SlideShare a Scribd company logo
1 of 59
Download to read offline
Some recent developments in
the traffic flow variational formulation
Guillaume Costeseque
collaborations with J-P. Lebacque and J. Laval
Inria Sophia-Antipolis M´editerran´ee
S´eminaire Mod´elisation des R´eseaux de Transports
– IFSTTAR Marne-la-Vall´ee –
May 12, 2016
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 1 / 50
Motivation
HJ & Lax-Hopf formula
Hamilton-Jacobi equations: why and what for?
Smoothness of the solution (no shocks)
Physically meaningful quantity
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 2 / 50
Motivation
HJ & Lax-Hopf formula
Hamilton-Jacobi equations: why and what for?
Smoothness of the solution (no shocks)
Physically meaningful quantity
Analytical expression of the solution
Efficient computational methods
Easy integration of GPS data
[Mazar´e et al, 2012]
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 2 / 50
Motivation
HJ & Lax-Hopf formula
Hamilton-Jacobi equations: why and what for?
Smoothness of the solution (no shocks)
Physically meaningful quantity
Analytical expression of the solution
Efficient computational methods
Easy integration of GPS data
[Mazar´e et al, 2012]
Everything broken for network applications?
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 2 / 50
Motivation
Network model
Simple case study: generalized three-detector problem (Newell (1993))
N(t, x)
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 3 / 50
Motivation
Outline
1 Notations from traffic flow modeling
2 Basic recalls on Lax-Hopf formula
3 Hamilton-Jacobi and source terms
4 Hamilton-Jacobi on networks
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 4 / 50
Notations from traffic flow modeling
Outline
1 Notations from traffic flow modeling
2 Basic recalls on Lax-Hopf formula
3 Hamilton-Jacobi and source terms
4 Hamilton-Jacobi on networks
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 5 / 50
Notations from traffic flow modeling
Convention for vehicle labeling
N
x
t
Flow
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 6 / 50
Notations from traffic flow modeling
Three representations of traffic flow
Moskowitz’ surface
Flow
x
t
N
x
See also [Makigami et al, 1971], [Laval and Leclercq, 2013]
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 7 / 50
Notations from traffic flow modeling
Overview: conservation laws (CL) / Hamilton-Jacobi (HJ)
Eulerian Lagrangian
t − x t − n
CL
Variable Density ρ Spacing r
Equation ∂tρ + ∂x Q(ρ) = 0 ∂tr + ∂x V (r) = 0
HJ
Variable Label N Position X
N(t, x) =
+∞
x
ρ(t, ξ)dξ X(t, n) =
+∞
n
r(t, η)dη
Equation ∂tN + H (∂x N) = 0 ∂tX + V (∂x X) = 0
Hamiltonian H(p) = −Q(−p) V(p) = −V (−p)
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 8 / 50
Basic recalls on Lax-Hopf formula
Outline
1 Notations from traffic flow modeling
2 Basic recalls on Lax-Hopf formula
3 Hamilton-Jacobi and source terms
4 Hamilton-Jacobi on networks
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 9 / 50
Basic recalls on Lax-Hopf formula Lax-Hopf formula
Setting
Consider Cauchy problem
ut + H(Du) = 0, in Rn × (0, +∞),
u(., 0) = u0(.), on Rn.
(1)
Two formulas according to the smoothness of
the Hamiltonian H
the initial data u0
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 10 / 50
Basic recalls on Lax-Hopf formula Lax-Hopf formula
Lax-Hopf formulæ
Assumptions: case 1
(A1) H : Rn → R is convex
(A2) u0 : Rn → R is uniformly Lipschitz
Theorem (First Lax-Hopf formula)
If (A1)-(A2) hold true, then
u(x, t) := inf
z∈Rn
sup
y∈Rn
[u0(z) + y.(x − z) − tH(y)] (2)
is the unique uniformly continuous viscosity solution of (1).
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 11 / 50
Basic recalls on Lax-Hopf formula Lax-Hopf formula
Legendre-Fenchel transform
First Lax-Hopf formula (2) can be recast as
u(x, t) := inf
z∈Rn
u0(z) − tH∗ x − z
t
thanks to Legendre-Fenchel transform
L(z) = H∗
(z) := sup
y∈Rn
(y.z − H(y)) .
Proposition (Bi-conjugate)
If H is strictly convex, 1-coercive i.e. lim
|p|→∞
H(p)
|p|
= +∞,
then H∗ is also convex and
(H∗
)∗
= H.
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 12 / 50
Basic recalls on Lax-Hopf formula Lax-Hopf formula
Legendre-Fenchel transform
First Lax-Hopf formula (2) can be recast as
u(x, t) := inf
z∈Rn
u0(z) − tH∗ x − z
t
thanks to Legendre-Fenchel transform
L(z) = H∗
(z) := sup
y∈Rn
(y.z − H(y)) .
Proposition (Bi-conjugate)
If H is strictly convex, 1-coercive i.e. lim
|p|→∞
H(p)
|p|
= +∞,
then H∗ is also convex and
(H∗
)∗
= H.
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 12 / 50
Basic recalls on Lax-Hopf formula LWR in Eulerian
LWR in Eulerian (t, x)
Cumulative vehicles count (CVC) or Moskowitz surface N(t, x)
q = ∂tN and ρ = −∂x N
If density ρ satisfies the scalar (LWR) conservation law
∂tρ + ∂x Q(ρ) = 0
Then N satisfies the first order Hamilton-Jacobi equation
∂tN − Q(−∂x N) = 0 (3)
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 13 / 50
Basic recalls on Lax-Hopf formula LWR in Eulerian
LWR in Eulerian (t, x)
Legendre-Fenchel transform with Q concave (relative capacity)
M(q) = sup
ρ
[Q(ρ) − ρq]
M(q)
u
w
Density ρ
q
q
Flow F
w u
q
Transform M
−wρmax
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 14 / 50
Basic recalls on Lax-Hopf formula LWR in Eulerian
LWR in Eulerian (t, x)
(continued)
Lax-Hopf formula
N(T, xT ) = min
u(.),(t0,x0)
T
t0
M(u(τ))dτ + N(t0, x0),
˙X = u
u ∈ U
X(t0) = x0, X(T) = xT
(t0, x0) ∈ J
(4) Time
Space
J
(T, xT )˙X(τ)
(t0, x0)
Viability theory [Claudel and Bayen, 2010]
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 15 / 50
Basic recalls on Lax-Hopf formula LWR in Eulerian
LWR in Eulerian (t, x)
(Historical note)
Dynamic programming [Daganzo, 2006] for triangular FD
(u and w free and congested speeds)
Flow, F
w
u
0 ρmax
Density, ρ
u
x
w
t
Time
Space
(t, x)
Minimum principle [Newell, 1993]
N(t, x) = min N t −
x − xu
u
, xu ,
N t −
x − xw
w
, xw + ρmax (xw − x) ,
(5)
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 16 / 50
Hamilton-Jacobi and source terms
Outline
1 Notations from traffic flow modeling
2 Basic recalls on Lax-Hopf formula
3 Hamilton-Jacobi and source terms
4 Hamilton-Jacobi on networks
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 17 / 50
Hamilton-Jacobi and source terms Problem Formulation
Long homogeneous corridor with numerous entrances and exits
Net lateral freeway “inflow” rate φ
Flow
inflow
outflow
= φ
∂tρ + ∂x H(ρ) = φ,
k = g on Γ
(6)
∂tN − H (−∂x N) = Φ,
N = G on Γ,
(7)
where
Φ(t, x) = −
x
0
φ(t, y)dy
G(t, x) =
Γ
g(t, x)dΓ, (t, x) ∈ Γ
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 18 / 50
Hamilton-Jacobi and source terms Problem Formulation
Some remarks
The flow reads q = Nt − Φ and the cumulative count curves are
N(t, x) =
t
0
q(s, x)ds
usual N-curve
+
t
0
x
0
φ(s, y)dsdy
net number of vehicles “entering”
If φ = φ(k) then
Φ(t, x) = ˜Φ(t, x, −Nx ) = −
x
0
φ(−Nx (t, y))dy, (8)
This means that (7) becomes the more general HJ equation
Nt − ˜H(t, x, −Nx ) = 0
where ˜H(t, x, k) = H(k) + ˜Φ(t, x, k).
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 19 / 50
Hamilton-Jacobi and source terms Exogenous inflow
Variational problem
Lax-Hopf formula:
N(P) = min
B∈ΓP , ξ∈VBP
f (B, ξ) (9)
f (B, ξ) := G(B) +
t
tB
R(s, ξ(s), ξ′
(s)) ds
P ≡ (t, x) “target” point
B ≡ (tB , y) on the boundary ΓP
ξ ∈ VBP set of valid paths B → P
R(·) Legendre transform of ˜H
R(t, x, v) = sup
k
˜H(t, x, k) − vk .
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 20 / 50
Hamilton-Jacobi and source terms Exogenous inflow
Assume a triangular flow-density diagram
The function f (B, ξ) to be minimized reads
f (B, ξ) = G(B) + (t − tB)Q − (x − y)K +
t
tB
Φ(s, ξ(s)) ds
=:J
(10)
where Q = capacity, K = critical density.
J = net number of vehicles leaving the area
A(ξ) below the curve x = ξ(t)
J = −
t
tB
ξ(s)
y
φ(s, x) dxds, (11)
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 21 / 50
Hamilton-Jacobi and source terms Exogenous inflow
Initial value problems with constant density
Assume
N(0, x) = G(x) = −k0x (g(x) = k0) ,
φ(t, x) = a,
(12)
min f (B ≡ (y, 0), ξ) reached for a path
(i) maximizing A(ξ) when a > 0
(ii) or minimizing A(ξ) when a < 0
f (y) = c0 + c1y + c2y2 with c2 > 0
Explicit solution:
N(t, x) =
f (y∗), t > K−k0
a > 0
min{f (xU), f (xD)}, otherwise
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 22 / 50
Hamilton-Jacobi and source terms Exogenous inflow
Extended Riemann problem (ERP)
Consider
(g(x), φ(x)) =
(kU, aU), x ≤ x0
(kD, aD), x > x0,
(13)
Assuming G(x0) = 0
G(x) =
(x0 − x)kU , x ≤ x0
(x0 − x)kD , x > x0
(14)
J-integral = weighted average of the portion of
A(ξ) upstream and downstream of x = x0 with
weighs aU and aD
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 23 / 50
Hamilton-Jacobi and source terms Exogenous inflow
Extended Riemann problem (ERP)
(continued)
Same minimization of J(ξ)
f (y) = G(y) + tQ − (x0 − y)K + J(y) with
J(y) =
min{j1(y), j2(y), j3(y)}, y > x0
min{j4(y), j5(y), j6(y)}, y ≤ x0
Possible minima for the components of f (y)
y = yi ∈ ΓP
, i = 1, . . . 6
Semi-explicit solution (9 candidates):
N(t, x0) = min
y∈Y
f (y)
Y = {xU, x0, xD, y∗
1 , . . . y∗
6 }
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 24 / 50
Hamilton-Jacobi and source terms Numerical solution methods
Godunov’s method
Basis of the well known Cell Transmission (CT) model
Time and space increments ∆t and ∆x = u∆t
Numerical approximation of the density
kj
i = k(j∆t, i∆x) (15)
Discrete approximation of the conservation law (6):
kj+1
i − kj
i
∆t
+
qj
i+1 − qj
i
∆x
= φ(kj
i ) (16)
with (CT rule)
qj
i = min{Q, ukj
i , (κ − kj
i+1)w} (17)
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 25 / 50
Hamilton-Jacobi and source terms Numerical solution methods
Example
Consider an empty freeway at t = 0 with
g(x) = 0, (18a)
φ(k) = ax − buk, a, b > 0. (18b)
Exact solution (method of characteristics):
k(t, x) =
a
b2u
bx − 1 + (1 − b(x − tu))e−btu
(19)
provided k(t, x) ≤ K (Laval, Leclercq (2010))
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 26 / 50
Hamilton-Jacobi and source terms Numerical solution methods
Example
(continued)
Comparison of numerical solutions (∆t = 40 s) and the exact solution
Main difference = the flow estimates
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 27 / 50
Hamilton-Jacobi and source terms Numerical solution methods
Example
(continued)
Density RMSE (numerical VS exact solution) for varying ∆t:
Both converge as ∆t → 0
Accuracy of ERP > CT rule
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 28 / 50
Hamilton-Jacobi and source terms Numerical solution methods
Example
(continued)
Optimal candidate that minimizes f (y) at each time step
Difference when k → K
Most accurate optimal
candidate y∗
1
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 29 / 50
Hamilton-Jacobi and source terms Numerical solution methods
Variational networks
Dt
u
-w
vi
di
ti
timeti
i
Si = area
Dx
space
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 30 / 50
Hamilton-Jacobi and source terms Numerical solution methods
Variational networks
Dt
u
-w
vi
di
ti
timeti
i
Si = area
Dx
space
Only three wave speeds with costs
L(vi ) =
⎧
⎪⎨
⎪⎩
wκ, vi = −w
Q, vi = 0
0, vi = u
(20)
The cost on each link:
ci = L(vi )τi + Ji .
Ji = contribution of the J-integral in
the cost of each link i
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 30 / 50
Hamilton-Jacobi and source terms Numerical solution methods
Variational networks
Dt
u
-w
vi
di
ti
timeti
i
Si = area
Dx
space
Advantage: free of numerical errors
(when inflows are exogenous)
Drawback:
cumbersome to implement unless u
w is
an integer
merge models expressed in terms of
flows or densities rather than N values:
additional computational layer needed
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 31 / 50
Hamilton-Jacobi on networks
Outline
1 Notations from traffic flow modeling
2 Basic recalls on Lax-Hopf formula
3 Hamilton-Jacobi and source terms
4 Hamilton-Jacobi on networks
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 32 / 50
Hamilton-Jacobi on networks
A special network = junction
HJN
HJ1
HJ2
HJ3
HJ4
HJ5
Network
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 33 / 50
Hamilton-Jacobi on networks
A special network = junction
HJN
HJ1
HJ2
HJ3
HJ4
HJ5
Network
HJ4
HJ2
HJ1
HJ3
Junction J
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 33 / 50
Hamilton-Jacobi on networks
Space dependent Hamiltonian
Consider HJ equation posed on a junction J
ut + H(x, ux ) = 0, on J × (0, +∞),
u(t = 0, x) = g(x), on J
(21)
Extension of Lax-Hopf formula(s)?
No simple linear solutions for (21)
No definition of convexity for discontinuous functions
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 34 / 50
Hamilton-Jacobi on networks Literature with application to traffic
Junction models
Classical approaches for CL:
Macroscopic modeling on (homogeneous) sections
Coupling conditions at (pointwise) junction
For instance, consider
⎧
⎪⎨
⎪⎩
ρt + (Q(ρ))x = 0, scalar conservation law,
ρ(., t = 0) = ρ0(.), initial conditions,
ψ(ρ(x = 0−, t), ρ(x = 0+, t)) = 0, coupling condition.
(22)
See Garavello, Piccoli [4], Lebacque, Khoshyaran [6] and Bressan et al. [1]
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 35 / 50
Hamilton-Jacobi on networks Literature with application to traffic
Examples of junction models
Model with internal state (= buffer(s))
Bressan & Nguyen (NHM 2015) [2]
ρ → Q(ρ) strictly concave
advection of γij (t, x) turning ratios from (i) to (j)
(GSOM model with passive attribute)
internal dynamics of the buffers (ODEs): queue lengths
Extended Link Transmission Model
Jin (TR-B 2015) [5]
Link Transmission Model (LTM) Yperman (2005, 2007)
Triangular diagram
Q(ρ) = min {uρ, w(ρmax − ρ)} for any ρ ∈ [0, ρmax]
Commodity = turning ratios γij(t)
Definition of boundary supply and demand functions
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 36 / 50
Hamilton-Jacobi on networks Settings
First remarks
If N solves
Nt + H (Nx ) = 0
then ¯N = N + c for any c ∈ R is also a solution
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 37 / 50
Hamilton-Jacobi on networks Settings
First remarks
If N solves
Nt + H (Nx ) = 0
then ¯N = N + c for any c ∈ R is also a solution
Ni
(t, x)
N0
(t)
Nj
(t, x)
(j)
(i)
No a priori relationship between initial
conditions
Nk (t, x) consistent along the same
branch Jk and
∂tN0
(t) =
i
∂tNi
t, x = 0−
=
j
∂tNj
t, x = 0+
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 37 / 50
Hamilton-Jacobi on networks Settings
Key idea
Assume that H is piecewise linear (triangular FD)
Nt + H (Nx ) = 0
with
H(p) = max{H+
(p)
supply
, H−
(p)
demand
}
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 38 / 50
Hamilton-Jacobi on networks Settings
Key idea
Assume that H is piecewise linear (triangular FD)
Nt + H (Nx ) = 0
with
H(p) = max{H+
(p)
supply
, H−
(p)
demand
}
Partial solutions N+ and N− that solve resp.
⎧
⎪⎨
⎪⎩
N+
t + H+ (N+
x ) = 0,
N−
t + H− (N−
x ) = 0
such that N = min N−
, N+
Upstream demand advected by waves moving forward
Downstream supply transported by waves moving backward
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 38 / 50
Hamilton-Jacobi on networks Mathematical expression
Junction model
Optimization junction model (Lebacque’s talk)
Lebacque, Khoshyaran (2005) [6]
max
⎡
⎣
i
φi (qi ) +
j
ψj (rj )
⎤
⎦
s.t.
0 ≤ qi ∀i
qi ≤ δi ∀i
0 ≤ rj ∀j
rj ≤ σj ∀j
0 = rj − i γij qi ∀j
(23)
where φi , ψj are concave, non-decreasing
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 39 / 50
Hamilton-Jacobi on networks Mathematical expression
Example of optimization junction models
Herty and Klar (2003)
Holden and Risebro (1995)
Coclite, Garavello, Piccoli (2005)
Daganzo’s merge model (1995) [3]
⎧
⎪⎨
⎪⎩
φi (qi ) = Nmax qi −
q2
i
2pi qi,max
ψ = 0
where pi is the priority of flow coming from road i and Nmax = φ′
i (0)
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 40 / 50
Hamilton-Jacobi on networks Mathematical expression
Solution of the optimization model
Lebacque, Khoshyaran (2005)
Karush-Kuhn-Tucker optimality conditions:
For any incoming road i
φ′
i (qi )+
k
skγik −λi = 0, λi ≥ 0, qi ≤ δi and λi (qi −δi ) = 0,
and for any outgoing road j
ψ′
j (rj ) − sj − λj = 0, λj ≥ 0, ri ≤ σj and λj (rj − σj ) = 0,
where (sj , λj ) = Karush-Kuhn-Tucker coefficients (or Lagrange multipliers)
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 41 / 50
Hamilton-Jacobi on networks Mathematical expression
Solution of the optimization model
Lebacque, Khoshyaran (2005)
⎧
⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩
qi = Γ[0,δi ] (φ′
i )−1
−
k
γiksk , for any i,
rj = Γ[0,σj ] (ψ′
j )−1
(sj ) , for any j,
(24)
ΓK is the projection operator on the set K
i qi
i γijδi
σj rj
sj
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 42 / 50
Hamilton-Jacobi on networks Mathematical expression
Model equations
⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩
Ni
t + Hi (Ni
x ) = 0, for any x ̸= 0,
∂tNi (t, x−) = qi (t),
∂tNj (t, x+) = rj (t),
at x = 0,
Ni (t = 0, x) = Ni
0(x),
∂tNi (t, x = ξi ) = ∆i (t),
∂tNj (t, x = χj ) = Σj(t)
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 43 / 50
Hamilton-Jacobi on networks Mathematical expression
Algorithm
Inf-morphism property: compute partial solutions for
initial conditions
upstream boundary conditions
downstream boundary conditions
internal boundary conditions
1 Propagate demands forward
through a junction, assume that the downstream supplies are maximal
2 Propagate supplies backward
through a junction, assume that the upstream demands are maximal
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 44 / 50
Hamilton-Jacobi on networks Application to a simple junction
Spatial discontinuity
Time
Space
Density
Flow
Downstream condition
(u)
(d)
Upstream condition
Initial condition
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 45 / 50
Hamilton-Jacobi on networks Application to a simple junction
Numerical results
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 46 / 50
Hamilton-Jacobi on networks Application to a simple junction
Numerical results
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 46 / 50
Hamilton-Jacobi on networks Application to a simple junction
Numerical results
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 46 / 50
Conclusion and perspectives
Final remarks
In a nutshell:
No explicit solution right now
Only specific cases
Importance of the supply/demand functions
General optimization problem at the junction
Perspectives:
Lane changing behaviors
Estimation on networks
Stationary states
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 47 / 50
References
Some references I
A. Bressan, S. Canic, M. Garavello, M. Herty, and B. Piccoli, Flows
on networks: recent results and perspectives, EMS Surveys in Mathematical
Sciences, (2014).
A. Bressan and K. T. Nguyen, Conservation law models for traffic flow on a
network of roads, to appear, (2014).
C. F. Daganzo, The cell transmission model, part ii: network traffic,
Transportation Research Part B: Methodological, 29 (1995), pp. 79–93.
M. Garavello and B. Piccoli, Traffic flow on networks, American institute of
mathematical sciences Springfield, MO, USA, 2006.
W.-L. Jin, Continuous formulations and analytical properties of the link
transmission model, Transportation Research Part B: Methodological, 74 (2015),
pp. 88–103.
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 48 / 50
References
Some references II
J.-P. Lebacque and M. M. Khoshyaran, First-order macroscopic traffic flow
models: Intersection modeling, network modeling, in Transportation and Traffic
Theory. Flow, Dynamics and Human Interaction. 16th International Symposium on
Transportation and Traffic Theory, 2005.
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 49 / 50
References
Thanks for your attention
guillaume.costeseque@inria.fr
G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 50 / 50

More Related Content

What's hot

The moving bottleneck problem: a Hamilton-Jacobi approach
The moving bottleneck problem: a Hamilton-Jacobi approachThe moving bottleneck problem: a Hamilton-Jacobi approach
The moving bottleneck problem: a Hamilton-Jacobi approachGuillaume Costeseque
 
Approximate Bayesian Computation with Quasi-Likelihoods
Approximate Bayesian Computation with Quasi-LikelihoodsApproximate Bayesian Computation with Quasi-Likelihoods
Approximate Bayesian Computation with Quasi-LikelihoodsStefano Cabras
 
Appendix to MLPI Lecture 2 - Monte Carlo Methods (Basics)
Appendix to MLPI Lecture 2 - Monte Carlo Methods (Basics)Appendix to MLPI Lecture 2 - Monte Carlo Methods (Basics)
Appendix to MLPI Lecture 2 - Monte Carlo Methods (Basics)Dahua Lin
 
Coordinate sampler: A non-reversible Gibbs-like sampler
Coordinate sampler: A non-reversible Gibbs-like samplerCoordinate sampler: A non-reversible Gibbs-like sampler
Coordinate sampler: A non-reversible Gibbs-like samplerChristian Robert
 
Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...
Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...
Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...VjekoslavKovac1
 
Quantitative norm convergence of some ergodic averages
Quantitative norm convergence of some ergodic averagesQuantitative norm convergence of some ergodic averages
Quantitative norm convergence of some ergodic averagesVjekoslavKovac1
 
Coordinate sampler : A non-reversible Gibbs-like sampler
Coordinate sampler : A non-reversible Gibbs-like samplerCoordinate sampler : A non-reversible Gibbs-like sampler
Coordinate sampler : A non-reversible Gibbs-like samplerChristian Robert
 
Gibbs flow transport for Bayesian inference
Gibbs flow transport for Bayesian inferenceGibbs flow transport for Bayesian inference
Gibbs flow transport for Bayesian inferenceJeremyHeng10
 
Non-sampling functional approximation of linear and non-linear Bayesian Update
Non-sampling functional approximation of linear and non-linear Bayesian UpdateNon-sampling functional approximation of linear and non-linear Bayesian Update
Non-sampling functional approximation of linear and non-linear Bayesian UpdateAlexander Litvinenko
 
Classification with mixtures of curved Mahalanobis metrics
Classification with mixtures of curved Mahalanobis metricsClassification with mixtures of curved Mahalanobis metrics
Classification with mixtures of curved Mahalanobis metricsFrank Nielsen
 
Inference in generative models using the Wasserstein distance [[INI]
Inference in generative models using the Wasserstein distance [[INI]Inference in generative models using the Wasserstein distance [[INI]
Inference in generative models using the Wasserstein distance [[INI]Christian Robert
 

What's hot (20)

The moving bottleneck problem: a Hamilton-Jacobi approach
The moving bottleneck problem: a Hamilton-Jacobi approachThe moving bottleneck problem: a Hamilton-Jacobi approach
The moving bottleneck problem: a Hamilton-Jacobi approach
 
Approximate Bayesian Computation with Quasi-Likelihoods
Approximate Bayesian Computation with Quasi-LikelihoodsApproximate Bayesian Computation with Quasi-Likelihoods
Approximate Bayesian Computation with Quasi-Likelihoods
 
Appendix to MLPI Lecture 2 - Monte Carlo Methods (Basics)
Appendix to MLPI Lecture 2 - Monte Carlo Methods (Basics)Appendix to MLPI Lecture 2 - Monte Carlo Methods (Basics)
Appendix to MLPI Lecture 2 - Monte Carlo Methods (Basics)
 
Nested sampling
Nested samplingNested sampling
Nested sampling
 
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
 
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
 
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
 
Coordinate sampler: A non-reversible Gibbs-like sampler
Coordinate sampler: A non-reversible Gibbs-like samplerCoordinate sampler: A non-reversible Gibbs-like sampler
Coordinate sampler: A non-reversible Gibbs-like sampler
 
Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...
Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...
Variants of the Christ-Kiselev lemma and an application to the maximal Fourie...
 
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
 
Quantitative norm convergence of some ergodic averages
Quantitative norm convergence of some ergodic averagesQuantitative norm convergence of some ergodic averages
Quantitative norm convergence of some ergodic averages
 
Coordinate sampler : A non-reversible Gibbs-like sampler
Coordinate sampler : A non-reversible Gibbs-like samplerCoordinate sampler : A non-reversible Gibbs-like sampler
Coordinate sampler : A non-reversible Gibbs-like sampler
 
Gibbs flow transport for Bayesian inference
Gibbs flow transport for Bayesian inferenceGibbs flow transport for Bayesian inference
Gibbs flow transport for Bayesian inference
 
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
 
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
QMC Program: Trends and Advances in Monte Carlo Sampling Algorithms Workshop,...
 
QMC: Operator Splitting Workshop, Compactness Estimates for Nonlinear PDEs - ...
QMC: Operator Splitting Workshop, Compactness Estimates for Nonlinear PDEs - ...QMC: Operator Splitting Workshop, Compactness Estimates for Nonlinear PDEs - ...
QMC: Operator Splitting Workshop, Compactness Estimates for Nonlinear PDEs - ...
 
Non-sampling functional approximation of linear and non-linear Bayesian Update
Non-sampling functional approximation of linear and non-linear Bayesian UpdateNon-sampling functional approximation of linear and non-linear Bayesian Update
Non-sampling functional approximation of linear and non-linear Bayesian Update
 
2018 MUMS Fall Course - Statistical and Mathematical Techniques for Sensitivi...
2018 MUMS Fall Course - Statistical and Mathematical Techniques for Sensitivi...2018 MUMS Fall Course - Statistical and Mathematical Techniques for Sensitivi...
2018 MUMS Fall Course - Statistical and Mathematical Techniques for Sensitivi...
 
Classification with mixtures of curved Mahalanobis metrics
Classification with mixtures of curved Mahalanobis metricsClassification with mixtures of curved Mahalanobis metrics
Classification with mixtures of curved Mahalanobis metrics
 
Inference in generative models using the Wasserstein distance [[INI]
Inference in generative models using the Wasserstein distance [[INI]Inference in generative models using the Wasserstein distance [[INI]
Inference in generative models using the Wasserstein distance [[INI]
 

Similar to Some recent developments in the traffic flow variational formulation

Representation formula for traffic flow estimation on a network
Representation formula for traffic flow estimation on a networkRepresentation formula for traffic flow estimation on a network
Representation formula for traffic flow estimation on a networkGuillaume Costeseque
 
Hamilton-Jacobi equations and Lax-Hopf formulae for traffic flow modeling
Hamilton-Jacobi equations and Lax-Hopf formulae for traffic flow modelingHamilton-Jacobi equations and Lax-Hopf formulae for traffic flow modeling
Hamilton-Jacobi equations and Lax-Hopf formulae for traffic flow modelingGuillaume Costeseque
 
Linear Bayesian update surrogate for updating PCE coefficients
Linear Bayesian update surrogate for updating PCE coefficientsLinear Bayesian update surrogate for updating PCE coefficients
Linear Bayesian update surrogate for updating PCE coefficientsAlexander Litvinenko
 
Geometric and viscosity solutions for the Cauchy problem of first order
Geometric and viscosity solutions for the Cauchy problem of first orderGeometric and viscosity solutions for the Cauchy problem of first order
Geometric and viscosity solutions for the Cauchy problem of first orderJuliho Castillo
 
Harmonic Analysis and Deep Learning
Harmonic Analysis and Deep LearningHarmonic Analysis and Deep Learning
Harmonic Analysis and Deep LearningSungbin Lim
 
590-Article Text.pdf
590-Article Text.pdf590-Article Text.pdf
590-Article Text.pdfBenoitValea
 
590-Article Text.pdf
590-Article Text.pdf590-Article Text.pdf
590-Article Text.pdfBenoitValea
 
GradStudentSeminarSept30
GradStudentSeminarSept30GradStudentSeminarSept30
GradStudentSeminarSept30Ryan White
 
Compatible discretizations in our hearts and minds
Compatible discretizations in our hearts and mindsCompatible discretizations in our hearts and minds
Compatible discretizations in our hearts and mindsMarie E. Rognes
 
Numerical solution of boundary value problems by piecewise analysis method
Numerical solution of boundary value problems by piecewise analysis methodNumerical solution of boundary value problems by piecewise analysis method
Numerical solution of boundary value problems by piecewise analysis methodAlexander Decker
 
International journal of engineering and mathematical modelling vol2 no3_2015_2
International journal of engineering and mathematical modelling vol2 no3_2015_2International journal of engineering and mathematical modelling vol2 no3_2015_2
International journal of engineering and mathematical modelling vol2 no3_2015_2IJEMM
 
Natalini nse slide_giu2013
Natalini nse slide_giu2013Natalini nse slide_giu2013
Natalini nse slide_giu2013Madd Maths
 
Solving High-order Non-linear Partial Differential Equations by Modified q-Ho...
Solving High-order Non-linear Partial Differential Equations by Modified q-Ho...Solving High-order Non-linear Partial Differential Equations by Modified q-Ho...
Solving High-order Non-linear Partial Differential Equations by Modified q-Ho...BRNSS Publication Hub
 
IVR - Chapter 1 - Introduction
IVR - Chapter 1 - IntroductionIVR - Chapter 1 - Introduction
IVR - Chapter 1 - IntroductionCharles Deledalle
 
Numerical approach for Hamilton-Jacobi equations on a network: application to...
Numerical approach for Hamilton-Jacobi equations on a network: application to...Numerical approach for Hamilton-Jacobi equations on a network: application to...
Numerical approach for Hamilton-Jacobi equations on a network: application to...Guillaume Costeseque
 
(α ψ)- Construction with q- function for coupled fixed point
(α   ψ)-  Construction with q- function for coupled fixed point(α   ψ)-  Construction with q- function for coupled fixed point
(α ψ)- Construction with q- function for coupled fixed pointAlexander Decker
 
Mit2 092 f09_lec12
Mit2 092 f09_lec12Mit2 092 f09_lec12
Mit2 092 f09_lec12Rahman Hakim
 
Unique fixed point theorems for generalized weakly contractive condition in o...
Unique fixed point theorems for generalized weakly contractive condition in o...Unique fixed point theorems for generalized weakly contractive condition in o...
Unique fixed point theorems for generalized weakly contractive condition in o...Alexander Decker
 

Similar to Some recent developments in the traffic flow variational formulation (20)

Representation formula for traffic flow estimation on a network
Representation formula for traffic flow estimation on a networkRepresentation formula for traffic flow estimation on a network
Representation formula for traffic flow estimation on a network
 
Hamilton-Jacobi equations and Lax-Hopf formulae for traffic flow modeling
Hamilton-Jacobi equations and Lax-Hopf formulae for traffic flow modelingHamilton-Jacobi equations and Lax-Hopf formulae for traffic flow modeling
Hamilton-Jacobi equations and Lax-Hopf formulae for traffic flow modeling
 
Linear Bayesian update surrogate for updating PCE coefficients
Linear Bayesian update surrogate for updating PCE coefficientsLinear Bayesian update surrogate for updating PCE coefficients
Linear Bayesian update surrogate for updating PCE coefficients
 
Geometric and viscosity solutions for the Cauchy problem of first order
Geometric and viscosity solutions for the Cauchy problem of first orderGeometric and viscosity solutions for the Cauchy problem of first order
Geometric and viscosity solutions for the Cauchy problem of first order
 
Harmonic Analysis and Deep Learning
Harmonic Analysis and Deep LearningHarmonic Analysis and Deep Learning
Harmonic Analysis and Deep Learning
 
590-Article Text.pdf
590-Article Text.pdf590-Article Text.pdf
590-Article Text.pdf
 
590-Article Text.pdf
590-Article Text.pdf590-Article Text.pdf
590-Article Text.pdf
 
GradStudentSeminarSept30
GradStudentSeminarSept30GradStudentSeminarSept30
GradStudentSeminarSept30
 
Compatible discretizations in our hearts and minds
Compatible discretizations in our hearts and mindsCompatible discretizations in our hearts and minds
Compatible discretizations in our hearts and minds
 
Ch06 6
Ch06 6Ch06 6
Ch06 6
 
Numerical solution of boundary value problems by piecewise analysis method
Numerical solution of boundary value problems by piecewise analysis methodNumerical solution of boundary value problems by piecewise analysis method
Numerical solution of boundary value problems by piecewise analysis method
 
International journal of engineering and mathematical modelling vol2 no3_2015_2
International journal of engineering and mathematical modelling vol2 no3_2015_2International journal of engineering and mathematical modelling vol2 no3_2015_2
International journal of engineering and mathematical modelling vol2 no3_2015_2
 
Natalini nse slide_giu2013
Natalini nse slide_giu2013Natalini nse slide_giu2013
Natalini nse slide_giu2013
 
QMC: Operator Splitting Workshop, Thresholdings, Robustness, and Generalized ...
QMC: Operator Splitting Workshop, Thresholdings, Robustness, and Generalized ...QMC: Operator Splitting Workshop, Thresholdings, Robustness, and Generalized ...
QMC: Operator Splitting Workshop, Thresholdings, Robustness, and Generalized ...
 
Solving High-order Non-linear Partial Differential Equations by Modified q-Ho...
Solving High-order Non-linear Partial Differential Equations by Modified q-Ho...Solving High-order Non-linear Partial Differential Equations by Modified q-Ho...
Solving High-order Non-linear Partial Differential Equations by Modified q-Ho...
 
IVR - Chapter 1 - Introduction
IVR - Chapter 1 - IntroductionIVR - Chapter 1 - Introduction
IVR - Chapter 1 - Introduction
 
Numerical approach for Hamilton-Jacobi equations on a network: application to...
Numerical approach for Hamilton-Jacobi equations on a network: application to...Numerical approach for Hamilton-Jacobi equations on a network: application to...
Numerical approach for Hamilton-Jacobi equations on a network: application to...
 
(α ψ)- Construction with q- function for coupled fixed point
(α   ψ)-  Construction with q- function for coupled fixed point(α   ψ)-  Construction with q- function for coupled fixed point
(α ψ)- Construction with q- function for coupled fixed point
 
Mit2 092 f09_lec12
Mit2 092 f09_lec12Mit2 092 f09_lec12
Mit2 092 f09_lec12
 
Unique fixed point theorems for generalized weakly contractive condition in o...
Unique fixed point theorems for generalized weakly contractive condition in o...Unique fixed point theorems for generalized weakly contractive condition in o...
Unique fixed point theorems for generalized weakly contractive condition in o...
 

More from Guillaume Costeseque

Analyse des données du Registre de preuve de covoiturage à l'échelle régional...
Analyse des données du Registre de preuve de covoiturage à l'échelle régional...Analyse des données du Registre de preuve de covoiturage à l'échelle régional...
Analyse des données du Registre de preuve de covoiturage à l'échelle régional...Guillaume Costeseque
 
Nouvelles mobilités, nouveaux usages, évolutions des marchés
Nouvelles mobilités, nouveaux usages, évolutions des marchésNouvelles mobilités, nouveaux usages, évolutions des marchés
Nouvelles mobilités, nouveaux usages, évolutions des marchésGuillaume Costeseque
 
Schéma numérique basé sur une équation d'Hamilton-Jacobi : modélisation des i...
Schéma numérique basé sur une équation d'Hamilton-Jacobi : modélisation des i...Schéma numérique basé sur une équation d'Hamilton-Jacobi : modélisation des i...
Schéma numérique basé sur une équation d'Hamilton-Jacobi : modélisation des i...Guillaume Costeseque
 
A multi-objective optimization framework for a second order traffic flow mode...
A multi-objective optimization framework for a second order traffic flow mode...A multi-objective optimization framework for a second order traffic flow mode...
A multi-objective optimization framework for a second order traffic flow mode...Guillaume Costeseque
 
Evaluation d'une navette autonome à Nantes 2019
Evaluation d'une navette autonome à Nantes 2019Evaluation d'une navette autonome à Nantes 2019
Evaluation d'une navette autonome à Nantes 2019Guillaume Costeseque
 
TramOpt: plateforme logicielle pour l'optimisation du trafic routier
TramOpt: plateforme logicielle pour l'optimisation du trafic routierTramOpt: plateforme logicielle pour l'optimisation du trafic routier
TramOpt: plateforme logicielle pour l'optimisation du trafic routierGuillaume Costeseque
 
A new solver for the ARZ traffic flow model on a junction
A new solver for the ARZ traffic flow model on a junctionA new solver for the ARZ traffic flow model on a junction
A new solver for the ARZ traffic flow model on a junctionGuillaume Costeseque
 
Hamilton-Jacobi approach for second order traffic flow models
Hamilton-Jacobi approach for second order traffic flow modelsHamilton-Jacobi approach for second order traffic flow models
Hamilton-Jacobi approach for second order traffic flow modelsGuillaume Costeseque
 
Numerical approach for Hamilton-Jacobi equations on a network: application to...
Numerical approach for Hamilton-Jacobi equations on a network: application to...Numerical approach for Hamilton-Jacobi equations on a network: application to...
Numerical approach for Hamilton-Jacobi equations on a network: application to...Guillaume Costeseque
 
Numerical methods for variational principles in traffic
Numerical methods for variational principles in trafficNumerical methods for variational principles in traffic
Numerical methods for variational principles in trafficGuillaume Costeseque
 
Intersection modeling using a convergent scheme based on Hamilton-Jacobi equa...
Intersection modeling using a convergent scheme based on Hamilton-Jacobi equa...Intersection modeling using a convergent scheme based on Hamilton-Jacobi equa...
Intersection modeling using a convergent scheme based on Hamilton-Jacobi equa...Guillaume Costeseque
 
Hamilton-Jacobi equation on networks: generalized Lax-Hopf formula
Hamilton-Jacobi equation on networks: generalized Lax-Hopf formulaHamilton-Jacobi equation on networks: generalized Lax-Hopf formula
Hamilton-Jacobi equation on networks: generalized Lax-Hopf formulaGuillaume Costeseque
 
Road junction modeling using a scheme based on Hamilton-Jacobi equations
Road junction modeling using a scheme based on Hamilton-Jacobi equationsRoad junction modeling using a scheme based on Hamilton-Jacobi equations
Road junction modeling using a scheme based on Hamilton-Jacobi equationsGuillaume Costeseque
 
Contribution à l'étude du trafic routier sur réseaux à l'aide des équations d...
Contribution à l'étude du trafic routier sur réseaux à l'aide des équations d...Contribution à l'étude du trafic routier sur réseaux à l'aide des équations d...
Contribution à l'étude du trafic routier sur réseaux à l'aide des équations d...Guillaume Costeseque
 
Mesoscopic multiclass traffic flow modeling on multi-lane sections
Mesoscopic multiclass traffic flow modeling on multi-lane sectionsMesoscopic multiclass traffic flow modeling on multi-lane sections
Mesoscopic multiclass traffic flow modeling on multi-lane sectionsGuillaume Costeseque
 
Micro to macro passage in traffic models including multi-anticipation effect
Micro to macro passage in traffic models including multi-anticipation effectMicro to macro passage in traffic models including multi-anticipation effect
Micro to macro passage in traffic models including multi-anticipation effectGuillaume Costeseque
 
The impact of source terms in the variational representation of traffic flow
The impact of source terms in the variational representation of traffic flowThe impact of source terms in the variational representation of traffic flow
The impact of source terms in the variational representation of traffic flowGuillaume Costeseque
 
Second order traffic flow models on networks
Second order traffic flow models on networksSecond order traffic flow models on networks
Second order traffic flow models on networksGuillaume Costeseque
 

More from Guillaume Costeseque (20)

Analyse des données du Registre de preuve de covoiturage à l'échelle régional...
Analyse des données du Registre de preuve de covoiturage à l'échelle régional...Analyse des données du Registre de preuve de covoiturage à l'échelle régional...
Analyse des données du Registre de preuve de covoiturage à l'échelle régional...
 
Nouvelles mobilités, nouveaux usages, évolutions des marchés
Nouvelles mobilités, nouveaux usages, évolutions des marchésNouvelles mobilités, nouveaux usages, évolutions des marchés
Nouvelles mobilités, nouveaux usages, évolutions des marchés
 
Cours its-ecn-2021
Cours its-ecn-2021Cours its-ecn-2021
Cours its-ecn-2021
 
Schéma numérique basé sur une équation d'Hamilton-Jacobi : modélisation des i...
Schéma numérique basé sur une équation d'Hamilton-Jacobi : modélisation des i...Schéma numérique basé sur une équation d'Hamilton-Jacobi : modélisation des i...
Schéma numérique basé sur une équation d'Hamilton-Jacobi : modélisation des i...
 
Cours its-ecn-2020
Cours its-ecn-2020Cours its-ecn-2020
Cours its-ecn-2020
 
A multi-objective optimization framework for a second order traffic flow mode...
A multi-objective optimization framework for a second order traffic flow mode...A multi-objective optimization framework for a second order traffic flow mode...
A multi-objective optimization framework for a second order traffic flow mode...
 
Evaluation d'une navette autonome à Nantes 2019
Evaluation d'une navette autonome à Nantes 2019Evaluation d'une navette autonome à Nantes 2019
Evaluation d'une navette autonome à Nantes 2019
 
TramOpt: plateforme logicielle pour l'optimisation du trafic routier
TramOpt: plateforme logicielle pour l'optimisation du trafic routierTramOpt: plateforme logicielle pour l'optimisation du trafic routier
TramOpt: plateforme logicielle pour l'optimisation du trafic routier
 
A new solver for the ARZ traffic flow model on a junction
A new solver for the ARZ traffic flow model on a junctionA new solver for the ARZ traffic flow model on a junction
A new solver for the ARZ traffic flow model on a junction
 
Hamilton-Jacobi approach for second order traffic flow models
Hamilton-Jacobi approach for second order traffic flow modelsHamilton-Jacobi approach for second order traffic flow models
Hamilton-Jacobi approach for second order traffic flow models
 
Numerical approach for Hamilton-Jacobi equations on a network: application to...
Numerical approach for Hamilton-Jacobi equations on a network: application to...Numerical approach for Hamilton-Jacobi equations on a network: application to...
Numerical approach for Hamilton-Jacobi equations on a network: application to...
 
Numerical methods for variational principles in traffic
Numerical methods for variational principles in trafficNumerical methods for variational principles in traffic
Numerical methods for variational principles in traffic
 
Intersection modeling using a convergent scheme based on Hamilton-Jacobi equa...
Intersection modeling using a convergent scheme based on Hamilton-Jacobi equa...Intersection modeling using a convergent scheme based on Hamilton-Jacobi equa...
Intersection modeling using a convergent scheme based on Hamilton-Jacobi equa...
 
Hamilton-Jacobi equation on networks: generalized Lax-Hopf formula
Hamilton-Jacobi equation on networks: generalized Lax-Hopf formulaHamilton-Jacobi equation on networks: generalized Lax-Hopf formula
Hamilton-Jacobi equation on networks: generalized Lax-Hopf formula
 
Road junction modeling using a scheme based on Hamilton-Jacobi equations
Road junction modeling using a scheme based on Hamilton-Jacobi equationsRoad junction modeling using a scheme based on Hamilton-Jacobi equations
Road junction modeling using a scheme based on Hamilton-Jacobi equations
 
Contribution à l'étude du trafic routier sur réseaux à l'aide des équations d...
Contribution à l'étude du trafic routier sur réseaux à l'aide des équations d...Contribution à l'étude du trafic routier sur réseaux à l'aide des équations d...
Contribution à l'étude du trafic routier sur réseaux à l'aide des équations d...
 
Mesoscopic multiclass traffic flow modeling on multi-lane sections
Mesoscopic multiclass traffic flow modeling on multi-lane sectionsMesoscopic multiclass traffic flow modeling on multi-lane sections
Mesoscopic multiclass traffic flow modeling on multi-lane sections
 
Micro to macro passage in traffic models including multi-anticipation effect
Micro to macro passage in traffic models including multi-anticipation effectMicro to macro passage in traffic models including multi-anticipation effect
Micro to macro passage in traffic models including multi-anticipation effect
 
The impact of source terms in the variational representation of traffic flow
The impact of source terms in the variational representation of traffic flowThe impact of source terms in the variational representation of traffic flow
The impact of source terms in the variational representation of traffic flow
 
Second order traffic flow models on networks
Second order traffic flow models on networksSecond order traffic flow models on networks
Second order traffic flow models on networks
 

Recently uploaded

Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...srsj9000
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSCAESB
 
complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...asadnawaz62
 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxPoojaBan
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.eptoze12
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxJoão Esperancinha
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AIabhishek36461
 
Effects of rheological properties on mixing
Effects of rheological properties on mixingEffects of rheological properties on mixing
Effects of rheological properties on mixingviprabot1
 
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort servicejennyeacort
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile servicerehmti665
 
Introduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECHIntroduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECHC Sai Kiran
 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxbritheesh05
 
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)Dr SOUNDIRARAJ N
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfAsst.prof M.Gokilavani
 
Churning of Butter, Factors affecting .
Churning of Butter, Factors affecting  .Churning of Butter, Factors affecting  .
Churning of Butter, Factors affecting .Satyam Kumar
 
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ
 
pipeline in computer architecture design
pipeline in computer architecture  designpipeline in computer architecture  design
pipeline in computer architecture designssuser87fa0c1
 

Recently uploaded (20)

Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentation
 
complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...
 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptx
 
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCRCall Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AI
 
Effects of rheological properties on mixing
Effects of rheological properties on mixingEffects of rheological properties on mixing
Effects of rheological properties on mixing
 
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort serviceGurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
Gurgaon ✡️9711147426✨Call In girls Gurgaon Sector 51 escort service
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile service
 
Introduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECHIntroduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECH
 
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Serviceyoung call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
 
Artificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptxArtificial-Intelligence-in-Electronics (K).pptx
Artificial-Intelligence-in-Electronics (K).pptx
 
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
UNIT III ANALOG ELECTRONICS (BASIC ELECTRONICS)
 
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdfCCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
CCS355 Neural Network & Deep Learning UNIT III notes and Question bank .pdf
 
Churning of Butter, Factors affecting .
Churning of Butter, Factors affecting  .Churning of Butter, Factors affecting  .
Churning of Butter, Factors affecting .
 
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptxExploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
 
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
 
pipeline in computer architecture design
pipeline in computer architecture  designpipeline in computer architecture  design
pipeline in computer architecture design
 

Some recent developments in the traffic flow variational formulation

  • 1. Some recent developments in the traffic flow variational formulation Guillaume Costeseque collaborations with J-P. Lebacque and J. Laval Inria Sophia-Antipolis M´editerran´ee S´eminaire Mod´elisation des R´eseaux de Transports – IFSTTAR Marne-la-Vall´ee – May 12, 2016 G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 1 / 50
  • 2. Motivation HJ & Lax-Hopf formula Hamilton-Jacobi equations: why and what for? Smoothness of the solution (no shocks) Physically meaningful quantity G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 2 / 50
  • 3. Motivation HJ & Lax-Hopf formula Hamilton-Jacobi equations: why and what for? Smoothness of the solution (no shocks) Physically meaningful quantity Analytical expression of the solution Efficient computational methods Easy integration of GPS data [Mazar´e et al, 2012] G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 2 / 50
  • 4. Motivation HJ & Lax-Hopf formula Hamilton-Jacobi equations: why and what for? Smoothness of the solution (no shocks) Physically meaningful quantity Analytical expression of the solution Efficient computational methods Easy integration of GPS data [Mazar´e et al, 2012] Everything broken for network applications? G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 2 / 50
  • 5. Motivation Network model Simple case study: generalized three-detector problem (Newell (1993)) N(t, x) G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 3 / 50
  • 6. Motivation Outline 1 Notations from traffic flow modeling 2 Basic recalls on Lax-Hopf formula 3 Hamilton-Jacobi and source terms 4 Hamilton-Jacobi on networks G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 4 / 50
  • 7. Notations from traffic flow modeling Outline 1 Notations from traffic flow modeling 2 Basic recalls on Lax-Hopf formula 3 Hamilton-Jacobi and source terms 4 Hamilton-Jacobi on networks G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 5 / 50
  • 8. Notations from traffic flow modeling Convention for vehicle labeling N x t Flow G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 6 / 50
  • 9. Notations from traffic flow modeling Three representations of traffic flow Moskowitz’ surface Flow x t N x See also [Makigami et al, 1971], [Laval and Leclercq, 2013] G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 7 / 50
  • 10. Notations from traffic flow modeling Overview: conservation laws (CL) / Hamilton-Jacobi (HJ) Eulerian Lagrangian t − x t − n CL Variable Density ρ Spacing r Equation ∂tρ + ∂x Q(ρ) = 0 ∂tr + ∂x V (r) = 0 HJ Variable Label N Position X N(t, x) = +∞ x ρ(t, ξ)dξ X(t, n) = +∞ n r(t, η)dη Equation ∂tN + H (∂x N) = 0 ∂tX + V (∂x X) = 0 Hamiltonian H(p) = −Q(−p) V(p) = −V (−p) G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 8 / 50
  • 11. Basic recalls on Lax-Hopf formula Outline 1 Notations from traffic flow modeling 2 Basic recalls on Lax-Hopf formula 3 Hamilton-Jacobi and source terms 4 Hamilton-Jacobi on networks G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 9 / 50
  • 12. Basic recalls on Lax-Hopf formula Lax-Hopf formula Setting Consider Cauchy problem ut + H(Du) = 0, in Rn × (0, +∞), u(., 0) = u0(.), on Rn. (1) Two formulas according to the smoothness of the Hamiltonian H the initial data u0 G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 10 / 50
  • 13. Basic recalls on Lax-Hopf formula Lax-Hopf formula Lax-Hopf formulæ Assumptions: case 1 (A1) H : Rn → R is convex (A2) u0 : Rn → R is uniformly Lipschitz Theorem (First Lax-Hopf formula) If (A1)-(A2) hold true, then u(x, t) := inf z∈Rn sup y∈Rn [u0(z) + y.(x − z) − tH(y)] (2) is the unique uniformly continuous viscosity solution of (1). G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 11 / 50
  • 14. Basic recalls on Lax-Hopf formula Lax-Hopf formula Legendre-Fenchel transform First Lax-Hopf formula (2) can be recast as u(x, t) := inf z∈Rn u0(z) − tH∗ x − z t thanks to Legendre-Fenchel transform L(z) = H∗ (z) := sup y∈Rn (y.z − H(y)) . Proposition (Bi-conjugate) If H is strictly convex, 1-coercive i.e. lim |p|→∞ H(p) |p| = +∞, then H∗ is also convex and (H∗ )∗ = H. G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 12 / 50
  • 15. Basic recalls on Lax-Hopf formula Lax-Hopf formula Legendre-Fenchel transform First Lax-Hopf formula (2) can be recast as u(x, t) := inf z∈Rn u0(z) − tH∗ x − z t thanks to Legendre-Fenchel transform L(z) = H∗ (z) := sup y∈Rn (y.z − H(y)) . Proposition (Bi-conjugate) If H is strictly convex, 1-coercive i.e. lim |p|→∞ H(p) |p| = +∞, then H∗ is also convex and (H∗ )∗ = H. G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 12 / 50
  • 16. Basic recalls on Lax-Hopf formula LWR in Eulerian LWR in Eulerian (t, x) Cumulative vehicles count (CVC) or Moskowitz surface N(t, x) q = ∂tN and ρ = −∂x N If density ρ satisfies the scalar (LWR) conservation law ∂tρ + ∂x Q(ρ) = 0 Then N satisfies the first order Hamilton-Jacobi equation ∂tN − Q(−∂x N) = 0 (3) G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 13 / 50
  • 17. Basic recalls on Lax-Hopf formula LWR in Eulerian LWR in Eulerian (t, x) Legendre-Fenchel transform with Q concave (relative capacity) M(q) = sup ρ [Q(ρ) − ρq] M(q) u w Density ρ q q Flow F w u q Transform M −wρmax G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 14 / 50
  • 18. Basic recalls on Lax-Hopf formula LWR in Eulerian LWR in Eulerian (t, x) (continued) Lax-Hopf formula N(T, xT ) = min u(.),(t0,x0) T t0 M(u(τ))dτ + N(t0, x0), ˙X = u u ∈ U X(t0) = x0, X(T) = xT (t0, x0) ∈ J (4) Time Space J (T, xT )˙X(τ) (t0, x0) Viability theory [Claudel and Bayen, 2010] G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 15 / 50
  • 19. Basic recalls on Lax-Hopf formula LWR in Eulerian LWR in Eulerian (t, x) (Historical note) Dynamic programming [Daganzo, 2006] for triangular FD (u and w free and congested speeds) Flow, F w u 0 ρmax Density, ρ u x w t Time Space (t, x) Minimum principle [Newell, 1993] N(t, x) = min N t − x − xu u , xu , N t − x − xw w , xw + ρmax (xw − x) , (5) G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 16 / 50
  • 20. Hamilton-Jacobi and source terms Outline 1 Notations from traffic flow modeling 2 Basic recalls on Lax-Hopf formula 3 Hamilton-Jacobi and source terms 4 Hamilton-Jacobi on networks G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 17 / 50
  • 21. Hamilton-Jacobi and source terms Problem Formulation Long homogeneous corridor with numerous entrances and exits Net lateral freeway “inflow” rate φ Flow inflow outflow = φ ∂tρ + ∂x H(ρ) = φ, k = g on Γ (6) ∂tN − H (−∂x N) = Φ, N = G on Γ, (7) where Φ(t, x) = − x 0 φ(t, y)dy G(t, x) = Γ g(t, x)dΓ, (t, x) ∈ Γ G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 18 / 50
  • 22. Hamilton-Jacobi and source terms Problem Formulation Some remarks The flow reads q = Nt − Φ and the cumulative count curves are N(t, x) = t 0 q(s, x)ds usual N-curve + t 0 x 0 φ(s, y)dsdy net number of vehicles “entering” If φ = φ(k) then Φ(t, x) = ˜Φ(t, x, −Nx ) = − x 0 φ(−Nx (t, y))dy, (8) This means that (7) becomes the more general HJ equation Nt − ˜H(t, x, −Nx ) = 0 where ˜H(t, x, k) = H(k) + ˜Φ(t, x, k). G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 19 / 50
  • 23. Hamilton-Jacobi and source terms Exogenous inflow Variational problem Lax-Hopf formula: N(P) = min B∈ΓP , ξ∈VBP f (B, ξ) (9) f (B, ξ) := G(B) + t tB R(s, ξ(s), ξ′ (s)) ds P ≡ (t, x) “target” point B ≡ (tB , y) on the boundary ΓP ξ ∈ VBP set of valid paths B → P R(·) Legendre transform of ˜H R(t, x, v) = sup k ˜H(t, x, k) − vk . G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 20 / 50
  • 24. Hamilton-Jacobi and source terms Exogenous inflow Assume a triangular flow-density diagram The function f (B, ξ) to be minimized reads f (B, ξ) = G(B) + (t − tB)Q − (x − y)K + t tB Φ(s, ξ(s)) ds =:J (10) where Q = capacity, K = critical density. J = net number of vehicles leaving the area A(ξ) below the curve x = ξ(t) J = − t tB ξ(s) y φ(s, x) dxds, (11) G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 21 / 50
  • 25. Hamilton-Jacobi and source terms Exogenous inflow Initial value problems with constant density Assume N(0, x) = G(x) = −k0x (g(x) = k0) , φ(t, x) = a, (12) min f (B ≡ (y, 0), ξ) reached for a path (i) maximizing A(ξ) when a > 0 (ii) or minimizing A(ξ) when a < 0 f (y) = c0 + c1y + c2y2 with c2 > 0 Explicit solution: N(t, x) = f (y∗), t > K−k0 a > 0 min{f (xU), f (xD)}, otherwise G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 22 / 50
  • 26. Hamilton-Jacobi and source terms Exogenous inflow Extended Riemann problem (ERP) Consider (g(x), φ(x)) = (kU, aU), x ≤ x0 (kD, aD), x > x0, (13) Assuming G(x0) = 0 G(x) = (x0 − x)kU , x ≤ x0 (x0 − x)kD , x > x0 (14) J-integral = weighted average of the portion of A(ξ) upstream and downstream of x = x0 with weighs aU and aD G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 23 / 50
  • 27. Hamilton-Jacobi and source terms Exogenous inflow Extended Riemann problem (ERP) (continued) Same minimization of J(ξ) f (y) = G(y) + tQ − (x0 − y)K + J(y) with J(y) = min{j1(y), j2(y), j3(y)}, y > x0 min{j4(y), j5(y), j6(y)}, y ≤ x0 Possible minima for the components of f (y) y = yi ∈ ΓP , i = 1, . . . 6 Semi-explicit solution (9 candidates): N(t, x0) = min y∈Y f (y) Y = {xU, x0, xD, y∗ 1 , . . . y∗ 6 } G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 24 / 50
  • 28. Hamilton-Jacobi and source terms Numerical solution methods Godunov’s method Basis of the well known Cell Transmission (CT) model Time and space increments ∆t and ∆x = u∆t Numerical approximation of the density kj i = k(j∆t, i∆x) (15) Discrete approximation of the conservation law (6): kj+1 i − kj i ∆t + qj i+1 − qj i ∆x = φ(kj i ) (16) with (CT rule) qj i = min{Q, ukj i , (κ − kj i+1)w} (17) G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 25 / 50
  • 29. Hamilton-Jacobi and source terms Numerical solution methods Example Consider an empty freeway at t = 0 with g(x) = 0, (18a) φ(k) = ax − buk, a, b > 0. (18b) Exact solution (method of characteristics): k(t, x) = a b2u bx − 1 + (1 − b(x − tu))e−btu (19) provided k(t, x) ≤ K (Laval, Leclercq (2010)) G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 26 / 50
  • 30. Hamilton-Jacobi and source terms Numerical solution methods Example (continued) Comparison of numerical solutions (∆t = 40 s) and the exact solution Main difference = the flow estimates G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 27 / 50
  • 31. Hamilton-Jacobi and source terms Numerical solution methods Example (continued) Density RMSE (numerical VS exact solution) for varying ∆t: Both converge as ∆t → 0 Accuracy of ERP > CT rule G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 28 / 50
  • 32. Hamilton-Jacobi and source terms Numerical solution methods Example (continued) Optimal candidate that minimizes f (y) at each time step Difference when k → K Most accurate optimal candidate y∗ 1 G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 29 / 50
  • 33. Hamilton-Jacobi and source terms Numerical solution methods Variational networks Dt u -w vi di ti timeti i Si = area Dx space G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 30 / 50
  • 34. Hamilton-Jacobi and source terms Numerical solution methods Variational networks Dt u -w vi di ti timeti i Si = area Dx space Only three wave speeds with costs L(vi ) = ⎧ ⎪⎨ ⎪⎩ wκ, vi = −w Q, vi = 0 0, vi = u (20) The cost on each link: ci = L(vi )τi + Ji . Ji = contribution of the J-integral in the cost of each link i G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 30 / 50
  • 35. Hamilton-Jacobi and source terms Numerical solution methods Variational networks Dt u -w vi di ti timeti i Si = area Dx space Advantage: free of numerical errors (when inflows are exogenous) Drawback: cumbersome to implement unless u w is an integer merge models expressed in terms of flows or densities rather than N values: additional computational layer needed G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 31 / 50
  • 36. Hamilton-Jacobi on networks Outline 1 Notations from traffic flow modeling 2 Basic recalls on Lax-Hopf formula 3 Hamilton-Jacobi and source terms 4 Hamilton-Jacobi on networks G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 32 / 50
  • 37. Hamilton-Jacobi on networks A special network = junction HJN HJ1 HJ2 HJ3 HJ4 HJ5 Network G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 33 / 50
  • 38. Hamilton-Jacobi on networks A special network = junction HJN HJ1 HJ2 HJ3 HJ4 HJ5 Network HJ4 HJ2 HJ1 HJ3 Junction J G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 33 / 50
  • 39. Hamilton-Jacobi on networks Space dependent Hamiltonian Consider HJ equation posed on a junction J ut + H(x, ux ) = 0, on J × (0, +∞), u(t = 0, x) = g(x), on J (21) Extension of Lax-Hopf formula(s)? No simple linear solutions for (21) No definition of convexity for discontinuous functions G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 34 / 50
  • 40. Hamilton-Jacobi on networks Literature with application to traffic Junction models Classical approaches for CL: Macroscopic modeling on (homogeneous) sections Coupling conditions at (pointwise) junction For instance, consider ⎧ ⎪⎨ ⎪⎩ ρt + (Q(ρ))x = 0, scalar conservation law, ρ(., t = 0) = ρ0(.), initial conditions, ψ(ρ(x = 0−, t), ρ(x = 0+, t)) = 0, coupling condition. (22) See Garavello, Piccoli [4], Lebacque, Khoshyaran [6] and Bressan et al. [1] G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 35 / 50
  • 41. Hamilton-Jacobi on networks Literature with application to traffic Examples of junction models Model with internal state (= buffer(s)) Bressan & Nguyen (NHM 2015) [2] ρ → Q(ρ) strictly concave advection of γij (t, x) turning ratios from (i) to (j) (GSOM model with passive attribute) internal dynamics of the buffers (ODEs): queue lengths Extended Link Transmission Model Jin (TR-B 2015) [5] Link Transmission Model (LTM) Yperman (2005, 2007) Triangular diagram Q(ρ) = min {uρ, w(ρmax − ρ)} for any ρ ∈ [0, ρmax] Commodity = turning ratios γij(t) Definition of boundary supply and demand functions G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 36 / 50
  • 42. Hamilton-Jacobi on networks Settings First remarks If N solves Nt + H (Nx ) = 0 then ¯N = N + c for any c ∈ R is also a solution G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 37 / 50
  • 43. Hamilton-Jacobi on networks Settings First remarks If N solves Nt + H (Nx ) = 0 then ¯N = N + c for any c ∈ R is also a solution Ni (t, x) N0 (t) Nj (t, x) (j) (i) No a priori relationship between initial conditions Nk (t, x) consistent along the same branch Jk and ∂tN0 (t) = i ∂tNi t, x = 0− = j ∂tNj t, x = 0+ G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 37 / 50
  • 44. Hamilton-Jacobi on networks Settings Key idea Assume that H is piecewise linear (triangular FD) Nt + H (Nx ) = 0 with H(p) = max{H+ (p) supply , H− (p) demand } G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 38 / 50
  • 45. Hamilton-Jacobi on networks Settings Key idea Assume that H is piecewise linear (triangular FD) Nt + H (Nx ) = 0 with H(p) = max{H+ (p) supply , H− (p) demand } Partial solutions N+ and N− that solve resp. ⎧ ⎪⎨ ⎪⎩ N+ t + H+ (N+ x ) = 0, N− t + H− (N− x ) = 0 such that N = min N− , N+ Upstream demand advected by waves moving forward Downstream supply transported by waves moving backward G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 38 / 50
  • 46. Hamilton-Jacobi on networks Mathematical expression Junction model Optimization junction model (Lebacque’s talk) Lebacque, Khoshyaran (2005) [6] max ⎡ ⎣ i φi (qi ) + j ψj (rj ) ⎤ ⎦ s.t. 0 ≤ qi ∀i qi ≤ δi ∀i 0 ≤ rj ∀j rj ≤ σj ∀j 0 = rj − i γij qi ∀j (23) where φi , ψj are concave, non-decreasing G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 39 / 50
  • 47. Hamilton-Jacobi on networks Mathematical expression Example of optimization junction models Herty and Klar (2003) Holden and Risebro (1995) Coclite, Garavello, Piccoli (2005) Daganzo’s merge model (1995) [3] ⎧ ⎪⎨ ⎪⎩ φi (qi ) = Nmax qi − q2 i 2pi qi,max ψ = 0 where pi is the priority of flow coming from road i and Nmax = φ′ i (0) G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 40 / 50
  • 48. Hamilton-Jacobi on networks Mathematical expression Solution of the optimization model Lebacque, Khoshyaran (2005) Karush-Kuhn-Tucker optimality conditions: For any incoming road i φ′ i (qi )+ k skγik −λi = 0, λi ≥ 0, qi ≤ δi and λi (qi −δi ) = 0, and for any outgoing road j ψ′ j (rj ) − sj − λj = 0, λj ≥ 0, ri ≤ σj and λj (rj − σj ) = 0, where (sj , λj ) = Karush-Kuhn-Tucker coefficients (or Lagrange multipliers) G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 41 / 50
  • 49. Hamilton-Jacobi on networks Mathematical expression Solution of the optimization model Lebacque, Khoshyaran (2005) ⎧ ⎪⎪⎪⎪⎨ ⎪⎪⎪⎪⎩ qi = Γ[0,δi ] (φ′ i )−1 − k γiksk , for any i, rj = Γ[0,σj ] (ψ′ j )−1 (sj ) , for any j, (24) ΓK is the projection operator on the set K i qi i γijδi σj rj sj G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 42 / 50
  • 50. Hamilton-Jacobi on networks Mathematical expression Model equations ⎧ ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨ ⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩ Ni t + Hi (Ni x ) = 0, for any x ̸= 0, ∂tNi (t, x−) = qi (t), ∂tNj (t, x+) = rj (t), at x = 0, Ni (t = 0, x) = Ni 0(x), ∂tNi (t, x = ξi ) = ∆i (t), ∂tNj (t, x = χj ) = Σj(t) G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 43 / 50
  • 51. Hamilton-Jacobi on networks Mathematical expression Algorithm Inf-morphism property: compute partial solutions for initial conditions upstream boundary conditions downstream boundary conditions internal boundary conditions 1 Propagate demands forward through a junction, assume that the downstream supplies are maximal 2 Propagate supplies backward through a junction, assume that the upstream demands are maximal G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 44 / 50
  • 52. Hamilton-Jacobi on networks Application to a simple junction Spatial discontinuity Time Space Density Flow Downstream condition (u) (d) Upstream condition Initial condition G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 45 / 50
  • 53. Hamilton-Jacobi on networks Application to a simple junction Numerical results G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 46 / 50
  • 54. Hamilton-Jacobi on networks Application to a simple junction Numerical results G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 46 / 50
  • 55. Hamilton-Jacobi on networks Application to a simple junction Numerical results G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 46 / 50
  • 56. Conclusion and perspectives Final remarks In a nutshell: No explicit solution right now Only specific cases Importance of the supply/demand functions General optimization problem at the junction Perspectives: Lane changing behaviors Estimation on networks Stationary states G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 47 / 50
  • 57. References Some references I A. Bressan, S. Canic, M. Garavello, M. Herty, and B. Piccoli, Flows on networks: recent results and perspectives, EMS Surveys in Mathematical Sciences, (2014). A. Bressan and K. T. Nguyen, Conservation law models for traffic flow on a network of roads, to appear, (2014). C. F. Daganzo, The cell transmission model, part ii: network traffic, Transportation Research Part B: Methodological, 29 (1995), pp. 79–93. M. Garavello and B. Piccoli, Traffic flow on networks, American institute of mathematical sciences Springfield, MO, USA, 2006. W.-L. Jin, Continuous formulations and analytical properties of the link transmission model, Transportation Research Part B: Methodological, 74 (2015), pp. 88–103. G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 48 / 50
  • 58. References Some references II J.-P. Lebacque and M. M. Khoshyaran, First-order macroscopic traffic flow models: Intersection modeling, network modeling, in Transportation and Traffic Theory. Flow, Dynamics and Human Interaction. 16th International Symposium on Transportation and Traffic Theory, 2005. G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 49 / 50
  • 59. References Thanks for your attention guillaume.costeseque@inria.fr G. Costeseque HJ equations & traffic flow Marne-la-Vall´ee, May 12 2016 50 / 50