SlideShare a Scribd company logo
1 of 42
Maximum Likelihood
Likelihood
The likelihood is the probability of the data given the
model.
If we flip a coin and get a head and we think the coin is
unbiased, then the probability of observing this head is 0.5.
If we think the coin is biased so that we expect to get a head
80% of the time, then the likelihood of observing this datum (a
head) is 0.8.
The likelihood of making some observation is entirely
dependent on the model that underlies our assumption.
The datum has not changed, our model has. Therefore under
the new model the likelihood of observing the datum has
changed.
Likelihood
Maximum Likelihood (ML)
ML assumes a explicit model of sequence evolution. This is
justifiable, since molecular sequence data can be shown to
have arisen according to a stochastic process.
ML attempts to answer the question:
What is the probability that I would observe these data (a
multiple sequence alignment) given a particular model of
evolution (a tree and a process)?
Likelihood calculations
In molecular phylogenetics, the data are an alignment of sequences
We optimize parameters and branch lengths to get the maximum likelihood
Each site has a likelihood
The total likelihood is the product of the site likelihoods
The maximum likelihood tree is the tree topology that gives the highest
(optimized) likelihood under the given model.
We use reversible models, so the position of the root does not matter.
What is the probability of observing a G nucleotide?
If we have a DNA sequence of 1 nucleotide in length and the identity of this
nucleotide is G, what is the likelihood that we would observe this G?
In the same way as the coin-flipping observation, the likelihood of observing
this G is dependent on the model of sequence evolution that is thought to
underlie the data.
Model 1: frequency of G = 0.4 => likelihood(G) = 0.4
Model 2: frequency of G = 0.1 => likelihood(G) = 0.1
Model 3: frequency of G = 0.25 => likelihood(G) = 0.25
What about longer sequences?
If we consider a gene of length 2
gene 1 GA
The the probability of observing this gene is the product of the
probabilities of observing each character
Model frequency of G = 0.4 frequencyof A= 0.15
p(G) = 0.4 p(A) =0.15
Likelihood (GA) = 0.4 x 0.15 = 0.06
…or even longer sequences?
gene 1 GACTAGCTAGACAGATACGAATTAC
Model simple base frequency model
p(A)=0.15; p(C)=0.2; p(G)=0.4; p(T)=0.25;
(the sum of all probabilities must equal 1)
Likelihood (gene 1) = 0.000000000000000018452813
Note about models
You might notice that our model of base frequency is not the
optimal model for our observed data.
If we had used the following model
p(A)=0.4; p(C) =0.2; p(G)= 0.2; p(T) = 0.2;
The likelihood of observing the gene is
L (gene 1) = 0.000000000000335544320000
L (gene 1) = 0.000000000000000018452813
The datum has not changed, our model has. Therefore under
the new model the likelihood of observing the datum has
changed.
Increase in model sophistication
It is no longer possible to simply invoke a model that
encompasses base composition, we must also include the
mechanism of sequence change and stasis.
There are two parts to this model - the tree and the process
(the latter is confusingly referred to as the model, although
both parts really compose the model).
Different Branch Lengths
For very short branch lengths, the probability of a character staying the
same is high and the probability of it changing is low.
For longer branch lengths, the probability of character change becomes
higher and the probability of staying the same is lower.
The previous calculations are based on the assumption that the branch
length describes one Certain Evolutionary Distance or CED.
If we want to consider a branch length that is twice as long (2 CED), then
we can multiply the substitution matrix by itself (matrix2
).
I (A) II (C)
I (A) II (C)
v = 0.1
v = 1.0
v = µt
µ = mutation rate
t = time
ximum Likelihood
Two trees each consisting of single branch
Jukes-Cantor model
I (A) II (C)
I (A) II (C)
v = 0.1
v = 1.0
Ι AACC
ΙΙ CACT
1 j
N
1 C G G A C A C G T T T A C
2 C A G A C A C C T C T A C
3 C G G A T A A G T T A A C
4 C G G A T A G C C T A G C
1
42
3
1
C
2
C
4
G
3
A
5
6
L(j) = p
C C A G
A
A
C C A G
C
A
C C A G
T
T
+ p + … + p
L(j) = p
C C A G
A
A
C C A G
C
A
C C A G
T
T
+ p + … + p
N
L = L(1) • L(2) • … L(N) = ΠL(j)j = 1
N
lnL = lnL(1) + lnL(2) + … L(N) = Σ lnL(j)j = 1
Likelihood of the alignment at various branch lengths
0
0,00002
0,00004
0,00006
0,00008
0,0001
0,00012
0,00014
0,00016
0,00018
0,0002
0 0,1 0,2 0,3 0,4 0,5 0,6
Strengths of ML
• Does not try to make an observation of sequence change and then a
correction for superimposed substitutions. There is no need to
‘correct’ for anything, the models take care of superimposed
substitutions.
• Accurate branch lengths.
• Each site has a likelihood.
• If the model is correct, we should retrieve the correct tree (If we have
long-enough sequences and a sophisticated-enough model).
• You can use a model that fits the data.
• ML uses all the data (no selection of sites based on informativeness,
all sites are informative).
• ML can not only tell you about the phylogeny of the sequences, but
also the process of evolution that led to the observations of today’s
sequences.
Weaknesses of ML
• Can be inconsistent if we use models that are not accurate.
• Model might not be sophisticated enough
• Very computationally-intensive. Might not be possible to
examine all models (substitution matrices, tree topologies).
Models
• You can use models that:
Deal with different transition/transversion ratios.
Deal with unequal base composition.
Deal with heterogeneity of rates across sites.
Deal with heterogeneity of the substitution process (different rates
across lineages, different rates at different parts of the tree).
• The more free parameters, the better your model fits your data (good).
• The more free parameters, the higher the variance of the estimate (bad).
Choosing a Model
Don’t assume a model, rather find a model that fits your data.
Models often have “free” parameters. These can be fixed to a
reasonable value, or estimated by ML.
The more free parameters, the better the fit (higher the likelihood) of
the model to the data. (Good!)
The more free parameters, the higher the variance, and the less
power to discriminate among competing hypotheses. (Bad!)
We do not want to over-fit the model to the data
What is the best way to fit a line (a model) through these points?
How to tell if adding (or removing) a certain parameter is a good idea?
• Use statistics
• The null hypothesis is that the presence or absence of the parameter makes no difference
• In order to assess signifcance you need a null distribution
We have some DNA data, and a tree. Evaluate the data with 3 different
models.
model ln likelihood ∆
JC -2348.68
K2P -2256.73 91.95
GTR -2254.94 1.79
Evaluations with more complex models have higher likelihoods
The K2P model has 1 more parameter than the JC model
The GTR model has 4 more parameters than the K2P model
Are the extra parameters worth adding?
JC vs K2P K2P vs GTR
We have generated many true null hypothesis data sets and evaluated them under the JC
model and the K2P model. 95% of the differences are under 2.The statistic for our original
data set was 91.95, and so it is highly significant. In this case it is worthwhile to add the extra
parameter (tRatio).
We have generated many true null hypothesis data sets and evaluated them under the K2P
model and the GTR model. The statistic for our original data set was 1.79, and so it is not
signifcant. In this case it is not worthwhile to add the extra parameters.
You can use the χ2
approximation to assess
significance of adding parameters
Bayesian Inference
Maximum likelihood
Search for tree that maximizes the chance of
seeing the data (P (Data | Tree))
Bayesian Inference
Search for tree that maximizes the chance of
seeing the tree given the data (P (Tree | Data))
Bayesian Phylogenetics
Maximize the posterior probability of a tree given the aligned DNA
sequences
Two steps
- Definition of the posterior probabilities of trees (Bayes’ Rule)
- Approximation of the posterior probabilities of trees
Markov chain Monte Carlo (MCMC) methods
90 10
yesian Inference
yesian Inference
Markov Chain Monte Carlo Methods
Posterior probabilities of trees are complex joint probabilities
that cannot be calculated analytically.
Instead, the posterior probabilities of trees are approximated
with Markov Chain Monte Carlo (MCMC) methods that sample
trees from their posterior probability distribution.
MCMC
A way of sampling / touring a set of solutions,biased
by their likelihood
1 Make a random solution N1 the current solution
2 Pick another solution N2
3 If Likelihood (N1 < N2) then replace N1 with N2
4 Else if Random (Likelihood (N2) / Likelihood (N1)) then replace
N1 with N2
5 Sample (record) the current solution
6 Repeat from step 2
yesian Inference
yesian Inference

More Related Content

What's hot

Random Forest / Bootstrap Aggregation
Random Forest / Bootstrap AggregationRandom Forest / Bootstrap Aggregation
Random Forest / Bootstrap AggregationRupak Roy
 
Summary statistics
Summary statisticsSummary statistics
Summary statisticsRupak Roy
 
Quicksort algorithm
Quicksort algorithmQuicksort algorithm
Quicksort algorithmBapan Maity
 
Simplicial closure and higher-order link prediction --- SIAMNS18
Simplicial closure and higher-order link prediction --- SIAMNS18Simplicial closure and higher-order link prediction --- SIAMNS18
Simplicial closure and higher-order link prediction --- SIAMNS18Austin Benson
 

What's hot (7)

NCM RB PAPER
NCM RB PAPERNCM RB PAPER
NCM RB PAPER
 
A Method for Constructing Non-Isosceles Triangular Fuzzy Numbers Using Freque...
A Method for Constructing Non-Isosceles Triangular Fuzzy Numbers Using Freque...A Method for Constructing Non-Isosceles Triangular Fuzzy Numbers Using Freque...
A Method for Constructing Non-Isosceles Triangular Fuzzy Numbers Using Freque...
 
Random Forest / Bootstrap Aggregation
Random Forest / Bootstrap AggregationRandom Forest / Bootstrap Aggregation
Random Forest / Bootstrap Aggregation
 
Quicksort
QuicksortQuicksort
Quicksort
 
Summary statistics
Summary statisticsSummary statistics
Summary statistics
 
Quicksort algorithm
Quicksort algorithmQuicksort algorithm
Quicksort algorithm
 
Simplicial closure and higher-order link prediction --- SIAMNS18
Simplicial closure and higher-order link prediction --- SIAMNS18Simplicial closure and higher-order link prediction --- SIAMNS18
Simplicial closure and higher-order link prediction --- SIAMNS18
 

Viewers also liked

Crypto theory practice
Crypto theory practiceCrypto theory practice
Crypto theory practiceFraboni Ec
 
Memory caching
Memory cachingMemory caching
Memory cachingFraboni Ec
 
Overview prolog
Overview prologOverview prolog
Overview prologFraboni Ec
 
Text classification
Text classificationText classification
Text classificationFraboni Ec
 
Introduction to security_and_crypto
Introduction to security_and_cryptoIntroduction to security_and_crypto
Introduction to security_and_cryptoFraboni Ec
 
Introduction toprolog
Introduction toprologIntroduction toprolog
Introduction toprologFraboni Ec
 
Access data connection
Access data connectionAccess data connection
Access data connectionFraboni Ec
 
Key exchange in crypto
Key exchange in cryptoKey exchange in crypto
Key exchange in cryptoFraboni Ec
 
Hash mac algorithms
Hash mac algorithmsHash mac algorithms
Hash mac algorithmsFraboni Ec
 
List in webpage
List in webpageList in webpage
List in webpageFraboni Ec
 
Database concepts
Database conceptsDatabase concepts
Database conceptsFraboni Ec
 
Nlp naive bayes
Nlp naive bayesNlp naive bayes
Nlp naive bayesFraboni Ec
 

Viewers also liked (20)

Exception
ExceptionException
Exception
 
Crypto theory practice
Crypto theory practiceCrypto theory practice
Crypto theory practice
 
Memory caching
Memory cachingMemory caching
Memory caching
 
Game theory
Game theoryGame theory
Game theory
 
Overview prolog
Overview prologOverview prolog
Overview prolog
 
Text classification
Text classificationText classification
Text classification
 
Stack queue
Stack queueStack queue
Stack queue
 
Big data
Big dataBig data
Big data
 
Gm theory
Gm theoryGm theory
Gm theory
 
Introduction to security_and_crypto
Introduction to security_and_cryptoIntroduction to security_and_crypto
Introduction to security_and_crypto
 
Naïve bayes
Naïve bayesNaïve bayes
Naïve bayes
 
Introduction toprolog
Introduction toprologIntroduction toprolog
Introduction toprolog
 
Access data connection
Access data connectionAccess data connection
Access data connection
 
Key exchange in crypto
Key exchange in cryptoKey exchange in crypto
Key exchange in crypto
 
Hash mac algorithms
Hash mac algorithmsHash mac algorithms
Hash mac algorithms
 
List in webpage
List in webpageList in webpage
List in webpage
 
Decision tree
Decision treeDecision tree
Decision tree
 
Database concepts
Database conceptsDatabase concepts
Database concepts
 
Maven
MavenMaven
Maven
 
Nlp naive bayes
Nlp naive bayesNlp naive bayes
Nlp naive bayes
 

Similar to Data miningmaximumlikelihood

Intro to Model Selection
Intro to Model SelectionIntro to Model Selection
Intro to Model Selectionchenhm
 
Ders 1 mean mod media st dev.pptx
Ders 1 mean mod media st dev.pptxDers 1 mean mod media st dev.pptx
Ders 1 mean mod media st dev.pptxErgin Akalpler
 
Probability distribution Function & Decision Trees in machine learning
Probability distribution Function  & Decision Trees in machine learningProbability distribution Function  & Decision Trees in machine learning
Probability distribution Function & Decision Trees in machine learningSadia Zafar
 
Maximum likelihood estimation from uncertain
Maximum likelihood estimation from uncertainMaximum likelihood estimation from uncertain
Maximum likelihood estimation from uncertainIEEEFINALYEARPROJECTS
 
Cost Optimized Design Technique for Pseudo-Random Numbers in Cellular Automata
Cost Optimized Design Technique for Pseudo-Random Numbers in Cellular AutomataCost Optimized Design Technique for Pseudo-Random Numbers in Cellular Automata
Cost Optimized Design Technique for Pseudo-Random Numbers in Cellular Automataijait
 
Data Science Interview Questions | Data Science Interview Questions And Answe...
Data Science Interview Questions | Data Science Interview Questions And Answe...Data Science Interview Questions | Data Science Interview Questions And Answe...
Data Science Interview Questions | Data Science Interview Questions And Answe...Simplilearn
 
Kaggle digits analysis_final_fc
Kaggle digits analysis_final_fcKaggle digits analysis_final_fc
Kaggle digits analysis_final_fcZachary Combs
 
CPSC 531: System Modeling and Simulation.pptx
CPSC 531:System Modeling and Simulation.pptxCPSC 531:System Modeling and Simulation.pptx
CPSC 531: System Modeling and Simulation.pptxFarhan27013
 
Data mining Part 1
Data mining Part 1Data mining Part 1
Data mining Part 1Gautam Kumar
 
Data Science - Part V - Decision Trees & Random Forests
Data Science - Part V - Decision Trees & Random Forests Data Science - Part V - Decision Trees & Random Forests
Data Science - Part V - Decision Trees & Random Forests Derek Kane
 
Other classification methods in data mining
Other classification methods in data miningOther classification methods in data mining
Other classification methods in data miningKumar Deepak
 
Bel ventutorial hetero
Bel ventutorial heteroBel ventutorial hetero
Bel ventutorial heteroEdda Kang
 

Similar to Data miningmaximumlikelihood (20)

Into to prob_prog_hari
Into to prob_prog_hariInto to prob_prog_hari
Into to prob_prog_hari
 
MyStataLab Assignment Help
MyStataLab Assignment HelpMyStataLab Assignment Help
MyStataLab Assignment Help
 
Intro to Model Selection
Intro to Model SelectionIntro to Model Selection
Intro to Model Selection
 
Ders 1 mean mod media st dev.pptx
Ders 1 mean mod media st dev.pptxDers 1 mean mod media st dev.pptx
Ders 1 mean mod media st dev.pptx
 
Statistics
StatisticsStatistics
Statistics
 
Probability distribution Function & Decision Trees in machine learning
Probability distribution Function  & Decision Trees in machine learningProbability distribution Function  & Decision Trees in machine learning
Probability distribution Function & Decision Trees in machine learning
 
Explore ml day 2
Explore ml day 2Explore ml day 2
Explore ml day 2
 
Maximum likelihood estimation from uncertain
Maximum likelihood estimation from uncertainMaximum likelihood estimation from uncertain
Maximum likelihood estimation from uncertain
 
Cost Optimized Design Technique for Pseudo-Random Numbers in Cellular Automata
Cost Optimized Design Technique for Pseudo-Random Numbers in Cellular AutomataCost Optimized Design Technique for Pseudo-Random Numbers in Cellular Automata
Cost Optimized Design Technique for Pseudo-Random Numbers in Cellular Automata
 
Data Science Interview Questions | Data Science Interview Questions And Answe...
Data Science Interview Questions | Data Science Interview Questions And Answe...Data Science Interview Questions | Data Science Interview Questions And Answe...
Data Science Interview Questions | Data Science Interview Questions And Answe...
 
03 Data Mining Techniques
03 Data Mining Techniques03 Data Mining Techniques
03 Data Mining Techniques
 
Kaggle digits analysis_final_fc
Kaggle digits analysis_final_fcKaggle digits analysis_final_fc
Kaggle digits analysis_final_fc
 
ML MODULE 2.pdf
ML MODULE 2.pdfML MODULE 2.pdf
ML MODULE 2.pdf
 
CPSC 531: System Modeling and Simulation.pptx
CPSC 531:System Modeling and Simulation.pptxCPSC 531:System Modeling and Simulation.pptx
CPSC 531: System Modeling and Simulation.pptx
 
Into to prob_prog_hari (2)
Into to prob_prog_hari (2)Into to prob_prog_hari (2)
Into to prob_prog_hari (2)
 
Data mining Part 1
Data mining Part 1Data mining Part 1
Data mining Part 1
 
report
reportreport
report
 
Data Science - Part V - Decision Trees & Random Forests
Data Science - Part V - Decision Trees & Random Forests Data Science - Part V - Decision Trees & Random Forests
Data Science - Part V - Decision Trees & Random Forests
 
Other classification methods in data mining
Other classification methods in data miningOther classification methods in data mining
Other classification methods in data mining
 
Bel ventutorial hetero
Bel ventutorial heteroBel ventutorial hetero
Bel ventutorial hetero
 

More from Fraboni Ec

Hardware multithreading
Hardware multithreadingHardware multithreading
Hardware multithreadingFraboni Ec
 
What is simultaneous multithreading
What is simultaneous multithreadingWhat is simultaneous multithreading
What is simultaneous multithreadingFraboni Ec
 
Directory based cache coherence
Directory based cache coherenceDirectory based cache coherence
Directory based cache coherenceFraboni Ec
 
Business analytics and data mining
Business analytics and data miningBusiness analytics and data mining
Business analytics and data miningFraboni Ec
 
Big picture of data mining
Big picture of data miningBig picture of data mining
Big picture of data miningFraboni Ec
 
Data mining and knowledge discovery
Data mining and knowledge discoveryData mining and knowledge discovery
Data mining and knowledge discoveryFraboni Ec
 
How analysis services caching works
How analysis services caching worksHow analysis services caching works
How analysis services caching worksFraboni Ec
 
Hardware managed cache
Hardware managed cacheHardware managed cache
Hardware managed cacheFraboni Ec
 
Data structures and algorithms
Data structures and algorithmsData structures and algorithms
Data structures and algorithmsFraboni Ec
 
Cobol, lisp, and python
Cobol, lisp, and pythonCobol, lisp, and python
Cobol, lisp, and pythonFraboni Ec
 
Abstract data types
Abstract data typesAbstract data types
Abstract data typesFraboni Ec
 
Optimizing shared caches in chip multiprocessors
Optimizing shared caches in chip multiprocessorsOptimizing shared caches in chip multiprocessors
Optimizing shared caches in chip multiprocessorsFraboni Ec
 
Abstraction file
Abstraction fileAbstraction file
Abstraction fileFraboni Ec
 
Object oriented analysis
Object oriented analysisObject oriented analysis
Object oriented analysisFraboni Ec
 
Abstract class
Abstract classAbstract class
Abstract classFraboni Ec
 
Concurrency with java
Concurrency with javaConcurrency with java
Concurrency with javaFraboni Ec
 

More from Fraboni Ec (20)

Hardware multithreading
Hardware multithreadingHardware multithreading
Hardware multithreading
 
Lisp
LispLisp
Lisp
 
What is simultaneous multithreading
What is simultaneous multithreadingWhat is simultaneous multithreading
What is simultaneous multithreading
 
Directory based cache coherence
Directory based cache coherenceDirectory based cache coherence
Directory based cache coherence
 
Business analytics and data mining
Business analytics and data miningBusiness analytics and data mining
Business analytics and data mining
 
Big picture of data mining
Big picture of data miningBig picture of data mining
Big picture of data mining
 
Data mining and knowledge discovery
Data mining and knowledge discoveryData mining and knowledge discovery
Data mining and knowledge discovery
 
Cache recap
Cache recapCache recap
Cache recap
 
How analysis services caching works
How analysis services caching worksHow analysis services caching works
How analysis services caching works
 
Hardware managed cache
Hardware managed cacheHardware managed cache
Hardware managed cache
 
Data structures and algorithms
Data structures and algorithmsData structures and algorithms
Data structures and algorithms
 
Cobol, lisp, and python
Cobol, lisp, and pythonCobol, lisp, and python
Cobol, lisp, and python
 
Abstract data types
Abstract data typesAbstract data types
Abstract data types
 
Optimizing shared caches in chip multiprocessors
Optimizing shared caches in chip multiprocessorsOptimizing shared caches in chip multiprocessors
Optimizing shared caches in chip multiprocessors
 
Abstraction file
Abstraction fileAbstraction file
Abstraction file
 
Object model
Object modelObject model
Object model
 
Object oriented analysis
Object oriented analysisObject oriented analysis
Object oriented analysis
 
Abstract class
Abstract classAbstract class
Abstract class
 
Concurrency with java
Concurrency with javaConcurrency with java
Concurrency with java
 
Inheritance
InheritanceInheritance
Inheritance
 

Recently uploaded

Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersEnhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersThousandEyes
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationRadu Cotescu
 
Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountPuma Security, LLC
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024Rafal Los
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking MenDelhi Call girls
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreternaman860154
 
Understanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitectureUnderstanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitecturePixlogix Infotech
 
Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slidevu2urc
 
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024BookNet Canada
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityPrincipled Technologies
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking MenDelhi Call girls
 
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Igalia
 
A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024Results
 
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...HostedbyConfluent
 
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...Neo4j
 
The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxMalak Abu Hammad
 
SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024Scott Keck-Warren
 
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | DelhiFULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhisoniya singh
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsEnterprise Knowledge
 
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 3652toLead Limited
 

Recently uploaded (20)

Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for PartnersEnhancing Worker Digital Experience: A Hands-on Workshop for Partners
Enhancing Worker Digital Experience: A Hands-on Workshop for Partners
 
Scaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organizationScaling API-first – The story of a global engineering organization
Scaling API-first – The story of a global engineering organization
 
Breaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path MountBreaking the Kubernetes Kill Chain: Host Path Mount
Breaking the Kubernetes Kill Chain: Host Path Mount
 
The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024The 7 Things I Know About Cyber Security After 25 Years | April 2024
The 7 Things I Know About Cyber Security After 25 Years | April 2024
 
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men08448380779 Call Girls In Greater Kailash - I Women Seeking Men
08448380779 Call Girls In Greater Kailash - I Women Seeking Men
 
Presentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreterPresentation on how to chat with PDF using ChatGPT code interpreter
Presentation on how to chat with PDF using ChatGPT code interpreter
 
Understanding the Laravel MVC Architecture
Understanding the Laravel MVC ArchitectureUnderstanding the Laravel MVC Architecture
Understanding the Laravel MVC Architecture
 
Histor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slideHistor y of HAM Radio presentation slide
Histor y of HAM Radio presentation slide
 
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
#StandardsGoals for 2024: What’s new for BISAC - Tech Forum 2024
 
Boost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivityBoost PC performance: How more available memory can improve productivity
Boost PC performance: How more available memory can improve productivity
 
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
08448380779 Call Girls In Diplomatic Enclave Women Seeking Men
 
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
Raspberry Pi 5: Challenges and Solutions in Bringing up an OpenGL/Vulkan Driv...
 
A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024A Call to Action for Generative AI in 2024
A Call to Action for Generative AI in 2024
 
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
Transforming Data Streams with Kafka Connect: An Introduction to Single Messa...
 
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
Neo4j - How KGs are shaping the future of Generative AI at AWS Summit London ...
 
The Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptxThe Codex of Business Writing Software for Real-World Solutions 2.pptx
The Codex of Business Writing Software for Real-World Solutions 2.pptx
 
SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024SQL Database Design For Developers at php[tek] 2024
SQL Database Design For Developers at php[tek] 2024
 
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | DelhiFULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
FULL ENJOY 🔝 8264348440 🔝 Call Girls in Diplomatic Enclave | Delhi
 
IAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI SolutionsIAC 2024 - IA Fast Track to Search Focused AI Solutions
IAC 2024 - IA Fast Track to Search Focused AI Solutions
 
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
Tech-Forward - Achieving Business Readiness For Copilot in Microsoft 365
 

Data miningmaximumlikelihood

  • 2. Likelihood The likelihood is the probability of the data given the model.
  • 3. If we flip a coin and get a head and we think the coin is unbiased, then the probability of observing this head is 0.5. If we think the coin is biased so that we expect to get a head 80% of the time, then the likelihood of observing this datum (a head) is 0.8. The likelihood of making some observation is entirely dependent on the model that underlies our assumption. The datum has not changed, our model has. Therefore under the new model the likelihood of observing the datum has changed. Likelihood
  • 4. Maximum Likelihood (ML) ML assumes a explicit model of sequence evolution. This is justifiable, since molecular sequence data can be shown to have arisen according to a stochastic process. ML attempts to answer the question: What is the probability that I would observe these data (a multiple sequence alignment) given a particular model of evolution (a tree and a process)?
  • 5. Likelihood calculations In molecular phylogenetics, the data are an alignment of sequences We optimize parameters and branch lengths to get the maximum likelihood Each site has a likelihood The total likelihood is the product of the site likelihoods The maximum likelihood tree is the tree topology that gives the highest (optimized) likelihood under the given model. We use reversible models, so the position of the root does not matter.
  • 6. What is the probability of observing a G nucleotide? If we have a DNA sequence of 1 nucleotide in length and the identity of this nucleotide is G, what is the likelihood that we would observe this G? In the same way as the coin-flipping observation, the likelihood of observing this G is dependent on the model of sequence evolution that is thought to underlie the data. Model 1: frequency of G = 0.4 => likelihood(G) = 0.4 Model 2: frequency of G = 0.1 => likelihood(G) = 0.1 Model 3: frequency of G = 0.25 => likelihood(G) = 0.25
  • 7. What about longer sequences? If we consider a gene of length 2 gene 1 GA The the probability of observing this gene is the product of the probabilities of observing each character Model frequency of G = 0.4 frequencyof A= 0.15 p(G) = 0.4 p(A) =0.15 Likelihood (GA) = 0.4 x 0.15 = 0.06
  • 8. …or even longer sequences? gene 1 GACTAGCTAGACAGATACGAATTAC Model simple base frequency model p(A)=0.15; p(C)=0.2; p(G)=0.4; p(T)=0.25; (the sum of all probabilities must equal 1) Likelihood (gene 1) = 0.000000000000000018452813
  • 9. Note about models You might notice that our model of base frequency is not the optimal model for our observed data. If we had used the following model p(A)=0.4; p(C) =0.2; p(G)= 0.2; p(T) = 0.2; The likelihood of observing the gene is L (gene 1) = 0.000000000000335544320000 L (gene 1) = 0.000000000000000018452813 The datum has not changed, our model has. Therefore under the new model the likelihood of observing the datum has changed.
  • 10. Increase in model sophistication It is no longer possible to simply invoke a model that encompasses base composition, we must also include the mechanism of sequence change and stasis. There are two parts to this model - the tree and the process (the latter is confusingly referred to as the model, although both parts really compose the model).
  • 11. Different Branch Lengths For very short branch lengths, the probability of a character staying the same is high and the probability of it changing is low. For longer branch lengths, the probability of character change becomes higher and the probability of staying the same is lower. The previous calculations are based on the assumption that the branch length describes one Certain Evolutionary Distance or CED. If we want to consider a branch length that is twice as long (2 CED), then we can multiply the substitution matrix by itself (matrix2 ).
  • 12. I (A) II (C) I (A) II (C) v = 0.1 v = 1.0 v = µt µ = mutation rate t = time ximum Likelihood Two trees each consisting of single branch
  • 13. Jukes-Cantor model I (A) II (C) I (A) II (C) v = 0.1 v = 1.0
  • 15. 1 j N 1 C G G A C A C G T T T A C 2 C A G A C A C C T C T A C 3 C G G A T A A G T T A A C 4 C G G A T A G C C T A G C 1 42 3 1 C 2 C 4 G 3 A 5 6 L(j) = p C C A G A A C C A G C A C C A G T T + p + … + p
  • 16. L(j) = p C C A G A A C C A G C A C C A G T T + p + … + p N L = L(1) • L(2) • … L(N) = ΠL(j)j = 1 N lnL = lnL(1) + lnL(2) + … L(N) = Σ lnL(j)j = 1
  • 17. Likelihood of the alignment at various branch lengths 0 0,00002 0,00004 0,00006 0,00008 0,0001 0,00012 0,00014 0,00016 0,00018 0,0002 0 0,1 0,2 0,3 0,4 0,5 0,6
  • 18. Strengths of ML • Does not try to make an observation of sequence change and then a correction for superimposed substitutions. There is no need to ‘correct’ for anything, the models take care of superimposed substitutions. • Accurate branch lengths. • Each site has a likelihood. • If the model is correct, we should retrieve the correct tree (If we have long-enough sequences and a sophisticated-enough model). • You can use a model that fits the data. • ML uses all the data (no selection of sites based on informativeness, all sites are informative). • ML can not only tell you about the phylogeny of the sequences, but also the process of evolution that led to the observations of today’s sequences.
  • 19. Weaknesses of ML • Can be inconsistent if we use models that are not accurate. • Model might not be sophisticated enough • Very computationally-intensive. Might not be possible to examine all models (substitution matrices, tree topologies).
  • 20. Models • You can use models that: Deal with different transition/transversion ratios. Deal with unequal base composition. Deal with heterogeneity of rates across sites. Deal with heterogeneity of the substitution process (different rates across lineages, different rates at different parts of the tree). • The more free parameters, the better your model fits your data (good). • The more free parameters, the higher the variance of the estimate (bad).
  • 21. Choosing a Model Don’t assume a model, rather find a model that fits your data. Models often have “free” parameters. These can be fixed to a reasonable value, or estimated by ML. The more free parameters, the better the fit (higher the likelihood) of the model to the data. (Good!) The more free parameters, the higher the variance, and the less power to discriminate among competing hypotheses. (Bad!) We do not want to over-fit the model to the data
  • 22. What is the best way to fit a line (a model) through these points? How to tell if adding (or removing) a certain parameter is a good idea? • Use statistics • The null hypothesis is that the presence or absence of the parameter makes no difference • In order to assess signifcance you need a null distribution
  • 23. We have some DNA data, and a tree. Evaluate the data with 3 different models. model ln likelihood ∆ JC -2348.68 K2P -2256.73 91.95 GTR -2254.94 1.79 Evaluations with more complex models have higher likelihoods The K2P model has 1 more parameter than the JC model The GTR model has 4 more parameters than the K2P model Are the extra parameters worth adding?
  • 24. JC vs K2P K2P vs GTR We have generated many true null hypothesis data sets and evaluated them under the JC model and the K2P model. 95% of the differences are under 2.The statistic for our original data set was 91.95, and so it is highly significant. In this case it is worthwhile to add the extra parameter (tRatio). We have generated many true null hypothesis data sets and evaluated them under the K2P model and the GTR model. The statistic for our original data set was 1.79, and so it is not signifcant. In this case it is not worthwhile to add the extra parameters. You can use the χ2 approximation to assess significance of adding parameters
  • 26. Maximum likelihood Search for tree that maximizes the chance of seeing the data (P (Data | Tree)) Bayesian Inference Search for tree that maximizes the chance of seeing the tree given the data (P (Tree | Data))
  • 27. Bayesian Phylogenetics Maximize the posterior probability of a tree given the aligned DNA sequences Two steps - Definition of the posterior probabilities of trees (Bayes’ Rule) - Approximation of the posterior probabilities of trees Markov chain Monte Carlo (MCMC) methods
  • 30.
  • 31. Markov Chain Monte Carlo Methods Posterior probabilities of trees are complex joint probabilities that cannot be calculated analytically. Instead, the posterior probabilities of trees are approximated with Markov Chain Monte Carlo (MCMC) methods that sample trees from their posterior probability distribution.
  • 32. MCMC A way of sampling / touring a set of solutions,biased by their likelihood 1 Make a random solution N1 the current solution 2 Pick another solution N2 3 If Likelihood (N1 < N2) then replace N1 with N2 4 Else if Random (Likelihood (N2) / Likelihood (N1)) then replace N1 with N2 5 Sample (record) the current solution 6 Repeat from step 2
  • 33.
  • 34.
  • 35.
  • 36.
  • 37.
  • 38.
  • 39.
  • 40.

Editor's Notes

  1. Even though we tend to refer to the tree and the model separately, they are in fact both parts of the model.