SlideShare a Scribd company logo
1 of 6
Download to read offline
A.Muraliraj, Int. Journal of Engineering Research and Application www.ijera.com
ISSN : 2248-9622, Vol. 6, Issue 7, ( Part -2) July 2016, pp.07-12
www.ijera.com 7 | P a g e
New Contraction Mappings in Dislocated Quasi - Metric Spaces
A.Muraliraj1
, T.Senthil Kumar2
1
P.G. And Research Department Of Mathematics, Urumu Dhanalakshmi College, Kattur, Tiruchirappalli-620
019, Tamilnadu, India.
2
p.G. Department Of Mathematics,A.A.Government Arts College , Musiri- 621 211, Tamil Nadu, India.
ABSTRACT
In this paper the concept of new contraction mappings has been used in proving fixed point theorems. We
establish some common fixed point theorems in complete dislocated quasi metric spaces using new contraction
mappings.
Keywords: Dislocated quasi-metric space; fixed point; dq-Cauchy sequence.
I. INTRODUCTION
P.Hitzler , introduced the notation of dislocated metric spaces in which self distance of a point need not be equal
to zero. They also generalized the famous Banach contraction principle. Since this principle has been extended
and generalized in various ways by putting contractive conditions either on the mappings or on the spaces.
Dislocated metric space plays very important role in topology, logical programming and in electronics
engineering. Zeyada et al. (5) initiated the concept of dislocated quasi-metric space and generalized the result of
Hitzler and Seda in dislocated qusi-metric spaces. Results on fixed points in dislocated and dislocated quasi-
metric spaces followed by Isufati (1) and Aage and Salunke (4) , and recently by Shrivastava , Ansari and
Sharma(8). Our result generalizes some results of fixed points.
II. PRELIMINARIES
Definition 2.1: Let X be a nonempty set, let d : X x X → [0,  ) be a function satisfying following conditions.
(i) d ( x , y ) = d ( y , x) = 0 implies x = y .
(ii) d ( x , y ) ≤ d ( x , z ) + d ( z , y ) for all x, y , z  X .
Then d is called a dislocated quasi metric spaces or dq - metric on X.
Definition 2.2: A sequence { x n } in dq-metric space ( X , d ) is said to be a Cauchy sequence if for given
0 , there exists n0 ϵ N such that for all m , n ≥ n0, implies   ., nxmxd
Definition 2.3: A sequence { x n } in dq-metric space ( X , d ) is said to be a convergent to x if
.0),(lim 

xnxd
n
Definition 2.4 : A dq-metric space ( X , d ) is said to be a Complete if every Cauchy sequence in convergent in
X .
Definition 2.5 : Let (X,d) be a dq-metric space . A mapping f : X → X is called contraction if there exists
       .,,,10 Xyxallforyxdyfxfdthatsuch  
Lemma 2.6: dq-limits in a dq-metric space are unique.
Theorem 2.7: Let (X,d) be complete dq-metric space and let f : X→ X be a continuous contraction function
then f has a unique fixed point.
III. MAIN RESULTS
Theorem 3.1: Let ( X , d ) be a complete dislocated quasi metric space .Let T be a continuous mapping from X
to X satisfying the following condition
   
 
)1.....(
,),(1
,,
),()),(











TxydTyyd
TyxdTxyd
yxdTyTxd 
RESEARCH ARTICLE OPEN ACCESS
A.Muraliraj, Int. Journal of Engineering Research and Application www.ijera.com
ISSN : 2248-9622, Vol. 6, Issue 7, ( Part -2) July 2016, pp.07-12
www.ijera.com 8 | P a g e
for all 120,,Xyx,   and . Then T has a unique fixed point.
Proof: Let { x n} be a sequence in X , defined as follows
Let x0 X , Tx0 = x1 , Tx1 = x2 ,…………… , Txn = xn+1.
Consider
   
 
   
  











1,),(1
,11,
,1
,11,
nTxnxdnTxnxd
nTxnxdnTxnxd
nxnxd
nTxnTxdnxnxd

 
   
  










nxnxdnxnxd
nxnxdnxnxd
nxnxd
,)1,(1
1,1,
,1 
   1,1,1  nxnxdnxnxd 
       nxnxdnxnxd ,11,1  
   nxnxdnxnxd ,1
1
1, 












    1
1
)2........(,11, 













hwherenxnxdhnxnxd
In the same way, we have    1,2,1  nxnxdhnxnxd .
By (2), we get    1,2
2
1,  nxnxdhnxnxd Continue this process, we get in general
    .0,10.0,11, 
n
hnashSincexxd
n
hnxnxd Hence {xn } is a dq– cauchy sequence
in X . Thus { x n} dislocated quasi converges to some u in X . Since T is continuous we have T(u) = lim T( x n )
= lim xn+1 = u .Thus u is a fixed point T.
Uniqueness: Let y* be another fixed point of T in X , then Ty*= y* and Tx*= x*.
Now,    
 
)3.....(
**,*)*,(1
**,**,
*)*,(*),*(











TxydTyyd
TyxdTxyd
yxdTyTxd 
   
  










**,*)*,(1
**,**,
*)*,(*),*(
xydyyd
yxdxyd
yxdyxd 
  *)*,(2*),*(
*)*,(2*)*,(*),*(
yxdyxd
yxdyxdyxd




This is true only when d(x*, y*)=0. Similarly d(y*, x*)=0. Hence d(x*, y*)= d(y*, x*)=0 and so x* = y* .
Hence T has a unique fixed point.
Theorem 3.2: Let ( X , d ) be a complete dislocated quasi metric space .Let T be a continuous mapping from X
to X satisfying the following condition
     
 
)4.....()y,x(d
Tx,yd)Ty,y(d1
Ty,xdTx,yd
)y,x(d1
)Tx,x(d1)Ty,y(d
))Ty,Tx(d 











for all 120,,,Xyx,   and . Then T has a unique fixed point.
Proof: Let { x n} be a sequence in X , defined as follows
Let x0 X , Tx0 = x1 , Tx1 = x2 ,…………… , Txn = xn+1.
Consider
   
    
 
   
 
 nxnxd
nTxnxdnTxnxd
nTxnxdnTxnxd
nxnxd
nTxnxdnTxnxd
nTxnTxdnxnxd
,1
1,),(1
,11,
,11
1,11,
,11,


















    
 
   
 
 nxnxd
nxnxdnxnxd
nxnxdnxnxd
nxnxd
nxnxdnxnxd
,1
,)1,(1
1,1,
,11
,111,














 

A.Muraliraj, Int. Journal of Engineering Research and Application www.ijera.com
ISSN : 2248-9622, Vol. 6, Issue 7, ( Part -2) July 2016, pp.07-12
www.ijera.com 9 | P a g e
     nxnxdnxnxdnxnxd ,11,11,  
       nxnxdnxnxd ,11,1  
   nxnxdnxnxd ,1
1
1, 












    1
1
hwhere)5........(x,xdhx,xd n1n1nn








 
In the same way, we have    1,2,1  nxnxdhnxnxd .
By (5), we get    1,2
2
1,  nxnxdhnxnxd Continue this process , we get in general
    .0,10.0,11, 
n
hnashSincexxd
n
hnxnxd Hence {xn } is a dq– cauchy sequence
in X . Thus {x n} dislocated quasi converges to some u in X . Since T is continuous we have T(u) = lim T( x n )
= lim xn+1 = u .Thus u is a fixed point T.
Uniqueness: Let y* be another fixed point of T in X , then Ty*= y* and Tx*= x*.
Now,
     
 
)6.....(*)y*,x(d
*Tx*,yd*)Ty*,y(d1
*Ty*,xd*Tx*,yd
*)y*,x(d1
*)Tx*,x(d1*)Ty*,y(d
*)Ty,*Tx(d 











     
 
*)*,(
**,*)*,(1
**,**,
*)*,(1
*)*,(1*)*,(
*),*( yxd
xydyyd
yxdxyd
yxd
xxdyyd
yxd  














  *)*,(2*),*(
*)*,(*)*,(2*),*(
yxdyxd
yxdyxdyxd




This is true only when d(x*, y*)=0. Similarly d(y*, x*)=0. Hence d(x*, y*)= d(y*, x*)=0 and so x* = y* .
Hence T has a unique fixed point.
Theorem 3.3: Let (X , d ) be a complete dislocated quasi metric space .Let T be a continuous mapping from X
to X satisfying the following condition
   
 
)7.....()y,x(d
Tx,yd)Ty,y(d1
Ty,xdTx,yd
)y,x(d
)Tx,x(d)Ty,y(d
))Ty,Tx(d 










for all 120,,,Xyx,   and . Then T has a unique fixed point.
Proof: Let { x n} be a sequence in X , defined as follows
Let x0 X, Tx0 = x1 , Tx1 = x2 ,…………… , Txn = xn+1.
Consider
   
   
 
   
 
 nxnxd
nTxnxdnTxnxd
nTxnxdnTxnxd
nxnxd
nTxnxdnTxnxd
nTxnTxdnxnxd
,1
1,),(1
,11,
,1
1,1,
,11,


















   
 
   
 
 nxnxd
nxnxdnxnxd
nxnxdnxnxd
nxnxd
nxnxdnxnxd
,1
,)1,(1
1,1,
,1
,11,














 

     nxnxdnxnxdnxnxd ,11,11,  
       nxnxdnxnxd ,11,1  
   nxnxdnxnxd ,1
1
1, 












    1
1
hwhere)8........(x,xdhx,xd n1n1nn








 
In the same way, we have    1,2,1  nxnxdhnxnxd .
A.Muraliraj, Int. Journal of Engineering Research and Application www.ijera.com
ISSN : 2248-9622, Vol. 6, Issue 7, ( Part -2) July 2016, pp.07-12
www.ijera.com 10 | P a g e
By (8), we get    1,2
2
1,  nxnxdhnxnxd Continue this process , we get in general
    .0,10.0,11, 
n
hnashSincexxd
n
hnxnxd Hence {xn } is a dq– cauchy sequence
in X . Thus { x n} dislocated quasi converges to some u in X . Since T is continuous we have T(u) = lim T( x n )
= lim xn+1 = u .Thus u is a fixed point T.
Uniqueness: Let y* be another fixed point of T in X , then Ty*= y* and Tx*= x*.
Now,    
 
)9.....(*)y*,x(d
*Tx*,yd*)Ty*,y(d1
*Ty*,xd*Tx*,yd
*)y*,x(d
*)Tx*,x(d*)Ty*,y(d
*)Ty,*Tx(d 










   
 
*)*,(
**,*)*,(1
**,**,
*)*,(
*)*,(*)*,(
*),*( yxd
xydyyd
yxdxyd
yxd
xxdyyd
yxd  











  *)*,(2*),*(
*)*,(*)*,(2*),*(
yxdyxd
yxdyxdyxd




This is true only when d(x*, y*)=0. Similarly d(y*, x*)=0. Hence d(x*, y*)= d(y*, x*)=0 and
so x* = y* . Hence T has a unique fixed point.
Theorem 3.4: Let (X , d ) be a complete dislocated quasi metric space .Let T be a continuous mapping from X
to X satisfying the following condition
   
 
 
   
 
)10.....()y,x(d
Tx,yd)Ty,y(d1
Ty,xdTx,yd
Ty,yd
Ty,yd)y,x(d
Ty,xdTx,yd
))Ty,Tx(d 
















for all 120,,,Xyx,   and . Then T has a unique fixed point.
Proof: Let { x n} be a sequence in X , defined as follows
Let x0 X , Tx0 = x1 , Tx1 = x2 ,…………… , Txn = xn+1.
Consider
   
   
 
 
   
 
 nxnxd
nTxnxdnTxnxd
nTxnxdnTxnxd
nTxnxd
nTxnxdnxnxd
nTxnxdnTxnxd
nTxnTxdnxnxd
,1
1,),(1
,11,
,
,),1(
,11,
,11,

























   
 
 
   
 
 nxnxd
nxnxdnxnxd
nxnxdnxnxd
nxnxd
nxnxdnxnxd
nxnxdnxnxd
,1
,)1,(1
1,1,
1,
1,),1(
1,1,





















 
     nxnxdnxnxdnxnxd ,11,11,  
       nxnxdnxnxd ,11,1  
   nxnxdnxnxd ,1
1
1, 












    1
1
hwhere)11........(x,xdhx,xd n1n1nn








 
In the same way, we have    1,2,1  nxnxdhnxnxd .
By (11), we get    1,2
2
1,  nxnxdhnxnxd Continue this process , we get in general
    .0,10.0,11, 
n
hnashSincexxd
n
hnxnxd Hence {xn } is a dq– cauchy sequence
in X . Thus { x n} dislocated quasi converges to some u in X . Since T is continuous we have T(u) = lim T( x n )
= lim xn+1 = u .Thus u is a fixed point T.
Uniqueness: Let y* be another fixed point of T in X , then Ty*= y* and Tx*= x*.
Now,
   
 
 
   
 
)12.....(*)y*,x(d
*Tx*,yd*)Ty*,y(d1
*Ty*,xd*Tx*,yd
*Ty*,yd
*Ty*,yd*)y*,x(d
*Ty*,xd*Tx*,yd
*)Ty,*Tx(d 





















   
 
 
   
 
*)*,(
**,*)*,(1
**,**,
**,
**,*)*,(
**,**,
*),*( yxd
xydyyd
yxdxyd
yyd
yydyxd
yxdxyd
yxd  






















A.Muraliraj, Int. Journal of Engineering Research and Application www.ijera.com
ISSN : 2248-9622, Vol. 6, Issue 7, ( Part -2) July 2016, pp.07-12
www.ijera.com 11 | P a g e
  *)*,(2*),*(
*)*,(*)*,(2*),*(
yxdyxd
yxdyxdyxd




This is true only when d(x*, y*)=0. Similarly d(y*, x*)=0. Hence d(x*, y*) = d(y*, x*)=0 and
so x* = y* . Hence T has a unique fixed point.
Theorem 3.5: Let (X , d ) be a complete dislocated quasi metric space .Let T be a continuous mapping from X
to X satisfying the following condition
   
 
   
 
)13.....()y,x(d
Tx,yd)Ty,y(d1
Ty,xdTx,yd
Ty,yd)y,x(d
Ty,ydTy,xd
))Ty,Tx(d 















for all 120,,,Xyx,   and . Then T has a unique fixed point.
Proof: Let {x n} be a sequence in X , defined as follows
Let x0 X, Tx0 = x1 , Tx1 = x2 ,…………… , Txn = xn+1.
Consider
   
   
 
   
 
 nxnxd
nTxnxdnTxnxd
nTxnxdnTxnxd
nTxnxdnxnxd
nTxnxdnTxnxd
nTxnTxdnxnxd
,1
1,),(1
,11,
,),1(
,,1
,11,

























   
 
   
 
 nxnxd
nxnxdnxnxd
nxnxdnxnxd
nxnxdnxnxd
nxnxdnxnxd
,1
,)1,(1
1,1,
1,),1(
1,1,1






















 
     nxnxdnxnxdnxnxd ,11,11,  
       nxnxdnxnxd ,11,1  
   nxnxdnxnxd ,1
1
1, 












    1
1
hwhere)14........(x,xdhx,xd n1n1nn








 
In the same way, we have    1,2,1  nxnxdhnxnxd .
By (14), we get    1,2
2
1,  nxnxdhnxnxd Continue this process, we get in general
    .0,10.0,11, 
n
hnashSincexxd
n
hnxnxd Hence {xn } is a dq– cauchy sequence
in X . Thus {x n} dislocated quasi converges to some u in X . Since T is continuous we have T(u) = lim T( x n )
= lim xn+1 = u .Thus u is a fixed point T.
Uniqueness: Let y* be another fixed point of T in X , then Ty*= y* and Tx*= x*.
Now,
   
 
   
 
)15.....(*)y*,x(d
*Tx*,yd*)Ty*,y(d1
*Ty*,xd*Tx*,yd
*Ty*,yd*)y*,x(d
*Ty*,yd*Ty*,xd
*)Ty,*Tx(d 















   
 
   
 
*)*,(
**,*)*,(1
**,**,
**,*)*,(
**,**,
*),*( yxd
xydyyd
yxdxyd
yydyxd
yydyxd
yxd  





















  *)*,(2*),*(
*)*,(*)*,(2*),*(
yxdyxd
yxdyxdyxd




This is true only when d(x*, y*)=0. Similarly d(y*, x*)=0. Hence d(x*, y*)= d(y*, x*)=0 and
so x* = y* . Hence T has a unique fixed point.
REFERENCES
[1]. A.Isufati. Fixed point theorems in dislocated quasi-metric space. Appl. Math. Sci. 4(5): 217-223 , 2010.
[2]. B.E.Rhoades , A Comparison of various definition of contractive mappings , Trans. Amer.Math.Soc.,
226(1977),257-290.
[3]. C.T.Aage and J.N.Salunke. The results on fixed points in dislocated and dislocated quasi-metric space.
Appl. Math. Sci. 2(59) : 2941-2948, 2008.
A.Muraliraj, Int. Journal of Engineering Research and Application www.ijera.com
ISSN : 2248-9622, Vol. 6, Issue 7, ( Part -2) July 2016, pp.07-12
www.ijera.com 12 | P a g e
[4]. D.S.Jaggi.Some unique fixed point theorems. Indian J. Pure Appl. Math., 8(2):223-230, 1977.
[5]. F.M.Zeyada, G.H.Hassan, and M.A.Ahmed. A generalization of a fixed point theorem due to Hitzler and
Seda in dislocated quasi-metric spaces. The Arabian J. for Sci. and Eng. , 31(1A) : 111: 114, 2005.
[6]. P.Hitzler. Generalized Metrics and Topology in Logic Programming semantics. Ph.d. thesis , National
University of Ireland , University College Cork, 2001.
[7]. P.Hitzler and A.K.Seda , Dislocated topologies. J.electr. Engin., 51(12/S):3:7,2000.
[8]. R.Shrivastava, Z.K.Ansari and M.Sharma. Some results on fixed points in Dislocated and Dislocated
quasi-metric spaces. Journal of Advanced Studies in Topology; Vol.3, No.1, 2012.
[9]. H. Aydi, Some fixed point results in ordered partial metric spaces, J. Nonlinear Sciences. Appl, 4 (3)
(2011) 210-217.
[10]. C.T.Aage and J.N.Salunke , Some results of fixed point theorem in Dislocated quasi-metric spaces.
Bulletin of Marathwada Mathematical Society , 9(2008), 1-5.

More Related Content

What's hot

Solve ODE - BVP through the Least Squares Method
Solve ODE - BVP through the Least Squares MethodSolve ODE - BVP through the Least Squares Method
Solve ODE - BVP through the Least Squares MethodSuddhasheel GHOSH, PhD
 
Some properties of two-fuzzy Nor med spaces
Some properties of two-fuzzy Nor med spacesSome properties of two-fuzzy Nor med spaces
Some properties of two-fuzzy Nor med spacesIOSR Journals
 
On Optimization of Manufacturing of a Sense-amplifier Based Flip-flop
On Optimization of Manufacturing of a Sense-amplifier Based Flip-flopOn Optimization of Manufacturing of a Sense-amplifier Based Flip-flop
On Optimization of Manufacturing of a Sense-amplifier Based Flip-flopBRNSS Publication Hub
 
Transformation of random variables
Transformation of random variablesTransformation of random variables
Transformation of random variablesTarun Gehlot
 
A common unique random fixed point theorem in hilbert space using integral ty...
A common unique random fixed point theorem in hilbert space using integral ty...A common unique random fixed point theorem in hilbert space using integral ty...
A common unique random fixed point theorem in hilbert space using integral ty...Alexander Decker
 
8 fixed point theorem in complete fuzzy metric space 8 megha shrivastava
8 fixed point theorem in complete fuzzy metric space 8 megha shrivastava8 fixed point theorem in complete fuzzy metric space 8 megha shrivastava
8 fixed point theorem in complete fuzzy metric space 8 megha shrivastavaBIOLOGICAL FORUM
 
A Generalized Metric Space and Related Fixed Point Theorems
A Generalized Metric Space and Related Fixed Point TheoremsA Generalized Metric Space and Related Fixed Point Theorems
A Generalized Metric Space and Related Fixed Point TheoremsIRJET Journal
 
Study Material Numerical Differentiation and Integration
Study Material Numerical Differentiation and IntegrationStudy Material Numerical Differentiation and Integration
Study Material Numerical Differentiation and IntegrationMeenakshisundaram N
 
Fixed point theorems in random fuzzy metric space through
Fixed point theorems in random fuzzy metric space throughFixed point theorems in random fuzzy metric space through
Fixed point theorems in random fuzzy metric space throughAlexander Decker
 
Efficient Analysis of high-dimensional data in tensor formats
Efficient Analysis of high-dimensional data in tensor formatsEfficient Analysis of high-dimensional data in tensor formats
Efficient Analysis of high-dimensional data in tensor formatsAlexander Litvinenko
 
STUDIES ON INTUTIONISTIC FUZZY INFORMATION MEASURE
STUDIES ON INTUTIONISTIC FUZZY INFORMATION MEASURESTUDIES ON INTUTIONISTIC FUZZY INFORMATION MEASURE
STUDIES ON INTUTIONISTIC FUZZY INFORMATION MEASURESurender Singh
 
A Study on Intuitionistic Multi-Anti Fuzzy Subgroups
A Study on Intuitionistic Multi-Anti Fuzzy Subgroups A Study on Intuitionistic Multi-Anti Fuzzy Subgroups
A Study on Intuitionistic Multi-Anti Fuzzy Subgroups mathsjournal
 
Fast and efficient exact synthesis of single qubit unitaries generated by cli...
Fast and efficient exact synthesis of single qubit unitaries generated by cli...Fast and efficient exact synthesis of single qubit unitaries generated by cli...
Fast and efficient exact synthesis of single qubit unitaries generated by cli...JamesMa54
 
線形回帰モデル
線形回帰モデル線形回帰モデル
線形回帰モデル貴之 八木
 
FEM Introduction: Solving ODE-BVP using the Galerkin's Method
FEM Introduction: Solving ODE-BVP using the Galerkin's MethodFEM Introduction: Solving ODE-BVP using the Galerkin's Method
FEM Introduction: Solving ODE-BVP using the Galerkin's MethodSuddhasheel GHOSH, PhD
 
Flexural analysis of thick beams using single
Flexural analysis of thick beams using singleFlexural analysis of thick beams using single
Flexural analysis of thick beams using singleiaemedu
 

What's hot (20)

Solve ODE - BVP through the Least Squares Method
Solve ODE - BVP through the Least Squares MethodSolve ODE - BVP through the Least Squares Method
Solve ODE - BVP through the Least Squares Method
 
Section3 stochastic
Section3 stochasticSection3 stochastic
Section3 stochastic
 
1574 multiple integral
1574 multiple integral1574 multiple integral
1574 multiple integral
 
Some properties of two-fuzzy Nor med spaces
Some properties of two-fuzzy Nor med spacesSome properties of two-fuzzy Nor med spaces
Some properties of two-fuzzy Nor med spaces
 
On Optimization of Manufacturing of a Sense-amplifier Based Flip-flop
On Optimization of Manufacturing of a Sense-amplifier Based Flip-flopOn Optimization of Manufacturing of a Sense-amplifier Based Flip-flop
On Optimization of Manufacturing of a Sense-amplifier Based Flip-flop
 
Transformation of random variables
Transformation of random variablesTransformation of random variables
Transformation of random variables
 
Metric Embeddings and Expanders
Metric Embeddings and ExpandersMetric Embeddings and Expanders
Metric Embeddings and Expanders
 
A common unique random fixed point theorem in hilbert space using integral ty...
A common unique random fixed point theorem in hilbert space using integral ty...A common unique random fixed point theorem in hilbert space using integral ty...
A common unique random fixed point theorem in hilbert space using integral ty...
 
8 fixed point theorem in complete fuzzy metric space 8 megha shrivastava
8 fixed point theorem in complete fuzzy metric space 8 megha shrivastava8 fixed point theorem in complete fuzzy metric space 8 megha shrivastava
8 fixed point theorem in complete fuzzy metric space 8 megha shrivastava
 
A Generalized Metric Space and Related Fixed Point Theorems
A Generalized Metric Space and Related Fixed Point TheoremsA Generalized Metric Space and Related Fixed Point Theorems
A Generalized Metric Space and Related Fixed Point Theorems
 
Study Material Numerical Differentiation and Integration
Study Material Numerical Differentiation and IntegrationStudy Material Numerical Differentiation and Integration
Study Material Numerical Differentiation and Integration
 
Fixed point theorems in random fuzzy metric space through
Fixed point theorems in random fuzzy metric space throughFixed point theorems in random fuzzy metric space through
Fixed point theorems in random fuzzy metric space through
 
Efficient Analysis of high-dimensional data in tensor formats
Efficient Analysis of high-dimensional data in tensor formatsEfficient Analysis of high-dimensional data in tensor formats
Efficient Analysis of high-dimensional data in tensor formats
 
STUDIES ON INTUTIONISTIC FUZZY INFORMATION MEASURE
STUDIES ON INTUTIONISTIC FUZZY INFORMATION MEASURESTUDIES ON INTUTIONISTIC FUZZY INFORMATION MEASURE
STUDIES ON INTUTIONISTIC FUZZY INFORMATION MEASURE
 
Hf2412861289
Hf2412861289Hf2412861289
Hf2412861289
 
A Study on Intuitionistic Multi-Anti Fuzzy Subgroups
A Study on Intuitionistic Multi-Anti Fuzzy Subgroups A Study on Intuitionistic Multi-Anti Fuzzy Subgroups
A Study on Intuitionistic Multi-Anti Fuzzy Subgroups
 
Fast and efficient exact synthesis of single qubit unitaries generated by cli...
Fast and efficient exact synthesis of single qubit unitaries generated by cli...Fast and efficient exact synthesis of single qubit unitaries generated by cli...
Fast and efficient exact synthesis of single qubit unitaries generated by cli...
 
線形回帰モデル
線形回帰モデル線形回帰モデル
線形回帰モデル
 
FEM Introduction: Solving ODE-BVP using the Galerkin's Method
FEM Introduction: Solving ODE-BVP using the Galerkin's MethodFEM Introduction: Solving ODE-BVP using the Galerkin's Method
FEM Introduction: Solving ODE-BVP using the Galerkin's Method
 
Flexural analysis of thick beams using single
Flexural analysis of thick beams using singleFlexural analysis of thick beams using single
Flexural analysis of thick beams using single
 

Similar to New Contraction Mappings in Dislocated Quasi - Metric Spaces

somenath_fixedpoint_dasguptaIMF17-20-2013
somenath_fixedpoint_dasguptaIMF17-20-2013somenath_fixedpoint_dasguptaIMF17-20-2013
somenath_fixedpoint_dasguptaIMF17-20-2013Somenath Bandyopadhyay
 
Fixed points of contractive and Geraghty contraction mappings under the influ...
Fixed points of contractive and Geraghty contraction mappings under the influ...Fixed points of contractive and Geraghty contraction mappings under the influ...
Fixed points of contractive and Geraghty contraction mappings under the influ...IJERA Editor
 
Common Fixed Point Theorems For Occasionally Weakely Compatible Mappings
Common Fixed Point Theorems For Occasionally Weakely Compatible MappingsCommon Fixed Point Theorems For Occasionally Weakely Compatible Mappings
Common Fixed Point Theorems For Occasionally Weakely Compatible Mappingsiosrjce
 
The existence of common fixed point theorems of generalized contractive mappi...
The existence of common fixed point theorems of generalized contractive mappi...The existence of common fixed point theorems of generalized contractive mappi...
The existence of common fixed point theorems of generalized contractive mappi...Alexander Decker
 
On fixed point theorems in fuzzy 2 metric spaces and fuzzy 3-metric spaces
On fixed point theorems in fuzzy 2 metric spaces and fuzzy 3-metric spacesOn fixed point theorems in fuzzy 2 metric spaces and fuzzy 3-metric spaces
On fixed point theorems in fuzzy 2 metric spaces and fuzzy 3-metric spacesAlexander Decker
 
Common fixed theorems for weakly compatible mappings via an
Common fixed theorems for weakly compatible mappings via anCommon fixed theorems for weakly compatible mappings via an
Common fixed theorems for weakly compatible mappings via anAlexander Decker
 
Extension of Some Common Fixed Point Theorems using Compatible Mappings in Fu...
Extension of Some Common Fixed Point Theorems using Compatible Mappings in Fu...Extension of Some Common Fixed Point Theorems using Compatible Mappings in Fu...
Extension of Some Common Fixed Point Theorems using Compatible Mappings in Fu...IJRES Journal
 
Fixed Point Theorem in Fuzzy Metric Space
Fixed Point Theorem in Fuzzy Metric SpaceFixed Point Theorem in Fuzzy Metric Space
Fixed Point Theorem in Fuzzy Metric SpaceIJERA Editor
 
Some New Fixed Point Theorems on S Metric Spaces
Some New Fixed Point Theorems on S Metric SpacesSome New Fixed Point Theorems on S Metric Spaces
Some New Fixed Point Theorems on S Metric Spacesijtsrd
 
Contribution of Fixed Point Theorem in Quasi Metric Spaces
Contribution of Fixed Point Theorem in Quasi Metric SpacesContribution of Fixed Point Theorem in Quasi Metric Spaces
Contribution of Fixed Point Theorem in Quasi Metric SpacesAM Publications,India
 
Common fixed point theorem for occasionally weakly compatible mapping in q fu...
Common fixed point theorem for occasionally weakly compatible mapping in q fu...Common fixed point theorem for occasionally weakly compatible mapping in q fu...
Common fixed point theorem for occasionally weakly compatible mapping in q fu...Alexander Decker
 
Fixed point theorems for four mappings in fuzzy metric space using implicit r...
Fixed point theorems for four mappings in fuzzy metric space using implicit r...Fixed point theorems for four mappings in fuzzy metric space using implicit r...
Fixed point theorems for four mappings in fuzzy metric space using implicit r...Alexander Decker
 
On fixed point theorem in fuzzy metric spaces
On fixed point theorem in fuzzy metric spacesOn fixed point theorem in fuzzy metric spaces
On fixed point theorem in fuzzy metric spacesAlexander Decker
 
Fixed Point Theorem in Fuzzy Metric Space Using (CLRg) Property
Fixed Point Theorem in Fuzzy Metric Space Using (CLRg) PropertyFixed Point Theorem in Fuzzy Metric Space Using (CLRg) Property
Fixed Point Theorem in Fuzzy Metric Space Using (CLRg) Propertyinventionjournals
 
B043007014
B043007014B043007014
B043007014inventy
 
B043007014
B043007014B043007014
B043007014inventy
 
B043007014
B043007014B043007014
B043007014inventy
 
An Altering Distance Function in Fuzzy Metric Fixed Point Theorems
An Altering Distance Function in Fuzzy Metric Fixed Point TheoremsAn Altering Distance Function in Fuzzy Metric Fixed Point Theorems
An Altering Distance Function in Fuzzy Metric Fixed Point Theoremsijtsrd
 
On fixed point theorems in fuzzy metric spaces
On fixed point theorems in fuzzy metric spacesOn fixed point theorems in fuzzy metric spaces
On fixed point theorems in fuzzy metric spacesAlexander Decker
 
On estimating the integrated co volatility using
On estimating the integrated co volatility usingOn estimating the integrated co volatility using
On estimating the integrated co volatility usingkkislas
 

Similar to New Contraction Mappings in Dislocated Quasi - Metric Spaces (20)

somenath_fixedpoint_dasguptaIMF17-20-2013
somenath_fixedpoint_dasguptaIMF17-20-2013somenath_fixedpoint_dasguptaIMF17-20-2013
somenath_fixedpoint_dasguptaIMF17-20-2013
 
Fixed points of contractive and Geraghty contraction mappings under the influ...
Fixed points of contractive and Geraghty contraction mappings under the influ...Fixed points of contractive and Geraghty contraction mappings under the influ...
Fixed points of contractive and Geraghty contraction mappings under the influ...
 
Common Fixed Point Theorems For Occasionally Weakely Compatible Mappings
Common Fixed Point Theorems For Occasionally Weakely Compatible MappingsCommon Fixed Point Theorems For Occasionally Weakely Compatible Mappings
Common Fixed Point Theorems For Occasionally Weakely Compatible Mappings
 
The existence of common fixed point theorems of generalized contractive mappi...
The existence of common fixed point theorems of generalized contractive mappi...The existence of common fixed point theorems of generalized contractive mappi...
The existence of common fixed point theorems of generalized contractive mappi...
 
On fixed point theorems in fuzzy 2 metric spaces and fuzzy 3-metric spaces
On fixed point theorems in fuzzy 2 metric spaces and fuzzy 3-metric spacesOn fixed point theorems in fuzzy 2 metric spaces and fuzzy 3-metric spaces
On fixed point theorems in fuzzy 2 metric spaces and fuzzy 3-metric spaces
 
Common fixed theorems for weakly compatible mappings via an
Common fixed theorems for weakly compatible mappings via anCommon fixed theorems for weakly compatible mappings via an
Common fixed theorems for weakly compatible mappings via an
 
Extension of Some Common Fixed Point Theorems using Compatible Mappings in Fu...
Extension of Some Common Fixed Point Theorems using Compatible Mappings in Fu...Extension of Some Common Fixed Point Theorems using Compatible Mappings in Fu...
Extension of Some Common Fixed Point Theorems using Compatible Mappings in Fu...
 
Fixed Point Theorem in Fuzzy Metric Space
Fixed Point Theorem in Fuzzy Metric SpaceFixed Point Theorem in Fuzzy Metric Space
Fixed Point Theorem in Fuzzy Metric Space
 
Some New Fixed Point Theorems on S Metric Spaces
Some New Fixed Point Theorems on S Metric SpacesSome New Fixed Point Theorems on S Metric Spaces
Some New Fixed Point Theorems on S Metric Spaces
 
Contribution of Fixed Point Theorem in Quasi Metric Spaces
Contribution of Fixed Point Theorem in Quasi Metric SpacesContribution of Fixed Point Theorem in Quasi Metric Spaces
Contribution of Fixed Point Theorem in Quasi Metric Spaces
 
Common fixed point theorem for occasionally weakly compatible mapping in q fu...
Common fixed point theorem for occasionally weakly compatible mapping in q fu...Common fixed point theorem for occasionally weakly compatible mapping in q fu...
Common fixed point theorem for occasionally weakly compatible mapping in q fu...
 
Fixed point theorems for four mappings in fuzzy metric space using implicit r...
Fixed point theorems for four mappings in fuzzy metric space using implicit r...Fixed point theorems for four mappings in fuzzy metric space using implicit r...
Fixed point theorems for four mappings in fuzzy metric space using implicit r...
 
On fixed point theorem in fuzzy metric spaces
On fixed point theorem in fuzzy metric spacesOn fixed point theorem in fuzzy metric spaces
On fixed point theorem in fuzzy metric spaces
 
Fixed Point Theorem in Fuzzy Metric Space Using (CLRg) Property
Fixed Point Theorem in Fuzzy Metric Space Using (CLRg) PropertyFixed Point Theorem in Fuzzy Metric Space Using (CLRg) Property
Fixed Point Theorem in Fuzzy Metric Space Using (CLRg) Property
 
B043007014
B043007014B043007014
B043007014
 
B043007014
B043007014B043007014
B043007014
 
B043007014
B043007014B043007014
B043007014
 
An Altering Distance Function in Fuzzy Metric Fixed Point Theorems
An Altering Distance Function in Fuzzy Metric Fixed Point TheoremsAn Altering Distance Function in Fuzzy Metric Fixed Point Theorems
An Altering Distance Function in Fuzzy Metric Fixed Point Theorems
 
On fixed point theorems in fuzzy metric spaces
On fixed point theorems in fuzzy metric spacesOn fixed point theorems in fuzzy metric spaces
On fixed point theorems in fuzzy metric spaces
 
On estimating the integrated co volatility using
On estimating the integrated co volatility usingOn estimating the integrated co volatility using
On estimating the integrated co volatility using
 

Recently uploaded

Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxJoão Esperancinha
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).pptssuser5c9d4b1
 
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...RajaP95
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130Suhani Kapoor
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130Suhani Kapoor
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile servicerehmti665
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxAsutosh Ranjan
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSSIVASHANKAR N
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...Soham Mondal
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxupamatechverse
 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineeringmalavadedarshan25
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)Suman Mia
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSCAESB
 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Serviceranjana rawat
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVRajaP95
 

Recently uploaded (20)

Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
 
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
 
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
VIP Call Girls Service Kondapur Hyderabad Call +91-8250192130
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile service
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptx
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptx
 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineering
 
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)Software Development Life Cycle By  Team Orange (Dept. of Pharmacy)
Software Development Life Cycle By Team Orange (Dept. of Pharmacy)
 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentation
 
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
 
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptxExploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
 
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IVHARMONY IN THE NATURE AND EXISTENCE - Unit-IV
HARMONY IN THE NATURE AND EXISTENCE - Unit-IV
 

New Contraction Mappings in Dislocated Quasi - Metric Spaces

  • 1. A.Muraliraj, Int. Journal of Engineering Research and Application www.ijera.com ISSN : 2248-9622, Vol. 6, Issue 7, ( Part -2) July 2016, pp.07-12 www.ijera.com 7 | P a g e New Contraction Mappings in Dislocated Quasi - Metric Spaces A.Muraliraj1 , T.Senthil Kumar2 1 P.G. And Research Department Of Mathematics, Urumu Dhanalakshmi College, Kattur, Tiruchirappalli-620 019, Tamilnadu, India. 2 p.G. Department Of Mathematics,A.A.Government Arts College , Musiri- 621 211, Tamil Nadu, India. ABSTRACT In this paper the concept of new contraction mappings has been used in proving fixed point theorems. We establish some common fixed point theorems in complete dislocated quasi metric spaces using new contraction mappings. Keywords: Dislocated quasi-metric space; fixed point; dq-Cauchy sequence. I. INTRODUCTION P.Hitzler , introduced the notation of dislocated metric spaces in which self distance of a point need not be equal to zero. They also generalized the famous Banach contraction principle. Since this principle has been extended and generalized in various ways by putting contractive conditions either on the mappings or on the spaces. Dislocated metric space plays very important role in topology, logical programming and in electronics engineering. Zeyada et al. (5) initiated the concept of dislocated quasi-metric space and generalized the result of Hitzler and Seda in dislocated qusi-metric spaces. Results on fixed points in dislocated and dislocated quasi- metric spaces followed by Isufati (1) and Aage and Salunke (4) , and recently by Shrivastava , Ansari and Sharma(8). Our result generalizes some results of fixed points. II. PRELIMINARIES Definition 2.1: Let X be a nonempty set, let d : X x X → [0,  ) be a function satisfying following conditions. (i) d ( x , y ) = d ( y , x) = 0 implies x = y . (ii) d ( x , y ) ≤ d ( x , z ) + d ( z , y ) for all x, y , z  X . Then d is called a dislocated quasi metric spaces or dq - metric on X. Definition 2.2: A sequence { x n } in dq-metric space ( X , d ) is said to be a Cauchy sequence if for given 0 , there exists n0 ϵ N such that for all m , n ≥ n0, implies   ., nxmxd Definition 2.3: A sequence { x n } in dq-metric space ( X , d ) is said to be a convergent to x if .0),(lim   xnxd n Definition 2.4 : A dq-metric space ( X , d ) is said to be a Complete if every Cauchy sequence in convergent in X . Definition 2.5 : Let (X,d) be a dq-metric space . A mapping f : X → X is called contraction if there exists        .,,,10 Xyxallforyxdyfxfdthatsuch   Lemma 2.6: dq-limits in a dq-metric space are unique. Theorem 2.7: Let (X,d) be complete dq-metric space and let f : X→ X be a continuous contraction function then f has a unique fixed point. III. MAIN RESULTS Theorem 3.1: Let ( X , d ) be a complete dislocated quasi metric space .Let T be a continuous mapping from X to X satisfying the following condition       )1.....( ,),(1 ,, ),()),(            TxydTyyd TyxdTxyd yxdTyTxd  RESEARCH ARTICLE OPEN ACCESS
  • 2. A.Muraliraj, Int. Journal of Engineering Research and Application www.ijera.com ISSN : 2248-9622, Vol. 6, Issue 7, ( Part -2) July 2016, pp.07-12 www.ijera.com 8 | P a g e for all 120,,Xyx,   and . Then T has a unique fixed point. Proof: Let { x n} be a sequence in X , defined as follows Let x0 X , Tx0 = x1 , Tx1 = x2 ,…………… , Txn = xn+1. Consider                         1,),(1 ,11, ,1 ,11, nTxnxdnTxnxd nTxnxdnTxnxd nxnxd nTxnTxdnxnxd                     nxnxdnxnxd nxnxdnxnxd nxnxd ,)1,(1 1,1, ,1     1,1,1  nxnxdnxnxd         nxnxdnxnxd ,11,1      nxnxdnxnxd ,1 1 1,                  1 1 )2........(,11,               hwherenxnxdhnxnxd In the same way, we have    1,2,1  nxnxdhnxnxd . By (2), we get    1,2 2 1,  nxnxdhnxnxd Continue this process, we get in general     .0,10.0,11,  n hnashSincexxd n hnxnxd Hence {xn } is a dq– cauchy sequence in X . Thus { x n} dislocated quasi converges to some u in X . Since T is continuous we have T(u) = lim T( x n ) = lim xn+1 = u .Thus u is a fixed point T. Uniqueness: Let y* be another fixed point of T in X , then Ty*= y* and Tx*= x*. Now,       )3.....( **,*)*,(1 **,**, *)*,(*),*(            TxydTyyd TyxdTxyd yxdTyTxd                   **,*)*,(1 **,**, *)*,(*),*( xydyyd yxdxyd yxdyxd    *)*,(2*),*( *)*,(2*)*,(*),*( yxdyxd yxdyxdyxd     This is true only when d(x*, y*)=0. Similarly d(y*, x*)=0. Hence d(x*, y*)= d(y*, x*)=0 and so x* = y* . Hence T has a unique fixed point. Theorem 3.2: Let ( X , d ) be a complete dislocated quasi metric space .Let T be a continuous mapping from X to X satisfying the following condition         )4.....()y,x(d Tx,yd)Ty,y(d1 Ty,xdTx,yd )y,x(d1 )Tx,x(d1)Ty,y(d ))Ty,Tx(d             for all 120,,,Xyx,   and . Then T has a unique fixed point. Proof: Let { x n} be a sequence in X , defined as follows Let x0 X , Tx0 = x1 , Tx1 = x2 ,…………… , Txn = xn+1. Consider                   nxnxd nTxnxdnTxnxd nTxnxdnTxnxd nxnxd nTxnxdnTxnxd nTxnTxdnxnxd ,1 1,),(1 ,11, ,11 1,11, ,11,                                 nxnxd nxnxdnxnxd nxnxdnxnxd nxnxd nxnxdnxnxd ,1 ,)1,(1 1,1, ,11 ,111,                 
  • 3. A.Muraliraj, Int. Journal of Engineering Research and Application www.ijera.com ISSN : 2248-9622, Vol. 6, Issue 7, ( Part -2) July 2016, pp.07-12 www.ijera.com 9 | P a g e      nxnxdnxnxdnxnxd ,11,11,          nxnxdnxnxd ,11,1      nxnxdnxnxd ,1 1 1,                  1 1 hwhere)5........(x,xdhx,xd n1n1nn           In the same way, we have    1,2,1  nxnxdhnxnxd . By (5), we get    1,2 2 1,  nxnxdhnxnxd Continue this process , we get in general     .0,10.0,11,  n hnashSincexxd n hnxnxd Hence {xn } is a dq– cauchy sequence in X . Thus {x n} dislocated quasi converges to some u in X . Since T is continuous we have T(u) = lim T( x n ) = lim xn+1 = u .Thus u is a fixed point T. Uniqueness: Let y* be another fixed point of T in X , then Ty*= y* and Tx*= x*. Now,         )6.....(*)y*,x(d *Tx*,yd*)Ty*,y(d1 *Ty*,xd*Tx*,yd *)y*,x(d1 *)Tx*,x(d1*)Ty*,y(d *)Ty,*Tx(d                     *)*,( **,*)*,(1 **,**, *)*,(1 *)*,(1*)*,( *),*( yxd xydyyd yxdxyd yxd xxdyyd yxd                   *)*,(2*),*( *)*,(*)*,(2*),*( yxdyxd yxdyxdyxd     This is true only when d(x*, y*)=0. Similarly d(y*, x*)=0. Hence d(x*, y*)= d(y*, x*)=0 and so x* = y* . Hence T has a unique fixed point. Theorem 3.3: Let (X , d ) be a complete dislocated quasi metric space .Let T be a continuous mapping from X to X satisfying the following condition       )7.....()y,x(d Tx,yd)Ty,y(d1 Ty,xdTx,yd )y,x(d )Tx,x(d)Ty,y(d ))Ty,Tx(d            for all 120,,,Xyx,   and . Then T has a unique fixed point. Proof: Let { x n} be a sequence in X , defined as follows Let x0 X, Tx0 = x1 , Tx1 = x2 ,…………… , Txn = xn+1. Consider                  nxnxd nTxnxdnTxnxd nTxnxdnTxnxd nxnxd nTxnxdnTxnxd nTxnTxdnxnxd ,1 1,),(1 ,11, ,1 1,1, ,11,                                nxnxd nxnxdnxnxd nxnxdnxnxd nxnxd nxnxdnxnxd ,1 ,)1,(1 1,1, ,1 ,11,                       nxnxdnxnxdnxnxd ,11,11,          nxnxdnxnxd ,11,1      nxnxdnxnxd ,1 1 1,                  1 1 hwhere)8........(x,xdhx,xd n1n1nn           In the same way, we have    1,2,1  nxnxdhnxnxd .
  • 4. A.Muraliraj, Int. Journal of Engineering Research and Application www.ijera.com ISSN : 2248-9622, Vol. 6, Issue 7, ( Part -2) July 2016, pp.07-12 www.ijera.com 10 | P a g e By (8), we get    1,2 2 1,  nxnxdhnxnxd Continue this process , we get in general     .0,10.0,11,  n hnashSincexxd n hnxnxd Hence {xn } is a dq– cauchy sequence in X . Thus { x n} dislocated quasi converges to some u in X . Since T is continuous we have T(u) = lim T( x n ) = lim xn+1 = u .Thus u is a fixed point T. Uniqueness: Let y* be another fixed point of T in X , then Ty*= y* and Tx*= x*. Now,       )9.....(*)y*,x(d *Tx*,yd*)Ty*,y(d1 *Ty*,xd*Tx*,yd *)y*,x(d *)Tx*,x(d*)Ty*,y(d *)Ty,*Tx(d                  *)*,( **,*)*,(1 **,**, *)*,( *)*,(*)*,( *),*( yxd xydyyd yxdxyd yxd xxdyyd yxd                *)*,(2*),*( *)*,(*)*,(2*),*( yxdyxd yxdyxdyxd     This is true only when d(x*, y*)=0. Similarly d(y*, x*)=0. Hence d(x*, y*)= d(y*, x*)=0 and so x* = y* . Hence T has a unique fixed point. Theorem 3.4: Let (X , d ) be a complete dislocated quasi metric space .Let T be a continuous mapping from X to X satisfying the following condition               )10.....()y,x(d Tx,yd)Ty,y(d1 Ty,xdTx,yd Ty,yd Ty,yd)y,x(d Ty,xdTx,yd ))Ty,Tx(d                  for all 120,,,Xyx,   and . Then T has a unique fixed point. Proof: Let { x n} be a sequence in X , defined as follows Let x0 X , Tx0 = x1 , Tx1 = x2 ,…………… , Txn = xn+1. Consider                    nxnxd nTxnxdnTxnxd nTxnxdnTxnxd nTxnxd nTxnxdnxnxd nTxnxdnTxnxd nTxnTxdnxnxd ,1 1,),(1 ,11, , ,),1( ,11, ,11,                                         nxnxd nxnxdnxnxd nxnxdnxnxd nxnxd nxnxdnxnxd nxnxdnxnxd ,1 ,)1,(1 1,1, 1, 1,),1( 1,1,                             nxnxdnxnxdnxnxd ,11,11,          nxnxdnxnxd ,11,1      nxnxdnxnxd ,1 1 1,                  1 1 hwhere)11........(x,xdhx,xd n1n1nn           In the same way, we have    1,2,1  nxnxdhnxnxd . By (11), we get    1,2 2 1,  nxnxdhnxnxd Continue this process , we get in general     .0,10.0,11,  n hnashSincexxd n hnxnxd Hence {xn } is a dq– cauchy sequence in X . Thus { x n} dislocated quasi converges to some u in X . Since T is continuous we have T(u) = lim T( x n ) = lim xn+1 = u .Thus u is a fixed point T. Uniqueness: Let y* be another fixed point of T in X , then Ty*= y* and Tx*= x*. Now,               )12.....(*)y*,x(d *Tx*,yd*)Ty*,y(d1 *Ty*,xd*Tx*,yd *Ty*,yd *Ty*,yd*)y*,x(d *Ty*,xd*Tx*,yd *)Ty,*Tx(d                                     *)*,( **,*)*,(1 **,**, **, **,*)*,( **,**, *),*( yxd xydyyd yxdxyd yyd yydyxd yxdxyd yxd                        
  • 5. A.Muraliraj, Int. Journal of Engineering Research and Application www.ijera.com ISSN : 2248-9622, Vol. 6, Issue 7, ( Part -2) July 2016, pp.07-12 www.ijera.com 11 | P a g e   *)*,(2*),*( *)*,(*)*,(2*),*( yxdyxd yxdyxdyxd     This is true only when d(x*, y*)=0. Similarly d(y*, x*)=0. Hence d(x*, y*) = d(y*, x*)=0 and so x* = y* . Hence T has a unique fixed point. Theorem 3.5: Let (X , d ) be a complete dislocated quasi metric space .Let T be a continuous mapping from X to X satisfying the following condition             )13.....()y,x(d Tx,yd)Ty,y(d1 Ty,xdTx,yd Ty,yd)y,x(d Ty,ydTy,xd ))Ty,Tx(d                 for all 120,,,Xyx,   and . Then T has a unique fixed point. Proof: Let {x n} be a sequence in X , defined as follows Let x0 X, Tx0 = x1 , Tx1 = x2 ,…………… , Txn = xn+1. Consider                  nxnxd nTxnxdnTxnxd nTxnxdnTxnxd nTxnxdnxnxd nTxnxdnTxnxd nTxnTxdnxnxd ,1 1,),(1 ,11, ,),1( ,,1 ,11,                                       nxnxd nxnxdnxnxd nxnxdnxnxd nxnxdnxnxd nxnxdnxnxd ,1 ,)1,(1 1,1, 1,),1( 1,1,1                              nxnxdnxnxdnxnxd ,11,11,          nxnxdnxnxd ,11,1      nxnxdnxnxd ,1 1 1,                  1 1 hwhere)14........(x,xdhx,xd n1n1nn           In the same way, we have    1,2,1  nxnxdhnxnxd . By (14), we get    1,2 2 1,  nxnxdhnxnxd Continue this process, we get in general     .0,10.0,11,  n hnashSincexxd n hnxnxd Hence {xn } is a dq– cauchy sequence in X . Thus {x n} dislocated quasi converges to some u in X . Since T is continuous we have T(u) = lim T( x n ) = lim xn+1 = u .Thus u is a fixed point T. Uniqueness: Let y* be another fixed point of T in X , then Ty*= y* and Tx*= x*. Now,             )15.....(*)y*,x(d *Tx*,yd*)Ty*,y(d1 *Ty*,xd*Tx*,yd *Ty*,yd*)y*,x(d *Ty*,yd*Ty*,xd *)Ty,*Tx(d                             *)*,( **,*)*,(1 **,**, **,*)*,( **,**, *),*( yxd xydyyd yxdxyd yydyxd yydyxd yxd                          *)*,(2*),*( *)*,(*)*,(2*),*( yxdyxd yxdyxdyxd     This is true only when d(x*, y*)=0. Similarly d(y*, x*)=0. Hence d(x*, y*)= d(y*, x*)=0 and so x* = y* . Hence T has a unique fixed point. REFERENCES [1]. A.Isufati. Fixed point theorems in dislocated quasi-metric space. Appl. Math. Sci. 4(5): 217-223 , 2010. [2]. B.E.Rhoades , A Comparison of various definition of contractive mappings , Trans. Amer.Math.Soc., 226(1977),257-290. [3]. C.T.Aage and J.N.Salunke. The results on fixed points in dislocated and dislocated quasi-metric space. Appl. Math. Sci. 2(59) : 2941-2948, 2008.
  • 6. A.Muraliraj, Int. Journal of Engineering Research and Application www.ijera.com ISSN : 2248-9622, Vol. 6, Issue 7, ( Part -2) July 2016, pp.07-12 www.ijera.com 12 | P a g e [4]. D.S.Jaggi.Some unique fixed point theorems. Indian J. Pure Appl. Math., 8(2):223-230, 1977. [5]. F.M.Zeyada, G.H.Hassan, and M.A.Ahmed. A generalization of a fixed point theorem due to Hitzler and Seda in dislocated quasi-metric spaces. The Arabian J. for Sci. and Eng. , 31(1A) : 111: 114, 2005. [6]. P.Hitzler. Generalized Metrics and Topology in Logic Programming semantics. Ph.d. thesis , National University of Ireland , University College Cork, 2001. [7]. P.Hitzler and A.K.Seda , Dislocated topologies. J.electr. Engin., 51(12/S):3:7,2000. [8]. R.Shrivastava, Z.K.Ansari and M.Sharma. Some results on fixed points in Dislocated and Dislocated quasi-metric spaces. Journal of Advanced Studies in Topology; Vol.3, No.1, 2012. [9]. H. Aydi, Some fixed point results in ordered partial metric spaces, J. Nonlinear Sciences. Appl, 4 (3) (2011) 210-217. [10]. C.T.Aage and J.N.Salunke , Some results of fixed point theorem in Dislocated quasi-metric spaces. Bulletin of Marathwada Mathematical Society , 9(2008), 1-5.