SlideShare a Scribd company logo
1 of 56
Quicksort Algorithm
Given an array of n elements (e.g., integers):
If array only contains one element, return
Else
pick one element to use as pivot.
Partition elements into two sub-arrays:
 Elements less than or equal to pivot
 Elements greater than pivot
Quicksort two sub-arrays
Return results
Example
We are given array of n integers to sort:
40 20 10 80 60 50 7 30 100
Pick Pivot Element
There are a number of ways to pick the pivot element. In
this example, we will use the first element in the array:
40 20 10 80 60 50 7 30 100
Partitioning Array
Given a pivot, partition the elements of the array
such that the resulting array consists of:
1. One sub-array that contains elements >= pivot
2. Another sub-array that contains elements < pivot
The sub-arrays are stored in the original data
array.
Partitioning loops through, swapping elements
below/above pivot.
40 20 10 80 60 50 7 30 100pivot_index = 0
[0] [1] [2] [3] [4] [5] [6] [7] [8]
too_big_index too_small_index
40 20 10 80 60 50 7 30 100pivot_index = 0
[0] [1] [2] [3] [4] [5] [6] [7] [8]
too_big_index too_small_index
1. While data[too_big_index] <= data[pivot]
++too_big_index
40 20 10 80 60 50 7 30 100pivot_index = 0
[0] [1] [2] [3] [4] [5] [6] [7] [8]
too_big_index too_small_index
1. While data[too_big_index] <= data[pivot]
++too_big_index
40 20 10 80 60 50 7 30 100pivot_index = 0
[0] [1] [2] [3] [4] [5] [6] [7] [8]
too_big_index too_small_index
1. While data[too_big_index] <= data[pivot]
++too_big_index
40 20 10 80 60 50 7 30 100pivot_index = 0
[0] [1] [2] [3] [4] [5] [6] [7] [8]
too_big_index too_small_index
1. While data[too_big_index] <= data[pivot]
++too_big_index
2. While data[too_small_index] > data[pivot]
--too_small_index
40 20 10 80 60 50 7 30 100pivot_index = 0
[0] [1] [2] [3] [4] [5] [6] [7] [8]
too_big_index too_small_index
1. While data[too_big_index] <= data[pivot]
++too_big_index
2. While data[too_small_index] > data[pivot]
--too_small_index
40 20 10 80 60 50 7 30 100pivot_index = 0
[0] [1] [2] [3] [4] [5] [6] [7] [8]
too_big_index too_small_index
1. While data[too_big_index] <= data[pivot]
++too_big_index
2. While data[too_small_index] > data[pivot]
--too_small_index
3. If too_big_index < too_small_index
swap data[too_big_index] and data[too_small_index]
40 20 10 30 60 50 7 80 100pivot_index = 0
[0] [1] [2] [3] [4] [5] [6] [7] [8]
too_big_index too_small_index
1. While data[too_big_index] <= data[pivot]
++too_big_index
2. While data[too_small_index] > data[pivot]
--too_small_index
3. If too_big_index < too_small_index
swap data[too_big_index] and data[too_small_index]
40 20 10 30 60 50 7 80 100pivot_index = 0
[0] [1] [2] [3] [4] [5] [6] [7] [8]
too_big_index too_small_index
1. While data[too_big_index] <= data[pivot]
++too_big_index
2. While data[too_small_index] > data[pivot]
--too_small_index
3. If too_big_index < too_small_index
swap data[too_big_index] and data[too_small_index]
4. While too_small_index > too_big_index, go to 1.
40 20 10 30 60 50 7 80 100pivot_index = 0
[0] [1] [2] [3] [4] [5] [6] [7] [8]
too_big_index too_small_index
1. While data[too_big_index] <= data[pivot]
++too_big_index
2. While data[too_small_index] > data[pivot]
--too_small_index
3. If too_big_index < too_small_index
swap data[too_big_index] and data[too_small_index]
4. While too_small_index > too_big_index, go to 1.
40 20 10 30 60 50 7 80 100pivot_index = 0
[0] [1] [2] [3] [4] [5] [6] [7] [8]
too_big_index too_small_index
1. While data[too_big_index] <= data[pivot]
++too_big_index
2. While data[too_small_index] > data[pivot]
--too_small_index
3. If too_big_index < too_small_index
swap data[too_big_index] and data[too_small_index]
4. While too_small_index > too_big_index, go to 1.
40 20 10 30 60 50 7 80 100pivot_index = 0
[0] [1] [2] [3] [4] [5] [6] [7] [8]
too_big_index too_small_index
1. While data[too_big_index] <= data[pivot]
++too_big_index
2. While data[too_small_index] > data[pivot]
--too_small_index
3. If too_big_index < too_small_index
swap data[too_big_index] and data[too_small_index]
4. While too_small_index > too_big_index, go to 1.
40 20 10 30 60 50 7 80 100pivot_index = 0
[0] [1] [2] [3] [4] [5] [6] [7] [8]
too_big_index too_small_index
1. While data[too_big_index] <= data[pivot]
++too_big_index
2. While data[too_small_index] > data[pivot]
--too_small_index
3. If too_big_index < too_small_index
swap data[too_big_index] and data[too_small_index]
4. While too_small_index > too_big_index, go to 1.
40 20 10 30 60 50 7 80 100pivot_index = 0
[0] [1] [2] [3] [4] [5] [6] [7] [8]
too_big_index too_small_index
1. While data[too_big_index] <= data[pivot]
++too_big_index
2. While data[too_small_index] > data[pivot]
--too_small_index
3. If too_big_index < too_small_index
swap data[too_big_index] and data[too_small_index]
4. While too_small_index > too_big_index, go to 1.
1. While data[too_big_index] <= data[pivot]
++too_big_index
2. While data[too_small_index] > data[pivot]
--too_small_index
3. If too_big_index < too_small_index
swap data[too_big_index] and data[too_small_index]
4. While too_small_index > too_big_index, go to 1.
40 20 10 30 7 50 60 80 100pivot_index = 0
[0] [1] [2] [3] [4] [5] [6] [7] [8]
too_big_index too_small_index
1. While data[too_big_index] <= data[pivot]
++too_big_index
2. While data[too_small_index] > data[pivot]
--too_small_index
3. If too_big_index < too_small_index
swap data[too_big_index] and data[too_small_index]
4. While too_small_index > too_big_index, go to 1.
40 20 10 30 7 50 60 80 100pivot_index = 0
[0] [1] [2] [3] [4] [5] [6] [7] [8]
too_big_index too_small_index
1. While data[too_big_index] <= data[pivot]
++too_big_index
2. While data[too_small_index] > data[pivot]
--too_small_index
3. If too_big_index < too_small_index
swap data[too_big_index] and data[too_small_index]
4. While too_small_index > too_big_index, go to 1.
40 20 10 30 7 50 60 80 100pivot_index = 0
[0] [1] [2] [3] [4] [5] [6] [7] [8]
too_big_index too_small_index
1. While data[too_big_index] <= data[pivot]
++too_big_index
2. While data[too_small_index] > data[pivot]
--too_small_index
3. If too_big_index < too_small_index
swap data[too_big_index] and data[too_small_index]
4. While too_small_index > too_big_index, go to 1.
40 20 10 30 7 50 60 80 100pivot_index = 0
[0] [1] [2] [3] [4] [5] [6] [7] [8]
too_big_index too_small_index
1. While data[too_big_index] <= data[pivot]
++too_big_index
2. While data[too_small_index] > data[pivot]
--too_small_index
3. If too_big_index < too_small_index
swap data[too_big_index] and data[too_small_index]
4. While too_small_index > too_big_index, go to 1.
40 20 10 30 7 50 60 80 100pivot_index = 0
[0] [1] [2] [3] [4] [5] [6] [7] [8]
too_big_index too_small_index
1. While data[too_big_index] <= data[pivot]
++too_big_index
2. While data[too_small_index] > data[pivot]
--too_small_index
3. If too_big_index < too_small_index
swap data[too_big_index] and data[too_small_index]
4. While too_small_index > too_big_index, go to 1.
40 20 10 30 7 50 60 80 100pivot_index = 0
[0] [1] [2] [3] [4] [5] [6] [7] [8]
too_big_index too_small_index
1. While data[too_big_index] <= data[pivot]
++too_big_index
2. While data[too_small_index] > data[pivot]
--too_small_index
3. If too_big_index < too_small_index
swap data[too_big_index] and data[too_small_index]
4. While too_small_index > too_big_index, go to 1.
40 20 10 30 7 50 60 80 100pivot_index = 0
[0] [1] [2] [3] [4] [5] [6] [7] [8]
too_big_index too_small_index
1. While data[too_big_index] <= data[pivot]
++too_big_index
2. While data[too_small_index] > data[pivot]
--too_small_index
3. If too_big_index < too_small_index
swap data[too_big_index] and data[too_small_index]
4. While too_small_index > too_big_index, go to 1.
40 20 10 30 7 50 60 80 100pivot_index = 0
[0] [1] [2] [3] [4] [5] [6] [7] [8]
too_big_index too_small_index
1. While data[too_big_index] <= data[pivot]
++too_big_index
2. While data[too_small_index] > data[pivot]
--too_small_index
3. If too_big_index < too_small_index
swap data[too_big_index] and data[too_small_index]
4. While too_small_index > too_big_index, go to 1.
40 20 10 30 7 50 60 80 100pivot_index = 0
[0] [1] [2] [3] [4] [5] [6] [7] [8]
too_big_index too_small_index
1. While data[too_big_index] <= data[pivot]
++too_big_index
2. While data[too_small_index] > data[pivot]
--too_small_index
3. If too_big_index < too_small_index
swap data[too_big_index] and data[too_small_index]
4. While too_small_index > too_big_index, go to 1.
5. Swap data[too_small_index] and data[pivot_index]
40 20 10 30 7 50 60 80 100pivot_index = 0
[0] [1] [2] [3] [4] [5] [6] [7] [8]
too_big_index too_small_index
1. While data[too_big_index] <= data[pivot]
++too_big_index
2. While data[too_small_index] > data[pivot]
--too_small_index
3. If too_big_index < too_small_index
swap data[too_big_index] and data[too_small_index]
4. While too_small_index > too_big_index, go to 1.
5. Swap data[too_small_index] and data[pivot_index]
7 20 10 30 40 50 60 80 100pivot_index = 4
[0] [1] [2] [3] [4] [5] [6] [7] [8]
too_big_index too_small_index
7 20 10 30 40 50 60 80 100
[0] [1] [2] [3] [4] [5] [6] [7] [8]
<= data[pivot] > data[pivot]
7 20 10 30 40 50 60 80 100
[0] [1] [2] [3] [4] [5] [6] [7] [8]
<= data[pivot] > data[pivot]
Quicksort Analysis
Assume that keys are random, uniformly distributed.
What is best case running time?
Quicksort Analysis
 Assume that keys are random, uniformly
distributed.
 What is best case running time?
 Recursion:
1. Partition splits array in two sub-arrays of size n/2
2. Quicksort each sub-array
Quicksort Analysis
 Assume that keys are random, uniformly
distributed.
 What is best case running time?
 Recursion:
1. Partition splits array in two sub-arrays of size n/2
2. Quicksort each sub-array
 Depth of recursion tree?
Quicksort Analysis
 Assume that keys are random, uniformly
distributed.
 What is best case running time?
 Recursion:
1. Partition splits array in two sub-arrays of size n/2
2. Quicksort each sub-array
 Depth of recursion tree? O(log2n)
Quicksort Analysis
 Assume that keys are random, uniformly
distributed.
 What is best case running time?
 Recursion:
1. Partition splits array in two sub-arrays of size n/2
2. Quicksort each sub-array
 Depth of recursion tree? O(log2n)
 Number of accesses in partition?
Quicksort Analysis
 Assume that keys are random, uniformly
distributed.
 What is best case running time?
 Recursion:
1. Partition splits array in two sub-arrays of size n/2
2. Quicksort each sub-array
 Depth of recursion tree? O(log2n)
 Number of accesses in partition? O(n)
Quicksort Analysis
 Assume that keys are random, uniformly
distributed.
 Best case running time: O(n log2n)
Quicksort Analysis
 Assume that keys are random, uniformly
distributed.
 Best case running time: O(n log2n)
 Worst case running time?
Quicksort: Worst Case
Assume first element is chosen as pivot.
Assume we get array that is already in order:
2 4 10 12 13 50 57 63 100pivot_index = 0
[0] [1] [2] [3] [4] [5] [6] [7] [8]
too_big_index too_small_index
1. While data[too_big_index] <= data[pivot]
++too_big_index
2. While data[too_small_index] > data[pivot]
--too_small_index
3. If too_big_index < too_small_index
swap data[too_big_index] and data[too_small_index]
4. While too_small_index > too_big_index, go to 1.
5. Swap data[too_small_index] and data[pivot_index]
2 4 10 12 13 50 57 63 100pivot_index = 0
[0] [1] [2] [3] [4] [5] [6] [7] [8]
too_big_index too_small_index
1. While data[too_big_index] <= data[pivot]
++too_big_index
2. While data[too_small_index] > data[pivot]
--too_small_index
3. If too_big_index < too_small_index
swap data[too_big_index] and data[too_small_index]
4. While too_small_index > too_big_index, go to 1.
5. Swap data[too_small_index] and data[pivot_index]
2 4 10 12 13 50 57 63 100pivot_index = 0
[0] [1] [2] [3] [4] [5] [6] [7] [8]
too_big_index too_small_index
1. While data[too_big_index] <= data[pivot]
++too_big_index
2. While data[too_small_index] > data[pivot]
--too_small_index
3. If too_big_index < too_small_index
swap data[too_big_index] and data[too_small_index]
4. While too_small_index > too_big_index, go to 1.
5. Swap data[too_small_index] and data[pivot_index]
2 4 10 12 13 50 57 63 100pivot_index = 0
[0] [1] [2] [3] [4] [5] [6] [7] [8]
too_big_index too_small_index
1. While data[too_big_index] <= data[pivot]
++too_big_index
2. While data[too_small_index] > data[pivot]
--too_small_index
3. If too_big_index < too_small_index
swap data[too_big_index] and data[too_small_index]
4. While too_small_index > too_big_index, go to 1.
5. Swap data[too_small_index] and data[pivot_index]
2 4 10 12 13 50 57 63 100pivot_index = 0
[0] [1] [2] [3] [4] [5] [6] [7] [8]
too_big_index too_small_index
1. While data[too_big_index] <= data[pivot]
++too_big_index
2. While data[too_small_index] > data[pivot]
--too_small_index
3. If too_big_index < too_small_index
swap data[too_big_index] and data[too_small_index]
4. While too_small_index > too_big_index, go to 1.
5. Swap data[too_small_index] and data[pivot_index]
2 4 10 12 13 50 57 63 100pivot_index = 0
[0] [1] [2] [3] [4] [5] [6] [7] [8]
too_big_index too_small_index
1. While data[too_big_index] <= data[pivot]
++too_big_index
2. While data[too_small_index] > data[pivot]
--too_small_index
3. If too_big_index < too_small_index
swap data[too_big_index] and data[too_small_index]
4. While too_small_index > too_big_index, go to 1.
5. Swap data[too_small_index] and data[pivot_index]
2 4 10 12 13 50 57 63 100pivot_index = 0
[0] [1] [2] [3] [4] [5] [6] [7] [8]
too_big_index too_small_index
1. While data[too_big_index] <= data[pivot]
++too_big_index
2. While data[too_small_index] > data[pivot]
--too_small_index
3. If too_big_index < too_small_index
swap data[too_big_index] and data[too_small_index]
4. While too_small_index > too_big_index, go to 1.
5. Swap data[too_small_index] and data[pivot_index]
2 4 10 12 13 50 57 63 100pivot_index = 0
[0] [1] [2] [3] [4] [5] [6] [7] [8]
> data[pivot]<= data[pivot]
Quicksort Analysis
 Assume that keys are random, uniformly
distributed.
 Best case running time: O(n log2n)
 Worst case running time?
 Recursion:
1. Partition splits array in two sub-arrays:
• one sub-array of size 0
• the other sub-array of size n-1
1. Quicksort each sub-array
 Depth of recursion tree?
Quicksort Analysis
 Assume that keys are random, uniformly
distributed.
 Best case running time: O(n log2n)
 Worst case running time?
 Recursion:
1. Partition splits array in two sub-arrays:
• one sub-array of size 0
• the other sub-array of size n-1
1. Quicksort each sub-array
 Depth of recursion tree? O(n)
Quicksort Analysis
 Assume that keys are random, uniformly
distributed.
 Best case running time: O(n log2n)
 Worst case running time?
 Recursion:
1. Partition splits array in two sub-arrays:
• one sub-array of size 0
• the other sub-array of size n-1
1. Quicksort each sub-array
 Depth of recursion tree? O(n)
 Number of accesses per partition?
Quicksort Analysis
 Assume that keys are random, uniformly
distributed.
 Best case running time: O(n log2n)
 Worst case running time?
 Recursion:
1. Partition splits array in two sub-arrays:
• one sub-array of size 0
• the other sub-array of size n-1
1. Quicksort each sub-array
 Depth of recursion tree? O(n)
 Number of accesses per partition? O(n)
Quicksort Analysis
 Assume that keys are random, uniformly
distributed.
 Best case running time: O(n log2n)
 Worst case running time: O(n2
)!!!
Quicksort Analysis
 Assume that keys are random, uniformly
distributed.
 Best case running time: O(n log2n)
 Worst case running time: O(n2
)!!!
 What can we do to avoid worst case?
Improved Pivot Selection
Pick median value of three elements from data
array:
data[0], data[n/2], and data[n-1].
Use this median value as pivot.
Improving Performance of
Quicksort
Improved selection of pivot.
For sub-arrays of size 3 or less, apply brute force
search:
Sub-array of size 1: trivial
Sub-array of size 2:
 if(data[first] > data[second]) swap them
Sub-array of size 3: left as an exercise.

More Related Content

What's hot

Synchronization hardware
Synchronization hardwareSynchronization hardware
Synchronization hardwareSaeram Butt
 
Python Functions (PyAtl Beginners Night)
Python Functions (PyAtl Beginners Night)Python Functions (PyAtl Beginners Night)
Python Functions (PyAtl Beginners Night)Rick Copeland
 
Counting sort(Non Comparison Sort)
Counting sort(Non Comparison Sort)Counting sort(Non Comparison Sort)
Counting sort(Non Comparison Sort)Hossain Md Shakhawat
 
Data Structure and Algorithms Merge Sort
Data Structure and Algorithms Merge SortData Structure and Algorithms Merge Sort
Data Structure and Algorithms Merge SortManishPrajapati78
 
Quicksort Presentation
Quicksort PresentationQuicksort Presentation
Quicksort Presentationirdginfo
 
PPT On Sorting And Searching Concepts In Data Structure | In Programming Lang...
PPT On Sorting And Searching Concepts In Data Structure | In Programming Lang...PPT On Sorting And Searching Concepts In Data Structure | In Programming Lang...
PPT On Sorting And Searching Concepts In Data Structure | In Programming Lang...Umesh Kumar
 
heap Sort Algorithm
heap  Sort Algorithmheap  Sort Algorithm
heap Sort AlgorithmLemia Algmri
 
Notes DATA STRUCTURE - queue
Notes DATA STRUCTURE - queueNotes DATA STRUCTURE - queue
Notes DATA STRUCTURE - queueFarhanum Aziera
 
Priority Queue in Data Structure
Priority Queue in Data StructurePriority Queue in Data Structure
Priority Queue in Data StructureMeghaj Mallick
 
DAA-Floyd Warshall Algorithm.pptx
DAA-Floyd Warshall Algorithm.pptxDAA-Floyd Warshall Algorithm.pptx
DAA-Floyd Warshall Algorithm.pptxArbabMaalik
 
Insertion sort
Insertion sortInsertion sort
Insertion sortalmaqboli
 
Selection sort
Selection sortSelection sort
Selection sortstella D
 

What's hot (20)

Circular queue
Circular queueCircular queue
Circular queue
 
Synchronization hardware
Synchronization hardwareSynchronization hardware
Synchronization hardware
 
Python Functions (PyAtl Beginners Night)
Python Functions (PyAtl Beginners Night)Python Functions (PyAtl Beginners Night)
Python Functions (PyAtl Beginners Night)
 
Counting sort(Non Comparison Sort)
Counting sort(Non Comparison Sort)Counting sort(Non Comparison Sort)
Counting sort(Non Comparison Sort)
 
Queue Data Structure
Queue Data StructureQueue Data Structure
Queue Data Structure
 
Data Structure and Algorithms Merge Sort
Data Structure and Algorithms Merge SortData Structure and Algorithms Merge Sort
Data Structure and Algorithms Merge Sort
 
Quicksort Presentation
Quicksort PresentationQuicksort Presentation
Quicksort Presentation
 
Linked list
Linked listLinked list
Linked list
 
Quick sort
Quick sortQuick sort
Quick sort
 
PPT On Sorting And Searching Concepts In Data Structure | In Programming Lang...
PPT On Sorting And Searching Concepts In Data Structure | In Programming Lang...PPT On Sorting And Searching Concepts In Data Structure | In Programming Lang...
PPT On Sorting And Searching Concepts In Data Structure | In Programming Lang...
 
heap Sort Algorithm
heap  Sort Algorithmheap  Sort Algorithm
heap Sort Algorithm
 
Insertion sort
Insertion sortInsertion sort
Insertion sort
 
Notes DATA STRUCTURE - queue
Notes DATA STRUCTURE - queueNotes DATA STRUCTURE - queue
Notes DATA STRUCTURE - queue
 
Divide and conquer
Divide and conquerDivide and conquer
Divide and conquer
 
Priority Queue in Data Structure
Priority Queue in Data StructurePriority Queue in Data Structure
Priority Queue in Data Structure
 
Quick sort
Quick sortQuick sort
Quick sort
 
DAA-Floyd Warshall Algorithm.pptx
DAA-Floyd Warshall Algorithm.pptxDAA-Floyd Warshall Algorithm.pptx
DAA-Floyd Warshall Algorithm.pptx
 
Heap sort
Heap sortHeap sort
Heap sort
 
Insertion sort
Insertion sortInsertion sort
Insertion sort
 
Selection sort
Selection sortSelection sort
Selection sort
 

Viewers also liked

Pivot Sampling in Dual-Pivot Quicksort
Pivot Sampling in Dual-Pivot QuicksortPivot Sampling in Dual-Pivot Quicksort
Pivot Sampling in Dual-Pivot QuicksortSebastian Wild
 
Quicksort: illustrated step-by-step walk through
Quicksort: illustrated step-by-step walk throughQuicksort: illustrated step-by-step walk through
Quicksort: illustrated step-by-step walk throughYoshi Watanabe
 
3.8 quicksort 04
3.8 quicksort 043.8 quicksort 04
3.8 quicksort 04Krish_ver2
 
Algorithm: Quick-Sort
Algorithm: Quick-SortAlgorithm: Quick-Sort
Algorithm: Quick-SortTareq Hasan
 

Viewers also liked (6)

Alpro : Quick sort
Alpro : Quick sortAlpro : Quick sort
Alpro : Quick sort
 
Pivot Sampling in Dual-Pivot Quicksort
Pivot Sampling in Dual-Pivot QuicksortPivot Sampling in Dual-Pivot Quicksort
Pivot Sampling in Dual-Pivot Quicksort
 
Quicksort: illustrated step-by-step walk through
Quicksort: illustrated step-by-step walk throughQuicksort: illustrated step-by-step walk through
Quicksort: illustrated step-by-step walk through
 
3.8 quicksort 04
3.8 quicksort 043.8 quicksort 04
3.8 quicksort 04
 
Binary search tree(bst)
Binary search tree(bst)Binary search tree(bst)
Binary search tree(bst)
 
Algorithm: Quick-Sort
Algorithm: Quick-SortAlgorithm: Quick-Sort
Algorithm: Quick-Sort
 

Similar to Quicksort

Quicksort algorithm
Quicksort algorithmQuicksort algorithm
Quicksort algorithmBapan Maity
 
Quick Sort- Marge Sort.ppt
Quick Sort- Marge Sort.pptQuick Sort- Marge Sort.ppt
Quick Sort- Marge Sort.pptAakritiGoyal7
 
quicksort.ppt
quicksort.pptquicksort.ppt
quicksort.pptGaganaP13
 
Merge sort and Quick sort
Merge sort and Quick sortMerge sort and Quick sort
Merge sort and Quick sortMaitree Patel
 
Unit 5 internal sorting &amp; files
Unit 5  internal sorting &amp; filesUnit 5  internal sorting &amp; files
Unit 5 internal sorting &amp; filesDrkhanchanaR
 
Array ADT(Abstract Data Type)|Data Structure
Array ADT(Abstract Data Type)|Data StructureArray ADT(Abstract Data Type)|Data Structure
Array ADT(Abstract Data Type)|Data StructureAkash Gaur
 
SQLBits Module 2 RStats Introduction to R and Statistics
SQLBits Module 2 RStats Introduction to R and StatisticsSQLBits Module 2 RStats Introduction to R and Statistics
SQLBits Module 2 RStats Introduction to R and StatisticsJen Stirrup
 
An Improved Frequent Itemset Generation Algorithm Based On Correspondence
An Improved Frequent Itemset Generation Algorithm Based On Correspondence An Improved Frequent Itemset Generation Algorithm Based On Correspondence
An Improved Frequent Itemset Generation Algorithm Based On Correspondence cscpconf
 

Similar to Quicksort (20)

Quicksort algorithm
Quicksort algorithmQuicksort algorithm
Quicksort algorithm
 
Quick Sort- Marge Sort.ppt
Quick Sort- Marge Sort.pptQuick Sort- Marge Sort.ppt
Quick Sort- Marge Sort.ppt
 
Quick & Merge Sort.ppt
Quick & Merge Sort.pptQuick & Merge Sort.ppt
Quick & Merge Sort.ppt
 
quicksort (1).ppt
quicksort (1).pptquicksort (1).ppt
quicksort (1).ppt
 
quicksort.ppt
quicksort.pptquicksort.ppt
quicksort.ppt
 
quicksort.ppt
quicksort.pptquicksort.ppt
quicksort.ppt
 
quicksort.ppt
quicksort.pptquicksort.ppt
quicksort.ppt
 
quick_sort.ppt
quick_sort.pptquick_sort.ppt
quick_sort.ppt
 
Quicksort
QuicksortQuicksort
Quicksort
 
Merge sort and Quick sort
Merge sort and Quick sortMerge sort and Quick sort
Merge sort and Quick sort
 
Unit 5 internal sorting &amp; files
Unit 5  internal sorting &amp; filesUnit 5  internal sorting &amp; files
Unit 5 internal sorting &amp; files
 
Sorting techniques
Sorting techniques Sorting techniques
Sorting techniques
 
Quick sort
Quick sortQuick sort
Quick sort
 
Arrays
ArraysArrays
Arrays
 
Array ADT(Abstract Data Type)|Data Structure
Array ADT(Abstract Data Type)|Data StructureArray ADT(Abstract Data Type)|Data Structure
Array ADT(Abstract Data Type)|Data Structure
 
Do You Have the Time
Do You Have the TimeDo You Have the Time
Do You Have the Time
 
Slides ads ia
Slides ads iaSlides ads ia
Slides ads ia
 
SQLBits Module 2 RStats Introduction to R and Statistics
SQLBits Module 2 RStats Introduction to R and StatisticsSQLBits Module 2 RStats Introduction to R and Statistics
SQLBits Module 2 RStats Introduction to R and Statistics
 
IA-advanced-R
IA-advanced-RIA-advanced-R
IA-advanced-R
 
An Improved Frequent Itemset Generation Algorithm Based On Correspondence
An Improved Frequent Itemset Generation Algorithm Based On Correspondence An Improved Frequent Itemset Generation Algorithm Based On Correspondence
An Improved Frequent Itemset Generation Algorithm Based On Correspondence
 

More from Rajendran

Element distinctness lower bounds
Element distinctness lower boundsElement distinctness lower bounds
Element distinctness lower boundsRajendran
 
Scheduling with Startup and Holding Costs
Scheduling with Startup and Holding CostsScheduling with Startup and Holding Costs
Scheduling with Startup and Holding CostsRajendran
 
Divide and conquer surfing lower bounds
Divide and conquer  surfing lower boundsDivide and conquer  surfing lower bounds
Divide and conquer surfing lower boundsRajendran
 
Red black tree
Red black treeRed black tree
Red black treeRajendran
 
Medians and order statistics
Medians and order statisticsMedians and order statistics
Medians and order statisticsRajendran
 
Proof master theorem
Proof master theoremProof master theorem
Proof master theoremRajendran
 
Recursion tree method
Recursion tree methodRecursion tree method
Recursion tree methodRajendran
 
Recurrence theorem
Recurrence theoremRecurrence theorem
Recurrence theoremRajendran
 
Master method
Master method Master method
Master method Rajendran
 
Master method theorem
Master method theoremMaster method theorem
Master method theoremRajendran
 
Master method theorem
Master method theoremMaster method theorem
Master method theoremRajendran
 
Greedy algorithms
Greedy algorithmsGreedy algorithms
Greedy algorithmsRajendran
 
Longest common subsequences in Algorithm Analysis
Longest common subsequences in Algorithm AnalysisLongest common subsequences in Algorithm Analysis
Longest common subsequences in Algorithm AnalysisRajendran
 
Dynamic programming in Algorithm Analysis
Dynamic programming in Algorithm AnalysisDynamic programming in Algorithm Analysis
Dynamic programming in Algorithm AnalysisRajendran
 
Average case Analysis of Quicksort
Average case Analysis of QuicksortAverage case Analysis of Quicksort
Average case Analysis of QuicksortRajendran
 
Np completeness
Np completenessNp completeness
Np completenessRajendran
 
computer languages
computer languagescomputer languages
computer languagesRajendran
 

More from Rajendran (20)

Element distinctness lower bounds
Element distinctness lower boundsElement distinctness lower bounds
Element distinctness lower bounds
 
Scheduling with Startup and Holding Costs
Scheduling with Startup and Holding CostsScheduling with Startup and Holding Costs
Scheduling with Startup and Holding Costs
 
Divide and conquer surfing lower bounds
Divide and conquer  surfing lower boundsDivide and conquer  surfing lower bounds
Divide and conquer surfing lower bounds
 
Red black tree
Red black treeRed black tree
Red black tree
 
Hash table
Hash tableHash table
Hash table
 
Medians and order statistics
Medians and order statisticsMedians and order statistics
Medians and order statistics
 
Proof master theorem
Proof master theoremProof master theorem
Proof master theorem
 
Recursion tree method
Recursion tree methodRecursion tree method
Recursion tree method
 
Recurrence theorem
Recurrence theoremRecurrence theorem
Recurrence theorem
 
Master method
Master method Master method
Master method
 
Master method theorem
Master method theoremMaster method theorem
Master method theorem
 
Hash tables
Hash tablesHash tables
Hash tables
 
Lower bound
Lower boundLower bound
Lower bound
 
Master method theorem
Master method theoremMaster method theorem
Master method theorem
 
Greedy algorithms
Greedy algorithmsGreedy algorithms
Greedy algorithms
 
Longest common subsequences in Algorithm Analysis
Longest common subsequences in Algorithm AnalysisLongest common subsequences in Algorithm Analysis
Longest common subsequences in Algorithm Analysis
 
Dynamic programming in Algorithm Analysis
Dynamic programming in Algorithm AnalysisDynamic programming in Algorithm Analysis
Dynamic programming in Algorithm Analysis
 
Average case Analysis of Quicksort
Average case Analysis of QuicksortAverage case Analysis of Quicksort
Average case Analysis of Quicksort
 
Np completeness
Np completenessNp completeness
Np completeness
 
computer languages
computer languagescomputer languages
computer languages
 

Recently uploaded

On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptxOn_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptxPooja Bhuva
 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfSherif Taha
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibitjbellavia9
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - Englishneillewis46
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...Nguyen Thanh Tu Collection
 
OSCM Unit 2_Operations Processes & Systems
OSCM Unit 2_Operations Processes & SystemsOSCM Unit 2_Operations Processes & Systems
OSCM Unit 2_Operations Processes & SystemsSandeep D Chaudhary
 
Philosophy of china and it's charactistics
Philosophy of china and it's charactisticsPhilosophy of china and it's charactistics
Philosophy of china and it's charactisticshameyhk98
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfNirmal Dwivedi
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxJisc
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...ZurliaSoop
 
21st_Century_Skills_Framework_Final_Presentation_2.pptx
21st_Century_Skills_Framework_Final_Presentation_2.pptx21st_Century_Skills_Framework_Final_Presentation_2.pptx
21st_Century_Skills_Framework_Final_Presentation_2.pptxJoelynRubio1
 
Interdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptxInterdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptxPooja Bhuva
 
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...Nguyen Thanh Tu Collection
 
How to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxHow to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxCeline George
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Jisc
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxEsquimalt MFRC
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxRamakrishna Reddy Bijjam
 
Tatlong Kwento ni Lola basyang-1.pdf arts
Tatlong Kwento ni Lola basyang-1.pdf artsTatlong Kwento ni Lola basyang-1.pdf arts
Tatlong Kwento ni Lola basyang-1.pdf artsNbelano25
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17Celine George
 
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Pooja Bhuva
 

Recently uploaded (20)

On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptxOn_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
On_Translating_a_Tamil_Poem_by_A_K_Ramanujan.pptx
 
Food safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdfFood safety_Challenges food safety laboratories_.pdf
Food safety_Challenges food safety laboratories_.pdf
 
Sociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning ExhibitSociology 101 Demonstration of Learning Exhibit
Sociology 101 Demonstration of Learning Exhibit
 
Graduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - EnglishGraduate Outcomes Presentation Slides - English
Graduate Outcomes Presentation Slides - English
 
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
TỔNG ÔN TẬP THI VÀO LỚP 10 MÔN TIẾNG ANH NĂM HỌC 2023 - 2024 CÓ ĐÁP ÁN (NGỮ Â...
 
OSCM Unit 2_Operations Processes & Systems
OSCM Unit 2_Operations Processes & SystemsOSCM Unit 2_Operations Processes & Systems
OSCM Unit 2_Operations Processes & Systems
 
Philosophy of china and it's charactistics
Philosophy of china and it's charactisticsPhilosophy of china and it's charactistics
Philosophy of china and it's charactistics
 
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdfUGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
UGC NET Paper 1 Mathematical Reasoning & Aptitude.pdf
 
Towards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptxTowards a code of practice for AI in AT.pptx
Towards a code of practice for AI in AT.pptx
 
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
Jual Obat Aborsi Hongkong ( Asli No.1 ) 085657271886 Obat Penggugur Kandungan...
 
21st_Century_Skills_Framework_Final_Presentation_2.pptx
21st_Century_Skills_Framework_Final_Presentation_2.pptx21st_Century_Skills_Framework_Final_Presentation_2.pptx
21st_Century_Skills_Framework_Final_Presentation_2.pptx
 
Interdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptxInterdisciplinary_Insights_Data_Collection_Methods.pptx
Interdisciplinary_Insights_Data_Collection_Methods.pptx
 
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
80 ĐỀ THI THỬ TUYỂN SINH TIẾNG ANH VÀO 10 SỞ GD – ĐT THÀNH PHỐ HỒ CHÍ MINH NĂ...
 
How to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptxHow to setup Pycharm environment for Odoo 17.pptx
How to setup Pycharm environment for Odoo 17.pptx
 
Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)Accessible Digital Futures project (20/03/2024)
Accessible Digital Futures project (20/03/2024)
 
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptxHMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
HMCS Max Bernays Pre-Deployment Brief (May 2024).pptx
 
Python Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docxPython Notes for mca i year students osmania university.docx
Python Notes for mca i year students osmania university.docx
 
Tatlong Kwento ni Lola basyang-1.pdf arts
Tatlong Kwento ni Lola basyang-1.pdf artsTatlong Kwento ni Lola basyang-1.pdf arts
Tatlong Kwento ni Lola basyang-1.pdf arts
 
How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17How to Create and Manage Wizard in Odoo 17
How to Create and Manage Wizard in Odoo 17
 
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
Beyond_Borders_Understanding_Anime_and_Manga_Fandom_A_Comprehensive_Audience_...
 

Quicksort

  • 1.
  • 2. Quicksort Algorithm Given an array of n elements (e.g., integers): If array only contains one element, return Else pick one element to use as pivot. Partition elements into two sub-arrays:  Elements less than or equal to pivot  Elements greater than pivot Quicksort two sub-arrays Return results
  • 3. Example We are given array of n integers to sort: 40 20 10 80 60 50 7 30 100
  • 4. Pick Pivot Element There are a number of ways to pick the pivot element. In this example, we will use the first element in the array: 40 20 10 80 60 50 7 30 100
  • 5. Partitioning Array Given a pivot, partition the elements of the array such that the resulting array consists of: 1. One sub-array that contains elements >= pivot 2. Another sub-array that contains elements < pivot The sub-arrays are stored in the original data array. Partitioning loops through, swapping elements below/above pivot.
  • 6. 40 20 10 80 60 50 7 30 100pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index
  • 7. 40 20 10 80 60 50 7 30 100pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index 1. While data[too_big_index] <= data[pivot] ++too_big_index
  • 8. 40 20 10 80 60 50 7 30 100pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index 1. While data[too_big_index] <= data[pivot] ++too_big_index
  • 9. 40 20 10 80 60 50 7 30 100pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index 1. While data[too_big_index] <= data[pivot] ++too_big_index
  • 10. 40 20 10 80 60 50 7 30 100pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index 1. While data[too_big_index] <= data[pivot] ++too_big_index 2. While data[too_small_index] > data[pivot] --too_small_index
  • 11. 40 20 10 80 60 50 7 30 100pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index 1. While data[too_big_index] <= data[pivot] ++too_big_index 2. While data[too_small_index] > data[pivot] --too_small_index
  • 12. 40 20 10 80 60 50 7 30 100pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index 1. While data[too_big_index] <= data[pivot] ++too_big_index 2. While data[too_small_index] > data[pivot] --too_small_index 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index]
  • 13. 40 20 10 30 60 50 7 80 100pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index 1. While data[too_big_index] <= data[pivot] ++too_big_index 2. While data[too_small_index] > data[pivot] --too_small_index 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index]
  • 14. 40 20 10 30 60 50 7 80 100pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index 1. While data[too_big_index] <= data[pivot] ++too_big_index 2. While data[too_small_index] > data[pivot] --too_small_index 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index] 4. While too_small_index > too_big_index, go to 1.
  • 15. 40 20 10 30 60 50 7 80 100pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index 1. While data[too_big_index] <= data[pivot] ++too_big_index 2. While data[too_small_index] > data[pivot] --too_small_index 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index] 4. While too_small_index > too_big_index, go to 1.
  • 16. 40 20 10 30 60 50 7 80 100pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index 1. While data[too_big_index] <= data[pivot] ++too_big_index 2. While data[too_small_index] > data[pivot] --too_small_index 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index] 4. While too_small_index > too_big_index, go to 1.
  • 17. 40 20 10 30 60 50 7 80 100pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index 1. While data[too_big_index] <= data[pivot] ++too_big_index 2. While data[too_small_index] > data[pivot] --too_small_index 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index] 4. While too_small_index > too_big_index, go to 1.
  • 18. 40 20 10 30 60 50 7 80 100pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index 1. While data[too_big_index] <= data[pivot] ++too_big_index 2. While data[too_small_index] > data[pivot] --too_small_index 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index] 4. While too_small_index > too_big_index, go to 1.
  • 19. 40 20 10 30 60 50 7 80 100pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index 1. While data[too_big_index] <= data[pivot] ++too_big_index 2. While data[too_small_index] > data[pivot] --too_small_index 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index] 4. While too_small_index > too_big_index, go to 1.
  • 20. 1. While data[too_big_index] <= data[pivot] ++too_big_index 2. While data[too_small_index] > data[pivot] --too_small_index 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index] 4. While too_small_index > too_big_index, go to 1. 40 20 10 30 7 50 60 80 100pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index
  • 21. 1. While data[too_big_index] <= data[pivot] ++too_big_index 2. While data[too_small_index] > data[pivot] --too_small_index 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index] 4. While too_small_index > too_big_index, go to 1. 40 20 10 30 7 50 60 80 100pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index
  • 22. 1. While data[too_big_index] <= data[pivot] ++too_big_index 2. While data[too_small_index] > data[pivot] --too_small_index 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index] 4. While too_small_index > too_big_index, go to 1. 40 20 10 30 7 50 60 80 100pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index
  • 23. 1. While data[too_big_index] <= data[pivot] ++too_big_index 2. While data[too_small_index] > data[pivot] --too_small_index 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index] 4. While too_small_index > too_big_index, go to 1. 40 20 10 30 7 50 60 80 100pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index
  • 24. 1. While data[too_big_index] <= data[pivot] ++too_big_index 2. While data[too_small_index] > data[pivot] --too_small_index 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index] 4. While too_small_index > too_big_index, go to 1. 40 20 10 30 7 50 60 80 100pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index
  • 25. 1. While data[too_big_index] <= data[pivot] ++too_big_index 2. While data[too_small_index] > data[pivot] --too_small_index 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index] 4. While too_small_index > too_big_index, go to 1. 40 20 10 30 7 50 60 80 100pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index
  • 26. 1. While data[too_big_index] <= data[pivot] ++too_big_index 2. While data[too_small_index] > data[pivot] --too_small_index 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index] 4. While too_small_index > too_big_index, go to 1. 40 20 10 30 7 50 60 80 100pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index
  • 27. 1. While data[too_big_index] <= data[pivot] ++too_big_index 2. While data[too_small_index] > data[pivot] --too_small_index 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index] 4. While too_small_index > too_big_index, go to 1. 40 20 10 30 7 50 60 80 100pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index
  • 28. 1. While data[too_big_index] <= data[pivot] ++too_big_index 2. While data[too_small_index] > data[pivot] --too_small_index 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index] 4. While too_small_index > too_big_index, go to 1. 40 20 10 30 7 50 60 80 100pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index
  • 29. 1. While data[too_big_index] <= data[pivot] ++too_big_index 2. While data[too_small_index] > data[pivot] --too_small_index 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index] 4. While too_small_index > too_big_index, go to 1. 5. Swap data[too_small_index] and data[pivot_index] 40 20 10 30 7 50 60 80 100pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index
  • 30. 1. While data[too_big_index] <= data[pivot] ++too_big_index 2. While data[too_small_index] > data[pivot] --too_small_index 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index] 4. While too_small_index > too_big_index, go to 1. 5. Swap data[too_small_index] and data[pivot_index] 7 20 10 30 40 50 60 80 100pivot_index = 4 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index
  • 31. 7 20 10 30 40 50 60 80 100 [0] [1] [2] [3] [4] [5] [6] [7] [8] <= data[pivot] > data[pivot]
  • 32. 7 20 10 30 40 50 60 80 100 [0] [1] [2] [3] [4] [5] [6] [7] [8] <= data[pivot] > data[pivot]
  • 33. Quicksort Analysis Assume that keys are random, uniformly distributed. What is best case running time?
  • 34. Quicksort Analysis  Assume that keys are random, uniformly distributed.  What is best case running time?  Recursion: 1. Partition splits array in two sub-arrays of size n/2 2. Quicksort each sub-array
  • 35. Quicksort Analysis  Assume that keys are random, uniformly distributed.  What is best case running time?  Recursion: 1. Partition splits array in two sub-arrays of size n/2 2. Quicksort each sub-array  Depth of recursion tree?
  • 36. Quicksort Analysis  Assume that keys are random, uniformly distributed.  What is best case running time?  Recursion: 1. Partition splits array in two sub-arrays of size n/2 2. Quicksort each sub-array  Depth of recursion tree? O(log2n)
  • 37. Quicksort Analysis  Assume that keys are random, uniformly distributed.  What is best case running time?  Recursion: 1. Partition splits array in two sub-arrays of size n/2 2. Quicksort each sub-array  Depth of recursion tree? O(log2n)  Number of accesses in partition?
  • 38. Quicksort Analysis  Assume that keys are random, uniformly distributed.  What is best case running time?  Recursion: 1. Partition splits array in two sub-arrays of size n/2 2. Quicksort each sub-array  Depth of recursion tree? O(log2n)  Number of accesses in partition? O(n)
  • 39. Quicksort Analysis  Assume that keys are random, uniformly distributed.  Best case running time: O(n log2n)
  • 40. Quicksort Analysis  Assume that keys are random, uniformly distributed.  Best case running time: O(n log2n)  Worst case running time?
  • 41. Quicksort: Worst Case Assume first element is chosen as pivot. Assume we get array that is already in order: 2 4 10 12 13 50 57 63 100pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index
  • 42. 1. While data[too_big_index] <= data[pivot] ++too_big_index 2. While data[too_small_index] > data[pivot] --too_small_index 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index] 4. While too_small_index > too_big_index, go to 1. 5. Swap data[too_small_index] and data[pivot_index] 2 4 10 12 13 50 57 63 100pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index
  • 43. 1. While data[too_big_index] <= data[pivot] ++too_big_index 2. While data[too_small_index] > data[pivot] --too_small_index 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index] 4. While too_small_index > too_big_index, go to 1. 5. Swap data[too_small_index] and data[pivot_index] 2 4 10 12 13 50 57 63 100pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index
  • 44. 1. While data[too_big_index] <= data[pivot] ++too_big_index 2. While data[too_small_index] > data[pivot] --too_small_index 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index] 4. While too_small_index > too_big_index, go to 1. 5. Swap data[too_small_index] and data[pivot_index] 2 4 10 12 13 50 57 63 100pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index
  • 45. 1. While data[too_big_index] <= data[pivot] ++too_big_index 2. While data[too_small_index] > data[pivot] --too_small_index 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index] 4. While too_small_index > too_big_index, go to 1. 5. Swap data[too_small_index] and data[pivot_index] 2 4 10 12 13 50 57 63 100pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index
  • 46. 1. While data[too_big_index] <= data[pivot] ++too_big_index 2. While data[too_small_index] > data[pivot] --too_small_index 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index] 4. While too_small_index > too_big_index, go to 1. 5. Swap data[too_small_index] and data[pivot_index] 2 4 10 12 13 50 57 63 100pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index
  • 47. 1. While data[too_big_index] <= data[pivot] ++too_big_index 2. While data[too_small_index] > data[pivot] --too_small_index 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index] 4. While too_small_index > too_big_index, go to 1. 5. Swap data[too_small_index] and data[pivot_index] 2 4 10 12 13 50 57 63 100pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] too_big_index too_small_index
  • 48. 1. While data[too_big_index] <= data[pivot] ++too_big_index 2. While data[too_small_index] > data[pivot] --too_small_index 3. If too_big_index < too_small_index swap data[too_big_index] and data[too_small_index] 4. While too_small_index > too_big_index, go to 1. 5. Swap data[too_small_index] and data[pivot_index] 2 4 10 12 13 50 57 63 100pivot_index = 0 [0] [1] [2] [3] [4] [5] [6] [7] [8] > data[pivot]<= data[pivot]
  • 49. Quicksort Analysis  Assume that keys are random, uniformly distributed.  Best case running time: O(n log2n)  Worst case running time?  Recursion: 1. Partition splits array in two sub-arrays: • one sub-array of size 0 • the other sub-array of size n-1 1. Quicksort each sub-array  Depth of recursion tree?
  • 50. Quicksort Analysis  Assume that keys are random, uniformly distributed.  Best case running time: O(n log2n)  Worst case running time?  Recursion: 1. Partition splits array in two sub-arrays: • one sub-array of size 0 • the other sub-array of size n-1 1. Quicksort each sub-array  Depth of recursion tree? O(n)
  • 51. Quicksort Analysis  Assume that keys are random, uniformly distributed.  Best case running time: O(n log2n)  Worst case running time?  Recursion: 1. Partition splits array in two sub-arrays: • one sub-array of size 0 • the other sub-array of size n-1 1. Quicksort each sub-array  Depth of recursion tree? O(n)  Number of accesses per partition?
  • 52. Quicksort Analysis  Assume that keys are random, uniformly distributed.  Best case running time: O(n log2n)  Worst case running time?  Recursion: 1. Partition splits array in two sub-arrays: • one sub-array of size 0 • the other sub-array of size n-1 1. Quicksort each sub-array  Depth of recursion tree? O(n)  Number of accesses per partition? O(n)
  • 53. Quicksort Analysis  Assume that keys are random, uniformly distributed.  Best case running time: O(n log2n)  Worst case running time: O(n2 )!!!
  • 54. Quicksort Analysis  Assume that keys are random, uniformly distributed.  Best case running time: O(n log2n)  Worst case running time: O(n2 )!!!  What can we do to avoid worst case?
  • 55. Improved Pivot Selection Pick median value of three elements from data array: data[0], data[n/2], and data[n-1]. Use this median value as pivot.
  • 56. Improving Performance of Quicksort Improved selection of pivot. For sub-arrays of size 3 or less, apply brute force search: Sub-array of size 1: trivial Sub-array of size 2:  if(data[first] > data[second]) swap them Sub-array of size 3: left as an exercise.