109.8208
128.1242146.4277164.7311183.0346201.3381219.6415237.945256.2484274.5519292.8553311.1588329.4623347.7657366.0692
Trajectories on road n° 2
Time (s)
Position(m)
0 50 100 150 200
−200
−150
−100
−50
0
9.497618
24.99524
40.49285
55.99047
71.48809
86.98571
102.4833
117.9809
133.4786
148.9762
164.4738
179.9714
195.469
210.9667
226.4643
241.9619
257.4595
272.9571
288.4547
303.9524
319.45
Trajectories on road n° 3
Time (s)
Position(m)
0 50 100 150 200
0
50
100
150
200
G. Costeseque (Universit´e ParisEst) D5 Traffic flow models Marne-la-Vall´ee, Nov. 2012 32 / 40
Concluding remarks
Outline
1 Introduction
2 Proposed intersection model
3 Numerical simulations
4 Concluding remarks
G. Costeseque (Universit´e ParisEst) D5 Traffic flow models Marne-la-Vall´ee, Nov. 2012 33 / 40
Concluding remarks
Concluding remarks
Balance
Convergent numerical scheme
Special configurations (diverge / merge)
Use of the Cumulative Vehicles Count
Perspectives:
High order models (GSOM family)
Integrate internal node supplies (urban intersection)
Micro-Macro passage (conflicts modelling)
G. Costeseque (Universit´e ParisEst) D5 Traffic flow models Marne-la-Vall´ee, Nov. 2012 34 / 40
Concluding remarks
The End
Thanks for your attention
guillaume.costeseque@cermics.enpc.fr
guillaume.costeseque@ifsttar.fr
G. Costeseque (Universit´e ParisEst) D5 Traffic flow models Marne-la-Vall´ee, Nov. 2012 35 / 40
Complements
Some references
G. Fl¨otter¨od and J. Rohde, Operational macroscopic modeling of
complex urban intersections, Transportation Research Part B:
Methodological 45(6), (2011), pp. 903-922.
C. Imbert, R. Monneau and H. Zidani, A Hamilton-Jacobi approach
to junction problems and application to traffic flows, Working paper,
Universit´e Paris-Dauphine, Paris, (2011), 38 pages.
M.M. Khoshyaran and J.P. Lebacque, Internal state models for
intersections in macroscopic traffic flow models, TGF09, Shanghai
2009.
J.P. Lebacque and M.M. Koshyaran, First-order macroscopic traffic
flow models: intersection modeling, network modeling, 2005, pp.
365-386.
C. Tamp`ere, R. Corthout, D. Cattrysse and L. Immers, A generic class
of first order node models for dynamic macroscopic simulations of
traffic flows, Transportation Research Part B, 45 (1) (2011), pp.
289-309.
G. Costeseque (Universit´e ParisEst) D5 Traffic flow models Marne-la-Vall´ee, Nov. 2012 36 / 40
Complements
References for conservation laws
Hyperbolic equation of conservation laws with discontinuous flux:
ρt + (Q(x, ρ))x = 0 with Q(x, p) = 1{x<0}Q1(p) + 1{x≥0}Q2(p)
Uniqueness result for two branches:
See [Garavello, Natalini, Piccoli, Terracina (2007)]
and [Andreianov, Karlsen, Risebro (2010)]
Book of [Garavello, Piccoli (2006)] for conservation laws on networks:
Construction of a solution using the ”wave front tracking method”
No proof of the uniqueness of the solution on a general networks
G. Costeseque (Universit´e ParisEst) D5 Traffic flow models Marne-la-Vall´ee, Nov. 2012 37 / 40
Complements
Literature review
State-of-the-art review from [Tamp`ere, Corthout, Catterysse, Immers
(2011)] and [Fl¨otter¨od and Rohde (2011)]: list of seven requirements:
General applicability for any n, m ≥ 1
Non-negativity of flows
Demand and Supply constraints
Vehicles conservation through the junction
Conservation of Turning Fractions (FIFO)
Maximization of Flows from an User perspective
Compliance to the invariance principle [Lebacque, Khoshyaran (2005)]
(Opt.) Internal node supplies: non-uniqueness! [Corthout et al., 2012]
G. Costeseque (Universit´e ParisEst) D5 Traffic flow models Marne-la-Vall´ee, Nov. 2012 38 / 40
Complements
HJ equation: settings
Point-wise intersection without internal state
No distinction on incoming or outgoing roads
No consideration on multiclasses or multilanes
J3
J1
J2
e1
e2
eN
JN
e3
Primitive of ρα solution of classical LWR equation on branch α:



uα(x, t) = uα(0, t) −
1
γα
x
0
ρα
(y, t)dy, for α ∈ {outgoing roads}
uα(x, t) = uα(0, t) +
1
γα
x
0
ρα
(y, t)dy, for α ∈ {incoming roads}
with γα the proportion of flow sent or received by branch α
G. Costeseque (Universit´e ParisEst) D5 Traffic flow models Marne-la-Vall´ee, Nov. 2012 39 / 40
Complements
HJ formulation
Search of suitable continuous functions u, viscosity solutions of:



uα
t + Hα(uα
x ) = 0 on (0, T) × J∗
α,
ut + max
α=1,...,N
H−
α (uα
x ) = 0 on (0, T) × {0}.
(5.5)
submitted to an initial condition (globally Lipschitz continuous)
u(0, x) = u0(x), with x ∈ J. (5.6)
The Hamiltonians Hα are convex functions such that:
The function Hα : R → R is continuous and lim
|p|→+∞
Hα(p) = +∞;
There exists pα
0 ∈ R such that Hα is non-increasing on (−∞, pα
0 ] and
non-decreasing on [pα
0 , +∞).
We denote by H−
α and H+
α the corresponding functions.
G. Costeseque (Universit´e ParisEst) D5 Traffic flow models Marne-la-Vall´ee, Nov. 2012 40 / 40

More Related Content

What's hot

ESCC 2016, July 10-16, Athens, Greece
ESCC 2016, July 10-16, Athens, GreeceESCC 2016, July 10-16, Athens, Greece
ESCC 2016, July 10-16, Athens, GreeceLIFE GreenYourMove
 
Numerical approach for Hamilton-Jacobi equations on a network: application to...
Numerical approach for Hamilton-Jacobi equations on a network: application to...Numerical approach for Hamilton-Jacobi equations on a network: application to...
Numerical approach for Hamilton-Jacobi equations on a network: application to...Guillaume Costeseque
 
Contribution à l'étude du trafic routier sur réseaux à l'aide des équations d...
Contribution à l'étude du trafic routier sur réseaux à l'aide des équations d...Contribution à l'étude du trafic routier sur réseaux à l'aide des équations d...
Contribution à l'étude du trafic routier sur réseaux à l'aide des équations d...Guillaume Costeseque
 

What's hot (7)

ESCC 2016, July 10-16, Athens, Greece
ESCC 2016, July 10-16, Athens, GreeceESCC 2016, July 10-16, Athens, Greece
ESCC 2016, July 10-16, Athens, Greece
 
Numerical approach for Hamilton-Jacobi equations on a network: application to...
Numerical approach for Hamilton-Jacobi equations on a network: application to...Numerical approach for Hamilton-Jacobi equations on a network: application to...
Numerical approach for Hamilton-Jacobi equations on a network: application to...
 
ABC in Roma
ABC in RomaABC in Roma
ABC in Roma
 
An Introduction to Discrete Choice Modelling
An Introduction to Discrete Choice ModellingAn Introduction to Discrete Choice Modelling
An Introduction to Discrete Choice Modelling
 
Pres_Zurich14
Pres_Zurich14Pres_Zurich14
Pres_Zurich14
 
Contribution à l'étude du trafic routier sur réseaux à l'aide des équations d...
Contribution à l'étude du trafic routier sur réseaux à l'aide des équations d...Contribution à l'étude du trafic routier sur réseaux à l'aide des équations d...
Contribution à l'étude du trafic routier sur réseaux à l'aide des équations d...
 
Dcm
DcmDcm
Dcm
 

Similar to Schéma numérique basé sur une équation d'Hamilton-Jacobi : modélisation des intersections

The moving bottleneck problem: a Hamilton-Jacobi approach
The moving bottleneck problem: a Hamilton-Jacobi approachThe moving bottleneck problem: a Hamilton-Jacobi approach
The moving bottleneck problem: a Hamilton-Jacobi approachGuillaume Costeseque
 
Supply chain logistics : vehicle routing and scheduling
Supply chain logistics : vehicle  routing and  schedulingSupply chain logistics : vehicle  routing and  scheduling
Supply chain logistics : vehicle routing and schedulingRetigence Technologies
 
Semet Gecco06
Semet Gecco06Semet Gecco06
Semet Gecco06ysemet
 
Hamilton-Jacobi approach for second order traffic flow models
Hamilton-Jacobi approach for second order traffic flow modelsHamilton-Jacobi approach for second order traffic flow models
Hamilton-Jacobi approach for second order traffic flow modelsGuillaume Costeseque
 
APassengerKnockOnDelayModelForTimetableOptimisation_beamer
APassengerKnockOnDelayModelForTimetableOptimisation_beamerAPassengerKnockOnDelayModelForTimetableOptimisation_beamer
APassengerKnockOnDelayModelForTimetableOptimisation_beamerPeter Sels
 
Traffic flow modeling on road networks using Hamilton-Jacobi equations
Traffic flow modeling on road networks using Hamilton-Jacobi equationsTraffic flow modeling on road networks using Hamilton-Jacobi equations
Traffic flow modeling on road networks using Hamilton-Jacobi equationsGuillaume Costeseque
 
Hamilton-Jacobi equation on networks: generalized Lax-Hopf formula
Hamilton-Jacobi equation on networks: generalized Lax-Hopf formulaHamilton-Jacobi equation on networks: generalized Lax-Hopf formula
Hamilton-Jacobi equation on networks: generalized Lax-Hopf formulaGuillaume Costeseque
 
Differential game theory for Traffic Flow Modelling
Differential game theory for Traffic Flow ModellingDifferential game theory for Traffic Flow Modelling
Differential game theory for Traffic Flow ModellingSerge Hoogendoorn
 
Modelling station choice
Modelling station choiceModelling station choice
Modelling station choiceMarcus Young
 
Basic Theory & Formulae Training Module
Basic Theory & Formulae Training ModuleBasic Theory & Formulae Training Module
Basic Theory & Formulae Training ModuleCookLegacyTraining
 
Predicting uncertainty of traffic forecasts - giving the policy-makers a rang...
Predicting uncertainty of traffic forecasts - giving the policy-makers a rang...Predicting uncertainty of traffic forecasts - giving the policy-makers a rang...
Predicting uncertainty of traffic forecasts - giving the policy-makers a rang...Institute for Transport Studies (ITS)
 
Representation formula for traffic flow estimation on a network
Representation formula for traffic flow estimation on a networkRepresentation formula for traffic flow estimation on a network
Representation formula for traffic flow estimation on a networkGuillaume Costeseque
 
Sampling-Based Planning Algorithms for Multi-Objective Missions
Sampling-Based Planning Algorithms for Multi-Objective MissionsSampling-Based Planning Algorithms for Multi-Objective Missions
Sampling-Based Planning Algorithms for Multi-Objective MissionsMd Mahbubur Rahman
 
Queue length estimation on urban corridors
Queue length estimation on urban corridorsQueue length estimation on urban corridors
Queue length estimation on urban corridorsGuillaume Costeseque
 
MODIFIED VOGEL APPROXIMATION METHOD FOR BALANCED TRANSPORTATION MODELS TOWARD...
MODIFIED VOGEL APPROXIMATION METHOD FOR BALANCED TRANSPORTATION MODELS TOWARD...MODIFIED VOGEL APPROXIMATION METHOD FOR BALANCED TRANSPORTATION MODELS TOWARD...
MODIFIED VOGEL APPROXIMATION METHOD FOR BALANCED TRANSPORTATION MODELS TOWARD...IAEME Publication
 
Automated seismic-to-well ties?
Automated seismic-to-well ties?Automated seismic-to-well ties?
Automated seismic-to-well ties?UT Technology
 
Poster for Bayesian Statistics in the Big Data Era conference
Poster for Bayesian Statistics in the Big Data Era conferencePoster for Bayesian Statistics in the Big Data Era conference
Poster for Bayesian Statistics in the Big Data Era conferenceChristian Robert
 
Eco-friendly Reduction of Travel Times in European Smart Cities (GECCO'14)
Eco-friendly Reduction of Travel Times in European Smart Cities (GECCO'14)Eco-friendly Reduction of Travel Times in European Smart Cities (GECCO'14)
Eco-friendly Reduction of Travel Times in European Smart Cities (GECCO'14)Daniel H. Stolfi
 
Network problems 1 (1)
Network problems 1 (1)Network problems 1 (1)
Network problems 1 (1)Jabnon Nonjab
 

Similar to Schéma numérique basé sur une équation d'Hamilton-Jacobi : modélisation des intersections (20)

The moving bottleneck problem: a Hamilton-Jacobi approach
The moving bottleneck problem: a Hamilton-Jacobi approachThe moving bottleneck problem: a Hamilton-Jacobi approach
The moving bottleneck problem: a Hamilton-Jacobi approach
 
Supply chain logistics : vehicle routing and scheduling
Supply chain logistics : vehicle  routing and  schedulingSupply chain logistics : vehicle  routing and  scheduling
Supply chain logistics : vehicle routing and scheduling
 
Semet Gecco06
Semet Gecco06Semet Gecco06
Semet Gecco06
 
Hamilton-Jacobi approach for second order traffic flow models
Hamilton-Jacobi approach for second order traffic flow modelsHamilton-Jacobi approach for second order traffic flow models
Hamilton-Jacobi approach for second order traffic flow models
 
APassengerKnockOnDelayModelForTimetableOptimisation_beamer
APassengerKnockOnDelayModelForTimetableOptimisation_beamerAPassengerKnockOnDelayModelForTimetableOptimisation_beamer
APassengerKnockOnDelayModelForTimetableOptimisation_beamer
 
Traffic flow modeling on road networks using Hamilton-Jacobi equations
Traffic flow modeling on road networks using Hamilton-Jacobi equationsTraffic flow modeling on road networks using Hamilton-Jacobi equations
Traffic flow modeling on road networks using Hamilton-Jacobi equations
 
Hamilton-Jacobi equation on networks: generalized Lax-Hopf formula
Hamilton-Jacobi equation on networks: generalized Lax-Hopf formulaHamilton-Jacobi equation on networks: generalized Lax-Hopf formula
Hamilton-Jacobi equation on networks: generalized Lax-Hopf formula
 
Differential game theory for Traffic Flow Modelling
Differential game theory for Traffic Flow ModellingDifferential game theory for Traffic Flow Modelling
Differential game theory for Traffic Flow Modelling
 
Modelling station choice
Modelling station choiceModelling station choice
Modelling station choice
 
Basic Theory & Formulae Training Module
Basic Theory & Formulae Training ModuleBasic Theory & Formulae Training Module
Basic Theory & Formulae Training Module
 
AINL 2016: Goncharov
AINL 2016: GoncharovAINL 2016: Goncharov
AINL 2016: Goncharov
 
Predicting uncertainty of traffic forecasts - giving the policy-makers a rang...
Predicting uncertainty of traffic forecasts - giving the policy-makers a rang...Predicting uncertainty of traffic forecasts - giving the policy-makers a rang...
Predicting uncertainty of traffic forecasts - giving the policy-makers a rang...
 
Representation formula for traffic flow estimation on a network
Representation formula for traffic flow estimation on a networkRepresentation formula for traffic flow estimation on a network
Representation formula for traffic flow estimation on a network
 
Sampling-Based Planning Algorithms for Multi-Objective Missions
Sampling-Based Planning Algorithms for Multi-Objective MissionsSampling-Based Planning Algorithms for Multi-Objective Missions
Sampling-Based Planning Algorithms for Multi-Objective Missions
 
Queue length estimation on urban corridors
Queue length estimation on urban corridorsQueue length estimation on urban corridors
Queue length estimation on urban corridors
 
MODIFIED VOGEL APPROXIMATION METHOD FOR BALANCED TRANSPORTATION MODELS TOWARD...
MODIFIED VOGEL APPROXIMATION METHOD FOR BALANCED TRANSPORTATION MODELS TOWARD...MODIFIED VOGEL APPROXIMATION METHOD FOR BALANCED TRANSPORTATION MODELS TOWARD...
MODIFIED VOGEL APPROXIMATION METHOD FOR BALANCED TRANSPORTATION MODELS TOWARD...
 
Automated seismic-to-well ties?
Automated seismic-to-well ties?Automated seismic-to-well ties?
Automated seismic-to-well ties?
 
Poster for Bayesian Statistics in the Big Data Era conference
Poster for Bayesian Statistics in the Big Data Era conferencePoster for Bayesian Statistics in the Big Data Era conference
Poster for Bayesian Statistics in the Big Data Era conference
 
Eco-friendly Reduction of Travel Times in European Smart Cities (GECCO'14)
Eco-friendly Reduction of Travel Times in European Smart Cities (GECCO'14)Eco-friendly Reduction of Travel Times in European Smart Cities (GECCO'14)
Eco-friendly Reduction of Travel Times in European Smart Cities (GECCO'14)
 
Network problems 1 (1)
Network problems 1 (1)Network problems 1 (1)
Network problems 1 (1)
 

More from Guillaume Costeseque

Analyse des données du Registre de preuve de covoiturage à l'échelle régional...
Analyse des données du Registre de preuve de covoiturage à l'échelle régional...Analyse des données du Registre de preuve de covoiturage à l'échelle régional...
Analyse des données du Registre de preuve de covoiturage à l'échelle régional...Guillaume Costeseque
 
Nouvelles mobilités, nouveaux usages, évolutions des marchés
Nouvelles mobilités, nouveaux usages, évolutions des marchésNouvelles mobilités, nouveaux usages, évolutions des marchés
Nouvelles mobilités, nouveaux usages, évolutions des marchésGuillaume Costeseque
 
A multi-objective optimization framework for a second order traffic flow mode...
A multi-objective optimization framework for a second order traffic flow mode...A multi-objective optimization framework for a second order traffic flow mode...
A multi-objective optimization framework for a second order traffic flow mode...Guillaume Costeseque
 
Evaluation d'une navette autonome à Nantes 2019
Evaluation d'une navette autonome à Nantes 2019Evaluation d'une navette autonome à Nantes 2019
Evaluation d'une navette autonome à Nantes 2019Guillaume Costeseque
 
TramOpt: plateforme logicielle pour l'optimisation du trafic routier
TramOpt: plateforme logicielle pour l'optimisation du trafic routierTramOpt: plateforme logicielle pour l'optimisation du trafic routier
TramOpt: plateforme logicielle pour l'optimisation du trafic routierGuillaume Costeseque
 
A new solver for the ARZ traffic flow model on a junction
A new solver for the ARZ traffic flow model on a junctionA new solver for the ARZ traffic flow model on a junction
A new solver for the ARZ traffic flow model on a junctionGuillaume Costeseque
 
Some recent developments in the traffic flow variational formulation
Some recent developments in the traffic flow variational formulationSome recent developments in the traffic flow variational formulation
Some recent developments in the traffic flow variational formulationGuillaume Costeseque
 
Hamilton-Jacobi equations and Lax-Hopf formulae for traffic flow modeling
Hamilton-Jacobi equations and Lax-Hopf formulae for traffic flow modelingHamilton-Jacobi equations and Lax-Hopf formulae for traffic flow modeling
Hamilton-Jacobi equations and Lax-Hopf formulae for traffic flow modelingGuillaume Costeseque
 
Mesoscopic multiclass traffic flow modeling on multi-lane sections
Mesoscopic multiclass traffic flow modeling on multi-lane sectionsMesoscopic multiclass traffic flow modeling on multi-lane sections
Mesoscopic multiclass traffic flow modeling on multi-lane sectionsGuillaume Costeseque
 
Micro to macro passage in traffic models including multi-anticipation effect
Micro to macro passage in traffic models including multi-anticipation effectMicro to macro passage in traffic models including multi-anticipation effect
Micro to macro passage in traffic models including multi-anticipation effectGuillaume Costeseque
 
The impact of source terms in the variational representation of traffic flow
The impact of source terms in the variational representation of traffic flowThe impact of source terms in the variational representation of traffic flow
The impact of source terms in the variational representation of traffic flowGuillaume Costeseque
 
Second order traffic flow models on networks
Second order traffic flow models on networksSecond order traffic flow models on networks
Second order traffic flow models on networksGuillaume Costeseque
 
Second order traffic flow models on networks
Second order traffic flow models on networksSecond order traffic flow models on networks
Second order traffic flow models on networksGuillaume Costeseque
 
Numerical approach for Hamilton-Jacobi equations on a network: application to...
Numerical approach for Hamilton-Jacobi equations on a network: application to...Numerical approach for Hamilton-Jacobi equations on a network: application to...
Numerical approach for Hamilton-Jacobi equations on a network: application to...Guillaume Costeseque
 
Second order traffic flow models on networks
Second order traffic flow models on networksSecond order traffic flow models on networks
Second order traffic flow models on networksGuillaume Costeseque
 
Dynamic road traffic modeling: some elements
Dynamic road traffic modeling: some elementsDynamic road traffic modeling: some elements
Dynamic road traffic modeling: some elementsGuillaume Costeseque
 
ORESTE Inria-Berkeley associated team
ORESTE Inria-Berkeley associated teamORESTE Inria-Berkeley associated team
ORESTE Inria-Berkeley associated teamGuillaume Costeseque
 

More from Guillaume Costeseque (19)

Analyse des données du Registre de preuve de covoiturage à l'échelle régional...
Analyse des données du Registre de preuve de covoiturage à l'échelle régional...Analyse des données du Registre de preuve de covoiturage à l'échelle régional...
Analyse des données du Registre de preuve de covoiturage à l'échelle régional...
 
Nouvelles mobilités, nouveaux usages, évolutions des marchés
Nouvelles mobilités, nouveaux usages, évolutions des marchésNouvelles mobilités, nouveaux usages, évolutions des marchés
Nouvelles mobilités, nouveaux usages, évolutions des marchés
 
Cours its-ecn-2021
Cours its-ecn-2021Cours its-ecn-2021
Cours its-ecn-2021
 
Cours its-ecn-2020
Cours its-ecn-2020Cours its-ecn-2020
Cours its-ecn-2020
 
A multi-objective optimization framework for a second order traffic flow mode...
A multi-objective optimization framework for a second order traffic flow mode...A multi-objective optimization framework for a second order traffic flow mode...
A multi-objective optimization framework for a second order traffic flow mode...
 
Evaluation d'une navette autonome à Nantes 2019
Evaluation d'une navette autonome à Nantes 2019Evaluation d'une navette autonome à Nantes 2019
Evaluation d'une navette autonome à Nantes 2019
 
TramOpt: plateforme logicielle pour l'optimisation du trafic routier
TramOpt: plateforme logicielle pour l'optimisation du trafic routierTramOpt: plateforme logicielle pour l'optimisation du trafic routier
TramOpt: plateforme logicielle pour l'optimisation du trafic routier
 
A new solver for the ARZ traffic flow model on a junction
A new solver for the ARZ traffic flow model on a junctionA new solver for the ARZ traffic flow model on a junction
A new solver for the ARZ traffic flow model on a junction
 
Some recent developments in the traffic flow variational formulation
Some recent developments in the traffic flow variational formulationSome recent developments in the traffic flow variational formulation
Some recent developments in the traffic flow variational formulation
 
Hamilton-Jacobi equations and Lax-Hopf formulae for traffic flow modeling
Hamilton-Jacobi equations and Lax-Hopf formulae for traffic flow modelingHamilton-Jacobi equations and Lax-Hopf formulae for traffic flow modeling
Hamilton-Jacobi equations and Lax-Hopf formulae for traffic flow modeling
 
Mesoscopic multiclass traffic flow modeling on multi-lane sections
Mesoscopic multiclass traffic flow modeling on multi-lane sectionsMesoscopic multiclass traffic flow modeling on multi-lane sections
Mesoscopic multiclass traffic flow modeling on multi-lane sections
 
Micro to macro passage in traffic models including multi-anticipation effect
Micro to macro passage in traffic models including multi-anticipation effectMicro to macro passage in traffic models including multi-anticipation effect
Micro to macro passage in traffic models including multi-anticipation effect
 
The impact of source terms in the variational representation of traffic flow
The impact of source terms in the variational representation of traffic flowThe impact of source terms in the variational representation of traffic flow
The impact of source terms in the variational representation of traffic flow
 
Second order traffic flow models on networks
Second order traffic flow models on networksSecond order traffic flow models on networks
Second order traffic flow models on networks
 
Second order traffic flow models on networks
Second order traffic flow models on networksSecond order traffic flow models on networks
Second order traffic flow models on networks
 
Numerical approach for Hamilton-Jacobi equations on a network: application to...
Numerical approach for Hamilton-Jacobi equations on a network: application to...Numerical approach for Hamilton-Jacobi equations on a network: application to...
Numerical approach for Hamilton-Jacobi equations on a network: application to...
 
Second order traffic flow models on networks
Second order traffic flow models on networksSecond order traffic flow models on networks
Second order traffic flow models on networks
 
Dynamic road traffic modeling: some elements
Dynamic road traffic modeling: some elementsDynamic road traffic modeling: some elements
Dynamic road traffic modeling: some elements
 
ORESTE Inria-Berkeley associated team
ORESTE Inria-Berkeley associated teamORESTE Inria-Berkeley associated team
ORESTE Inria-Berkeley associated team
 

Recently uploaded

Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsAArockiyaNisha
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...Sérgio Sacani
 
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...anilsa9823
 
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝soniya singh
 
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxSOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxkessiyaTpeter
 
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.aasikanpl
 
Recombination DNA Technology (Microinjection)
Recombination DNA Technology (Microinjection)Recombination DNA Technology (Microinjection)
Recombination DNA Technology (Microinjection)Jshifa
 
Orientation, design and principles of polyhouse
Orientation, design and principles of polyhouseOrientation, design and principles of polyhouse
Orientation, design and principles of polyhousejana861314
 
TOPIC 8 Temperature and Heat.pdf physics
TOPIC 8 Temperature and Heat.pdf physicsTOPIC 8 Temperature and Heat.pdf physics
TOPIC 8 Temperature and Heat.pdf physicsssuserddc89b
 
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡anilsa9823
 
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...jana861314
 
Scheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docxScheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docxyaramohamed343013
 
A relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfA relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfnehabiju2046
 
Luciferase in rDNA technology (biotechnology).pptx
Luciferase in rDNA technology (biotechnology).pptxLuciferase in rDNA technology (biotechnology).pptx
Luciferase in rDNA technology (biotechnology).pptxAleenaTreesaSaji
 
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxAnalytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxSwapnil Therkar
 
Recombinant DNA technology( Transgenic plant and animal)
Recombinant DNA technology( Transgenic plant and animal)Recombinant DNA technology( Transgenic plant and animal)
Recombinant DNA technology( Transgenic plant and animal)DHURKADEVIBASKAR
 
Neurodevelopmental disorders according to the dsm 5 tr
Neurodevelopmental disorders according to the dsm 5 trNeurodevelopmental disorders according to the dsm 5 tr
Neurodevelopmental disorders according to the dsm 5 trssuser06f238
 
The Black hole shadow in Modified Gravity
The Black hole shadow in Modified GravityThe Black hole shadow in Modified Gravity
The Black hole shadow in Modified GravitySubhadipsau21168
 

Recently uploaded (20)

Natural Polymer Based Nanomaterials
Natural Polymer Based NanomaterialsNatural Polymer Based Nanomaterials
Natural Polymer Based Nanomaterials
 
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
All-domain Anomaly Resolution Office U.S. Department of Defense (U) Case: “Eg...
 
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
Lucknow 💋 Russian Call Girls Lucknow Finest Escorts Service 8923113531 Availa...
 
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
Call Girls in Munirka Delhi 💯Call Us 🔝8264348440🔝
 
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptxSOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
SOLUBLE PATTERN RECOGNITION RECEPTORS.pptx
 
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
Call Girls in Mayapuri Delhi 💯Call Us 🔝9953322196🔝 💯Escort.
 
Recombination DNA Technology (Microinjection)
Recombination DNA Technology (Microinjection)Recombination DNA Technology (Microinjection)
Recombination DNA Technology (Microinjection)
 
Orientation, design and principles of polyhouse
Orientation, design and principles of polyhouseOrientation, design and principles of polyhouse
Orientation, design and principles of polyhouse
 
TOPIC 8 Temperature and Heat.pdf physics
TOPIC 8 Temperature and Heat.pdf physicsTOPIC 8 Temperature and Heat.pdf physics
TOPIC 8 Temperature and Heat.pdf physics
 
The Philosophy of Science
The Philosophy of ScienceThe Philosophy of Science
The Philosophy of Science
 
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service  🪡
CALL ON ➥8923113531 🔝Call Girls Kesar Bagh Lucknow best Night Fun service 🪡
 
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
Traditional Agroforestry System in India- Shifting Cultivation, Taungya, Home...
 
Scheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docxScheme-of-Work-Science-Stage-4 cambridge science.docx
Scheme-of-Work-Science-Stage-4 cambridge science.docx
 
A relative description on Sonoporation.pdf
A relative description on Sonoporation.pdfA relative description on Sonoporation.pdf
A relative description on Sonoporation.pdf
 
Luciferase in rDNA technology (biotechnology).pptx
Luciferase in rDNA technology (biotechnology).pptxLuciferase in rDNA technology (biotechnology).pptx
Luciferase in rDNA technology (biotechnology).pptx
 
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxAnalytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
 
Recombinant DNA technology( Transgenic plant and animal)
Recombinant DNA technology( Transgenic plant and animal)Recombinant DNA technology( Transgenic plant and animal)
Recombinant DNA technology( Transgenic plant and animal)
 
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
9953056974 Young Call Girls In Mahavir enclave Indian Quality Escort service
 
Neurodevelopmental disorders according to the dsm 5 tr
Neurodevelopmental disorders according to the dsm 5 trNeurodevelopmental disorders according to the dsm 5 tr
Neurodevelopmental disorders according to the dsm 5 tr
 
The Black hole shadow in Modified Gravity
The Black hole shadow in Modified GravityThe Black hole shadow in Modified Gravity
The Black hole shadow in Modified Gravity
 

Schéma numérique basé sur une équation d'Hamilton-Jacobi : modélisation des intersections

  • 1. Sch´ema num´erique bas´e sur une ´equation d’Hamilton-Jacobi: mod´elisation des intersections Guillaume Costeseque Joint work with R. Monneau & JP. Lebacque Ecole des Ponts ParisTech, CERMICS & IFSTTAR, GRETTIA GdT ”Math´ematiques pour la mod´elisation des Transports” 29 Novembre 2012 - Marne-la-Vall´ee G. Costeseque (Universit´e ParisEst) D5 Traffic flow models Marne-la-Vall´ee, Nov. 2012 1 / 40
  • 2. Outline 1 Introduction 2 Proposed intersection model 3 Numerical simulations 4 Concluding remarks G. Costeseque (Universit´e ParisEst) D5 Traffic flow models Marne-la-Vall´ee, Nov. 2012 2 / 40
  • 3. Introduction Outline 1 Introduction Traffic flow modelling Link models Overview of intersection modelling 2 Proposed intersection model 3 Numerical simulations 4 Concluding remarks G. Costeseque (Universit´e ParisEst) D5 Traffic flow models Marne-la-Vall´ee, Nov. 2012 3 / 40
  • 4. Introduction Traffic flow modelling Objectives From Papageorgiou and Gentile keynote speeches, Dynamic Traffic Assignment (DTA) models useful for: Transport planning (off-line) Traffic monitoring and control (real-time) Dynamic Loading Network (DLN) model = Link model (propagate flows on arcs) + Node model (manage flows at intersection) G. Costeseque (Universit´e ParisEst) D5 Traffic flow models Marne-la-Vall´ee, Nov. 2012 4 / 40
  • 5. Introduction Link models LWR model Introduced by Lighhill, Whitham (1955) and Richards (1956): Flow dynamics analogy: Kinematic Wave (KW) theory Conservation law for the vehicles densities: ρt(x, t) + (Q(x, t))x = 0 Q(x, t) = ρ(x, t)V (x, t) (1.1) Assumption of equilibrium & Fundamental Diagram (FD) : V (x, t) = Ve (ρ(x, t)) (1.2) x x + ∆x ρ(x, t)∆x Q(x, t)∆t Q(x + ∆x, t)∆t Speed V ρcrit ρmax Density ρ Vmax Vcrit G. Costeseque (Universit´e ParisEst) D5 Traffic flow models Marne-la-Vall´ee, Nov. 2012 5 / 40
  • 6. Introduction Overview of intersection modelling Intersection modelling Main congestion points on networks Still an interesting research point Jn+l Jn+2 Jj Jn+m J1 Ji Jn Many approaches: point-wise VS spatial extended models, equilibrium VS optimization models, with or without internal states etc. [Lebacque and Khoshyaran, (2002, 2005, 2009)] State-of-the-art review: See [Tamp`ere, Corthout, Catterysse, Immers (2011)] and [Fl¨otter¨od and Rohde (2011)] G. Costeseque (Universit´e ParisEst) D5 Traffic flow models Marne-la-Vall´ee, Nov. 2012 6 / 40
  • 7. Proposed intersection model Outline 1 Introduction 2 Proposed intersection model Hamilton-Jacobi equation Numerical Scheme Some mathematical results 3 Numerical simulations 4 Concluding remarks G. Costeseque (Universit´e ParisEst) D5 Traffic flow models Marne-la-Vall´ee, Nov. 2012 7 / 40
  • 8. Proposed intersection model Hamilton-Jacobi equation HJ equation: settings Point-wise intersection without internal state No distinction on incoming or outgoing roads No consideration on multiclasses or multilanes J3 J1 J2 e1 e2 eN JN e3 uα := primitive of ρα solution of LWR equation on branch α... ...modulo γα the proportion of flow sent or received by branch α uα solution of:    uα t + Hα(uα x ) = 0 outside the node, ut + max α=1,...,N H− α (uα x ) = 0 at the node. (2.3) Flow maximization at the node G. Costeseque (Universit´e ParisEst) D5 Traffic flow models Marne-la-Vall´ee, Nov. 2012 8 / 40
  • 9. Proposed intersection model Hamilton-Jacobi equation HJ versus conservation laws Conservation laws Hamilton-Jacobi Variable ρα(x, t) uα(x, t) Concentration in (x, t) Vehicle index in (x, t) Equation ρα t + (Qα(ρα))x = 0 uα t + Hα (uα x ) = 0 FD / Hamilt. Demand (∆) Decreasing part (H− α ) Supply (Σ) Increasing part (H+ α ) Qmax Density ρ ρcrit ρmax Flow Q Qmax Supply Σ Density ρ Demand ∆ Density ρ ρcrit ρcrit ρmax Qmax H+ α (p) pα 0 p H− α (p) G. Costeseque (Universit´e ParisEst) D5 Traffic flow models Marne-la-Vall´ee, Nov. 2012 9 / 40
  • 10. Proposed intersection model Numerical Scheme Introduction to the scheme Assumptions: Conservation of vehicles FIFO (First-In-First-Out) sequel Maximization on the total though-flow Coefficients γα fixed once for all G. Costeseque (Universit´e ParisEst) D5 Traffic flow models Marne-la-Vall´ee, Nov. 2012 10 / 40
  • 11. Proposed intersection model Numerical Scheme Presentation of the NS ∆x and ∆t = space and time steps satisfying CFL condition pα,n i,± (resp. Wα,n i ) discrete space (resp. time) derivative Proposition (Numerical Scheme)    Wα,n i = max (−H+ α (pα,n i,− ), −H− α (pα,n i,+ )), for i ≥ 1, for all α   Un 0 := Uα,n 0 , for all α Wα,n 0 = max α=1,...,N (−H− α (pα,n i,+ )), for i = 0 (2.4) Passing flow = Minimum between Upstream Demand and Downstream Supply [Lebacque (1996)] G. Costeseque (Universit´e ParisEst) D5 Traffic flow models Marne-la-Vall´ee, Nov. 2012 11 / 40
  • 12. Proposed intersection model Some mathematical results Some results From [Costeseque, Monneau, Lebacque (in progress)]: First main result is Time and Space Gradient estimates Second main result is the convergence of the numerical solution to the HJ viscosity solution when (∆t, ∆x) → 0 (under suitable assumptions) From [Imbert, Monneau, Zidani (2011)]: Existence and uniqueness of the viscosity solution for the HJ equation G. Costeseque (Universit´e ParisEst) D5 Traffic flow models Marne-la-Vall´ee, Nov. 2012 12 / 40
  • 13. Numerical simulations Outline 1 Introduction 2 Proposed intersection model 3 Numerical simulations Example 1: Diverge Example 2: Merge 4 Concluding remarks G. Costeseque (Universit´e ParisEst) D5 Traffic flow models Marne-la-Vall´ee, Nov. 2012 13 / 40
  • 14. Numerical simulations Initial statements We assume that the FD is bi-parabolic and we take: Link flow capacity = free flow speed × critical density Jam critical density = 20 veh/km/lane Maximal density = 160 veh/km/lane Focus on highway on or off-ramps modelling Coefficients γα for incoming roads are capacity-proportional: see [Cassidy and Ahn, (2005)], [Bar-Gera and Ahn, (2010)] and [Ni and Leonard, (2005)] G. Costeseque (Universit´e ParisEst) D5 Traffic flow models Marne-la-Vall´ee, Nov. 2012 14 / 40
  • 15. Numerical simulations Example 1: Diverge Diverge: Simulations Representation of an off-ramp: x > 0x < 0 x = 0 ρ1 ρ2 ρ3 Simplest case: one incoming road and two outgoing roads; Single condition: u1(0, t) = u2(0, t) = u3(0, t) (continuity of the index at the junction point) Configuration: Branch Number of lanes Maximal speed γα 1 2 90 km/h 1 2 2 90 km/h 0.75 3 1 50 km/h 0.25 G. Costeseque (Universit´e ParisEst) D5 Traffic flow models Marne-la-Vall´ee, Nov. 2012 15 / 40
  • 16. Numerical simulations Example 1: Diverge Diverge: Fundamental Diagrams 0 50 100 150 200 250 300 350 0 500 1000 1500 2000 2500 3000 3500 4000 Density (veh/km) Flow(veh/h) Fundamental diagrams per branch 1 2 3 G. Costeseque (Universit´e ParisEst) D5 Traffic flow models Marne-la-Vall´ee, Nov. 2012 16 / 40
  • 17. Numerical simulations Example 1: Diverge Diverge: Initial conditions (t=0s) −200 −150 −100 −50 0 0 10 20 30 40 50 60 70 Road n° 1 (t= 0s) Position (m) Density(veh/km) 0 50 100 150 200 0 10 20 30 40 50 60 70 Road n° 2 (t= 0s) Position (m) Density(veh/km) 0 50 100 150 200 0 10 20 30 40 50 60 70 Road n° 3 (t= 0s) Position (m) Density(veh/km) G. Costeseque (Universit´e ParisEst) D5 Traffic flow models Marne-la-Vall´ee, Nov. 2012 17 / 40
  • 18. Numerical simulations Example 1: Diverge Diverge: Numerical results (t=5s) −200 −150 −100 −50 0 0 10 20 30 40 50 60 70 Road n° 1 (t= 5s) Position (m) Density(veh/km) 0 50 100 150 200 0 10 20 30 40 50 60 70 Road n° 2 (t= 5s) Position (m) Density(veh/km) 0 50 100 150 200 0 10 20 30 40 50 60 70 Road n° 3 (t= 5s) Position (m) Density(veh/km) G. Costeseque (Universit´e ParisEst) D5 Traffic flow models Marne-la-Vall´ee, Nov. 2012 18 / 40
  • 19. Numerical simulations Example 1: Diverge Diverge: Numerical results (t=10s) −200 −150 −100 −50 0 0 10 20 30 40 50 60 70 Road n° 1 (t= 10s) Position (m) Density(veh/km) 0 50 100 150 200 0 10 20 30 40 50 60 70 Road n° 2 (t= 10s) Position (m) Density(veh/km) 0 50 100 150 200 0 10 20 30 40 50 60 70 Road n° 3 (t= 10s) Position (m) Density(veh/km) G. Costeseque (Universit´e ParisEst) D5 Traffic flow models Marne-la-Vall´ee, Nov. 2012 19 / 40
  • 20. Numerical simulations Example 1: Diverge Diverge: Numerical results (t=20s) −200 −150 −100 −50 0 0 10 20 30 40 50 60 70 Road n° 1 (t= 20s) Position (m) Density(veh/km) 0 50 100 150 200 0 10 20 30 40 50 60 70 Road n° 2 (t= 20s) Position (m) Density(veh/km) 0 50 100 150 200 0 10 20 30 40 50 60 70 Road n° 3 (t= 20s) Position (m) Density(veh/km) G. Costeseque (Universit´e ParisEst) D5 Traffic flow models Marne-la-Vall´ee, Nov. 2012 20 / 40
  • 21. Numerical simulations Example 1: Diverge Diverge: Numerical results (t=30s) −200 −150 −100 −50 0 0 10 20 30 40 50 60 70 Road n° 1 (t= 30s) Position (m) Density(veh/km) 0 50 100 150 200 0 10 20 30 40 50 60 70 Road n° 2 (t= 30s) Position (m) Density(veh/km) 0 50 100 150 200 0 10 20 30 40 50 60 70 Road n° 3 (t= 30s) Position (m) Density(veh/km) G. Costeseque (Universit´e ParisEst) D5 Traffic flow models Marne-la-Vall´ee, Nov. 2012 21 / 40
  • 22. Numerical simulations Example 1: Diverge Diverge: Cumulative Vehicles Count 0 5 10 15 20 25 0 5 10 15 20 25 30 35 Time (s) CumulativeNumberofVehicles CVC on road n°1 Downstream station Upstream station −10 0 10 20 30 0 5 10 15 20 25 30 35 Time (s) CumulativeNumberofVehicles CVC on road n°2 Downstream station Upstream station −10 0 10 20 30 0 5 10 15 20 25 30 35 Time (s) CumulativeNumberofVehicles CVC on road n°3 Downstream station Upstream station G. Costeseque (Universit´e ParisEst) D5 Traffic flow models Marne-la-Vall´ee, Nov. 2012 22 / 40
  • 23. Numerical simulations Example 1: Diverge Diverge: Trajectories 5.42868 6.514427.60015 8.68589 9.77163 10.8574 11.9431 13.0288 14.1146 15.2003 16.286 17.3718 18.4575 19.5433 20.629 21.7147 Trajectories on road n° 1 Time (s) Position(m) 0 10 20 30 −200 −150 −100 −50 0 −1.47006−0.2934180.8832282.059873.236524.413165.589816.766467.94319.11975 10.2964 11.473 12.6497 13.8263 15.003 16.1796 17.356318.5329 Trajectories on road n° 2 Time (s) Position(m) 0 10 20 30 0 50 100 150 200 −1.47006−0.2934180.8832282.059873.236524.413165.589816.766467.94319.1197510.2964 11.473 12.6497 13.8263 15.00316.1796 17.3563 18.5329 Trajectories on road n° 3 Time (s) Position(m) 0 10 20 30 0 50 100 150 200 G. Costeseque (Universit´e ParisEst) D5 Traffic flow models Marne-la-Vall´ee, Nov. 2012 23 / 40
  • 24. Numerical simulations Example 2: Merge Merge: Simulations Representation of an on-ramp: x > 0x < 0 x = 0 ρ3 ρ2 ρ1 Simplest case: two incoming roads and one outgoing road Configuration: Branch Number of lanes Maximal speed γα 1 3 90 km/h 0.8 2 1 70 km/h 0.2 3 3 90 km/h 1 G. Costeseque (Universit´e ParisEst) D5 Traffic flow models Marne-la-Vall´ee, Nov. 2012 24 / 40
  • 25. Numerical simulations Example 2: Merge Merge: Fundamental Diagrams Branch Initial state Final state 1 50 veh/km 4900 veh/h 180 veh/km 4300 veh/h 2 20 veh/km 1400 veh/h 70 veh/km 1100 veh/h 3 30 veh/km 3300 veh/h 605 veh/km 5400 veh/h 0 50 100 150 200 250 300 350 400 450 500 0 1000 2000 3000 4000 5000 6000 Density (veh/km) Flow(veh/h) Fundamental diagrams per branch 1 2 3 G. Costeseque (Universit´e ParisEst) D5 Traffic flow models Marne-la-Vall´ee, Nov. 2012 25 / 40
  • 26. Numerical simulations Example 2: Merge Merge: Initial conditions (t=0s) −200 −150 −100 −50 0 50 100 150 Road n° 1 (t= 0s) Position (m) Density(veh/km) −200 −150 −100 −50 0 50 100 150 Road n° 2 (t= 0s) Position (m) Density(veh/km) 0 50 100 150 200 50 100 150 Road n° 3 (t= 0s) Position (m) Density(veh/km) G. Costeseque (Universit´e ParisEst) D5 Traffic flow models Marne-la-Vall´ee, Nov. 2012 26 / 40
  • 27. Numerical simulations Example 2: Merge Merge: Numerical results (t=20s) −200 −150 −100 −50 0 50 100 150 Road n° 1 (t= 20s) Position (m) Density(veh/km) −200 −150 −100 −50 0 50 100 150 Road n° 2 (t= 20s) Position (m) Density(veh/km) 0 50 100 150 200 50 100 150 Road n° 3 (t= 20s) Position (m) Density(veh/km) G. Costeseque (Universit´e ParisEst) D5 Traffic flow models Marne-la-Vall´ee, Nov. 2012 27 / 40
  • 28. Numerical simulations Example 2: Merge Merge: Numerical results (t=50s) −200 −150 −100 −50 0 50 100 150 Road n° 1 (t= 50s) Position (m) Density(veh/km) −200 −150 −100 −50 0 50 100 150 Road n° 2 (t= 50s) Position (m) Density(veh/km) 0 50 100 150 200 50 100 150 Road n° 3 (t= 50s) Position (m) Density(veh/km) G. Costeseque (Universit´e ParisEst) D5 Traffic flow models Marne-la-Vall´ee, Nov. 2012 28 / 40
  • 29. Numerical simulations Example 2: Merge Merge: Numerical results (t=100s) −200 −150 −100 −50 0 50 100 150 Road n° 1 (t= 100s) Position (m) Density(veh/km) −200 −150 −100 −50 0 50 100 150 Road n° 2 (t= 100s) Position (m) Density(veh/km) 0 50 100 150 200 50 100 150 Road n° 3 (t= 100s) Position (m) Density(veh/km) G. Costeseque (Universit´e ParisEst) D5 Traffic flow models Marne-la-Vall´ee, Nov. 2012 29 / 40
  • 30. Numerical simulations Example 2: Merge Merge: Flow distribution [Daganzo] 0 1000 2000 3000 4000 5000 6000 0 500 1000 1500 2000 2500 3000 Flow Q 1 (veh/h) FlowQ 2 (veh/h) Flows distribution at merge Demand ∆ 1 Demand ∆ 2 Priority share γ 2 / γ 1 Supply constraint Σ 3 G. Costeseque (Universit´e ParisEst) D5 Traffic flow models Marne-la-Vall´ee, Nov. 2012 30 / 40
  • 31. Numerical simulations Example 2: Merge Merge: Cumulative Vehicles Count 0 100 200 300 400 0 50 100 150 200 250 Time (s) CumulativeNumberofVehicles CVC on road n°1 Upstream station Downstream station 0 100 200 300 400 500 0 50 100 150 200 250 Time (s) CumulativeNumberofVehicles CVC on road n°2 Upstream station Downstream station −100 0 100 200 300 400 0 50 100 150 200 250 Time (s) CumulativeNumberofVehicles CVC on road n°3 Upstream station Downstream station G. Costeseque (Universit´e ParisEst) D5 Traffic flow models Marne-la-Vall´ee, Nov. 2012 31 / 40
  • 32. Numerical simulations Example 2: Merge Merge: Trajectories 17.36824 34.73648 52.10472 69.47297 86.84121 104.2094 121.5777 138.9459 156.3142 173.6824 191.0507 208.4189 225.7871 243.1554 260.5236 277.8919 295.2601 312.6283 329.9966347.3648 Trajectories on road n° 1 Time (s) Position(m) 0 50 100 150 200 −200 −150 −100 −50 0 18.30346 36.60692 54.91038 73.21384 91.5173 109.8208 128.1242146.4277164.7311183.0346201.3381219.6415237.945256.2484274.5519292.8553311.1588329.4623347.7657366.0692 Trajectories on road n° 2 Time (s) Position(m) 0 50 100 150 200 −200 −150 −100 −50 0 9.497618 24.99524 40.49285 55.99047 71.48809 86.98571 102.4833 117.9809 133.4786 148.9762 164.4738 179.9714 195.469 210.9667 226.4643 241.9619 257.4595 272.9571 288.4547 303.9524 319.45 Trajectories on road n° 3 Time (s) Position(m) 0 50 100 150 200 0 50 100 150 200 G. Costeseque (Universit´e ParisEst) D5 Traffic flow models Marne-la-Vall´ee, Nov. 2012 32 / 40
  • 33. Concluding remarks Outline 1 Introduction 2 Proposed intersection model 3 Numerical simulations 4 Concluding remarks G. Costeseque (Universit´e ParisEst) D5 Traffic flow models Marne-la-Vall´ee, Nov. 2012 33 / 40
  • 34. Concluding remarks Concluding remarks Balance Convergent numerical scheme Special configurations (diverge / merge) Use of the Cumulative Vehicles Count Perspectives: High order models (GSOM family) Integrate internal node supplies (urban intersection) Micro-Macro passage (conflicts modelling) G. Costeseque (Universit´e ParisEst) D5 Traffic flow models Marne-la-Vall´ee, Nov. 2012 34 / 40
  • 35. Concluding remarks The End Thanks for your attention guillaume.costeseque@cermics.enpc.fr guillaume.costeseque@ifsttar.fr G. Costeseque (Universit´e ParisEst) D5 Traffic flow models Marne-la-Vall´ee, Nov. 2012 35 / 40
  • 36. Complements Some references G. Fl¨otter¨od and J. Rohde, Operational macroscopic modeling of complex urban intersections, Transportation Research Part B: Methodological 45(6), (2011), pp. 903-922. C. Imbert, R. Monneau and H. Zidani, A Hamilton-Jacobi approach to junction problems and application to traffic flows, Working paper, Universit´e Paris-Dauphine, Paris, (2011), 38 pages. M.M. Khoshyaran and J.P. Lebacque, Internal state models for intersections in macroscopic traffic flow models, TGF09, Shanghai 2009. J.P. Lebacque and M.M. Koshyaran, First-order macroscopic traffic flow models: intersection modeling, network modeling, 2005, pp. 365-386. C. Tamp`ere, R. Corthout, D. Cattrysse and L. Immers, A generic class of first order node models for dynamic macroscopic simulations of traffic flows, Transportation Research Part B, 45 (1) (2011), pp. 289-309. G. Costeseque (Universit´e ParisEst) D5 Traffic flow models Marne-la-Vall´ee, Nov. 2012 36 / 40
  • 37. Complements References for conservation laws Hyperbolic equation of conservation laws with discontinuous flux: ρt + (Q(x, ρ))x = 0 with Q(x, p) = 1{x<0}Q1(p) + 1{x≥0}Q2(p) Uniqueness result for two branches: See [Garavello, Natalini, Piccoli, Terracina (2007)] and [Andreianov, Karlsen, Risebro (2010)] Book of [Garavello, Piccoli (2006)] for conservation laws on networks: Construction of a solution using the ”wave front tracking method” No proof of the uniqueness of the solution on a general networks G. Costeseque (Universit´e ParisEst) D5 Traffic flow models Marne-la-Vall´ee, Nov. 2012 37 / 40
  • 38. Complements Literature review State-of-the-art review from [Tamp`ere, Corthout, Catterysse, Immers (2011)] and [Fl¨otter¨od and Rohde (2011)]: list of seven requirements: General applicability for any n, m ≥ 1 Non-negativity of flows Demand and Supply constraints Vehicles conservation through the junction Conservation of Turning Fractions (FIFO) Maximization of Flows from an User perspective Compliance to the invariance principle [Lebacque, Khoshyaran (2005)] (Opt.) Internal node supplies: non-uniqueness! [Corthout et al., 2012] G. Costeseque (Universit´e ParisEst) D5 Traffic flow models Marne-la-Vall´ee, Nov. 2012 38 / 40
  • 39. Complements HJ equation: settings Point-wise intersection without internal state No distinction on incoming or outgoing roads No consideration on multiclasses or multilanes J3 J1 J2 e1 e2 eN JN e3 Primitive of ρα solution of classical LWR equation on branch α:    uα(x, t) = uα(0, t) − 1 γα x 0 ρα (y, t)dy, for α ∈ {outgoing roads} uα(x, t) = uα(0, t) + 1 γα x 0 ρα (y, t)dy, for α ∈ {incoming roads} with γα the proportion of flow sent or received by branch α G. Costeseque (Universit´e ParisEst) D5 Traffic flow models Marne-la-Vall´ee, Nov. 2012 39 / 40
  • 40. Complements HJ formulation Search of suitable continuous functions u, viscosity solutions of:    uα t + Hα(uα x ) = 0 on (0, T) × J∗ α, ut + max α=1,...,N H− α (uα x ) = 0 on (0, T) × {0}. (5.5) submitted to an initial condition (globally Lipschitz continuous) u(0, x) = u0(x), with x ∈ J. (5.6) The Hamiltonians Hα are convex functions such that: The function Hα : R → R is continuous and lim |p|→+∞ Hα(p) = +∞; There exists pα 0 ∈ R such that Hα is non-increasing on (−∞, pα 0 ] and non-decreasing on [pα 0 , +∞). We denote by H− α and H+ α the corresponding functions. G. Costeseque (Universit´e ParisEst) D5 Traffic flow models Marne-la-Vall´ee, Nov. 2012 40 / 40