SlideShare a Scribd company logo
1 of 15
EJEMPLO:
Diseñar el estribo en voladizo cuya cajuela mide 65cm de
ancho y 40cm de alto, la r x n que trasmite la losa
del puente es de 400kg/m por concepto de carga
muerta y carga viva (s/c), sin incluir impacto. El
nivel de cimentación esta a 6.50m por debajo de la
rasante y las características del terreno son:
Ø = ángulo de fricción interna = 45º
Ws = 1650kg/m3
f’c = 175 kg/cm2
δt = 2 kg/cm2
f = 0.50 (material grueso coef. de fricción)
0.40 (para suelo arcilloso).
3.50
0.55
1.20 1.75
0.55
B
C
B
C
6.50
0.30
0.65 0.30
0.40
T = H/12 = 6.50/12 = 0.54 ≈ 55 cm
A = H/12 = 55 cm
B = H/2 ó 2H/3
6.50/2 = 3.25
Hacemos B = 3.50
B/3 = 1.17 ≈ 1.20
CARGAS:
- EMPUJE ACTIVO:
H’ = 0.61m = 1000/1650
Ea = 7079 kg.
F = 0.15R = 0.15 x 4000 = 600 kg.
YF = 6.50 – 0.40 + 0.025 = 6.125
C = 1 – Sen 45º = 0.171
1 + Sen 45º
Ea = cwh (h + 2h’)
2
Ea = 0.717 x 1650 x 650 ( 6.5 + 2 x 0.61)
2
y = h(h + 3h’) = 6.5(6.5 + 3 x 0.61) = 2.33 m.
3(h + 2h’) 3(6.5 + 2 x 0.61)
VERIFICACIÓN DE ARRANQUE:
MOMENTO FLECTOR EN EL ARRANQUE:
M = Ea y + F YF = 6018 x 2.15 + 600 x 5.575
YF = 5.95 – 0.40 + 0.025 = 5.575
MA = 16284 kg-m
W = S/C = 0.61, W = 1006.5
Eab = 0.171 x 1650 x 5.95 (5.95 + 2(0.61)) = 6018kg
2
Yb = 5.95(5.95 + 3 x 0.61) = 2.15
3(5.95 + 2 x 0.01)
0.55
0.40
S/C
T2
2.15 = y
0.55
Ea
T3
T1
W2
W1
3.50
1.20 1.75
0.55
B
C
B
C
5.95
0.30
0.65 0.30
F
0.65
se considera.
YF
CORTANTE EN EL ARRANQUE
V = Ea + F = 6018 + 600 = 6618 kg
- ESPESOR EN EL ARRANQUE
Rb
M
d = Flexión
fc = 0.45f’c = 780.75 kg/cm2
fs = 0.5 fy = 2100 kg/cm2
Es = 2.1 x 106
Ec = 15000 cf’c
J = 1 – R/3 = 1 – 0.273/3 = 0.909
R = (fc j k)/2 = 9.77, b = 100cm
cm
x
d 41
10077.9
1628400
==
ANCHO MÍNIMO EN ARRANQUE
d = 7cm = 41 cm + 7 = 48 cm.
= 48cm < 55cm OK!
n = 2.10 x 106
= Es = 10.5
15000√175 Ec
R = 1 = 0.273
1 + Fs .
n fc
POR CORTE
bd
v
=υ cfmax '3.0=υ se considera así:
v/bd = 0.3√f’c luego, d = v/(0.3b√f’c)
d = 6618/(0.3 x 100√175) = 16.7cm < 55 OK!
ESTABILIDAD:
Sección C - C’
a) Estribos sin puente y relleno S/C
VOLTEO
W1 = 0.50 x 0.40 x 2.4 = 0.288
W2 = 0.65 x 0.65 x 2.4 x 0.5 = 0.507
W3 = 5.55 x 0.30 x 2.4 = 3.996
W4 = 4.90 x 0.25 x 0.5 x 2.4 = 1.470
W5 = 3.50 x 0.55 x 2.40 = 4.620
T1 = 5.95 x 1.10 x 1650 = 10.799
T2 = 0.65 x 0.65 x 0.5 x 1.65 = 0.348
T3 = 4.90 x 0.45 x 1.65 = 2.235
S/C = 1.10 x 1006.5 = 1.107
28.390
0.55 + 5.95 - 0.25 = 6.30
0.55 + 5.45 - 0.40 = 0.65 Momento
W1 = 3.5 – 1.10 - 0.15 = 2.25 0.648
W2 = 1.20 + 0.55 + 0.65 / 3 = 1.467 0.997
W3 = 1.20 + 0.55 – 0.15 = 1.600 6.394
W4 = 1.20 + 2 x 0.25 / 3 = 1.367 2.009
W5 = 3.50 / 2 = 1.73 8.085
T1 = 3.50 – 0.55 = 2.95 31.857
T2 = 1.20 + 0.55 + 2 / 3 x 0.65 = 2.183 0.760
T3 = 3.50 + 1.10 – 0.65 / 2 = 2.075 10.904
S/C = 3.50 – 0.55 = 2.95 3.266
64.920
ESFUERZOS
σ = 0.81 ± 0.049
 = 64920/28390 = 2287
CSV = 64920 . = 4 > 2 OK!
6018(2.15 + 0.55)
CSD = 28390 x 0.5 = 2.36 > 2 OK!
6018
σ = 0.11 x 28390 ± 0.06 x 28390 x 3.5
350 3.502
S = 6018(2.15 + 0.55) = 0.572
28390
Xr = 2287 - 0.572 = 1.715
d = B/2 – Xr = 3.50/2 – 1.715 = 0.035m
dmax = B/6 = 0.583 > 0.035 luego OK!
σmax = 0.86 kg/cm2 < 2 OK!
σmin = 0.76 kg/cm2 < 2 OK!
b) Estribos con puente y relleno con S/C
F = 600kg YF = 5.575 + 0.55 = 6.125
R = 4000kg VR = 3.50 – 1.10 – 0.30 - 0.65/2 = 1.775
ΣFV = 28390 + 4000 = 32390kg
ΣMb = 64920 + 6000 x 1.775 – 600 x 6.125 = 68325
ΣFH = Ea +F = 6018 + 600 = 6618
CSV = 68325/(6618 x 3.01) = 3.43 > 2 OK!
ESFUERZOS
 = 68325/32390 = 2.11
S = 6618(3.01)/32390 = 0.62
Xr = r – s = 2.11 – 0.62 = 1.49
d = 3.5/2 – 1.49 = 0.26
dmax = B/6 = 0.583 > 0.26 OK!
δH = 6018(2.15 + 0.55)+ 600(6.125) = 3.01
6018 + 600
ESFUERZOS TRASMITIDOS
.
δmax = 1.34> 2 OK!
δmin = 0.52> 2 OK!
DISEÑO DE LA PANTALLA: (Cálculo del acero)
d = 55 – 7 = 48
Ø 5/8” (2cm2) = 1 Ø5/8” @ 11cm
Ø 3/4” (2.85cm2) = 1 Ø3/4” @ 16cm
CHEQUEO POR ADHERENCIA
E0 nec = V/(Mjd) = 6618/(15.97 x 0.909 x 48) = 9.50cm
E0 Mu = 9.5
Ø 3/4” = 5.98cm
Eo disponibilidad de 1m de c/muro:
(100/16 + 1)(5.98) = 41.86 > 9.5 OK!
δ = 0.01 x 32390 ± 0.06 x 32390 x 0.26 = 0.93 ± 0.41
3.50 3.502
As = Ms .
fs j d
As = 16284.00 = 17.77 cm2/metro de muro
2100 x 0.909 x 48
M = 2.3√f’c = 2.3√175 = 15.97
D ¾ x 2.54
LONGITUD DE DESARROLLO:
ACERO DE REPARTO
Acero repar. Vert.
= 0.0015 x 100 x 48 = 7.2 cm2 Ø5/8” @27 ó Ø 1/5” @ .
Acero repar. Horiz.
= 0.0025 x 100 x 48 = 12 cm2 Ø5/8” @17
Lsd = Fs D = 2100 x 1.587 = 52cm (anclaje en ciment.)
4u 4 x 15.97
s
S2
Ø 1/2" @ 17
Ø 5/8” @ 17
DISEÑO DE REPARTO:
CASO I
W = pr + pp + S/C
W = 1650 x 5.95 + 2400x 0.5 + 1000
W = 12017.50 kg/m2
σmin = 0.76
σmax - σmin = 0.10
a/1.75 = 0.10/3.50 ; a = 0.05
σa = 0.810
b/2.3 = 0.10/3.50 ; b = 0.066
σb = 0.826
CÁLCULO DEL MOMENTO EN EL INICIO DEL TALÓN (D)
1.20 0.55 1.75
2.05 1.545
a
σmax=0.86
C
D
l
E
B
A
W
σmin = 0.76
MD = W l2
– l2
(2σmin + σa = 1 l2
(w – 2(σmin + σa))
2 6 2 6
- CORTANTE A UNA DISTANCIA d/2
= (48 – 7)/2 = 0.804
σa = 0.76 + (0.1 x 1.545)/3.5 = 0.804
V = w l2
– (σa2
- σmin)l2
/2
= 12017.5 x 1.545 – 0.5 (7600 + 8040)1.545
= 18567.037 – 12081.9 = 6485.14 = 6485
CASO II
σmin = 0.520 kg/cm2 = 5200 kg/m/m de ancho
σmax = 1.340 kg/cm2 = 13400 kg/m/m de ancho
σa = 0.520 + 1.75 (1.34 – 0.52)/3.50 = 0.92510 kg/cm2
= 9210 kg/m por metro de ancho
- CORTANTE
V = 12017.5 X 1.5454 – 0.5(8820 + 5200) = 11557 kg-m
MD = 1 x l.752
(12017.5 – (2 x 7600 + 8100)) = 12455 kg-m
2 6
MD = 1 x l.752
(12017.5 – (2 x 5200 + 93100)) = 13397 kg-m
2 6
σa = 0.520 + 1.545(1.34 – 0.52) = 0.882
350
DISEÑO DEL ACERO DEL TALÓN
Utilizamos los valores más encontrados: (esfuerzos de
trabajo).
VERIFICACIÓN DEL PERALTE
cm
x
x
Rb
M
d 70.35
10077.9
10012455
===
Tomamos: d = 48 – 7 = 41 OK!
CÁLCULO DEL ACERO
Utilizamos dc = 10cm, d = 40
As = 16.31 cm2 <> Ø 5/8” 1.98cm2 1 Ø3/8” @ 11.2cm
CHEQUEO POR ADHERENCIA
LONGITUD DE DESARROLLO
Ld = fs D/4u = (2100 x 5/8 x 2.54)/(4 x 19.17) = 43.5 cm
ΣNEC = V con u = 2.3√f’c = 2.3√175 = 19.17
u j d D (5/8 x 2.54)
As = M = 12455 x 100 = 16.31 cm
fs j d 2100 x 0.909 x 40
ΣNEC = 11557 = 16.58 cm
19.17 x 0.909 x 40
Σdisp = ( 100 + 1 )π (1.59) = 49.57 cm >> 16.58 cm OK!
11.2
ARMADURA DE REPARTO
As min = 0.0015 x 48 x 100 = 7.2 cm2
As rep y temp = 0.0025 x 48 x 100 = 12cm2
0.0015 x 48 x 100 = 7.2 cm2
DISEÑO DE LA JUNTA
Cargas verticales: sólo pasó propio de base hacia abajo
y r x n del terreno hacia arriba, no se considera empuje
pasivo.
W = 0.55 x 2400 = 1320 kg/cm2
CASO A:
σmax = 0.860 kg/cm2
σb = 0.826 kg/cm2 (calculado en talón)
σmin = 0.760 kg/cm2
MOMENTO:
M = Wl2
/2 - l2
/6 (2σmax + σb)
= 1320 1.202
/2 - 1.202
/6 (2 x 8600 + 8260) = -5160.40
M = -5160.4
CORTANTE:
d/2 = 40/2 = 20 l’ = 1.20 – 0.20 = 1.00
σb’ = 0.760 + (0.86 – 0.76)(3.5 – 1)/3.5 = 0.831
V = 1320 x 1.0 – 0.5(8600 + 8310) x 1.00 =
V = -7135.0 kg (hacia arriba)
CASO B:
σmax = 1.345 kg/cm2
σb = 0.52 + 1.0 x (1.34 – 0.52)/3.5 = 0.754 kg/cm2
σmin = 0.52 kg/cm2
MOMENTO:
M = w l2
/2 - l2
/6 (2σmax + σb)
M = 1320 x 1.202
/2 – 1.202
/6(2 x 13400 + 7540)
= -7291.20 (hacia arriba)
CORTANTE:
σb’ = 0.52 + (1.34 – 0.52)(3.5 – 1)/3.50 = 1.106
V = 1320 x 1 – 0.5(13400 + 7540)
= -9150 kg (hacia arriba)
VERIFICACIÓN DEL PERALTE:
cm
x
x
d 403.27
100977
1007291
<== (adoptado)
CHEQUEO POR CORTE TALÓN
d = V/(0.32b√f’c) = 11557/(0.3 x 100√175) = 29.1
= 29.41 < 40 OK!
CHEQUEO POR CORTE TALÓN
d = 9150/(0.32 x 100√175) = 23.05 < 40cm OK!
REFUERZO PRINCIPAL:
As = M/fs j d = (7291 x 1000)/(2100 x 0.909 x 40)
= 9.55 cm2 <> Ø 1/2" = 1 Ø 1/2" @ 0.13
Asmin = 0.0015 x 48 x 100 = 7.2cm2 < 9.55 OK!
Asrepart = 0.00025 x 48 x 100 = 12.0cm2 <> Ø1/2” @0.10
CHEQUEO POR ADHERENCIA:
u = 2.3√175/1.27 = 23.96
∑nec = 11557/(23.96 x 0.909 x 40) = 13.26
Edisp = (100/10 + 1)π x 1.27 = 43.9 > 13.26 OK!
LONGITUD DE DESARROLLO:
Ld = fs d/4u = (2100 x 1.27)/(4 x 23.96) = 27.83cm
Se tomará Ld = 35cm.

More Related Content

What's hot

49214733 ejemplo-muros-de-gravedad
49214733 ejemplo-muros-de-gravedad49214733 ejemplo-muros-de-gravedad
49214733 ejemplo-muros-de-gravedad
Alex Valverde
 
Diseño muro de contencion ca
Diseño muro de contencion caDiseño muro de contencion ca
Diseño muro de contencion ca
edd Apellidos
 

What's hot (19)

Ejericio analisis
Ejericio analisisEjericio analisis
Ejericio analisis
 
49214733 ejemplo-muros-de-gravedad
49214733 ejemplo-muros-de-gravedad49214733 ejemplo-muros-de-gravedad
49214733 ejemplo-muros-de-gravedad
 
New grid design
New grid designNew grid design
New grid design
 
Impact of jet
Impact of jetImpact of jet
Impact of jet
 
concreto
concretoconcreto
concreto
 
CE 320 Steel Structures Design Sessional slides
CE 320 Steel Structures Design Sessional slidesCE 320 Steel Structures Design Sessional slides
CE 320 Steel Structures Design Sessional slides
 
Diseño muro de contencion ca
Diseño muro de contencion caDiseño muro de contencion ca
Diseño muro de contencion ca
 
P 2.3 2.4
P 2.3 2.4P 2.3 2.4
P 2.3 2.4
 
91751123 solucionario-capitulo-13-paul-e-tippens
91751123 solucionario-capitulo-13-paul-e-tippens91751123 solucionario-capitulo-13-paul-e-tippens
91751123 solucionario-capitulo-13-paul-e-tippens
 
MF 10 Tuberías en paralelo y ramificadas
MF 10 Tuberías en paralelo y ramificadasMF 10 Tuberías en paralelo y ramificadas
MF 10 Tuberías en paralelo y ramificadas
 
Trigonometry a unit circle approach 10th edition sullivan solutions manual
Trigonometry a unit circle approach 10th edition sullivan solutions manualTrigonometry a unit circle approach 10th edition sullivan solutions manual
Trigonometry a unit circle approach 10th edition sullivan solutions manual
 
Design of staircase_practical_example
Design of staircase_practical_exampleDesign of staircase_practical_example
Design of staircase_practical_example
 
Design of staircase ppt
Design of staircase ppt Design of staircase ppt
Design of staircase ppt
 
Roof Truss Design (By Hamza Waheed UET Lahore )
Roof Truss Design (By Hamza Waheed UET Lahore )Roof Truss Design (By Hamza Waheed UET Lahore )
Roof Truss Design (By Hamza Waheed UET Lahore )
 
Solucionario p2 conc. avanzado
Solucionario p2 conc. avanzadoSolucionario p2 conc. avanzado
Solucionario p2 conc. avanzado
 
Capítulo 16 embreagens
Capítulo 16   embreagensCapítulo 16   embreagens
Capítulo 16 embreagens
 
Chapter 03 MECHANICS OF MATERIAL
Chapter 03 MECHANICS OF MATERIALChapter 03 MECHANICS OF MATERIAL
Chapter 03 MECHANICS OF MATERIAL
 
Tacheometry
TacheometryTacheometry
Tacheometry
 
Solution manual for mechanics of materials 10th edition hibbeler sample
Solution manual for mechanics of materials 10th edition hibbeler  sampleSolution manual for mechanics of materials 10th edition hibbeler  sample
Solution manual for mechanics of materials 10th edition hibbeler sample
 

Similar to Muro contension raul1

Shallow and Deep Founation Design Calucations
Shallow and Deep Founation Design CalucationsShallow and Deep Founation Design Calucations
Shallow and Deep Founation Design Calucations
Tyler Edgington
 
Diseno y-calculo-de-puentes
Diseno y-calculo-de-puentesDiseno y-calculo-de-puentes
Diseno y-calculo-de-puentes
carlos
 
Punim fizika ndertimore
Punim fizika ndertimorePunim fizika ndertimore
Punim fizika ndertimore
Vedat Ramadani
 

Similar to Muro contension raul1 (20)

Diseño de Escalera
Diseño de EscaleraDiseño de Escalera
Diseño de Escalera
 
Structural building by engineer abdikani farah ahmed(enggalaydh)
Structural building by engineer abdikani farah ahmed(enggalaydh)Structural building by engineer abdikani farah ahmed(enggalaydh)
Structural building by engineer abdikani farah ahmed(enggalaydh)
 
Shallow and Deep Founation Design Calucations
Shallow and Deep Founation Design CalucationsShallow and Deep Founation Design Calucations
Shallow and Deep Founation Design Calucations
 
Diseno y-calculo-de-puentes
Diseno y-calculo-de-puentesDiseno y-calculo-de-puentes
Diseno y-calculo-de-puentes
 
Examples on total consolidation
Examples on total  consolidationExamples on total  consolidation
Examples on total consolidation
 
Design and analysis of school building
Design and analysis of school buildingDesign and analysis of school building
Design and analysis of school building
 
Calculation template
Calculation templateCalculation template
Calculation template
 
Possible solution struct_hub_design assessment
Possible solution struct_hub_design assessmentPossible solution struct_hub_design assessment
Possible solution struct_hub_design assessment
 
Term project "Design of Slab Formwork"
Term project "Design of Slab Formwork"Term project "Design of Slab Formwork"
Term project "Design of Slab Formwork"
 
Calculo de acero en vigas ok
Calculo de acero en vigas okCalculo de acero en vigas ok
Calculo de acero en vigas ok
 
Notas de calculo
Notas de calculoNotas de calculo
Notas de calculo
 
problemas resueltos
problemas resueltosproblemas resueltos
problemas resueltos
 
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed SolucionarioMecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
Mecánica de Fluidos_Merle C. Potter, David C. Wiggert_3ed Solucionario
 
design of water section concrete structures
design of water section concrete structuresdesign of water section concrete structures
design of water section concrete structures
 
Punim fizika ndertimore
Punim fizika ndertimorePunim fizika ndertimore
Punim fizika ndertimore
 
Resistencia de los materiales (ejercicios- equilibrio estático, diagrama de c...
Resistencia de los materiales (ejercicios- equilibrio estático, diagrama de c...Resistencia de los materiales (ejercicios- equilibrio estático, diagrama de c...
Resistencia de los materiales (ejercicios- equilibrio estático, diagrama de c...
 
Sachpazis_ANCHORED PILED RETAINING WALL to EC2
Sachpazis_ANCHORED PILED RETAINING WALL to EC2Sachpazis_ANCHORED PILED RETAINING WALL to EC2
Sachpazis_ANCHORED PILED RETAINING WALL to EC2
 
Diseño de vigas
Diseño de vigasDiseño de vigas
Diseño de vigas
 
Mechanics Of Fluids 4th Edition Potter Solutions Manual
Mechanics Of Fluids 4th Edition Potter Solutions ManualMechanics Of Fluids 4th Edition Potter Solutions Manual
Mechanics Of Fluids 4th Edition Potter Solutions Manual
 
2 compression
2  compression2  compression
2 compression
 

Recently uploaded

Digital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptxDigital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptx
pritamlangde
 
DeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakesDeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakes
MayuraD1
 
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
AldoGarca30
 
Integrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixIntegrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - Neometrix
Neometrix_Engineering_Pvt_Ltd
 

Recently uploaded (20)

Computer Networks Basics of Network Devices
Computer Networks  Basics of Network DevicesComputer Networks  Basics of Network Devices
Computer Networks Basics of Network Devices
 
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
Navigating Complexity: The Role of Trusted Partners and VIAS3D in Dassault Sy...
 
Double Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torqueDouble Revolving field theory-how the rotor develops torque
Double Revolving field theory-how the rotor develops torque
 
fitting shop and tools used in fitting shop .ppt
fitting shop and tools used in fitting shop .pptfitting shop and tools used in fitting shop .ppt
fitting shop and tools used in fitting shop .ppt
 
Linux Systems Programming: Inter Process Communication (IPC) using Pipes
Linux Systems Programming: Inter Process Communication (IPC) using PipesLinux Systems Programming: Inter Process Communication (IPC) using Pipes
Linux Systems Programming: Inter Process Communication (IPC) using Pipes
 
Online electricity billing project report..pdf
Online electricity billing project report..pdfOnline electricity billing project report..pdf
Online electricity billing project report..pdf
 
Digital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptxDigital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptx
 
Thermal Engineering Unit - I & II . ppt
Thermal Engineering  Unit - I & II . pptThermal Engineering  Unit - I & II . ppt
Thermal Engineering Unit - I & II . ppt
 
AIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech studentsAIRCANVAS[1].pdf mini project for btech students
AIRCANVAS[1].pdf mini project for btech students
 
DeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakesDeepFakes presentation : brief idea of DeepFakes
DeepFakes presentation : brief idea of DeepFakes
 
Theory of Time 2024 (Universal Theory for Everything)
Theory of Time 2024 (Universal Theory for Everything)Theory of Time 2024 (Universal Theory for Everything)
Theory of Time 2024 (Universal Theory for Everything)
 
A Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna MunicipalityA Study of Urban Area Plan for Pabna Municipality
A Study of Urban Area Plan for Pabna Municipality
 
Employee leave management system project.
Employee leave management system project.Employee leave management system project.
Employee leave management system project.
 
DC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equationDC MACHINE-Motoring and generation, Armature circuit equation
DC MACHINE-Motoring and generation, Armature circuit equation
 
💚Trustworthy Call Girls Pune Call Girls Service Just Call 🍑👄6378878445 🍑👄 Top...
💚Trustworthy Call Girls Pune Call Girls Service Just Call 🍑👄6378878445 🍑👄 Top...💚Trustworthy Call Girls Pune Call Girls Service Just Call 🍑👄6378878445 🍑👄 Top...
💚Trustworthy Call Girls Pune Call Girls Service Just Call 🍑👄6378878445 🍑👄 Top...
 
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
 
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
1_Introduction + EAM Vocabulary + how to navigate in EAM.pdf
 
457503602-5-Gas-Well-Testing-and-Analysis-pptx.pptx
457503602-5-Gas-Well-Testing-and-Analysis-pptx.pptx457503602-5-Gas-Well-Testing-and-Analysis-pptx.pptx
457503602-5-Gas-Well-Testing-and-Analysis-pptx.pptx
 
PE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and propertiesPE 459 LECTURE 2- natural gas basic concepts and properties
PE 459 LECTURE 2- natural gas basic concepts and properties
 
Integrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - NeometrixIntegrated Test Rig For HTFE-25 - Neometrix
Integrated Test Rig For HTFE-25 - Neometrix
 

Muro contension raul1

  • 1. EJEMPLO: Diseñar el estribo en voladizo cuya cajuela mide 65cm de ancho y 40cm de alto, la r x n que trasmite la losa del puente es de 400kg/m por concepto de carga muerta y carga viva (s/c), sin incluir impacto. El nivel de cimentación esta a 6.50m por debajo de la rasante y las características del terreno son: Ø = ángulo de fricción interna = 45º Ws = 1650kg/m3 f’c = 175 kg/cm2 δt = 2 kg/cm2 f = 0.50 (material grueso coef. de fricción) 0.40 (para suelo arcilloso). 3.50 0.55 1.20 1.75 0.55 B C B C 6.50 0.30 0.65 0.30 0.40
  • 2. T = H/12 = 6.50/12 = 0.54 ≈ 55 cm A = H/12 = 55 cm B = H/2 ó 2H/3 6.50/2 = 3.25 Hacemos B = 3.50 B/3 = 1.17 ≈ 1.20 CARGAS: - EMPUJE ACTIVO: H’ = 0.61m = 1000/1650 Ea = 7079 kg. F = 0.15R = 0.15 x 4000 = 600 kg. YF = 6.50 – 0.40 + 0.025 = 6.125 C = 1 – Sen 45º = 0.171 1 + Sen 45º Ea = cwh (h + 2h’) 2 Ea = 0.717 x 1650 x 650 ( 6.5 + 2 x 0.61) 2 y = h(h + 3h’) = 6.5(6.5 + 3 x 0.61) = 2.33 m. 3(h + 2h’) 3(6.5 + 2 x 0.61)
  • 3. VERIFICACIÓN DE ARRANQUE: MOMENTO FLECTOR EN EL ARRANQUE: M = Ea y + F YF = 6018 x 2.15 + 600 x 5.575 YF = 5.95 – 0.40 + 0.025 = 5.575 MA = 16284 kg-m W = S/C = 0.61, W = 1006.5 Eab = 0.171 x 1650 x 5.95 (5.95 + 2(0.61)) = 6018kg 2 Yb = 5.95(5.95 + 3 x 0.61) = 2.15 3(5.95 + 2 x 0.01) 0.55 0.40 S/C T2 2.15 = y 0.55 Ea T3 T1 W2 W1 3.50 1.20 1.75 0.55 B C B C 5.95 0.30 0.65 0.30 F 0.65 se considera. YF
  • 4. CORTANTE EN EL ARRANQUE V = Ea + F = 6018 + 600 = 6618 kg - ESPESOR EN EL ARRANQUE Rb M d = Flexión fc = 0.45f’c = 780.75 kg/cm2 fs = 0.5 fy = 2100 kg/cm2 Es = 2.1 x 106 Ec = 15000 cf’c J = 1 – R/3 = 1 – 0.273/3 = 0.909 R = (fc j k)/2 = 9.77, b = 100cm cm x d 41 10077.9 1628400 == ANCHO MÍNIMO EN ARRANQUE d = 7cm = 41 cm + 7 = 48 cm. = 48cm < 55cm OK! n = 2.10 x 106 = Es = 10.5 15000√175 Ec R = 1 = 0.273 1 + Fs . n fc
  • 5. POR CORTE bd v =υ cfmax '3.0=υ se considera así: v/bd = 0.3√f’c luego, d = v/(0.3b√f’c) d = 6618/(0.3 x 100√175) = 16.7cm < 55 OK! ESTABILIDAD: Sección C - C’ a) Estribos sin puente y relleno S/C VOLTEO W1 = 0.50 x 0.40 x 2.4 = 0.288 W2 = 0.65 x 0.65 x 2.4 x 0.5 = 0.507 W3 = 5.55 x 0.30 x 2.4 = 3.996 W4 = 4.90 x 0.25 x 0.5 x 2.4 = 1.470 W5 = 3.50 x 0.55 x 2.40 = 4.620 T1 = 5.95 x 1.10 x 1650 = 10.799 T2 = 0.65 x 0.65 x 0.5 x 1.65 = 0.348 T3 = 4.90 x 0.45 x 1.65 = 2.235 S/C = 1.10 x 1006.5 = 1.107 28.390
  • 6. 0.55 + 5.95 - 0.25 = 6.30 0.55 + 5.45 - 0.40 = 0.65 Momento W1 = 3.5 – 1.10 - 0.15 = 2.25 0.648 W2 = 1.20 + 0.55 + 0.65 / 3 = 1.467 0.997 W3 = 1.20 + 0.55 – 0.15 = 1.600 6.394 W4 = 1.20 + 2 x 0.25 / 3 = 1.367 2.009 W5 = 3.50 / 2 = 1.73 8.085 T1 = 3.50 – 0.55 = 2.95 31.857 T2 = 1.20 + 0.55 + 2 / 3 x 0.65 = 2.183 0.760 T3 = 3.50 + 1.10 – 0.65 / 2 = 2.075 10.904 S/C = 3.50 – 0.55 = 2.95 3.266 64.920 ESFUERZOS σ = 0.81 ± 0.049  = 64920/28390 = 2287 CSV = 64920 . = 4 > 2 OK! 6018(2.15 + 0.55) CSD = 28390 x 0.5 = 2.36 > 2 OK! 6018 σ = 0.11 x 28390 ± 0.06 x 28390 x 3.5 350 3.502 S = 6018(2.15 + 0.55) = 0.572 28390
  • 7. Xr = 2287 - 0.572 = 1.715 d = B/2 – Xr = 3.50/2 – 1.715 = 0.035m dmax = B/6 = 0.583 > 0.035 luego OK! σmax = 0.86 kg/cm2 < 2 OK! σmin = 0.76 kg/cm2 < 2 OK! b) Estribos con puente y relleno con S/C F = 600kg YF = 5.575 + 0.55 = 6.125 R = 4000kg VR = 3.50 – 1.10 – 0.30 - 0.65/2 = 1.775 ΣFV = 28390 + 4000 = 32390kg ΣMb = 64920 + 6000 x 1.775 – 600 x 6.125 = 68325 ΣFH = Ea +F = 6018 + 600 = 6618 CSV = 68325/(6618 x 3.01) = 3.43 > 2 OK! ESFUERZOS  = 68325/32390 = 2.11 S = 6618(3.01)/32390 = 0.62 Xr = r – s = 2.11 – 0.62 = 1.49 d = 3.5/2 – 1.49 = 0.26 dmax = B/6 = 0.583 > 0.26 OK! δH = 6018(2.15 + 0.55)+ 600(6.125) = 3.01 6018 + 600
  • 8. ESFUERZOS TRASMITIDOS . δmax = 1.34> 2 OK! δmin = 0.52> 2 OK! DISEÑO DE LA PANTALLA: (Cálculo del acero) d = 55 – 7 = 48 Ø 5/8” (2cm2) = 1 Ø5/8” @ 11cm Ø 3/4” (2.85cm2) = 1 Ø3/4” @ 16cm CHEQUEO POR ADHERENCIA E0 nec = V/(Mjd) = 6618/(15.97 x 0.909 x 48) = 9.50cm E0 Mu = 9.5 Ø 3/4” = 5.98cm Eo disponibilidad de 1m de c/muro: (100/16 + 1)(5.98) = 41.86 > 9.5 OK! δ = 0.01 x 32390 ± 0.06 x 32390 x 0.26 = 0.93 ± 0.41 3.50 3.502 As = Ms . fs j d As = 16284.00 = 17.77 cm2/metro de muro 2100 x 0.909 x 48 M = 2.3√f’c = 2.3√175 = 15.97 D ¾ x 2.54
  • 9. LONGITUD DE DESARROLLO: ACERO DE REPARTO Acero repar. Vert. = 0.0015 x 100 x 48 = 7.2 cm2 Ø5/8” @27 ó Ø 1/5” @ . Acero repar. Horiz. = 0.0025 x 100 x 48 = 12 cm2 Ø5/8” @17 Lsd = Fs D = 2100 x 1.587 = 52cm (anclaje en ciment.) 4u 4 x 15.97 s S2 Ø 1/2" @ 17 Ø 5/8” @ 17
  • 10. DISEÑO DE REPARTO: CASO I W = pr + pp + S/C W = 1650 x 5.95 + 2400x 0.5 + 1000 W = 12017.50 kg/m2 σmin = 0.76 σmax - σmin = 0.10 a/1.75 = 0.10/3.50 ; a = 0.05 σa = 0.810 b/2.3 = 0.10/3.50 ; b = 0.066 σb = 0.826 CÁLCULO DEL MOMENTO EN EL INICIO DEL TALÓN (D) 1.20 0.55 1.75 2.05 1.545 a σmax=0.86 C D l E B A W σmin = 0.76 MD = W l2 – l2 (2σmin + σa = 1 l2 (w – 2(σmin + σa)) 2 6 2 6
  • 11. - CORTANTE A UNA DISTANCIA d/2 = (48 – 7)/2 = 0.804 σa = 0.76 + (0.1 x 1.545)/3.5 = 0.804 V = w l2 – (σa2 - σmin)l2 /2 = 12017.5 x 1.545 – 0.5 (7600 + 8040)1.545 = 18567.037 – 12081.9 = 6485.14 = 6485 CASO II σmin = 0.520 kg/cm2 = 5200 kg/m/m de ancho σmax = 1.340 kg/cm2 = 13400 kg/m/m de ancho σa = 0.520 + 1.75 (1.34 – 0.52)/3.50 = 0.92510 kg/cm2 = 9210 kg/m por metro de ancho - CORTANTE V = 12017.5 X 1.5454 – 0.5(8820 + 5200) = 11557 kg-m MD = 1 x l.752 (12017.5 – (2 x 7600 + 8100)) = 12455 kg-m 2 6 MD = 1 x l.752 (12017.5 – (2 x 5200 + 93100)) = 13397 kg-m 2 6 σa = 0.520 + 1.545(1.34 – 0.52) = 0.882 350
  • 12. DISEÑO DEL ACERO DEL TALÓN Utilizamos los valores más encontrados: (esfuerzos de trabajo). VERIFICACIÓN DEL PERALTE cm x x Rb M d 70.35 10077.9 10012455 === Tomamos: d = 48 – 7 = 41 OK! CÁLCULO DEL ACERO Utilizamos dc = 10cm, d = 40 As = 16.31 cm2 <> Ø 5/8” 1.98cm2 1 Ø3/8” @ 11.2cm CHEQUEO POR ADHERENCIA LONGITUD DE DESARROLLO Ld = fs D/4u = (2100 x 5/8 x 2.54)/(4 x 19.17) = 43.5 cm ΣNEC = V con u = 2.3√f’c = 2.3√175 = 19.17 u j d D (5/8 x 2.54) As = M = 12455 x 100 = 16.31 cm fs j d 2100 x 0.909 x 40 ΣNEC = 11557 = 16.58 cm 19.17 x 0.909 x 40 Σdisp = ( 100 + 1 )π (1.59) = 49.57 cm >> 16.58 cm OK! 11.2
  • 13. ARMADURA DE REPARTO As min = 0.0015 x 48 x 100 = 7.2 cm2 As rep y temp = 0.0025 x 48 x 100 = 12cm2 0.0015 x 48 x 100 = 7.2 cm2 DISEÑO DE LA JUNTA Cargas verticales: sólo pasó propio de base hacia abajo y r x n del terreno hacia arriba, no se considera empuje pasivo. W = 0.55 x 2400 = 1320 kg/cm2 CASO A: σmax = 0.860 kg/cm2 σb = 0.826 kg/cm2 (calculado en talón) σmin = 0.760 kg/cm2 MOMENTO: M = Wl2 /2 - l2 /6 (2σmax + σb) = 1320 1.202 /2 - 1.202 /6 (2 x 8600 + 8260) = -5160.40 M = -5160.4 CORTANTE: d/2 = 40/2 = 20 l’ = 1.20 – 0.20 = 1.00 σb’ = 0.760 + (0.86 – 0.76)(3.5 – 1)/3.5 = 0.831
  • 14. V = 1320 x 1.0 – 0.5(8600 + 8310) x 1.00 = V = -7135.0 kg (hacia arriba) CASO B: σmax = 1.345 kg/cm2 σb = 0.52 + 1.0 x (1.34 – 0.52)/3.5 = 0.754 kg/cm2 σmin = 0.52 kg/cm2 MOMENTO: M = w l2 /2 - l2 /6 (2σmax + σb) M = 1320 x 1.202 /2 – 1.202 /6(2 x 13400 + 7540) = -7291.20 (hacia arriba) CORTANTE: σb’ = 0.52 + (1.34 – 0.52)(3.5 – 1)/3.50 = 1.106 V = 1320 x 1 – 0.5(13400 + 7540) = -9150 kg (hacia arriba) VERIFICACIÓN DEL PERALTE: cm x x d 403.27 100977 1007291 <== (adoptado) CHEQUEO POR CORTE TALÓN d = V/(0.32b√f’c) = 11557/(0.3 x 100√175) = 29.1
  • 15. = 29.41 < 40 OK! CHEQUEO POR CORTE TALÓN d = 9150/(0.32 x 100√175) = 23.05 < 40cm OK! REFUERZO PRINCIPAL: As = M/fs j d = (7291 x 1000)/(2100 x 0.909 x 40) = 9.55 cm2 <> Ø 1/2" = 1 Ø 1/2" @ 0.13 Asmin = 0.0015 x 48 x 100 = 7.2cm2 < 9.55 OK! Asrepart = 0.00025 x 48 x 100 = 12.0cm2 <> Ø1/2” @0.10 CHEQUEO POR ADHERENCIA: u = 2.3√175/1.27 = 23.96 ∑nec = 11557/(23.96 x 0.909 x 40) = 13.26 Edisp = (100/10 + 1)π x 1.27 = 43.9 > 13.26 OK! LONGITUD DE DESARROLLO: Ld = fs d/4u = (2100 x 1.27)/(4 x 23.96) = 27.83cm Se tomará Ld = 35cm.