SlideShare a Scribd company logo
1 of 57
Download to read offline
Representation formula for traffic flow estimation
on a network
Guillaume Costeseque
joint work with Jean-Patrick Lebacque
Inria Sophia-Antipolis M´editerran´ee
Workshop “Mathematical foundations of traffic” IPAM,
October 01, 2015
G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 1 / 49
Motivation
HJ & Lax-Hopf formula
Hamilton-Jacobi equations: why and what for?
Smoothness of the solution (no shocks)
Physically meaningful quantity
G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 2 / 49
Motivation
HJ & Lax-Hopf formula
Hamilton-Jacobi equations: why and what for?
Smoothness of the solution (no shocks)
Physically meaningful quantity
Analytical expression of the solution
Efficient computational methods
Easy integration of GPS data
[Mazar´e et al, 2012]
G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 2 / 49
Motivation
HJ & Lax-Hopf formula
Hamilton-Jacobi equations: why and what for?
Smoothness of the solution (no shocks)
Physically meaningful quantity
Analytical expression of the solution
Efficient computational methods
Easy integration of GPS data
[Mazar´e et al, 2012]
Everything broken for network applications?
G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 2 / 49
Motivation
Network model
Simple case study: generalized three-detector problem (Newell (1993))
N(t, x)
G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 3 / 49
Motivation
A special network = junction
HJN
HJ1
HJ2
HJ3
HJ4
HJ5
Network
G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 4 / 49
Motivation
A special network = junction
HJN
HJ1
HJ2
HJ3
HJ4
HJ5
Network
HJ4
HJ2
HJ1
HJ3
Junction J
G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 4 / 49
Motivation
Outline
1 Notations from traffic flow modeling
2 Basic recalls on Lax-Hopf formula(s)
3 Hamilton-Jacobi on networks
4 New approach
G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 5 / 49
Notations from traffic flow modeling
Outline
1 Notations from traffic flow modeling
2 Basic recalls on Lax-Hopf formula(s)
3 Hamilton-Jacobi on networks
4 New approach
G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 6 / 49
Notations from traffic flow modeling
Convention for vehicle labeling
N
x
t
Flow
G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 7 / 49
Notations from traffic flow modeling
Three representations of traffic flow
Moskowitz’ surface
Flow
x
t
N
x
See also [Makigami et al, 1971], [Laval and Leclercq, 2013]
G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 8 / 49
Notations from traffic flow modeling
Overview: conservation laws (CL) / Hamilton-Jacobi (HJ)
Eulerian Lagrangian
t − x t − n
CL
Variable Density ρ Spacing r
Equation ∂tρ + ∂x Q(ρ) = 0 ∂tr + ∂x V (r) = 0
HJ
Variable Label N Position X
N(t, x) =
+∞
x
ρ(t, ξ)dξ X(t, n) =
+∞
n
r(t, η)dη
Equation ∂tN + H (∂x N) = 0 ∂tX + V (∂x X) = 0
Hamiltonian H(p) = −Q(−p) V(p) = −V (−p)
G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 9 / 49
Basic recalls on Lax-Hopf formula(s)
Outline
1 Notations from traffic flow modeling
2 Basic recalls on Lax-Hopf formula(s)
3 Hamilton-Jacobi on networks
4 New approach
G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 10 / 49
Basic recalls on Lax-Hopf formula(s) Lax-Hopf formulæ
Basic idea
First order Hamilton-Jacobi equation
ut + H(Du) = 0, in Rn
× (0, +∞) (1)
G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 11 / 49
Basic recalls on Lax-Hopf formula(s) Lax-Hopf formulæ
Basic idea
First order Hamilton-Jacobi equation
ut + H(Du) = 0, in Rn
× (0, +∞) (1)
Family of simple linear solutions
uα,β
(t, x) = αx − H(α)t + β, for any α ∈ Rn
, β ∈ R
G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 11 / 49
Basic recalls on Lax-Hopf formula(s) Lax-Hopf formulæ
Basic idea
First order Hamilton-Jacobi equation
ut + H(Du) = 0, in Rn
× (0, +∞) (1)
Family of simple linear solutions
uα,β
(t, x) = αx − H(α)t + β, for any α ∈ Rn
, β ∈ R
Idea: envelope of elementary solutions (E. Hopf 1965 [5])
G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 11 / 49
Basic recalls on Lax-Hopf formula(s) Lax-Hopf formulæ
Lax-Hopf formulæ
Consider Cauchy problem
ut + H(Du) = 0, in Rn × (0, +∞),
u(., 0) = u0(.), on Rn.
(2)
Two formulas according to the smoothness of
the Hamiltonian H
the initial data u0
G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 12 / 49
Basic recalls on Lax-Hopf formula(s) Lax-Hopf formulæ
Lax-Hopf formulæ
Assumptions: case 1
(A1) H : Rn → R is convex
(A2) u0 : Rn → R is uniformly Lipschitz
Theorem (First Lax-Hopf formula)
If (A1)-(A2) hold true, then
u(x, t) := inf
z∈Rn
sup
y∈Rn
[u0(z) + y.(x − z) − tH(y)] (3)
is the unique uniformly continuous viscosity solution of (2).
G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 13 / 49
Basic recalls on Lax-Hopf formula(s) Lax-Hopf formulæ
Lax-Hopf formulæ
(Continued)
Assumptions: case 2
(A3) H : Rn → R is continuous
(A4) u0 : Rn → R is uniformly Lipschitz and convex
Theorem (Second Lax-Hopf formula)
If (A3)-(A4) hold true, then
u(x, t) := sup
y∈Rn
inf
z∈Rn
[u0(z) + y.(x − z) − tH(y)] (4)
is the unique uniformly continuous viscosity solution of (2).
G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 14 / 49
Basic recalls on Lax-Hopf formula(s) Lax-Hopf formulæ
Legendre-Fenchel transform
First Lax-Hopf formula (3) can be recast as
u(x, t) := inf
z∈Rn
u0(z) − tH∗ x − z
t
thanks to Legendre-Fenchel transform
L(z) = H∗
(z) := sup
y∈Rn
(y.z − H(y)) .
Proposition (Bi-conjugate)
If H is strictly convex, 1-coercive i.e. lim
|p|→∞
H(p)
|p|
= +∞,
then H∗ is also convex and
(H∗
)∗
= H.
G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 15 / 49
Basic recalls on Lax-Hopf formula(s) Lax-Hopf formulæ
Legendre-Fenchel transform
First Lax-Hopf formula (3) can be recast as
u(x, t) := inf
z∈Rn
u0(z) − tH∗ x − z
t
thanks to Legendre-Fenchel transform
L(z) = H∗
(z) := sup
y∈Rn
(y.z − H(y)) .
Proposition (Bi-conjugate)
If H is strictly convex, 1-coercive i.e. lim
|p|→∞
H(p)
|p|
= +∞,
then H∗ is also convex and
(H∗
)∗
= H.
G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 15 / 49
Basic recalls on Lax-Hopf formula(s) LWR in Eulerian
LWR in Eulerian (t, x)
Cumulative vehicles count (CVC) or Moskowitz surface N(t, x)
q = ∂tN and ρ = −∂x N
If density ρ satisfies the scalar (LWR) conservation law
∂tρ + ∂x Q(ρ) = 0
Then N satisfies the first order Hamilton-Jacobi equation
∂tN − Q(−∂x N) = 0 (5)
G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 16 / 49
Basic recalls on Lax-Hopf formula(s) LWR in Eulerian
LWR in Eulerian (t, x)
Legendre-Fenchel transform with Q concave (relative capacity)
M(q) = sup
ρ
[Q(ρ) − ρq]
M(q)
u
w
Density ρ
q
q
Flow F
w u
q
Transform M
−wρmax
G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 17 / 49
Basic recalls on Lax-Hopf formula(s) LWR in Eulerian
LWR in Eulerian (t, x)
(continued)
Lax-Hopf formula (representation formula) [Daganzo, 2006]
N(T, xT ) = min
u(.),(t0,x0)
T
t0
M(u(τ))dτ + N(t0, x0),
˙X = u
u ∈ U
X(t0) = x0, X(T) = xT
(t0, x0) ∈ J
(6) Time
Space
J
(T, xT )˙X(τ)
(t0, x0)
Viability theory [Claudel and Bayen, 2010]
G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 18 / 49
Basic recalls on Lax-Hopf formula(s) LWR in Eulerian
LWR in Eulerian (t, x)
(Historical note)
Dynamic programming [Daganzo, 2006] for triangular FD
(u and w free and congested speeds)
Flow, F
w
u
0 ρmax
Density, ρ
u
x
w
t
Time
Space
(t, x)
Minimum principle [Newell, 1993]
N(t, x) = min N t −
x − xu
u
, xu ,
N t −
x − xw
w
, xw + ρmax (xw − x) ,
(7)
G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 19 / 49
Basic recalls on Lax-Hopf formula(s) LWR in Lagrangian
LWR in Lagrangian (n, t)
Consider X(t, n) the location of vehicle n at time t ≥ 0
v = ∂tX and r = −∂nX
If the spacing r := 1/ρ satisfies the LWR model (Lagrangian coord.)
∂tr + ∂nV(r) = 0
with the speed-spacing FD V : r → I (1/r) ,
Then X satisfies the first order Hamilton-Jacobi equation
∂tX − V(−∂nX) = 0. (8)
G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 20 / 49
Basic recalls on Lax-Hopf formula(s) LWR in Lagrangian
LWR in Lagrangian (n, t)
(continued)
Legendre-Fenchel transform with V concave
M(u) = sup
r
[V(r) − ru] .
Lax-Hopf formula
X(T, nT ) = min
u(.),(t0,n0)
T
t0
M(u(τ))dτ + X(t0, n0),
˙N = u
u ∈ U
N(t0) = n0, N(T) = nT
(t0, n0) ∈ J
(9)
G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 21 / 49
Basic recalls on Lax-Hopf formula(s) LWR in Lagrangian
LWR in Lagrangian (n, t)
(continued)
Dynamic programming for triangular FD
1/ρcrit
Speed, V
u
−wρmax
Spacing, r
1/ρmax
−wρmax
n
t
(t, n)
Time
Label
Minimum principle ⇒ car following model [Newell, 2002]
X(t, n) = min X(t0, n) + u(t − t0),
X(t0, n + wρmax (t − t0)) + w(t − t0) .
(10)
G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 22 / 49
Hamilton-Jacobi on networks
Outline
1 Notations from traffic flow modeling
2 Basic recalls on Lax-Hopf formula(s)
3 Hamilton-Jacobi on networks
4 New approach
G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 23 / 49
Hamilton-Jacobi on networks
Space dependent Hamiltonian
Consider HJ equation posed on a junction J
ut + H(x, ux ) = 0, on J × (0, +∞),
u(t = 0, x) = g(x), on J
(11)
Extension of Lax-Hopf formula(s)?
No simple linear solutions for (11)
No definition of convexity for discontinuous functions
G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 24 / 49
Hamilton-Jacobi on networks Literature for HJ equations
Hamilton-Jacobi on networks
(Imbert-Monneau, 2014)
ui
t + Hi ui
x = 0, for x ∈ Ji , x = 0,
ut + F (x, ux1 , . . . , uxN
) = 0, for x = 0
HJ4
HJ2
HJ1
HJ3
Hamiltonians Hi :



continuous
quasi-convex
coercive
Junction functions F: continuous and non-increasing
Comments:
Discontinuous HJ equations
Can be seen as systems of HJ equations
G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 25 / 49
Hamilton-Jacobi on networks Literature for HJ equations
Junction condition of optimal control type
(Imbert-Monneau, 2014)
FA(p) = max A, max
i=1,...,N
H−
i (pi )
with H−
i the non-increasing envelope of Hi
pi
Hi
H−
i
G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 26 / 49
Hamilton-Jacobi on networks Literature for HJ equations
Any junction model reduces to a FA solution
(Imbert-Monneau, 2014)
Theorem (Equivalence between junction models (Imbert-Monneau [6]))
For any function G : RN → R that is continuous and non-increasing,
solving the following equation
ui
t + Hi (ui
x ) = 0, for x ∈ Ji , x = 0,
ut + G(Du) = 0, for x = 0,
is strictly equivalent to solve
ui
t + Hi ui
x = 0, for x ∈ Ji , x = 0,
ut + FA (ux1 , . . . , uxN
) = 0, for x = 0
for an appropriate FA where A depends on G.
G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 27 / 49
Hamilton-Jacobi on networks Lax-Hopf formula
Optimal control in J
(Imbert-Monneau-Zidani, 2013)
If p → H(x, p) convex,
Then
u(t, x) = inf
{X(0)=y, X(t)=x}
u0(y) +
t
0
L X(τ), ˙X(τ) dτ
where L(x, q) =



Li (q) if x ∈ Ji ,
min − A, min
i=1,...,N
Li (q) , if x = 0.
solves the Cauchy problem



∂tu + H (x, ∂x u) = 0, if x ∈ J, x = 0,
∂tu + FA (∂x u) = 0, if x = 0,
u(0, x) = u0(x)
G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 28 / 49
Hamilton-Jacobi on networks Lax-Hopf formula
Dirichlet boundary conditions
(Imbert-Monneau, 2014)
∂tu + ∂x (H(u)) = 0, if x > 0,
u(t, 0) = ub, at x = 0.
Bardos, LeRoux, N´ed´elec boundary condition
H(uτ ) = max H−
(uτ ), H+
(ub)
where uτ = u(t, 0).
G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 29 / 49
Hamilton-Jacobi on networks Lax-Hopf formula
Link with literature
(Imbert-Monneau, 2014)
Optimal control
N = 2: Adimurthi-Gowda-Mishra (2005)
N ≥ 3:
Achdou-Camilli-Cutr´ı-Tchou (2012)
Imbert-Monneau-Zidani (2013)
Constrained scalar conservation laws
Colombo-Goatin (2007)
Andreianov-Goatin-Seguin (2010)
BLN condition
Lebacque condition (1996) if N = 1 and A = H+
(ub)
G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 30 / 49
Hamilton-Jacobi on networks Lax-Hopf formula
Link with literature
(continued)
HJ and state constraints
Soner, Capuzzo-Dolcetta – Lions, Blanc
Frankowska – Plaskacz
HJ on networks
Schieborn (PhD thesis 2006)
Achdou – Camilli – Cutr´ı – Tchou (NoDEA 2012)
Camilli – Schieborn (2013)
Imbert – Monneau – Zidani (COCV 2013)
Regional optimal control and ramified spaces
Bressan – Hong (2007)
Barles – Briani – Chasseigne (2013, 2014)
Rao – Zidani (2013), Rao – Siconolfi – Zidani (2014)
Barles – Chasseigne (2015)
HJ equations with discontinuous source terms
Giga – Hamamuki (CPDE 2013)
G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 31 / 49
Hamilton-Jacobi on networks Literature with application to traffic
Junction models
Classical approaches for CL:
Macroscopic modeling on (homogeneous) sections
Coupling conditions at (pointwise) junction
For instance, consider



ρt + (Q(ρ))x = 0, scalar conservation law,
ρ(., t = 0) = ρ0(.), initial conditions,
ψ(ρ(x = 0−, t), ρ(x = 0+, t)) = 0, coupling condition.
(12)
See Garavello, Piccoli [4], Lebacque, Khoshyaran [8] and Bressan et al. [1]
G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 32 / 49
Hamilton-Jacobi on networks Literature with application to traffic
Examples of junction models
Model with internal state (= buffer(s))
Bressan & Nguyen (NHM 2015) [2]
ρ → Q(ρ) strictly concave
advection of γij (t, x) turning ratios from (i) to (j)
(GSOM model with passive attribute)
internal dynamics of the buffers (ODEs): queue lengths
Extended Link Transmission Model
Jin (TR-B 2015) [7]
Link Transmission Model (LTM) Yperman (2005, 2007)
Triangular diagram
Q(ρ) = min {uρ, w(ρmax − ρ)} for any ρ ∈ [0, ρmax]
Commodity = turning ratios γij(t)
Definition of boundary supply and demand functions
G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 33 / 49
New approach
Outline
1 Notations from traffic flow modeling
2 Basic recalls on Lax-Hopf formula(s)
3 Hamilton-Jacobi on networks
4 New approach
G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 34 / 49
New approach Settings
First remarks
If N solves
Nt + H (Nx ) = 0
then ¯N = N + c for any c ∈ R is also a solution
G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 35 / 49
New approach Settings
First remarks
If N solves
Nt + H (Nx ) = 0
then ¯N = N + c for any c ∈ R is also a solution
Ni
(t, x)
N0
(t)
Nj
(t, x)
(j)
(i)
No a priori relationship between initial
conditions
Nk (t, x) consistent along the same
branch Jk and
∂tN0
(t) =
i
∂tNi
t, x = 0−
=
j
∂tNj
t, x = 0+
G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 35 / 49
New approach Settings
Key idea
Assume that H is piecewise linear (triangular FD)
Nt + H (Nx ) = 0
with
H(p) = max{H+
(p)
supply
, H−
(p)
demand
}
G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 36 / 49
New approach Settings
Key idea
Assume that H is piecewise linear (triangular FD)
Nt + H (Nx ) = 0
with
H(p) = max{H+
(p)
supply
, H−
(p)
demand
}
Partial solutions N+ and N− that solve resp.



N+
t + H+ (N+
x ) = 0,
N−
t + H− (N−
x ) = 0
such that N = min N−
, N+
Upstream demand advected by waves moving forward
Downstream supply transported by waves moving backward
G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 36 / 49
New approach Mathematical expression
Junction model
Optimization junction model (Lebacque’s talk)
Lebacque, Khoshyaran (2005) [8]
max


i
φi (qi ) +
j
ψj (rj )


s.t.
0 ≤ qi ∀i
qi ≤ δi ∀i
0 ≤ rj ∀j
rj ≤ σj ∀j
0 = rj − i γij qi ∀j
(13)
where φi , ψj are concave, non-decreasing
G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 37 / 49
New approach Mathematical expression
Example of optimization junction models
Herty and Klar (2003)
Holden and Risebro (1995)
Coclite, Garavello, Piccoli (2005)
Daganzo’s merge model (1995) [3]



φi (qi ) = Nmax qi −
q2
i
2pi qi,max
ψ = 0
where pi is the priority of flow coming from road i and Nmax = φ′
i (0)
G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 38 / 49
New approach Mathematical expression
Solution of the optimization model
Lebacque, Khoshyaran (2005)
Karush-Kuhn-Tucker optimality conditions:
For any incoming road i
φ′
i (qi )+
k
skγik −λi = 0, λi ≥ 0, qi ≤ δi and λi (qi −δi ) = 0,
and for any outgoing road j
ψ′
j (rj ) − sj − λj = 0, λj ≥ 0, ri ≤ σj and λj (rj − σj ) = 0,
where (sj , λj ) = Karush-Kuhn-Tucker coefficients (or Lagrange multipliers)
G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 39 / 49
New approach Mathematical expression
Solution of the optimization model
Lebacque, Khoshyaran (2005)



qi = Γ[0,δi ] (φ′
i )−1
−
k
γiksk , for any i,
rj = Γ[0,σj ] (ψ′
j )−1
(sj ) , for any j,
(14)
ΓK is the projection operator on the set K
i qi
i γijδi
σj rj
sj
G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 40 / 49
New approach Mathematical expression
Model equations



Ni
t + Hi (Ni
x ) = 0, for any x = 0,
∂tNi (t, x−) = qi (t),
∂tNj (t, x+) = rj (t),
at x = 0,
Ni (t = 0, x) = Ni
0(x),
∂tNi (t, x = ξi ) = ∆i (t),
∂tNj (t, x = χj ) = Σj(t)
G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 41 / 49
New approach Mathematical expression
Algorithm
Inf-morphism property: compute partial solutions for
initial conditions
upstream boundary conditions
downstream boundary conditions
internal boundary conditions
1 Propagate demands forward
through a junction, assume that the downstream supplies are maximal
2 Propagate supplies backward
through a junction, assume that the upstream demands are maximal
G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 42 / 49
New approach Application to simple junctions
Spatial discontinuity
Time
Space
Density
Flow
Downstream condition
(u)
(d)
Upstream condition
Initial condition
G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 43 / 49
New approach Application to simple junctions
Diverge
q rj
Junction model
max

φ(q) +
j
ψj (rj )


s.t.
0 ≤ q ≤ δ
0 ≤ rj ≤ σj ∀j
0 = rj − γj q ∀j
whose solution is



q = Γ[0,δ] (φ′
)−1
−
k
γksk ,
rj = Γ[0,σj ] (ψ′
j )−1
(sj ) , for any j
G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 44 / 49
New approach Application to simple junctions
Merge
rqi
Junction model
max
i
φi (qi ) + ψ(r)
s.t.
0 ≤ qi ≤ δi ∀i
0 ≤ r ≤ σ
0 = r − i qi
whose solution is



qi = Γ[0,δi ] (φ′
i )−1
(−s) , for any i,
r = Γ[0,σ] (ψ′
)−1
(s)
G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 45 / 49
Conclusion and perspectives
Final remarks
In a nutshell:
Importance of the supply/demand functions
General optimization problem at the junction
No explicit solution right now
Perspectives:
Estimation on networks
Stability states (Jin’s talk)
Nash equilibria (Bressan’s talk)
G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 46 / 49
References
Some references I
A. Bressan, S. Canic, M. Garavello, M. Herty, and B. Piccoli, Flows
on networks: recent results and perspectives, EMS Surveys in Mathematical
Sciences, (2014).
A. Bressan and K. T. Nguyen, Conservation law models for traffic flow on a
network of roads, to appear, (2014).
C. F. Daganzo, The cell transmission model, part ii: network traffic,
Transportation Research Part B: Methodological, 29 (1995), pp. 79–93.
M. Garavello and B. Piccoli, Traffic flow on networks, American institute of
mathematical sciences Springfield, MO, USA, 2006.
E. Hopf, Generalized solutions of non-linear equations of first order, Journal of
Mathematics and Mechanics, 14 (1965), pp. 951–973.
C. Imbert and R. Monneau, Flux-limited solutions for quasi-convex
Hamilton–Jacobi equations on networks, (2014).
G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 47 / 49
References
Some references II
W.-L. Jin, Continuous formulations and analytical properties of the link
transmission model, Transportation Research Part B: Methodological, 74 (2015),
pp. 88–103.
J.-P. Lebacque and M. M. Khoshyaran, First-order macroscopic traffic flow
models: Intersection modeling, network modeling, in Transportation and Traffic
Theory. Flow, Dynamics and Human Interaction. 16th International Symposium on
Transportation and Traffic Theory, 2005.
G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 48 / 49
References
Thanks for your attention
guillaume.costeseque@inria.fr
G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 49 / 49

More Related Content

What's hot

Mark Girolami's Read Paper 2010
Mark Girolami's Read Paper 2010Mark Girolami's Read Paper 2010
Mark Girolami's Read Paper 2010Christian Robert
 
My PhD defence
My PhD defenceMy PhD defence
My PhD defenceJialin LIU
 
Numerical approach for Hamilton-Jacobi equations on a network: application to...
Numerical approach for Hamilton-Jacobi equations on a network: application to...Numerical approach for Hamilton-Jacobi equations on a network: application to...
Numerical approach for Hamilton-Jacobi equations on a network: application to...Guillaume Costeseque
 
A Unifying Review of Gaussian Linear Models (Roweis 1999)
A Unifying Review of Gaussian Linear Models (Roweis 1999)A Unifying Review of Gaussian Linear Models (Roweis 1999)
A Unifying Review of Gaussian Linear Models (Roweis 1999)Feynman Liang
 
RSS discussion of Girolami and Calderhead, October 13, 2010
RSS discussion of Girolami and Calderhead, October 13, 2010RSS discussion of Girolami and Calderhead, October 13, 2010
RSS discussion of Girolami and Calderhead, October 13, 2010Christian Robert
 
Unbiased Hamiltonian Monte Carlo
Unbiased Hamiltonian Monte CarloUnbiased Hamiltonian Monte Carlo
Unbiased Hamiltonian Monte CarloJeremyHeng10
 
Numerical approach for Hamilton-Jacobi equations on a network: application to...
Numerical approach for Hamilton-Jacobi equations on a network: application to...Numerical approach for Hamilton-Jacobi equations on a network: application to...
Numerical approach for Hamilton-Jacobi equations on a network: application to...Guillaume Costeseque
 
Poster for Bayesian Statistics in the Big Data Era conference
Poster for Bayesian Statistics in the Big Data Era conferencePoster for Bayesian Statistics in the Big Data Era conference
Poster for Bayesian Statistics in the Big Data Era conferenceChristian Robert
 
short course at CIRM, Bayesian Masterclass, October 2018
short course at CIRM, Bayesian Masterclass, October 2018short course at CIRM, Bayesian Masterclass, October 2018
short course at CIRM, Bayesian Masterclass, October 2018Christian Robert
 
Zap Q-Learning - ISMP 2018
Zap Q-Learning - ISMP 2018Zap Q-Learning - ISMP 2018
Zap Q-Learning - ISMP 2018Sean Meyn
 
Reinforcement Learning: Hidden Theory and New Super-Fast Algorithms
Reinforcement Learning: Hidden Theory and New Super-Fast AlgorithmsReinforcement Learning: Hidden Theory and New Super-Fast Algorithms
Reinforcement Learning: Hidden Theory and New Super-Fast AlgorithmsSean Meyn
 
Gibbs flow transport for Bayesian inference
Gibbs flow transport for Bayesian inferenceGibbs flow transport for Bayesian inference
Gibbs flow transport for Bayesian inferenceJeremyHeng10
 
Introducing Zap Q-Learning
Introducing Zap Q-Learning   Introducing Zap Q-Learning
Introducing Zap Q-Learning Sean Meyn
 
深層生成モデルを用いたマルチモーダルデータの半教師あり学習
深層生成モデルを用いたマルチモーダルデータの半教師あり学習深層生成モデルを用いたマルチモーダルデータの半教師あり学習
深層生成モデルを用いたマルチモーダルデータの半教師あり学習Masahiro Suzuki
 

What's hot (20)

Mark Girolami's Read Paper 2010
Mark Girolami's Read Paper 2010Mark Girolami's Read Paper 2010
Mark Girolami's Read Paper 2010
 
My PhD defence
My PhD defenceMy PhD defence
My PhD defence
 
Richard Everitt's slides
Richard Everitt's slidesRichard Everitt's slides
Richard Everitt's slides
 
Numerical approach for Hamilton-Jacobi equations on a network: application to...
Numerical approach for Hamilton-Jacobi equations on a network: application to...Numerical approach for Hamilton-Jacobi equations on a network: application to...
Numerical approach for Hamilton-Jacobi equations on a network: application to...
 
A Unifying Review of Gaussian Linear Models (Roweis 1999)
A Unifying Review of Gaussian Linear Models (Roweis 1999)A Unifying Review of Gaussian Linear Models (Roweis 1999)
A Unifying Review of Gaussian Linear Models (Roweis 1999)
 
RSS discussion of Girolami and Calderhead, October 13, 2010
RSS discussion of Girolami and Calderhead, October 13, 2010RSS discussion of Girolami and Calderhead, October 13, 2010
RSS discussion of Girolami and Calderhead, October 13, 2010
 
Unbiased Hamiltonian Monte Carlo
Unbiased Hamiltonian Monte CarloUnbiased Hamiltonian Monte Carlo
Unbiased Hamiltonian Monte Carlo
 
Numerical approach for Hamilton-Jacobi equations on a network: application to...
Numerical approach for Hamilton-Jacobi equations on a network: application to...Numerical approach for Hamilton-Jacobi equations on a network: application to...
Numerical approach for Hamilton-Jacobi equations on a network: application to...
 
ABC in Roma
ABC in RomaABC in Roma
ABC in Roma
 
QMC: Transition Workshop - Importance Sampling the Union of Rare Events with ...
QMC: Transition Workshop - Importance Sampling the Union of Rare Events with ...QMC: Transition Workshop - Importance Sampling the Union of Rare Events with ...
QMC: Transition Workshop - Importance Sampling the Union of Rare Events with ...
 
Poster for Bayesian Statistics in the Big Data Era conference
Poster for Bayesian Statistics in the Big Data Era conferencePoster for Bayesian Statistics in the Big Data Era conference
Poster for Bayesian Statistics in the Big Data Era conference
 
short course at CIRM, Bayesian Masterclass, October 2018
short course at CIRM, Bayesian Masterclass, October 2018short course at CIRM, Bayesian Masterclass, October 2018
short course at CIRM, Bayesian Masterclass, October 2018
 
Zap Q-Learning - ISMP 2018
Zap Q-Learning - ISMP 2018Zap Q-Learning - ISMP 2018
Zap Q-Learning - ISMP 2018
 
Athens workshop on MCMC
Athens workshop on MCMCAthens workshop on MCMC
Athens workshop on MCMC
 
Reinforcement Learning: Hidden Theory and New Super-Fast Algorithms
Reinforcement Learning: Hidden Theory and New Super-Fast AlgorithmsReinforcement Learning: Hidden Theory and New Super-Fast Algorithms
Reinforcement Learning: Hidden Theory and New Super-Fast Algorithms
 
Gibbs flow transport for Bayesian inference
Gibbs flow transport for Bayesian inferenceGibbs flow transport for Bayesian inference
Gibbs flow transport for Bayesian inference
 
Introducing Zap Q-Learning
Introducing Zap Q-Learning   Introducing Zap Q-Learning
Introducing Zap Q-Learning
 
深層生成モデルを用いたマルチモーダルデータの半教師あり学習
深層生成モデルを用いたマルチモーダルデータの半教師あり学習深層生成モデルを用いたマルチモーダルデータの半教師あり学習
深層生成モデルを用いたマルチモーダルデータの半教師あり学習
 
Koc3(dba)
Koc3(dba)Koc3(dba)
Koc3(dba)
 
ENFPC 2010
ENFPC 2010ENFPC 2010
ENFPC 2010
 

Similar to Representation formula for traffic flow estimation on a network

The moving bottleneck problem: a Hamilton-Jacobi approach
The moving bottleneck problem: a Hamilton-Jacobi approachThe moving bottleneck problem: a Hamilton-Jacobi approach
The moving bottleneck problem: a Hamilton-Jacobi approachGuillaume Costeseque
 
Contribution à l'étude du trafic routier sur réseaux à l'aide des équations d...
Contribution à l'étude du trafic routier sur réseaux à l'aide des équations d...Contribution à l'étude du trafic routier sur réseaux à l'aide des équations d...
Contribution à l'étude du trafic routier sur réseaux à l'aide des équations d...Guillaume Costeseque
 
Harmonic Analysis and Deep Learning
Harmonic Analysis and Deep LearningHarmonic Analysis and Deep Learning
Harmonic Analysis and Deep LearningSungbin Lim
 
Numerical methods for variational principles in traffic
Numerical methods for variational principles in trafficNumerical methods for variational principles in traffic
Numerical methods for variational principles in trafficGuillaume Costeseque
 
International journal of engineering and mathematical modelling vol2 no3_2015_2
International journal of engineering and mathematical modelling vol2 no3_2015_2International journal of engineering and mathematical modelling vol2 no3_2015_2
International journal of engineering and mathematical modelling vol2 no3_2015_2IJEMM
 
Spectral Continuity: (p, r) - Α P And (p, k) - Q
Spectral Continuity: (p, r) - Α P And (p, k) - QSpectral Continuity: (p, r) - Α P And (p, k) - Q
Spectral Continuity: (p, r) - Α P And (p, k) - QIOSR Journals
 
A Numerical Method For Solving The Problem U T - Delta F (U) 0
A Numerical Method For Solving The Problem  U T -  Delta F (U)   0A Numerical Method For Solving The Problem  U T -  Delta F (U)   0
A Numerical Method For Solving The Problem U T - Delta F (U) 0Kim Daniels
 
Geometric and viscosity solutions for the Cauchy problem of first order
Geometric and viscosity solutions for the Cauchy problem of first orderGeometric and viscosity solutions for the Cauchy problem of first order
Geometric and viscosity solutions for the Cauchy problem of first orderJuliho Castillo
 
Can we estimate a constant?
Can we estimate a constant?Can we estimate a constant?
Can we estimate a constant?Christian Robert
 
Theoretical Spectroscopy Lectures: real-time approach 1
Theoretical Spectroscopy Lectures: real-time approach 1Theoretical Spectroscopy Lectures: real-time approach 1
Theoretical Spectroscopy Lectures: real-time approach 1Claudio Attaccalite
 
Real Time Code Generation for Nonlinear Model Predictive Control
Real Time Code Generation for Nonlinear Model Predictive ControlReal Time Code Generation for Nonlinear Model Predictive Control
Real Time Code Generation for Nonlinear Model Predictive ControlBehzad Samadi
 
Research internship on optimal stochastic theory with financial application u...
Research internship on optimal stochastic theory with financial application u...Research internship on optimal stochastic theory with financial application u...
Research internship on optimal stochastic theory with financial application u...Asma Ben Slimene
 
Presentation on stochastic control problem with financial applications (Merto...
Presentation on stochastic control problem with financial applications (Merto...Presentation on stochastic control problem with financial applications (Merto...
Presentation on stochastic control problem with financial applications (Merto...Asma Ben Slimene
 
IRJET- A Study about Fundamental Group in Algebraic Topology
IRJET-  	  A Study about Fundamental Group in Algebraic TopologyIRJET-  	  A Study about Fundamental Group in Algebraic Topology
IRJET- A Study about Fundamental Group in Algebraic TopologyIRJET Journal
 
GradStudentSeminarSept30
GradStudentSeminarSept30GradStudentSeminarSept30
GradStudentSeminarSept30Ryan White
 
A numerical method to solve fractional Fredholm-Volterra integro-differential...
A numerical method to solve fractional Fredholm-Volterra integro-differential...A numerical method to solve fractional Fredholm-Volterra integro-differential...
A numerical method to solve fractional Fredholm-Volterra integro-differential...OctavianPostavaru
 

Similar to Representation formula for traffic flow estimation on a network (20)

The moving bottleneck problem: a Hamilton-Jacobi approach
The moving bottleneck problem: a Hamilton-Jacobi approachThe moving bottleneck problem: a Hamilton-Jacobi approach
The moving bottleneck problem: a Hamilton-Jacobi approach
 
Contribution à l'étude du trafic routier sur réseaux à l'aide des équations d...
Contribution à l'étude du trafic routier sur réseaux à l'aide des équations d...Contribution à l'étude du trafic routier sur réseaux à l'aide des équations d...
Contribution à l'étude du trafic routier sur réseaux à l'aide des équations d...
 
Harmonic Analysis and Deep Learning
Harmonic Analysis and Deep LearningHarmonic Analysis and Deep Learning
Harmonic Analysis and Deep Learning
 
Numerical methods for variational principles in traffic
Numerical methods for variational principles in trafficNumerical methods for variational principles in traffic
Numerical methods for variational principles in traffic
 
Ch06 6
Ch06 6Ch06 6
Ch06 6
 
International journal of engineering and mathematical modelling vol2 no3_2015_2
International journal of engineering and mathematical modelling vol2 no3_2015_2International journal of engineering and mathematical modelling vol2 no3_2015_2
International journal of engineering and mathematical modelling vol2 no3_2015_2
 
Congrès SMAI 2019
Congrès SMAI 2019Congrès SMAI 2019
Congrès SMAI 2019
 
Spectral Continuity: (p, r) - Α P And (p, k) - Q
Spectral Continuity: (p, r) - Α P And (p, k) - QSpectral Continuity: (p, r) - Α P And (p, k) - Q
Spectral Continuity: (p, r) - Α P And (p, k) - Q
 
A Numerical Method For Solving The Problem U T - Delta F (U) 0
A Numerical Method For Solving The Problem  U T -  Delta F (U)   0A Numerical Method For Solving The Problem  U T -  Delta F (U)   0
A Numerical Method For Solving The Problem U T - Delta F (U) 0
 
Navid_Alavi
Navid_AlaviNavid_Alavi
Navid_Alavi
 
Geometric and viscosity solutions for the Cauchy problem of first order
Geometric and viscosity solutions for the Cauchy problem of first orderGeometric and viscosity solutions for the Cauchy problem of first order
Geometric and viscosity solutions for the Cauchy problem of first order
 
Tf
TfTf
Tf
 
Can we estimate a constant?
Can we estimate a constant?Can we estimate a constant?
Can we estimate a constant?
 
Theoretical Spectroscopy Lectures: real-time approach 1
Theoretical Spectroscopy Lectures: real-time approach 1Theoretical Spectroscopy Lectures: real-time approach 1
Theoretical Spectroscopy Lectures: real-time approach 1
 
Real Time Code Generation for Nonlinear Model Predictive Control
Real Time Code Generation for Nonlinear Model Predictive ControlReal Time Code Generation for Nonlinear Model Predictive Control
Real Time Code Generation for Nonlinear Model Predictive Control
 
Research internship on optimal stochastic theory with financial application u...
Research internship on optimal stochastic theory with financial application u...Research internship on optimal stochastic theory with financial application u...
Research internship on optimal stochastic theory with financial application u...
 
Presentation on stochastic control problem with financial applications (Merto...
Presentation on stochastic control problem with financial applications (Merto...Presentation on stochastic control problem with financial applications (Merto...
Presentation on stochastic control problem with financial applications (Merto...
 
IRJET- A Study about Fundamental Group in Algebraic Topology
IRJET-  	  A Study about Fundamental Group in Algebraic TopologyIRJET-  	  A Study about Fundamental Group in Algebraic Topology
IRJET- A Study about Fundamental Group in Algebraic Topology
 
GradStudentSeminarSept30
GradStudentSeminarSept30GradStudentSeminarSept30
GradStudentSeminarSept30
 
A numerical method to solve fractional Fredholm-Volterra integro-differential...
A numerical method to solve fractional Fredholm-Volterra integro-differential...A numerical method to solve fractional Fredholm-Volterra integro-differential...
A numerical method to solve fractional Fredholm-Volterra integro-differential...
 

More from Guillaume Costeseque

Analyse des données du Registre de preuve de covoiturage à l'échelle régional...
Analyse des données du Registre de preuve de covoiturage à l'échelle régional...Analyse des données du Registre de preuve de covoiturage à l'échelle régional...
Analyse des données du Registre de preuve de covoiturage à l'échelle régional...Guillaume Costeseque
 
Nouvelles mobilités, nouveaux usages, évolutions des marchés
Nouvelles mobilités, nouveaux usages, évolutions des marchésNouvelles mobilités, nouveaux usages, évolutions des marchés
Nouvelles mobilités, nouveaux usages, évolutions des marchésGuillaume Costeseque
 
Schéma numérique basé sur une équation d'Hamilton-Jacobi : modélisation des i...
Schéma numérique basé sur une équation d'Hamilton-Jacobi : modélisation des i...Schéma numérique basé sur une équation d'Hamilton-Jacobi : modélisation des i...
Schéma numérique basé sur une équation d'Hamilton-Jacobi : modélisation des i...Guillaume Costeseque
 
A multi-objective optimization framework for a second order traffic flow mode...
A multi-objective optimization framework for a second order traffic flow mode...A multi-objective optimization framework for a second order traffic flow mode...
A multi-objective optimization framework for a second order traffic flow mode...Guillaume Costeseque
 
Evaluation d'une navette autonome à Nantes 2019
Evaluation d'une navette autonome à Nantes 2019Evaluation d'une navette autonome à Nantes 2019
Evaluation d'une navette autonome à Nantes 2019Guillaume Costeseque
 
TramOpt: plateforme logicielle pour l'optimisation du trafic routier
TramOpt: plateforme logicielle pour l'optimisation du trafic routierTramOpt: plateforme logicielle pour l'optimisation du trafic routier
TramOpt: plateforme logicielle pour l'optimisation du trafic routierGuillaume Costeseque
 
A new solver for the ARZ traffic flow model on a junction
A new solver for the ARZ traffic flow model on a junctionA new solver for the ARZ traffic flow model on a junction
A new solver for the ARZ traffic flow model on a junctionGuillaume Costeseque
 
Intersection modeling using a convergent scheme based on Hamilton-Jacobi equa...
Intersection modeling using a convergent scheme based on Hamilton-Jacobi equa...Intersection modeling using a convergent scheme based on Hamilton-Jacobi equa...
Intersection modeling using a convergent scheme based on Hamilton-Jacobi equa...Guillaume Costeseque
 
Hamilton-Jacobi equation on networks: generalized Lax-Hopf formula
Hamilton-Jacobi equation on networks: generalized Lax-Hopf formulaHamilton-Jacobi equation on networks: generalized Lax-Hopf formula
Hamilton-Jacobi equation on networks: generalized Lax-Hopf formulaGuillaume Costeseque
 
Road junction modeling using a scheme based on Hamilton-Jacobi equations
Road junction modeling using a scheme based on Hamilton-Jacobi equationsRoad junction modeling using a scheme based on Hamilton-Jacobi equations
Road junction modeling using a scheme based on Hamilton-Jacobi equationsGuillaume Costeseque
 
Mesoscopic multiclass traffic flow modeling on multi-lane sections
Mesoscopic multiclass traffic flow modeling on multi-lane sectionsMesoscopic multiclass traffic flow modeling on multi-lane sections
Mesoscopic multiclass traffic flow modeling on multi-lane sectionsGuillaume Costeseque
 
Micro to macro passage in traffic models including multi-anticipation effect
Micro to macro passage in traffic models including multi-anticipation effectMicro to macro passage in traffic models including multi-anticipation effect
Micro to macro passage in traffic models including multi-anticipation effectGuillaume Costeseque
 
The impact of source terms in the variational representation of traffic flow
The impact of source terms in the variational representation of traffic flowThe impact of source terms in the variational representation of traffic flow
The impact of source terms in the variational representation of traffic flowGuillaume Costeseque
 
Second order traffic flow models on networks
Second order traffic flow models on networksSecond order traffic flow models on networks
Second order traffic flow models on networksGuillaume Costeseque
 
Queue length estimation on urban corridors
Queue length estimation on urban corridorsQueue length estimation on urban corridors
Queue length estimation on urban corridorsGuillaume Costeseque
 
Second order traffic flow models on networks
Second order traffic flow models on networksSecond order traffic flow models on networks
Second order traffic flow models on networksGuillaume Costeseque
 
Second order traffic flow models on networks
Second order traffic flow models on networksSecond order traffic flow models on networks
Second order traffic flow models on networksGuillaume Costeseque
 
Traffic flow modeling on road networks using Hamilton-Jacobi equations
Traffic flow modeling on road networks using Hamilton-Jacobi equationsTraffic flow modeling on road networks using Hamilton-Jacobi equations
Traffic flow modeling on road networks using Hamilton-Jacobi equationsGuillaume Costeseque
 

More from Guillaume Costeseque (20)

Analyse des données du Registre de preuve de covoiturage à l'échelle régional...
Analyse des données du Registre de preuve de covoiturage à l'échelle régional...Analyse des données du Registre de preuve de covoiturage à l'échelle régional...
Analyse des données du Registre de preuve de covoiturage à l'échelle régional...
 
Nouvelles mobilités, nouveaux usages, évolutions des marchés
Nouvelles mobilités, nouveaux usages, évolutions des marchésNouvelles mobilités, nouveaux usages, évolutions des marchés
Nouvelles mobilités, nouveaux usages, évolutions des marchés
 
Cours its-ecn-2021
Cours its-ecn-2021Cours its-ecn-2021
Cours its-ecn-2021
 
Schéma numérique basé sur une équation d'Hamilton-Jacobi : modélisation des i...
Schéma numérique basé sur une équation d'Hamilton-Jacobi : modélisation des i...Schéma numérique basé sur une équation d'Hamilton-Jacobi : modélisation des i...
Schéma numérique basé sur une équation d'Hamilton-Jacobi : modélisation des i...
 
Cours its-ecn-2020
Cours its-ecn-2020Cours its-ecn-2020
Cours its-ecn-2020
 
A multi-objective optimization framework for a second order traffic flow mode...
A multi-objective optimization framework for a second order traffic flow mode...A multi-objective optimization framework for a second order traffic flow mode...
A multi-objective optimization framework for a second order traffic flow mode...
 
Evaluation d'une navette autonome à Nantes 2019
Evaluation d'une navette autonome à Nantes 2019Evaluation d'une navette autonome à Nantes 2019
Evaluation d'une navette autonome à Nantes 2019
 
TramOpt: plateforme logicielle pour l'optimisation du trafic routier
TramOpt: plateforme logicielle pour l'optimisation du trafic routierTramOpt: plateforme logicielle pour l'optimisation du trafic routier
TramOpt: plateforme logicielle pour l'optimisation du trafic routier
 
A new solver for the ARZ traffic flow model on a junction
A new solver for the ARZ traffic flow model on a junctionA new solver for the ARZ traffic flow model on a junction
A new solver for the ARZ traffic flow model on a junction
 
Intersection modeling using a convergent scheme based on Hamilton-Jacobi equa...
Intersection modeling using a convergent scheme based on Hamilton-Jacobi equa...Intersection modeling using a convergent scheme based on Hamilton-Jacobi equa...
Intersection modeling using a convergent scheme based on Hamilton-Jacobi equa...
 
Hamilton-Jacobi equation on networks: generalized Lax-Hopf formula
Hamilton-Jacobi equation on networks: generalized Lax-Hopf formulaHamilton-Jacobi equation on networks: generalized Lax-Hopf formula
Hamilton-Jacobi equation on networks: generalized Lax-Hopf formula
 
Road junction modeling using a scheme based on Hamilton-Jacobi equations
Road junction modeling using a scheme based on Hamilton-Jacobi equationsRoad junction modeling using a scheme based on Hamilton-Jacobi equations
Road junction modeling using a scheme based on Hamilton-Jacobi equations
 
Mesoscopic multiclass traffic flow modeling on multi-lane sections
Mesoscopic multiclass traffic flow modeling on multi-lane sectionsMesoscopic multiclass traffic flow modeling on multi-lane sections
Mesoscopic multiclass traffic flow modeling on multi-lane sections
 
Micro to macro passage in traffic models including multi-anticipation effect
Micro to macro passage in traffic models including multi-anticipation effectMicro to macro passage in traffic models including multi-anticipation effect
Micro to macro passage in traffic models including multi-anticipation effect
 
The impact of source terms in the variational representation of traffic flow
The impact of source terms in the variational representation of traffic flowThe impact of source terms in the variational representation of traffic flow
The impact of source terms in the variational representation of traffic flow
 
Second order traffic flow models on networks
Second order traffic flow models on networksSecond order traffic flow models on networks
Second order traffic flow models on networks
 
Queue length estimation on urban corridors
Queue length estimation on urban corridorsQueue length estimation on urban corridors
Queue length estimation on urban corridors
 
Second order traffic flow models on networks
Second order traffic flow models on networksSecond order traffic flow models on networks
Second order traffic flow models on networks
 
Second order traffic flow models on networks
Second order traffic flow models on networksSecond order traffic flow models on networks
Second order traffic flow models on networks
 
Traffic flow modeling on road networks using Hamilton-Jacobi equations
Traffic flow modeling on road networks using Hamilton-Jacobi equationsTraffic flow modeling on road networks using Hamilton-Jacobi equations
Traffic flow modeling on road networks using Hamilton-Jacobi equations
 

Recently uploaded

Introduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECHIntroduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECHC Sai Kiran
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile servicerehmti665
 
Concrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxConcrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxKartikeyaDwivedi3
 
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)dollysharma2066
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxDeepakSakkari2
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.eptoze12
 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineeringmalavadedarshan25
 
EduAI - E learning Platform integrated with AI
EduAI - E learning Platform integrated with AIEduAI - E learning Platform integrated with AI
EduAI - E learning Platform integrated with AIkoyaldeepu123
 
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEINFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEroselinkalist12
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionDr.Costas Sachpazis
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSCAESB
 
DATA ANALYTICS PPT definition usage example
DATA ANALYTICS PPT definition usage exampleDATA ANALYTICS PPT definition usage example
DATA ANALYTICS PPT definition usage examplePragyanshuParadkar1
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfAsst.prof M.Gokilavani
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidNikhilNagaraju
 

Recently uploaded (20)

Introduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECHIntroduction to Machine Learning Unit-3 for II MECH
Introduction to Machine Learning Unit-3 for II MECH
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile service
 
Concrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptxConcrete Mix Design - IS 10262-2019 - .pptx
Concrete Mix Design - IS 10262-2019 - .pptx
 
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
🔝9953056974🔝!!-YOUNG call girls in Rajendra Nagar Escort rvice Shot 2000 nigh...
 
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptxExploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
Exploring_Network_Security_with_JA3_by_Rakesh Seal.pptx
 
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
Call Us ≽ 8377877756 ≼ Call Girls In Shastri Nagar (Delhi)
 
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Serviceyoung call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
young call girls in Rajiv Chowk🔝 9953056974 🔝 Delhi escort Service
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptx
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.
 
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
 
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCRCall Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineering
 
young call girls in Green Park🔝 9953056974 🔝 escort Service
young call girls in Green Park🔝 9953056974 🔝 escort Serviceyoung call girls in Green Park🔝 9953056974 🔝 escort Service
young call girls in Green Park🔝 9953056974 🔝 escort Service
 
EduAI - E learning Platform integrated with AI
EduAI - E learning Platform integrated with AIEduAI - E learning Platform integrated with AI
EduAI - E learning Platform integrated with AI
 
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETEINFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
INFLUENCE OF NANOSILICA ON THE PROPERTIES OF CONCRETE
 
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective IntroductionSachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
Sachpazis Costas: Geotechnical Engineering: A student's Perspective Introduction
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentation
 
DATA ANALYTICS PPT definition usage example
DATA ANALYTICS PPT definition usage exampleDATA ANALYTICS PPT definition usage example
DATA ANALYTICS PPT definition usage example
 
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdfCCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
CCS355 Neural Network & Deep Learning Unit II Notes with Question bank .pdf
 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfid
 

Representation formula for traffic flow estimation on a network

  • 1. Representation formula for traffic flow estimation on a network Guillaume Costeseque joint work with Jean-Patrick Lebacque Inria Sophia-Antipolis M´editerran´ee Workshop “Mathematical foundations of traffic” IPAM, October 01, 2015 G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 1 / 49
  • 2. Motivation HJ & Lax-Hopf formula Hamilton-Jacobi equations: why and what for? Smoothness of the solution (no shocks) Physically meaningful quantity G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 2 / 49
  • 3. Motivation HJ & Lax-Hopf formula Hamilton-Jacobi equations: why and what for? Smoothness of the solution (no shocks) Physically meaningful quantity Analytical expression of the solution Efficient computational methods Easy integration of GPS data [Mazar´e et al, 2012] G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 2 / 49
  • 4. Motivation HJ & Lax-Hopf formula Hamilton-Jacobi equations: why and what for? Smoothness of the solution (no shocks) Physically meaningful quantity Analytical expression of the solution Efficient computational methods Easy integration of GPS data [Mazar´e et al, 2012] Everything broken for network applications? G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 2 / 49
  • 5. Motivation Network model Simple case study: generalized three-detector problem (Newell (1993)) N(t, x) G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 3 / 49
  • 6. Motivation A special network = junction HJN HJ1 HJ2 HJ3 HJ4 HJ5 Network G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 4 / 49
  • 7. Motivation A special network = junction HJN HJ1 HJ2 HJ3 HJ4 HJ5 Network HJ4 HJ2 HJ1 HJ3 Junction J G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 4 / 49
  • 8. Motivation Outline 1 Notations from traffic flow modeling 2 Basic recalls on Lax-Hopf formula(s) 3 Hamilton-Jacobi on networks 4 New approach G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 5 / 49
  • 9. Notations from traffic flow modeling Outline 1 Notations from traffic flow modeling 2 Basic recalls on Lax-Hopf formula(s) 3 Hamilton-Jacobi on networks 4 New approach G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 6 / 49
  • 10. Notations from traffic flow modeling Convention for vehicle labeling N x t Flow G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 7 / 49
  • 11. Notations from traffic flow modeling Three representations of traffic flow Moskowitz’ surface Flow x t N x See also [Makigami et al, 1971], [Laval and Leclercq, 2013] G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 8 / 49
  • 12. Notations from traffic flow modeling Overview: conservation laws (CL) / Hamilton-Jacobi (HJ) Eulerian Lagrangian t − x t − n CL Variable Density ρ Spacing r Equation ∂tρ + ∂x Q(ρ) = 0 ∂tr + ∂x V (r) = 0 HJ Variable Label N Position X N(t, x) = +∞ x ρ(t, ξ)dξ X(t, n) = +∞ n r(t, η)dη Equation ∂tN + H (∂x N) = 0 ∂tX + V (∂x X) = 0 Hamiltonian H(p) = −Q(−p) V(p) = −V (−p) G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 9 / 49
  • 13. Basic recalls on Lax-Hopf formula(s) Outline 1 Notations from traffic flow modeling 2 Basic recalls on Lax-Hopf formula(s) 3 Hamilton-Jacobi on networks 4 New approach G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 10 / 49
  • 14. Basic recalls on Lax-Hopf formula(s) Lax-Hopf formulæ Basic idea First order Hamilton-Jacobi equation ut + H(Du) = 0, in Rn × (0, +∞) (1) G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 11 / 49
  • 15. Basic recalls on Lax-Hopf formula(s) Lax-Hopf formulæ Basic idea First order Hamilton-Jacobi equation ut + H(Du) = 0, in Rn × (0, +∞) (1) Family of simple linear solutions uα,β (t, x) = αx − H(α)t + β, for any α ∈ Rn , β ∈ R G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 11 / 49
  • 16. Basic recalls on Lax-Hopf formula(s) Lax-Hopf formulæ Basic idea First order Hamilton-Jacobi equation ut + H(Du) = 0, in Rn × (0, +∞) (1) Family of simple linear solutions uα,β (t, x) = αx − H(α)t + β, for any α ∈ Rn , β ∈ R Idea: envelope of elementary solutions (E. Hopf 1965 [5]) G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 11 / 49
  • 17. Basic recalls on Lax-Hopf formula(s) Lax-Hopf formulæ Lax-Hopf formulæ Consider Cauchy problem ut + H(Du) = 0, in Rn × (0, +∞), u(., 0) = u0(.), on Rn. (2) Two formulas according to the smoothness of the Hamiltonian H the initial data u0 G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 12 / 49
  • 18. Basic recalls on Lax-Hopf formula(s) Lax-Hopf formulæ Lax-Hopf formulæ Assumptions: case 1 (A1) H : Rn → R is convex (A2) u0 : Rn → R is uniformly Lipschitz Theorem (First Lax-Hopf formula) If (A1)-(A2) hold true, then u(x, t) := inf z∈Rn sup y∈Rn [u0(z) + y.(x − z) − tH(y)] (3) is the unique uniformly continuous viscosity solution of (2). G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 13 / 49
  • 19. Basic recalls on Lax-Hopf formula(s) Lax-Hopf formulæ Lax-Hopf formulæ (Continued) Assumptions: case 2 (A3) H : Rn → R is continuous (A4) u0 : Rn → R is uniformly Lipschitz and convex Theorem (Second Lax-Hopf formula) If (A3)-(A4) hold true, then u(x, t) := sup y∈Rn inf z∈Rn [u0(z) + y.(x − z) − tH(y)] (4) is the unique uniformly continuous viscosity solution of (2). G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 14 / 49
  • 20. Basic recalls on Lax-Hopf formula(s) Lax-Hopf formulæ Legendre-Fenchel transform First Lax-Hopf formula (3) can be recast as u(x, t) := inf z∈Rn u0(z) − tH∗ x − z t thanks to Legendre-Fenchel transform L(z) = H∗ (z) := sup y∈Rn (y.z − H(y)) . Proposition (Bi-conjugate) If H is strictly convex, 1-coercive i.e. lim |p|→∞ H(p) |p| = +∞, then H∗ is also convex and (H∗ )∗ = H. G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 15 / 49
  • 21. Basic recalls on Lax-Hopf formula(s) Lax-Hopf formulæ Legendre-Fenchel transform First Lax-Hopf formula (3) can be recast as u(x, t) := inf z∈Rn u0(z) − tH∗ x − z t thanks to Legendre-Fenchel transform L(z) = H∗ (z) := sup y∈Rn (y.z − H(y)) . Proposition (Bi-conjugate) If H is strictly convex, 1-coercive i.e. lim |p|→∞ H(p) |p| = +∞, then H∗ is also convex and (H∗ )∗ = H. G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 15 / 49
  • 22. Basic recalls on Lax-Hopf formula(s) LWR in Eulerian LWR in Eulerian (t, x) Cumulative vehicles count (CVC) or Moskowitz surface N(t, x) q = ∂tN and ρ = −∂x N If density ρ satisfies the scalar (LWR) conservation law ∂tρ + ∂x Q(ρ) = 0 Then N satisfies the first order Hamilton-Jacobi equation ∂tN − Q(−∂x N) = 0 (5) G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 16 / 49
  • 23. Basic recalls on Lax-Hopf formula(s) LWR in Eulerian LWR in Eulerian (t, x) Legendre-Fenchel transform with Q concave (relative capacity) M(q) = sup ρ [Q(ρ) − ρq] M(q) u w Density ρ q q Flow F w u q Transform M −wρmax G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 17 / 49
  • 24. Basic recalls on Lax-Hopf formula(s) LWR in Eulerian LWR in Eulerian (t, x) (continued) Lax-Hopf formula (representation formula) [Daganzo, 2006] N(T, xT ) = min u(.),(t0,x0) T t0 M(u(τ))dτ + N(t0, x0), ˙X = u u ∈ U X(t0) = x0, X(T) = xT (t0, x0) ∈ J (6) Time Space J (T, xT )˙X(τ) (t0, x0) Viability theory [Claudel and Bayen, 2010] G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 18 / 49
  • 25. Basic recalls on Lax-Hopf formula(s) LWR in Eulerian LWR in Eulerian (t, x) (Historical note) Dynamic programming [Daganzo, 2006] for triangular FD (u and w free and congested speeds) Flow, F w u 0 ρmax Density, ρ u x w t Time Space (t, x) Minimum principle [Newell, 1993] N(t, x) = min N t − x − xu u , xu , N t − x − xw w , xw + ρmax (xw − x) , (7) G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 19 / 49
  • 26. Basic recalls on Lax-Hopf formula(s) LWR in Lagrangian LWR in Lagrangian (n, t) Consider X(t, n) the location of vehicle n at time t ≥ 0 v = ∂tX and r = −∂nX If the spacing r := 1/ρ satisfies the LWR model (Lagrangian coord.) ∂tr + ∂nV(r) = 0 with the speed-spacing FD V : r → I (1/r) , Then X satisfies the first order Hamilton-Jacobi equation ∂tX − V(−∂nX) = 0. (8) G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 20 / 49
  • 27. Basic recalls on Lax-Hopf formula(s) LWR in Lagrangian LWR in Lagrangian (n, t) (continued) Legendre-Fenchel transform with V concave M(u) = sup r [V(r) − ru] . Lax-Hopf formula X(T, nT ) = min u(.),(t0,n0) T t0 M(u(τ))dτ + X(t0, n0), ˙N = u u ∈ U N(t0) = n0, N(T) = nT (t0, n0) ∈ J (9) G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 21 / 49
  • 28. Basic recalls on Lax-Hopf formula(s) LWR in Lagrangian LWR in Lagrangian (n, t) (continued) Dynamic programming for triangular FD 1/ρcrit Speed, V u −wρmax Spacing, r 1/ρmax −wρmax n t (t, n) Time Label Minimum principle ⇒ car following model [Newell, 2002] X(t, n) = min X(t0, n) + u(t − t0), X(t0, n + wρmax (t − t0)) + w(t − t0) . (10) G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 22 / 49
  • 29. Hamilton-Jacobi on networks Outline 1 Notations from traffic flow modeling 2 Basic recalls on Lax-Hopf formula(s) 3 Hamilton-Jacobi on networks 4 New approach G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 23 / 49
  • 30. Hamilton-Jacobi on networks Space dependent Hamiltonian Consider HJ equation posed on a junction J ut + H(x, ux ) = 0, on J × (0, +∞), u(t = 0, x) = g(x), on J (11) Extension of Lax-Hopf formula(s)? No simple linear solutions for (11) No definition of convexity for discontinuous functions G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 24 / 49
  • 31. Hamilton-Jacobi on networks Literature for HJ equations Hamilton-Jacobi on networks (Imbert-Monneau, 2014) ui t + Hi ui x = 0, for x ∈ Ji , x = 0, ut + F (x, ux1 , . . . , uxN ) = 0, for x = 0 HJ4 HJ2 HJ1 HJ3 Hamiltonians Hi :    continuous quasi-convex coercive Junction functions F: continuous and non-increasing Comments: Discontinuous HJ equations Can be seen as systems of HJ equations G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 25 / 49
  • 32. Hamilton-Jacobi on networks Literature for HJ equations Junction condition of optimal control type (Imbert-Monneau, 2014) FA(p) = max A, max i=1,...,N H− i (pi ) with H− i the non-increasing envelope of Hi pi Hi H− i G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 26 / 49
  • 33. Hamilton-Jacobi on networks Literature for HJ equations Any junction model reduces to a FA solution (Imbert-Monneau, 2014) Theorem (Equivalence between junction models (Imbert-Monneau [6])) For any function G : RN → R that is continuous and non-increasing, solving the following equation ui t + Hi (ui x ) = 0, for x ∈ Ji , x = 0, ut + G(Du) = 0, for x = 0, is strictly equivalent to solve ui t + Hi ui x = 0, for x ∈ Ji , x = 0, ut + FA (ux1 , . . . , uxN ) = 0, for x = 0 for an appropriate FA where A depends on G. G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 27 / 49
  • 34. Hamilton-Jacobi on networks Lax-Hopf formula Optimal control in J (Imbert-Monneau-Zidani, 2013) If p → H(x, p) convex, Then u(t, x) = inf {X(0)=y, X(t)=x} u0(y) + t 0 L X(τ), ˙X(τ) dτ where L(x, q) =    Li (q) if x ∈ Ji , min − A, min i=1,...,N Li (q) , if x = 0. solves the Cauchy problem    ∂tu + H (x, ∂x u) = 0, if x ∈ J, x = 0, ∂tu + FA (∂x u) = 0, if x = 0, u(0, x) = u0(x) G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 28 / 49
  • 35. Hamilton-Jacobi on networks Lax-Hopf formula Dirichlet boundary conditions (Imbert-Monneau, 2014) ∂tu + ∂x (H(u)) = 0, if x > 0, u(t, 0) = ub, at x = 0. Bardos, LeRoux, N´ed´elec boundary condition H(uτ ) = max H− (uτ ), H+ (ub) where uτ = u(t, 0). G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 29 / 49
  • 36. Hamilton-Jacobi on networks Lax-Hopf formula Link with literature (Imbert-Monneau, 2014) Optimal control N = 2: Adimurthi-Gowda-Mishra (2005) N ≥ 3: Achdou-Camilli-Cutr´ı-Tchou (2012) Imbert-Monneau-Zidani (2013) Constrained scalar conservation laws Colombo-Goatin (2007) Andreianov-Goatin-Seguin (2010) BLN condition Lebacque condition (1996) if N = 1 and A = H+ (ub) G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 30 / 49
  • 37. Hamilton-Jacobi on networks Lax-Hopf formula Link with literature (continued) HJ and state constraints Soner, Capuzzo-Dolcetta – Lions, Blanc Frankowska – Plaskacz HJ on networks Schieborn (PhD thesis 2006) Achdou – Camilli – Cutr´ı – Tchou (NoDEA 2012) Camilli – Schieborn (2013) Imbert – Monneau – Zidani (COCV 2013) Regional optimal control and ramified spaces Bressan – Hong (2007) Barles – Briani – Chasseigne (2013, 2014) Rao – Zidani (2013), Rao – Siconolfi – Zidani (2014) Barles – Chasseigne (2015) HJ equations with discontinuous source terms Giga – Hamamuki (CPDE 2013) G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 31 / 49
  • 38. Hamilton-Jacobi on networks Literature with application to traffic Junction models Classical approaches for CL: Macroscopic modeling on (homogeneous) sections Coupling conditions at (pointwise) junction For instance, consider    ρt + (Q(ρ))x = 0, scalar conservation law, ρ(., t = 0) = ρ0(.), initial conditions, ψ(ρ(x = 0−, t), ρ(x = 0+, t)) = 0, coupling condition. (12) See Garavello, Piccoli [4], Lebacque, Khoshyaran [8] and Bressan et al. [1] G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 32 / 49
  • 39. Hamilton-Jacobi on networks Literature with application to traffic Examples of junction models Model with internal state (= buffer(s)) Bressan & Nguyen (NHM 2015) [2] ρ → Q(ρ) strictly concave advection of γij (t, x) turning ratios from (i) to (j) (GSOM model with passive attribute) internal dynamics of the buffers (ODEs): queue lengths Extended Link Transmission Model Jin (TR-B 2015) [7] Link Transmission Model (LTM) Yperman (2005, 2007) Triangular diagram Q(ρ) = min {uρ, w(ρmax − ρ)} for any ρ ∈ [0, ρmax] Commodity = turning ratios γij(t) Definition of boundary supply and demand functions G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 33 / 49
  • 40. New approach Outline 1 Notations from traffic flow modeling 2 Basic recalls on Lax-Hopf formula(s) 3 Hamilton-Jacobi on networks 4 New approach G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 34 / 49
  • 41. New approach Settings First remarks If N solves Nt + H (Nx ) = 0 then ¯N = N + c for any c ∈ R is also a solution G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 35 / 49
  • 42. New approach Settings First remarks If N solves Nt + H (Nx ) = 0 then ¯N = N + c for any c ∈ R is also a solution Ni (t, x) N0 (t) Nj (t, x) (j) (i) No a priori relationship between initial conditions Nk (t, x) consistent along the same branch Jk and ∂tN0 (t) = i ∂tNi t, x = 0− = j ∂tNj t, x = 0+ G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 35 / 49
  • 43. New approach Settings Key idea Assume that H is piecewise linear (triangular FD) Nt + H (Nx ) = 0 with H(p) = max{H+ (p) supply , H− (p) demand } G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 36 / 49
  • 44. New approach Settings Key idea Assume that H is piecewise linear (triangular FD) Nt + H (Nx ) = 0 with H(p) = max{H+ (p) supply , H− (p) demand } Partial solutions N+ and N− that solve resp.    N+ t + H+ (N+ x ) = 0, N− t + H− (N− x ) = 0 such that N = min N− , N+ Upstream demand advected by waves moving forward Downstream supply transported by waves moving backward G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 36 / 49
  • 45. New approach Mathematical expression Junction model Optimization junction model (Lebacque’s talk) Lebacque, Khoshyaran (2005) [8] max   i φi (qi ) + j ψj (rj )   s.t. 0 ≤ qi ∀i qi ≤ δi ∀i 0 ≤ rj ∀j rj ≤ σj ∀j 0 = rj − i γij qi ∀j (13) where φi , ψj are concave, non-decreasing G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 37 / 49
  • 46. New approach Mathematical expression Example of optimization junction models Herty and Klar (2003) Holden and Risebro (1995) Coclite, Garavello, Piccoli (2005) Daganzo’s merge model (1995) [3]    φi (qi ) = Nmax qi − q2 i 2pi qi,max ψ = 0 where pi is the priority of flow coming from road i and Nmax = φ′ i (0) G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 38 / 49
  • 47. New approach Mathematical expression Solution of the optimization model Lebacque, Khoshyaran (2005) Karush-Kuhn-Tucker optimality conditions: For any incoming road i φ′ i (qi )+ k skγik −λi = 0, λi ≥ 0, qi ≤ δi and λi (qi −δi ) = 0, and for any outgoing road j ψ′ j (rj ) − sj − λj = 0, λj ≥ 0, ri ≤ σj and λj (rj − σj ) = 0, where (sj , λj ) = Karush-Kuhn-Tucker coefficients (or Lagrange multipliers) G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 39 / 49
  • 48. New approach Mathematical expression Solution of the optimization model Lebacque, Khoshyaran (2005)    qi = Γ[0,δi ] (φ′ i )−1 − k γiksk , for any i, rj = Γ[0,σj ] (ψ′ j )−1 (sj ) , for any j, (14) ΓK is the projection operator on the set K i qi i γijδi σj rj sj G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 40 / 49
  • 49. New approach Mathematical expression Model equations    Ni t + Hi (Ni x ) = 0, for any x = 0, ∂tNi (t, x−) = qi (t), ∂tNj (t, x+) = rj (t), at x = 0, Ni (t = 0, x) = Ni 0(x), ∂tNi (t, x = ξi ) = ∆i (t), ∂tNj (t, x = χj ) = Σj(t) G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 41 / 49
  • 50. New approach Mathematical expression Algorithm Inf-morphism property: compute partial solutions for initial conditions upstream boundary conditions downstream boundary conditions internal boundary conditions 1 Propagate demands forward through a junction, assume that the downstream supplies are maximal 2 Propagate supplies backward through a junction, assume that the upstream demands are maximal G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 42 / 49
  • 51. New approach Application to simple junctions Spatial discontinuity Time Space Density Flow Downstream condition (u) (d) Upstream condition Initial condition G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 43 / 49
  • 52. New approach Application to simple junctions Diverge q rj Junction model max  φ(q) + j ψj (rj )   s.t. 0 ≤ q ≤ δ 0 ≤ rj ≤ σj ∀j 0 = rj − γj q ∀j whose solution is    q = Γ[0,δ] (φ′ )−1 − k γksk , rj = Γ[0,σj ] (ψ′ j )−1 (sj ) , for any j G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 44 / 49
  • 53. New approach Application to simple junctions Merge rqi Junction model max i φi (qi ) + ψ(r) s.t. 0 ≤ qi ≤ δi ∀i 0 ≤ r ≤ σ 0 = r − i qi whose solution is    qi = Γ[0,δi ] (φ′ i )−1 (−s) , for any i, r = Γ[0,σ] (ψ′ )−1 (s) G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 45 / 49
  • 54. Conclusion and perspectives Final remarks In a nutshell: Importance of the supply/demand functions General optimization problem at the junction No explicit solution right now Perspectives: Estimation on networks Stability states (Jin’s talk) Nash equilibria (Bressan’s talk) G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 46 / 49
  • 55. References Some references I A. Bressan, S. Canic, M. Garavello, M. Herty, and B. Piccoli, Flows on networks: recent results and perspectives, EMS Surveys in Mathematical Sciences, (2014). A. Bressan and K. T. Nguyen, Conservation law models for traffic flow on a network of roads, to appear, (2014). C. F. Daganzo, The cell transmission model, part ii: network traffic, Transportation Research Part B: Methodological, 29 (1995), pp. 79–93. M. Garavello and B. Piccoli, Traffic flow on networks, American institute of mathematical sciences Springfield, MO, USA, 2006. E. Hopf, Generalized solutions of non-linear equations of first order, Journal of Mathematics and Mechanics, 14 (1965), pp. 951–973. C. Imbert and R. Monneau, Flux-limited solutions for quasi-convex Hamilton–Jacobi equations on networks, (2014). G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 47 / 49
  • 56. References Some references II W.-L. Jin, Continuous formulations and analytical properties of the link transmission model, Transportation Research Part B: Methodological, 74 (2015), pp. 88–103. J.-P. Lebacque and M. M. Khoshyaran, First-order macroscopic traffic flow models: Intersection modeling, network modeling, in Transportation and Traffic Theory. Flow, Dynamics and Human Interaction. 16th International Symposium on Transportation and Traffic Theory, 2005. G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 48 / 49
  • 57. References Thanks for your attention guillaume.costeseque@inria.fr G. Costeseque (Inria SAM) HJ equations & traffic IPAM, Oct. 01, 2015 49 / 49