SlideShare a Scribd company logo
1 of 35
Download to read offline
StructuresCentre.xyz
1
POSSIBLE SOLUTION TO STRUCT-HUB: DESIGN ASSESSMENT
II
Omotoriogun Victor Femi
Copyright ยฉStructures centre, 2021. All rights reserved
18th February 2021
structurescentre@gmail.com
1.0 DESIGN SOLUTION
Preliminary sizing of the structural element has been carried using the guidance provided
in: Preliminary sizing of structural elements as well as the guidance provided in the
publication by the Concrete Centre- Economic Concrete Frame Elements.
StructuresCentre.xyz
2
3.1 Actions
3.1 1 Roof
Permanent Actions = 1.5๐‘˜๐‘/๐‘š
Variable Actions = 0.6๐‘˜๐‘/๐‘š
3.1.2 Floors
Permanent Actions:
i. Self weight of slab = 0.20 ร— 25 = 5๐‘˜๐‘/๐‘š (๐ถ๐‘™๐‘Ž๐‘ ๐‘ ๐‘Ÿ๐‘œ๐‘œ๐‘š)
= 0.15 ร— 25 = 3.75๐‘˜๐‘/๐‘š (๐‘Š๐‘Ž๐‘™๐‘˜๐‘ค๐‘Ž๐‘ฆ)
ii. Finishes & Services = 1.5๐‘˜๐‘/๐‘š
iii. Partition Allowances = 1.0๐‘˜๐‘/๐‘š
Total Permanent Actions = ๐‘” = 7.5๐‘˜๐‘/๐‘š & 6.25๐‘˜๐‘/๐‘š
Variable Actions:
i. Floor Imposed Loading (Classroom & Walkways) = ๐‘ž = 3.0๐‘˜๐‘/๐‘š
Design Value of Actions:
By inspection the permanent actions are less than 4.5 times the variable actions, therefore equation
6.13b of BS EN 1990 will give the most unfavourable results.
Roof
Design Actions= 1.35๐œ‰๐‘” + 1.5๐‘ž =(1.35 ร— 0.925 ร— 1.5) + (1.5 ร— 0.6) = 2.77๐‘˜๐‘๐‘š
Design Permanent Load 1.35๐œ‰๐‘” = 1.35 ร— 0.925 ร— 1.5 = 1.87๐‘˜๐‘/๐‘š
Classroom Panels
Design Actions= 1.35๐œ‰๐‘” + 1.5๐‘ž =(1.35 ร— 0.925 ร— 7.5) + (1.5 ร— 3) = 13.87๐‘˜๐‘๐‘š
Design Permanent Load 1.35๐œ‰๐‘” = 1.35 ร— 0.925 ร— 7.5 = 9.37๐‘˜๐‘/๐‘š
Walkway Panels
Design Actions= 1.35๐œ‰๐‘” + 1.5๐‘ž =(1.35 ร— 0.925 ร— 6.25) + (1.5 ร— 3) = 12.30๐‘˜๐‘๐‘š
StructuresCentre.xyz
3
Design Permanent Load 1.35๐œ‰๐‘” = 1.35 ร— 0.925 ร— 6.25 = 7.80๐‘˜๐‘/๐‘š
3.2 Slab Panels
3.2.1 Classroom Panels
๐ฟ
๐ฟ
=
9000
7500
= 1.2 (๐‘‡๐‘ค๐‘œ ๐‘ค๐‘Ž๐‘ฆ ๐‘†๐‘™๐‘Ž๐‘ โˆ’ ๐‘‡๐‘ค๐‘œ ๐ด๐‘‘๐‘—๐‘Ž๐‘๐‘’๐‘›๐‘ก ๐‘†๐‘–๐‘‘๐‘’๐‘  ๐ท๐‘–๐‘ ๐‘๐‘œ๐‘›๐‘ก๐‘–๐‘›๐‘œ๐‘ข๐‘ )
Using coefficients from table for two ways slabs with two adjacent sides discontinuous.
Short span coefficients = โˆ’0.064 & 0.047
Long span coefficients = โˆ’0.045 & 0.034
3.2.1.1 Flexural Design
Negative Moment at Support (Short Span)
๐‘€ = โˆ’0.064๐‘› , ๐‘™ = โˆ’0.064 ร— 13.87 ร— 7.5 = โˆ’49.93๐‘˜๐‘. ๐‘š/๐‘š
Assuming cover to reinforcement of 20mm, 12mm bars
d = h โˆ’ c + links +
โˆ…
= 200 โˆ’ 20 + = 174mm; b = 1000mm
k =
M
bd f
=
49.93 ร— 10
1000 ร— 174 ร— 20
= 0.0825
z = d 0.5 + โˆš0.25 โˆ’ 0.882k โ‰ค 0.95d
=d 0.5 + 0.25 โˆ’ 0.882(0.0825) โ‰ค 0.95d
=0.92d = 0.92 ร— 174 = 160.08mm
A =
M
0.87f z
=
49.93 ร— 10
0.87 ร— 410 ร— 160.08
= 874.42mm /m
Try Y12mm bars @ 125mm Centres (As, prov = 904mm2
)
Positive Moment at Midspan (Short Span)
๐‘€ = 0.047๐‘› , ๐‘™ = 0.047 ร— 13.87 ร— 7.5 = 36.67๐‘˜๐‘. ๐‘š/๐‘š
Assuming cover to reinforcement of 20mm, 12mm bars
StructuresCentre.xyz
4
d = h โˆ’ c + links +
โˆ…
= 200 โˆ’ 20 + = 174mm; b = 1000mm
k =
M
bd f
=
36.67 ร— 10
1000 ร— 174 ร— 20
= 0.0606
z = d 0.5 + โˆš0.25 โˆ’ 0.882k โ‰ค 0.95d
=d 0.5 + 0.25 โˆ’ 0.882(0.0606) โ‰ค 0.95d
=0.94d = 0.94 ร— 174 = 163.56mm
A =
M
0.87f z
=
36.67 ร— 10
0.87 ร— 410 ร— 163.56
= 628.54mm /m
Try Y12mm bars @ 125mm Centres (As, prov = 904mm2
)
Negative Moment at Support (Long Span)
๐‘€ = โˆ’0.045๐‘› , ๐‘™ = โˆ’0.045 ร— 13.87 ร— 7.5 = โˆ’35.11๐‘˜๐‘. ๐‘š/๐‘š
Assuming cover to reinforcement of 20mm, 12mm bars
d = h โˆ’ c + links +
โˆ…
+ โˆ… = 200 โˆ’ 20 + + 12 = 162mm; b = 1000mm
k =
M
bd f
=
35.11 ร— 10
1000 ร— 162 ร— 20
= 0.067
z = d 0.5 + โˆš0.25 โˆ’ 0.882k โ‰ค 0.95d
=d 0.5 + 0.25 โˆ’ 0.882(0.067) โ‰ค 0.95d
=0.94d = 0.94 ร— 162 = 152.28mm
A =
M
0.87f z
=
35.11 ร— 10
0.87 ร— 410 ร— 152.28
= 646.38mm /m
Try Y12mm bars @ 150mm Centres (As, prov = 753mm2
)
Positive Moment at Midspan (Long Span)
๐‘€ = 0.034๐‘› , ๐‘™ = 0.034 ร— 13.87 ร— 7.5 = 26.53๐‘˜๐‘. ๐‘š/๐‘š
Assuming cover to reinforcement of 20mm, 12mm bars
d = h โˆ’ c + links +
โˆ…
+ โˆ… = 200 โˆ’ 20 + + 12 = 162mm; b = 1000mm
StructuresCentre.xyz
5
k =
M
bd f
=
26.53 ร— 10
1000 ร— 162 ร— 20
= 0.051
z = d 0.5 + โˆš0.25 โˆ’ 0.882k โ‰ค 0.95d
=d 0.5 + 0.25 โˆ’ 0.882(0.051) โ‰ค 0.95d
=0.95d = 0.95 ร— 162 = 153.9mm
A =
M
0.87f z
=
26.53 ร— 10
0.87 ร— 410 ร— 153.9
= 483.28mm /m
Try Y12mm bars @ 150mm Centres (As, prov = 753mm2
/m)
3.2.1.2 Deflection Verification
Deflection verification can be carried using either of the two alternative method provided in
section 7.4 of Eurocode 2 (Part 1). The conservative span-effective method and the rigorous
calculation approach which involve using theoretical expression to estimate the actual
deflection of the slab. The span-effective method is used here, the rigorous method is not
suitable for hand calculations, spreadsheets or finite element softwareโ€™s are required for fast
calculations.
Basic Requirement: โ‰ฅ
= ๐‘ ร— ๐พ ร— ๐น1 ร— ๐น2 ร— ๐น3
๐œŒ =
๐ด ,
๐ด
=
๐ด ,
๐‘๐‘‘
=
628.54
(1000 ร— 174)
= 0.36%
ฯ = 10 f = 10 ร— โˆš20 = 0.45% since ฯ < ฯ
N = 11 +
1.5 f ฯ
ฯ
+ 3.2 f
ฯ
ฯ
โˆ’ 1 = 11 +
1.5โˆš20 ร— 0.45
0.36
+ 3.2โˆš20
0.45
0.36
โˆ’ 1
= 21.20
F1 = 1.0
K = 1.3 (end spans)
StructuresCentre.xyz
6
F2 =
7.0
l
=
7.0
7.5
= 0.93
F3 =
310
ฯƒ
โ‰ค 1.5
ฯƒ =
f
ฮณ
g + ฯ†q
n
A ,
A ,
โˆ™
1
ฮด
=
410
1.15
ร—
7.5 + 0.6(3)
13.87
ร—
628.54
904
= 166.21Mpa
F3 =
310
166.21
= 1.87 > 1.5
L
d
= 21.20 ร— 1.3 ร— 1.0 ร— 0.93 ร— 1.50 = 38.45
L
d
=
span
effective depth
=
7500
174
= 43.10
Since actual span-effective depth ratio is greater than the limiting span-effective depth ratio. It
shows that we might have a deflection problem. Hence, the options available includes, increasing
the slab thickness, the concrete class or even the steel bars grade. However, readers are reminded
that, the span/effective depth approach is only a fast and conservative method of verifying
deflection. In this case the rigorous calculation method was used and the slab found to perform
satisfactory with respect to deflection.
3.2.1.3 Detailing Checks.
The minimum area of steel required in panel:
A , = 0.26
f
f
๐‘ d โ‰ฅ 0.0013bd
f = 0.30f = 0.3 ร— 20 = 2.21Mpa
A , = 0.26 ร—
2.21
410
ร— 1000 ร— 174 โ‰ฅ 0.0013 ร— 1000 ร— 174
= 243.85mm . By observation it is not critical anywhere in slab. Hence adopt all steel
bars.
3.2.2 Walkway Panels
The walkways panel are one-way slabs which can be idealized as propped cantilevers.
StructuresCentre.xyz
7
Moment in Spans
๐‘€ =
๐‘› , ๐‘™
10
=
12.30 ร— 2.25
10
= 6.23๐‘˜๐‘. ๐‘š/๐‘š
Since moment is relatively low. Provide Y12 @ 200mm Centres (As, prov = 565mm2
/m)
3.3 Concrete Beams
3.3.1 Beam C-C (300x750)
3.3.1.1 Actions on Beam
Permanent Actions:
Span 1
a. Equivalent uniformly distributed load transferred from slab to beam
= 2 ร—
๐‘› ๐‘™
6
3 โˆ’
๐‘™
๐‘™
= 2 ร—
7.5 ร— 7.5
6
3 โˆ’
7.5
9.0
= 43.31kN/m
b. self-weight of beam = (0.75 โˆ’ 0.2) ร— 0.3 ร— 25 = 4.125kN/m
c. Walls = (3.75 โˆ’ 0.75) ร— 3.5 = 10.5kN/m
Permanent Actions G = 43.31 + 4.125 + 10.5 = 57.94kN/m
Span 2
a. Equivalent uniformly distributed load transferred from slab to beam = 0kN/m
b. self-weight of beam = (0.45 โˆ’ 0.15) ร— 0.3 ร— 25 = 2.25kN/m
Permanent Actions G = 2.25kN/m
Variable Actions:
Span 1
a. Equivalent uniformly distributed load transferred from slab to beam
= 2 ร—
๐‘› ๐‘™
6
3 โˆ’
๐‘™
๐‘™
= 2 ร—
3.0 ร— 7.5
6
3 โˆ’
7.5
9.0
= 17.32kN/m
Variable Actions Q = 17.32kN/m
Design Value of Actions on Beam
StructuresCentre.xyz
8
By inspection the permanent actions are less than 4.5 times the variable actions, therefore
equation 6.13b of BS EN 1990 will give the most unfavourable results.
Span 1:
Design Load = 1.35๐œ‰๐บ + 1.5๐‘„ = (1.35 ร— 0.925 ร— 57.94) + (1.5 ร— 17.32) = ๐Ÿ—๐Ÿ–. ๐Ÿ‘๐’Œ๐‘ต/๐’Ž
Design Permanent Load 1.35๐œ‰๐บ = 1.35 ร— 0.925 ร— 57.94 = ๐Ÿ•๐Ÿ. ๐Ÿ’๐’Œ๐‘ต/๐’Ž
Span 2:
Design Load = 1.35๐œ‰๐บ + 1.5๐‘„ = (1.35 ร— 0.925 ร— 2.25) + (1.5 ร— 0) = ๐Ÿ‘. ๐Ÿ–๐ŸŽ๐’Œ๐‘ต/๐’Ž
Design Permanent Load 1.35๐œ‰๐บ = 1.35 ร— 0.925 ร— 2.25 = ๐Ÿ‘. ๐Ÿ–๐ŸŽ๐’Œ๐‘ต/๐’Ž
3.3.1.2 Analysis of Beam
Approximate methods of analysis could be used, this requires, the use of simple coefficients
reflecting the approximate value of the internal forces within the structural element.
However, an analysis of the subframe will be carried out here, with the basic aim of obtaining
the loads & moment transferred to the column as well as the internal forces on the beam.
Only the shear and bending moment diagrams are presented here. The reader is expected to
already have a basic knowledge on analysis of subframes. However, guidance can be obtained
from: How to Analyse Element in Frames.
The load cases considered are:
๏‚ท All spans loaded with the maximum design loads
๏‚ท Alternate spans loaded with the maximum design load while the other spans are loaded
with the design permanent actions
StructuresCentre.xyz
9
Figure 1: Subframe C-C
Figure 2: Bending Moment Envelope
Figure 3: Shear Force Envelope
StructuresCentre.xyz
10
3.3.1.3 Flexural Design
End Support (3-2)
M = 200.6kN. m
Assuming cover to reinforcement of 25mm, 25mm tensile bars, 16mm compression bars & 8mm
links
d = c + links +
โˆ…
2
= 25 + 10 +
16
2
= 43๐‘š๐‘š
d = h โˆ’ c + links +
โˆ…
= 450 โˆ’ 25 + 10 + = 402.5mm; b = 300mm
k =
M
bd f
=
200.6 ร— 10
300 ร— 402.5 ร— 20
= 0.021 > 0.168 (Section is doubly reinforced)
๐ด =
(๐‘˜ โˆ’ ๐‘˜ )๐‘“ ๐‘๐‘‘
0.87๐‘“ (๐‘‘ โˆ’ ๐‘‘ )
=
(0.21 โˆ’ 0.168) ร— 20 ร— 300 ร— 404.5
0.87 ร— 410 ร— (402.5 โˆ’ 43)
= 321.54๐‘š๐‘š
Try 3Y16mm bars Bottom (As, prov = 602mm2
).
z = d 0.5 + โˆš0.25 โˆ’ 0.882k โ‰ค 0.95d
=d 0.5 + 0.25 โˆ’ 0.882(0.21) โ‰ค 0.95d
=0.75d = 0.75 ร— 402.5 = 301.88mm
A =
๐‘˜๐‘“ ๐‘๐‘‘
0.87f z
+ ๐ด =
0.168 ร— 20 ร— 300 ร— 402.5
0.87 ร— 410 ร— 301.88
+ 321.54 = 1838.08mm
Try 4Y25mm bars Top (As, prov = 1962mm2
).
Interior Support (2-1)
M = 531.4kN. m
Assuming cover to reinforcement of 25mm, 25mm tensile bars, 16mm compression bars & 8mm
links
d = c + links +
โˆ…
2
= 25 + 10 +
16
2
= 43๐‘š๐‘š
d = h โˆ’ c + links +
โˆ…
= 750 โˆ’ 25 + 10 + = 702.5mm; b = 300mm
k =
M
bd f
=
531.4 ร— 10
300 ร— 702.5 ร— 20
= 0.018 > 0.168 (Section is doubly reinforced)
StructuresCentre.xyz
11
๐ด =
(๐‘˜ โˆ’ ๐‘˜ )๐‘“ ๐‘๐‘‘
0.87๐‘“ (๐‘‘ โˆ’ ๐‘‘ )
=
(0.18 โˆ’ 0.168) ร— 20 ร— 300 ร— 702.5
0.87 ร— 410 ร— (702.5 โˆ’ 43)
= 151.05๐‘š๐‘š
Try 3Y16mm bars Bottom (As, prov = 602mm2
) .
z = d 0.5 + โˆš0.25 โˆ’ 0.882k โ‰ค 0.95d
=d 0.5 + 0.25 โˆ’ 0.882(0.18) โ‰ค 0.95d
=0.80d = 0.80 ร— 702.5 = 562mm
A =
๐‘˜๐‘“ ๐‘๐‘‘
0.87f z
+ ๐ด =
0.168 ร— 20 ร— 300 ร— 702.5
0.87 ร— 410 ร— 562
+ 151.05 = 2632.55mm
Try 4Y25mm + 4Y20mm bars Top (As, prov = 3218mm2
). To be spread across the effective width.
b = b + b , + b , โ‰ค b
b , = 0.1l = 0.1 ร— 0.15(l + l ) = 0.1 ร— 0.15(2250 + 7500) = 146.25mm
b = 300 + 146.25 + 146.25 = 592.5mm
Therefore, this reinforcement will be spread across a width of 592.5mm.
Span (2-1)
M = 524.2kN. m
Assuming cover to reinforcement of 25mm, two layers of 25mm tensile bars, 16mm compression
bars & 8mm links
d = c + links +
โˆ…
2
= 25 + 10 +
16
2
= 43๐‘š๐‘š
d = h โˆ’ c + links +
โˆ…
= 750 โˆ’ 25 + 10 + = 677.5mm;
b = b = b + b , + b , โ‰ค b
b , = b , = 0.2b + 0.1๐‘™ โ‰ค 0.2๐‘™
๐‘ =
7500 โˆ’ 150 โˆ’ 150
2
= 3600๐‘š๐‘š
๐‘™ = 0.85๐‘™ = 0.85 ร— 9000 = 7650๐‘š๐‘š
b , = b , = (0.2 ร— 3600) + (0.1 ร— 7650) โ‰ค (0.2 ร— 7650) = 1485๐‘š๐‘š
b = 300 + 1485 + 1485 = 3270mm โ‰ค 3600mm
k =
M
bd f
=
524.2 ร— 10
3270 ร— 677.5 ร— 20
= 0.017
StructuresCentre.xyz
12
z = d 0.5 + โˆš0.25 โˆ’ 0.882k โ‰ค 0.95d
=d 0.5 + 0.25 โˆ’ 0.882(0.017) โ‰ค 0.95d
=0.95d = 0.95 ร— 677.5 = 643.63mm
We have to verify the position of the neutral axis:
x = 2.5(d โˆ’ z) = 2.5(677.5 โˆ’ 643.63) = 84.68mm
Therefore x < h = 84.68 < 200 (neutral axis is within the flange)
Hence, we can design as a rectangular section.
A =
M
0.87f z
=
524.2 ร— 10
0.87 ร— 410 ร— 643.63
= 2283.27mm
Try 5Y25mm bars Bottom in two layers (As, prov = 2452.5mm2
).
End Support (1-2)
M = 412.6kN. m
Assuming cover to reinforcement of 25mm, 25mm tensile bars, 16mm compression bars & 8mm
links
d = c + links +
โˆ…
2
= 25 + 10 +
16
2
= 43๐‘š๐‘š
d = h โˆ’ c + links +
โˆ…
= 750 โˆ’ 25 + 10 + = 702.5mm; b = 300mm
k =
M
bd f
=
412.6 ร— 10
300 ร— 702.5 ร— 20
= 0.14 < 0.168 (Section is singly reinforced)
z = d 0.5 + โˆš0.25 โˆ’ 0.882k โ‰ค 0.95d
=d 0.5 + 0.25 โˆ’ 0.882(0.14) โ‰ค 0.95d
=0.86d = 0.86 ร— 702.5 = 604.15mm
A =
M
0.87f z
=
412.6 ร— 10
0.87 ร— 410 ร— 604.15
= 1914.6mm
Try 3Y25mm +3Y20mm bars Top (As, prov = 2413mm2
). To be spread across the effective width.
3.3.1.4 Shear Design
By inspection, the critical section for shear occurs at the interior support 2, hence can be used to
conservatively size the shear reinforcement for the whole beam.
StructuresCentre.xyz
13
๐‘‰ = (455.6 โˆ’ 0.6775 ร— 98.3) = 389.0๐‘˜๐‘
๐‘‰ , =
0.18
๐›พ
๐‘˜(100๐œŒ ๐‘“ ) ๐‘ ๐‘‘ โ‰ฅ 0.035๐‘˜ ๐‘“ ๐‘ ๐‘‘
๐‘˜ = 1 +
200
677.5
= 1 +
200
677.5
= 1.54 < 2
๐ด = 2453๐‘š๐‘š
๐‘ = 300๐‘š๐‘š
๐œŒ =
๐ด
๐‘ ๐‘‘
=
2453
300 ร— 677.5
= 0.012
๐‘‰ , =
0.18
1.5
ร— 1.54 ร— (100 ร— 0.012 ร— 20) โˆ™ 300 ร— 677.5
โ‰ฅ 0.035 ร— 1.54 ร— โˆš20 ร— 300 ร— 677.5 = 108.34kN
Since ๐‘‰ > ๐‘‰ , (389.0๐‘˜๐‘ > 108.34๐‘˜๐‘) therefore shear reinforcement is required.
๐œƒ = 0.5๐‘ ๐‘–๐‘›
5.56๐‘‰
๐‘ ๐‘‘(1 โˆ’
๐‘“
250
)๐‘“
= 0.5๐‘ ๐‘–๐‘›
5.56 ร— 389.0 ร— 10
300 ร— 677.5 1 โˆ’
20
250
20
= 17.66ยฐ
cot ๐œƒ = cot 17.66 = 3.14 > 2.5 Hence take cot ๐œƒ = 2.5
โ‰ฅ where z = 0.9d = 0.9 ร— 677.5 = 609.75mm
A
S
โ‰ฅ
389.0 ร— 10
609.75 ร— 2.5 ร— 410
= 0.62
max spacing = 0.75d = 0.75 ร— 677.5 = 508.13mm
๐ด ,
๐‘†
=
0.08 ๐‘“ ๐‘
๐‘“
=
0.08 ร— โˆš20 ร— 300
410
= 0.26
Use Y10 @ 200mm centres (0.78).
3.3.1.5 Deflection Verification
Deflection seems not to be critical in this beam, however for the purpose of illustration, the 9.0m
span will be verified using the span-effective depth ratios.
StructuresCentre.xyz
14
= ๐‘ ร— ๐พ ร— ๐น1 ร— ๐น2 ร— ๐น3
๐œŒ =
๐ด ,
๐ด
=
๐ด ,
๐‘ ๐‘‘ + (๐‘ โˆ’ ๐‘ )โ„Ž
=
2283.27
(300 ร— 677.5) + (3270 โˆ’ 300)200
= 0.29%
ฯ = 10 f = 10 ร— โˆš20 = 0.45% since ฯ < ฯ
N = 11 +
1.5 f ฯ
ฯ
+ 3.2 f
ฯ
ฯ
โˆ’ 1 = 11 +
1.5โˆš20 ร— 0.45
0.29
+ 3.2โˆš30
0.45
0.29
โˆ’ 1
= 29.81
F1 = 0.82
K = 1.3 (end spans)
F2 =
7.5
๐‘™
=
7.5
9.0
= 0.83
F3 =
310
ฯƒ
โ‰ค 1.5
ฯƒ =
f
ฮณ
g + ฯ†q
n
A ,
A ,
โˆ™
1
ฮด
=
410
1.15
ร—
57.94 + 0.6(17.32)
98.3
ร—
2283.27
2453
= 230.7Mpa
F3 =
310
230.7
= 1.34
L
d
= 29.81 ร— 1.3 ร— 0.82 ร— 0.83 ร— 1.34 = 35.34
L
d
=
span
effective depth
=
9000
677.5
= 13.28
Since the limiting span-effective depth ratio is greater than the actual span-effective depth ratio. It
therefore follows that deflection has been satisfied in the end spans.
3.3.1.6 Detailing Checks
Minimum Area of Steel
A , = 0.26
f
f
๐‘ d โ‰ฅ 0.0013bd
f = 0.30f = 0.3 ร— 20 = 2.21Mpa
StructuresCentre.xyz
15
Hogging at Supports
A , = 0.26 ร—
2.21
410
ร— 300 ร— 702.5 โ‰ฅ 0.0013 ร— 300 ร— 702.5
= 295.4mm . By observation it is not critical anywhere at the supports.
Sagging in Spans
A , = 0.26 ร—
2.21
410
ร— 300 ร— 677.5 โ‰ฅ 0.0013 ร— 300 ร— 677.5
= 284.99mm . By observation it is not critical anywhere in the spans. Hence adopt all
attempted bars.
3.3.2 Beam 2-2 (225x750)
3.3.2.1 Actions on Beam
Permanent Actions:
Span 1 & 2
a. Equivalent uniformly distributed load transferred from slab to beam
=
๐‘› , ๐‘™ ,
3
+
๐‘› , ๐‘™ ,
2
=
(7.5 ร— 7.5)
3
+
(6.25 ร— 2.25)
2
= 25.8kN/m
b. self-weight of beam = (0.75 โˆ’ 0.2) ร— 0.225 ร— 25 = 3.1kN/m
c. Walls = (3.75 โˆ’ 0.75) ร— 3.5 = 10.5kN/m
Permanent Actions G = 25.8 + 3.1 + 10.5 = 39.4kN/m
Variable Actions:
Span 1 & 2
a. Equivalent uniformly distributed load transferred from slab to beam
=
๐‘› , ๐‘™ ,
3
+
๐‘› , ๐‘™ ,
2
=
(3.0 ร— 7.5)
3
+
(3.0 ร— 2.25)
2
= 10.88kN/m
Variable Actions Q = 10.88kN/m
Design Value of Actions on Beam
By inspection the permanent actions are less than 4.5 times the variable actions, therefore
equation 6.13b of BS EN 1990 will give the most unfavourable results.
StructuresCentre.xyz
16
Span 1 & 2:
Design Load = 1.35๐œ‰๐บ + 1.5๐‘„ = (1.35 ร— 0.925 ร— 39.4) + (1.5 ร— 10.88) = ๐Ÿ”๐Ÿ“. ๐Ÿ“๐Ÿ๐’Œ๐‘ต/๐’Ž
Design Permanent Load 1.35๐œ‰๐บ = 1.35 ร— 0.925 ร— 39.4 = ๐Ÿ’๐Ÿ—. ๐Ÿ๐ŸŽ๐’Œ๐‘ต/๐’Ž
3.3.2.2 Analysis of Beam
Coefficients for beam analysis can be used to determine the internal forces in this beam, since
the spans are equal and uniformly loaded. However, in-order to determine the column
moments, analysis of the entire subframe 2-2 will be carried out
The load cases considered are:
๏‚ท All spans loaded with the maximum design loads
๏‚ท Alternate spans loaded with the maximum design load while the other spans are loaded
with the design permanent actions
Figure 4: Subframe 2-2
StructuresCentre.xyz
17
Figure 5: Bending Moment Envelope
Figure 6: Shear Force Envelope
3.3.2.3 Flexural Design
End Support (A & D)
M = 172.5kN. m
Assuming cover to reinforcement of 25mm, 20mm tensile bars, 16mm compression bars & 8mm
links
d = c + links +
โˆ…
2
= 25 + 10 +
16
2
= 43๐‘š๐‘š
d = h โˆ’ c + links +
โˆ…
= 750 โˆ’ 25 + 10 + = 705mm; b = 225mm
StructuresCentre.xyz
18
k =
M
bd f
=
172.5 ร— 10
225 ร— 705 ร— 20
= 0.078 < 0.168 (Section is singly reinforced)
z = d 0.5 + โˆš0.25 โˆ’ 0.882k โ‰ค 0.95d
=d 0.5 + 0.25 โˆ’ 0.882(0.078) โ‰ค 0.95d
=0.93d = 0.93 ร— 705 = 655.7mm
A =
M
0.87f z
=
172.5 ร— 10
0.87 ร— 410 ร— 655.7
= 737.53mm
Try 4Y16mm bars Top (As, prov = 1608mm2
).
Span (2-1)
M = 206.0kN. m
Assuming cover to reinforcement of 25mm, 20mm tensile bars, 16mm compression bars & 8mm
links
d = c + links +
โˆ…
2
= 25 + 10 +
16
2
= 43๐‘š๐‘š
d = h โˆ’ c + links +
โˆ…
= 750 โˆ’ 25 + 10 + = 705mm;
b = b = b + b , + b , โ‰ค b
b , = 0.2๐‘ + 0.1๐‘™ , โ‰ค 0.2๐‘™ ,
๐‘ =
9000 โˆ’ 112.5 โˆ’ 112.5
2
= 4387.5๐‘š๐‘š
๐‘™ , = 0.85๐‘™ = 0.85 ร— 7500 = 6375๐‘š๐‘š
b , = (0.2 ร— 4387.5) + (0.1 ร— 6375) โ‰ค (0.2 ร— 6375) = 1275๐‘š๐‘š
b , = 0.2๐‘ + 0.1๐‘™ , โ‰ค 0.2๐‘™ ,
๐‘ =
2250 โˆ’ 112.5 โˆ’ 112.5
2
= 1012.5๐‘š๐‘š
๐‘™ , = 0.85๐‘™ = 0.85 ร— 7500 = 6375๐‘š๐‘š
b , = (0.2 ร— 1012.5) + (0.1 ร— 6375) โ‰ค (0.2 ร— 6375) = 840๐‘š๐‘š
b = 225 + 1275 + 840 = 2340mm โ‰ค 4387.5mm
StructuresCentre.xyz
19
k =
M
bd f
=
206 ร— 10
2340 ร— 705 ร— 20
= 0.009
z = d 0.5 + โˆš0.25 โˆ’ 0.882k โ‰ค 0.95d
=d 0.5 + 0.25 โˆ’ 0.882(0.009) โ‰ค 0.95d
=0.95d = 0.95 ร— 705 = 669.75mm
We have to verify the position of the neutral axis:
x = 2.5(d โˆ’ z) = 2.5(705 โˆ’ 669.75) = 88.13mm
Therefore x < h = 88.13 < 200 (neutral axis is within the flange)
Hence, we can design as a rectangular section.
A =
M
0.87f z
=
206 ร— 10
0.87 ร— 410 ร— 669.75
= 862.3mm
Try 3Y20mm bars Bottom in two layers (As, prov = 942mm2
).
Interior Support (C)
M = 373.1kN. m
Assuming cover to reinforcement of 25mm, two layers of 20mm tensile bars, 16mm compression
bars & 8mm links
d = c + links +
โˆ…
2
= 25 + 10 +
16
2
= 43๐‘š๐‘š
d = h โˆ’ c + links +
โˆ…
= 750 โˆ’ 25 + 10 + = 705mm; b = 225mm
k =
M
bd f
=
373.1 ร— 10
225 ร— 685 ร— 20
= 0.167 < 0.168 (Section is singly reinforced)
z = d 0.5 + โˆš0.25 โˆ’ 0.882k โ‰ค 0.95d
=d 0.5 + 0.25 โˆ’ 0.882(0.167) โ‰ค 0.95d
=0.82d = 0.82 ร— 705 = 578.1mm
A =
M
0.87f z
=
373.1 ร— 10
0.87 ร— 410 ร— 578.1
= 1809.3mm
Try 6Y20mm bars Top (As, prov = 1884mm2
) Spread across effective width of the beam.
StructuresCentre.xyz
20
3.3.2.4 Shear Design
By inspection, the critical section for shear occurs at the interior support C, hence can be used to
conservatively size the shear reinforcement for the whole beam.
๐‘‰ = (273.5 โˆ’ 0.705 ร— 65.52) = 227.3๐‘˜๐‘
๐‘‰ , =
0.18
๐›พ
๐‘˜(100๐œŒ ๐‘“ ) ๐‘ ๐‘‘ โ‰ฅ 0.035๐‘˜ ๐‘“ ๐‘ ๐‘‘
๐‘˜ = 1 +
200
705
= 1 +
200
705
= 1.53 < 2
๐ด = 942๐‘š๐‘š
๐‘ = 225๐‘š๐‘š
๐œŒ =
๐ด
๐‘ ๐‘‘
=
942
225 ร— 705
= 0.0059
๐‘‰ , =
0.18
1.5
ร— 1.53 ร— (100 ร— 0.0059 ร— 20) โˆ™ 225 ร— 705
โ‰ฅ 0.035 ร— 1.53 ร— โˆš20 ร— 225 ร— 705 = 66.3kN
Since ๐‘‰ > ๐‘‰ , (389.0๐‘˜๐‘ > 66.3๐‘˜๐‘) therefore shear reinforcement is required.
๐œƒ = 0.5๐‘ ๐‘–๐‘›
5.56๐‘‰
๐‘ ๐‘‘(1 โˆ’
๐‘“
250
)๐‘“
= 0.5๐‘ ๐‘–๐‘›
5.56 ร— 227.3 ร— 10
225 ร— 705 1 โˆ’
20
250
20
= 12.8ยฐ
cot ๐œƒ = cot 12.8 = 4.40 > 2.5 Hence take cot ๐œƒ = 2.5
โ‰ฅ where z = 0.9d = 0.9 ร— 705 = 634.5mm
A
S
โ‰ฅ
227.3 ร— 10
634.5 ร— 2.5 ร— 410
= 0.34
max spacing = 0.75d = 0.75 ร— 705 = 528.75mm
๐ด ,
๐‘†
=
0.08 ๐‘“ ๐‘
๐‘“
=
0.08 ร— โˆš20 ร— 225
410
= 0.26
Use Y10 @ 200mm centres (0.78).
StructuresCentre.xyz
21
3.3.2.5 Deflection Verification
= ๐‘ ร— ๐พ ร— ๐น1 ร— ๐น2 ร— ๐น3
๐œŒ =
๐ด ,
๐ด
=
๐ด ,
๐‘ ๐‘‘ + (๐‘ โˆ’ ๐‘ )โ„Ž
=
862.3
(225 ร— 705) + (2270 โˆ’ 225)200
= 0.15%
ฯ = 10 f = 10 ร— โˆš20 = 0.45% since ฯ < ฯ
N = 11 +
1.5 f ฯ
ฯ
+ 3.2 f
ฯ
ฯ
โˆ’ 1 = 11 +
1.5โˆš20 ร— 0.45
0.15
+ 3.2โˆš20
0.45
0.15
โˆ’ 1
= 63.1
F1 = 0.82
K = 1.3 (end spans)
F2 = 1.0
F3 =
310
ฯƒ
โ‰ค 1.5
ฯƒ =
f
ฮณ
g + ฯ†q
n
A ,
A ,
โˆ™
1
ฮด
=
410
1.15
ร—
39.4 + 0.6(10.88)
65.52
ร—
862.3
942
= 228.8Mpa
F3 =
310
228.8
= 1.35
L
d
= 63.1 ร— 1.3 ร— 0.82 ร— 1.0 ร— 1.35 = 90.81
L
d
=
span
effective depth
=
7500
705
= 10.64
Since the limiting span-effective depth ratio is greater than the actual span-effective depth ratio. It
therefore follows that deflection has been satisfied.
3.3.2.6 Detailing Checks
Minimum Area of Steel
A , = 0.2687
f
f
๐‘ d โ‰ฅ 0.0013bd
f = 0.30f = 0.3 ร— 20 = 2.21Mpa
StructuresCentre.xyz
22
Hogging at Supports & Sagging in Spans
A , = 0.26 ร—
2.21
410
ร— 225 ร— 705 โ‰ฅ 0.0013 ร— 300 ร— 702.5
= 222.3mm . By observation it is not critical anywhere at the supports. Hence adopt all
attempted bars.
3.4 Concrete Columns
3.4.1 Column C2
3.4.1.1 Actions on Column
Roof
Permanent Action:
a. Roof Load = ๐‘” , ร— ๐ด๐‘Ÿ๐‘’๐‘Ž = 1.5 ร—
. ร—( . . )
= 63.28๐‘˜๐‘
b. Beam self weight = 3.2 ร—
. . . .
= 42๐‘˜๐‘
c. Column Weight = (0.4 ร— 0.4 ร— 3.3) ร— 25 = 13.2๐‘˜๐‘
๐‘ฎ๐’Œ,๐’“๐’๐’๐’‡ = ๐Ÿ”๐Ÿ‘. ๐Ÿ”๐’Œ๐‘ต
Variable Actions:
a. Roof Load = ๐‘” , ร— ๐ด๐‘Ÿ๐‘’๐‘Ž = 0.6 ร—
. ร—( . . )
= 25.3๐‘˜๐‘
๐‘ธ๐’Œ,๐’“๐’๐’๐’‡ = ๐Ÿ๐Ÿ“. ๐Ÿ‘๐’Œ๐‘ต
Floors
Permanent Action:
a. Roof Load = ๐‘” , ร— ๐ด๐‘Ÿ๐‘’๐‘Ž = 7.5 ร—
. ร—
+ 6.25 ร—
. ร— .
= 305.86๐‘˜๐‘
b. Beam self weight = 3.2 ร—
. . . .
= 42๐‘˜๐‘
c. Walls = 10.5 ร—
. . . .
= 137.81๐‘˜๐‘
d. Column Weight = (0.4 ร— 0.4 ร— 3.0) ร— 25 = 12๐‘˜๐‘
๐‘ฎ๐’Œ,๐’‡๐’๐’๐’๐’“๐’” = ๐Ÿ’๐Ÿ—๐Ÿ•. ๐Ÿ•๐’Œ๐‘ต
Variable Actions:
a. Roof Load = ๐‘” , ร— ๐ด๐‘Ÿ๐‘’๐‘Ž = 3.0 ร—
. ร—( . . )
= 126.6๐‘˜๐‘
StructuresCentre.xyz
23
๐‘ธ๐’Œ,๐’“๐’๐’๐’‡ = ๐Ÿ๐Ÿ๐Ÿ”. ๐Ÿ”๐’Œ๐‘ต
Imposed Reduction Factors
ฮฑ = 1 โˆ’ = 1 โˆ’
( . ร— )
= 0.83 โ‰ฅ 0.75 ; ๐›ผ = 0.83 (same for all floors)
ฮฑ = 1 โˆ’
0
10
= 1 โˆ’
0
10
= 1.0 for 3rd โˆ’ Roof
ฮฑ = 1 โˆ’
1
10
= 1 โˆ’
1
10
= 0.9 for 2nd โˆ’ 3rd floor
ฮฑ = 1 โˆ’
2
10
= 1 โˆ’
2
10
= 0.8 for 1st โˆ’ 2nd floor
ฮฑ = 1 โˆ’
3
10
= 1 โˆ’
3
10
= 0.7 for Ground โˆ’ 1st floor
Table 1: Load Take Down for Column C2
Floors ๐›ผ ๐›ผ ๐บ (kN) ๐บ (kN) . ๐‘„ (kN) ๐‘„ (kN) . ๐‘„ (kN) .
3rd
-Roof 0.83 1.0 63.6 63.6 25.3 25.3 21.0
2nd
โ€“ 3rd
Floor 0.83 0.9 497.7 561.3 126.6 151.9 126.1
1st
โ€“ 2nd
Floor 0.83 0.8 497.7 1059 126.6 278.5 222.8
G โ€“ 1st
Floor 0.83 0.7 497.7 1556.7 126.6 405.1 283.57
The bending moment on the column is obtained from the analysis of the subframes 2-2 and C-C.
The roof subframe have not been analysed, the roof moments are also determined through a
similar process applied at the floors.
Table 2: Bending Moments on Column C2
Floor ๐‘€ , ๐‘€ , ๐‘€ , ๐‘€ ,
3rd
-Roof -21.5 165.4 -5.7 18.3
2nd
-3rd
Floor -165.4 165.4 -18.3 18.3
1st
-2nd
Floor -165.4 165.4 -18.3 18.3
G-1st
Floor -165.4 82.7 -18.3 9.2
StructuresCentre.xyz
24
3.4.1.1 Column Design
The column has been sized to be โ€œstockyโ€ hence slenderness need not to be verified.
3rd Floor - Roof
Design Axial Action
By inspection the permanent actions are less than 4.5 times the variable actions, therefore equation
6.13b of BS EN 1990 will give the most unfavourable results.
๐‘ = 1.35๐œ‰๐บ + 1.5๐‘„ = 1.35(0.925 ร— 63.6) + (1.5 ร— 21) = ๐Ÿ๐Ÿ๐ŸŽ. ๐Ÿ—๐’Œ๐‘ต
Design Moments
Y-Y Direction
๐‘€ , = ๐‘š๐‘Ž๐‘ฅ|๐‘€ ; ๐‘€ |
๐‘€ , = ๐‘š๐‘Ž๐‘ฅ ๐‘€ ; ๐‘€ + ๐‘’ ๐‘ = 165.4 +
0.75 ร— 3750
400
ร— 110.9 โˆ™ 10 = 166.2๐‘˜๐‘. ๐‘š
๐‘€ , = ๐‘ ๐‘’ ; ๐‘’ = = โ‰ฅ 20 = 20๐‘š๐‘š
๐‘€ , = (110.9 ร— 20) โˆ™ 10 = 2.2๐‘˜๐‘. ๐‘š
M , = max|166.2 ; 2.2| = ๐Ÿ๐Ÿ”๐Ÿ”. ๐Ÿ๐ค๐. ๐ฆ
Z-Z Direction
๐‘€ , = ๐‘š๐‘Ž๐‘ฅ|๐‘€ ; ๐‘€ |
๐‘€ , = ๐‘š๐‘Ž๐‘ฅ ๐‘€ ; ๐‘€ + ๐‘’ ๐‘ = 18.3 +
0.75 ร— 3750
400
ร— 110.9 โˆ™ 10 = 19.1๐‘˜๐‘. ๐‘š
๐‘€ , = ๐‘ ๐‘’ ; ๐‘’ = = โ‰ฅ 20 = 20๐‘š๐‘š
๐‘€ , = (110.9 ร— 20) โˆ™ 10 = 2.2๐‘˜๐‘. ๐‘š
M , = max|19.1 ; 2.2| = ๐Ÿ๐Ÿ—. ๐Ÿ๐ค๐. ๐ฆ
Having obtained our design moments, the column is designed in the most critical direction (y-y
axis) and we then conclude by checking out biaxial bending.
StructuresCentre.xyz
25
Design Using Chart
๐‘‘ = โ„Ž โˆ’ ๐‘ +
โˆ…
2
+ ๐‘™๐‘–๐‘›๐‘˜๐‘  = 400 โˆ’ 25 +
20
2
+ 8 = 357๐‘š๐‘š
๐‘‘
โ„Ž
=
357
400
= 0.89 ; ๐‘ˆ๐‘ ๐‘’ ๐‘โ„Ž๐‘Ž๐‘Ÿ๐‘ก ๐‘“๐‘œ๐‘Ÿ 0.85
๐‘
๐‘โ„Ž๐‘“
=
110.9 ร— 10
(400 ร— 400) ร— 20
= 0.03;
๐‘€
๐‘โ„Ž๐‘“
=
166.2 ร— 10
(400 ร— 400 ) ร— 20
= 0.13
๐ด ๐‘“
๐‘โ„Ž๐‘“
= 0.35
๐ด = 0.35
๐‘โ„Ž๐‘“
๐‘“
0.35 ร—
(400 ร— 400) ร— 20
410
= ๐Ÿ๐Ÿ•๐Ÿ๐Ÿ‘. ๐Ÿ•๐’Ž๐’Ž๐Ÿ
Try 10Y20mm Bars (As.prov = 3140mm2
)
๐ด , = 0.1
๐‘
0.87๐‘“
โ‰ฅ 0.002๐ด = 0.1 ร—
110.9 ร— 10
0.87 ร— 410
โ‰ฅ 0.002(400 ร— 400) = 320๐‘š๐‘š
๐ด , = 0.04๐ด = 0.04 ร— (400 ร— 400) = 6400๐‘š๐‘š
๐ด , < ๐ด < ๐ด , = (320๐‘š๐‘š < 2723.7๐‘š๐‘š < 6400๐‘š๐‘š ) O.K
Use 10Y20 bars ๐‘จ๐’”,๐’‘๐’“๐’ (๐Ÿ‘๐Ÿ๐Ÿ’๐ŸŽ๐’Ž๐’Ž๐Ÿ
)
โ€“ Containment Links
Link diameter = ๐‘š๐‘Ž๐‘ฅ 6 ;
โˆ…
= ๐‘š๐‘Ž๐‘ฅ 6 ; ; ๐‘ˆ๐‘ ๐‘’ 8๐‘š๐‘š
Link spacing = ๐‘š๐‘–๐‘›{20โˆ… ; ๐‘ ; 400๐‘š๐‘š} = min 0.6 ร— {20 ร— 20 ; 400 ; 400๐‘š๐‘š} = 240mm
Use 2T8 links at 200mm centre.
By inspection, biaxial bending is not critical for this column stack, hence the check can be
ignored.
2nd - 3rd Floor
Design Axial Action
By inspection the permanent actions are less than 4.5 times the variable actions, therefore equation
6.13b of BS EN 1990 will give the most unfavourable results.
StructuresCentre.xyz
26
๐‘ = 1.35๐œ‰๐บ + 1.5๐‘„ = 1.35(0.925 ร— 561.3) + (1.5 ร— 126.1) = ๐Ÿ–๐Ÿ—๐Ÿ๐’Œ๐‘ต
Design Moments
Y-Y Direction
๐‘€ , = ๐‘š๐‘Ž๐‘ฅ|๐‘€ ; ๐‘€ |
๐‘€ , = ๐‘š๐‘Ž๐‘ฅ ๐‘€ ; ๐‘€ + ๐‘’ ๐‘ = 165.4 +
0.75 ร— 3750
400
ร— 891 โˆ™ 10 = 171.7๐‘˜๐‘. ๐‘š
๐‘€ , = ๐‘ ๐‘’ ; ๐‘’ = = โ‰ฅ 20 = 20๐‘š๐‘š
๐‘€ , = (891 ร— 20) โˆ™ 10 = 17.82๐‘˜๐‘. ๐‘š
M , = max|171.7 ; 17.82| = ๐Ÿ๐Ÿ•๐Ÿ. ๐Ÿ•๐ค๐. ๐ฆ
Z-Z Direction
๐‘€ , = ๐‘š๐‘Ž๐‘ฅ|๐‘€ ; ๐‘€ |
๐‘€ , = ๐‘š๐‘Ž๐‘ฅ ๐‘€ ; ๐‘€ + ๐‘’ ๐‘ = 18.3 +
0.75 ร— 3750
400
ร— 891 โˆ™ 10 = 24.6๐‘˜๐‘. ๐‘š
๐‘€ , = ๐‘ ๐‘’ ; ๐‘’ = = โ‰ฅ 20 = 20๐‘š๐‘š
๐‘€ , = (891 ร— 20) โˆ™ 10 = 17.82๐‘˜๐‘. ๐‘š
M , = max|24.6 ; 17.82| = ๐Ÿ๐Ÿ—. ๐Ÿ๐ค๐. ๐ฆ
The column is designed in the most critical direction (y-y axis) and we then conclude by checking
out biaxial bending.
Design Using Chart
๐‘‘ = โ„Ž โˆ’ ๐‘ +
โˆ…
2
+ ๐‘™๐‘–๐‘›๐‘˜๐‘  = 400 โˆ’ 25 +
25
2
+ 8 = 354.5๐‘š๐‘š
๐‘‘
โ„Ž
=
354.5
400
= 0.89 ; ๐‘ˆ๐‘ ๐‘’ ๐‘โ„Ž๐‘Ž๐‘Ÿ๐‘ก ๐‘“๐‘œ๐‘Ÿ 0.85
๐‘
๐‘โ„Ž๐‘“
=
891 ร— 10
(400 ร— 400) ร— 20
= 0.3;
๐‘€
๐‘โ„Ž๐‘“
=
171.7 ร— 10
(400 ร— 400 ) ร— 20
= 0.13
๐ด ๐‘“
๐‘โ„Ž๐‘“
= 0.20
๐ด = 0.20
๐‘โ„Ž๐‘“
๐‘“
StructuresCentre.xyz
27
0.20 ร—
(400 ร— 400) ร— 20
410
= ๐Ÿ๐Ÿ“๐Ÿ”๐Ÿ๐’Ž๐’Ž๐Ÿ
Try 10Y20mm Bars (As.prov = 3140mm2
)
๐ด , = 0.1
๐‘
0.87๐‘“
โ‰ฅ 0.002๐ด = 0.1 ร—
891 ร— 10
0.87 ร— 410
โ‰ฅ 0.002(400 ร— 400) = 320๐‘š๐‘š
๐ด , = 0.04๐ด = 0.04 ร— (400 ร— 400) = 6400๐‘š๐‘š
๐ด , < ๐ด < ๐ด , = (320๐‘š๐‘š < 1561๐‘š๐‘š < 6400๐‘š๐‘š ) O.K
Use 10Y20 bars ๐‘จ๐’”,๐’‘๐’“๐’ = (๐Ÿ‘๐Ÿ๐Ÿ’๐ŸŽ๐’Ž๐’Ž๐Ÿ
)
โ€“ Containment Links
Link diameter = ๐‘š๐‘Ž๐‘ฅ 6 ;
โˆ…
= ๐‘š๐‘Ž๐‘ฅ 6 ; ; ๐‘ˆ๐‘ ๐‘’ 8๐‘š๐‘š
Link spacing = ๐‘š๐‘–๐‘›{20โˆ… ; ๐‘ ; 400๐‘š๐‘š} = min 0.6 ร— {20 ร— 20 ; 400 ; 400๐‘š๐‘š} = 240mm
Use 2T8 links at 200mm centre.
By inspection, biaxial bending is not critical for this column stack, hence the check can be
ignored.
1st - 2nd Floor
Design Axial Action
By inspection the permanent actions are greater than 4.5 times the variable actions, therefore
equation 6.13a of BS EN 1990 will give the most unfavourable results.
๐‘ = 1.35๐บ + 1.5๐œ“๐‘„ = 1.35(1059) + (1.5 ร— 0.7 ร— 126.1) = ๐Ÿ๐Ÿ“๐Ÿ”๐Ÿ. ๐Ÿ๐’Œ๐‘ต
Design Moments
Y-Y Direction
๐‘€ , = ๐‘š๐‘Ž๐‘ฅ|๐‘€ ; ๐‘€ |
๐‘€ , = ๐‘š๐‘Ž๐‘ฅ ๐‘€ ; ๐‘€ + ๐‘’ ๐‘ = 165.4 +
0.75 ร— 3750
400
ร— 1562.1 โˆ™ 10
= 176.4๐‘˜๐‘. ๐‘š
๐‘€ , = ๐‘ ๐‘’ ; ๐‘’ = = โ‰ฅ 20 = 20๐‘š๐‘š
๐‘€ , = (1562.1 ร— 20) โˆ™ 10 = 31.2๐‘˜๐‘. ๐‘š
StructuresCentre.xyz
28
M , = max|176.4 ; 31.2| = ๐Ÿ๐Ÿ•๐Ÿ”. ๐Ÿ’๐ค๐. ๐ฆ
Z-Z Direction
๐‘€ , = ๐‘š๐‘Ž๐‘ฅ|๐‘€ ; ๐‘€ |
๐‘€ , = ๐‘š๐‘Ž๐‘ฅ ๐‘€ ; ๐‘€ + ๐‘’ ๐‘ = 18.3 +
0.75 ร— 3750
400
ร— 1562.1 โˆ™ 10 = 29.3๐‘˜๐‘. ๐‘š
๐‘€ , = ๐‘ ๐‘’ ; ๐‘’ = = โ‰ฅ 20 = 20๐‘š๐‘š
๐‘€ , = (1562.1 ร— 20) โˆ™ 10 = 31.2๐‘˜๐‘. ๐‘š
M , = max|29.3 ; 31.2| = ๐Ÿ‘๐Ÿ. ๐Ÿ๐ค๐. ๐ฆ
The column is designed in the most critical direction (y-y axis) and we then conclude by checking
out biaxial bending.
Design Using Chart
๐‘‘ = โ„Ž โˆ’ ๐‘ +
โˆ…
2
+ ๐‘™๐‘–๐‘›๐‘˜๐‘  = 400 โˆ’ 25 +
25
2
+ 8 = 354.5๐‘š๐‘š
๐‘‘
โ„Ž
=
354.5
400
= 0.89 ; ๐‘ˆ๐‘ ๐‘’ ๐‘โ„Ž๐‘Ž๐‘Ÿ๐‘ก ๐‘“๐‘œ๐‘Ÿ 0.85
๐‘
๐‘โ„Ž๐‘“
=
1562.1 ร— 10
(400 ร— 400) ร— 20
= 0.49;
๐‘€
๐‘โ„Ž๐‘“
=
176.4 ร— 10
(400 ร— 400 ) ร— 20
= 0.14
๐ด ๐‘“
๐‘โ„Ž๐‘“
= 0.40
๐ด = 0.40
๐‘โ„Ž๐‘“
๐‘“
0.40 ร—
(400 ร— 400) ร— 20
410
= ๐Ÿ‘๐Ÿ๐Ÿ๐Ÿ๐’Ž๐’Ž๐Ÿ
Try 12Y20mm Bars (As.prov = 3768mm2
)
๐ด , = 0.1
๐‘
0.87๐‘“
โ‰ฅ 0.002๐ด = 0.1 ร—
1562.1 ร— 10
0.87 ร— 410
โ‰ฅ 0.002(400 ร— 400) = 438๐‘š๐‘š
๐ด , = 0.04๐ด = 0.04 ร— (400 ร— 400) = 6400๐‘š๐‘š
๐ด , < ๐ด < ๐ด , = (438๐‘š๐‘š < 3122๐‘š๐‘š < 6400๐‘š๐‘š ) O.K
Use 12Y20 bars ๐‘จ๐’”,๐’‘๐’“๐’ = (๐Ÿ‘๐Ÿ•๐Ÿ–๐Ÿ–๐’Ž๐’Ž๐Ÿ
)
StructuresCentre.xyz
29
โ€“ Containment Links
Link diameter = ๐‘š๐‘Ž๐‘ฅ 6 ;
โˆ…
= ๐‘š๐‘Ž๐‘ฅ 6 ; ; ๐‘ˆ๐‘ ๐‘’ 8๐‘š๐‘š
Link spacing = ๐‘š๐‘–๐‘›{20โˆ… ; ๐‘ ; 400๐‘š๐‘š} = min 0.6 ร— {20 ร— 20 ; 400 ; 400๐‘š๐‘š} = 240mm
Use 2T8 links at 200mm centre.
By inspection, biaxial bending is not critical for this column stack, hence the check can be
ignored.
Ground โ€“ 1st Floor
Design Axial Action
By inspection the permanent actions are greater than 4.5 times the variable actions, therefore
equation 6.13a of BS EN 1990 will give the most unfavourable results.
๐‘ = 1.35๐บ + 1.5๐œ“๐‘„ = 1.35(1556.7) + (1.5 ร— 0.7 ร— 283.57) = ๐Ÿ๐Ÿ‘๐Ÿ—๐Ÿ—. ๐Ÿ‘๐’Œ๐‘ต
Design Moments
Y-Y Direction
๐‘€ , = ๐‘š๐‘Ž๐‘ฅ|๐‘€ ; ๐‘€ |
๐‘€ , = ๐‘š๐‘Ž๐‘ฅ ๐‘€ ; ๐‘€ + ๐‘’ ๐‘ = 165.4 +
0.75 ร— 3750
400
ร— 2399.3 โˆ™ 10
= 182.3๐‘˜๐‘. ๐‘š
๐‘€ , = ๐‘ ๐‘’ ; ๐‘’ = = โ‰ฅ 20 = 20๐‘š๐‘š
๐‘€ , = (2399.3 ร— 20) โˆ™ 10 = 47.99๐‘˜๐‘. ๐‘š
M , = max|182.3 ; 47.99| = ๐Ÿ๐Ÿ–๐Ÿ. ๐Ÿ‘๐ค๐. ๐ฆ
Z-Z Direction
๐‘€ , = ๐‘š๐‘Ž๐‘ฅ|๐‘€ ; ๐‘€ |
๐‘€ , = ๐‘š๐‘Ž๐‘ฅ ๐‘€ ; ๐‘€ + ๐‘’ ๐‘ = 18.3 +
0.75 ร— 3750
400
ร— 2399.3 โˆ™ 10 = 35.17๐‘˜๐‘. ๐‘š
๐‘€ , = ๐‘ ๐‘’ ; ๐‘’ = = โ‰ฅ 20 = 20๐‘š๐‘š
๐‘€ , = (2399.3 ร— 20) โˆ™ 10 = 47.99๐‘˜๐‘. ๐‘š
StructuresCentre.xyz
30
M , = max|35.17 ; 47.99| = ๐Ÿ’๐Ÿ•. ๐Ÿ—๐Ÿ—๐ค๐. ๐ฆ
The column is designed in the most critical direction (y-y axis) and we then conclude by checking
out biaxial bending.
Design Using Chart
๐‘‘ = โ„Ž โˆ’ ๐‘ +
โˆ…
2
+ ๐‘™๐‘–๐‘›๐‘˜๐‘  = 400 โˆ’ 25 +
25
2
+ 8 = 354.5๐‘š๐‘š
๐‘‘
โ„Ž
=
354.5
400
= 0.89 ; ๐‘ˆ๐‘ ๐‘’ ๐‘โ„Ž๐‘Ž๐‘Ÿ๐‘ก ๐‘“๐‘œ๐‘Ÿ 0.85
๐‘
๐‘โ„Ž๐‘“
=
2399.3 ร— 10
(400 ร— 400) ร— 20
= 0.75;
๐‘€
๐‘โ„Ž๐‘“
=
182.3 ร— 10
(400 ร— 400 ) ร— 20
= 0.142
๐ด ๐‘“
๐‘โ„Ž๐‘“
= 0.65
๐ด = 0.65
๐‘โ„Ž๐‘“
๐‘“
0.65 ร—
(400 ร— 400) ร— 20
410
= ๐Ÿ“๐ŸŽ๐Ÿ•๐Ÿ‘. ๐Ÿ๐’Ž๐’Ž๐Ÿ
Try 12Y25mm Bars (As.prov = 5886mm2
)
๐ด , = 0.1
๐‘
0.87๐‘“
โ‰ฅ 0.002๐ด = 0.1 ร—
2339.3 ร— 10
0.87 ร— 410
โ‰ฅ 0.002(400 ร— 400) = 438๐‘š๐‘š
๐ด , = 0.04๐ด = 0.04 ร— (400 ร— 400) = 6400๐‘š๐‘š
๐ด , < ๐ด < ๐ด , = (655.8๐‘š๐‘š < 5073.2๐‘š๐‘š < 6400๐‘š๐‘š ) O.K
Use 12Y25 bars ๐‘จ๐’”,๐’‘๐’“๐’ = (๐Ÿ“๐Ÿ–๐Ÿ–๐Ÿ”๐’Ž๐’Ž๐Ÿ
)
โ€“ Containment Links
Link diameter = ๐‘š๐‘Ž๐‘ฅ 6 ;
โˆ…
= ๐‘š๐‘Ž๐‘ฅ 6 ; ; ๐‘ˆ๐‘ ๐‘’ 8๐‘š๐‘š
Link spacing = ๐‘š๐‘–๐‘›{20โˆ… ; ๐‘ ; 400๐‘š๐‘š} = min 0.6 ร— {20 ร— 25 ; 400 ; 400๐‘š๐‘š} = 240mm
Use 2T8 links at 200mm centre.
By inspection, biaxial bending is not critical for this column stack, hence the check can be
ignored.
StructuresCentre.xyz
31
3.5 Pad Foundation to Column C2
3.5.1 Serviceability Limit State
๐บ = 1556.7๐‘˜๐‘ ๐‘„ = 283.57๐‘˜๐‘
๐‘ = 1.0๐บ + 1.0๐‘„ = 1556.7 + 283.57 = 1840.3๐‘˜N
Assume 10% increase in axial actions to actions to account for footing self weight
๐‘‡๐‘œ๐‘ก๐‘Ž๐‘™ ๐‘™๐‘œ๐‘Ž๐‘‘ = (1 + 0.1) ร— 1840.3 = 2024.3๐‘˜๐‘
๐ด๐‘Ÿ๐‘’๐‘Ž ๐‘Ÿ๐‘’๐‘ž๐‘ข๐‘–๐‘Ÿ๐‘’๐‘‘ =
๐‘‡๐‘œ๐‘ก๐‘Ž๐‘™ ๐‘™๐‘œ๐‘Ž๐‘‘
๐‘๐‘’๐‘Ž๐‘Ÿ๐‘–๐‘›๐‘” ๐‘Ÿ๐‘’๐‘ ๐‘–๐‘ ๐‘ก๐‘Ž๐‘›๐‘๐‘’
=
2024.3
150
= 13.5๐‘š
Assume a square base: length = breadth โˆš13.5 = 3.67๐‘š
Provide a Base of 3.7m ร— 3.7m (say 0.6m deep) ๐ด๐‘Ÿ๐‘’๐‘Ž ๐‘๐‘Ÿ๐‘œ๐‘ฃ๐‘–๐‘‘๐‘’๐‘‘ = 13.69๐‘š
3.5.1 Ultimate Limit State
N = 1.35G + 1.5Q = (1.35 ร— 1556.7) + (1.5 ร— 283.57) = 2527kN
bearing pressure =
Design axial action
Area provided
=
N
A
=
2527
(3.7 ร— 3.7)
= 184.6kN/m
Punching check at Column face
Assume cover to reinforcement is 50mm and reinforcement of 16mm
d = h โˆ’ c +
ฯ•
2
= 600 โˆ’ 50 +
16
2
= 542mm
Verify that N โ‰ค V ,
๐‘‰ , = 0.2 1 โˆ’
๐‘“
250
๐‘“ ๐‘ ๐‘‘ = 0.2 1 โˆ’
20
250
20 ร— (4 ร— 400) ร— 542 ร— 10 = 3191.3๐‘˜๐‘
Thus (๐‘ = 2527๐‘˜๐‘) < ๐‘‰ , = (3191.3kN) O. K
Flexural Design
๐‘™๐‘’๐‘ฃ๐‘’๐‘Ÿ ๐‘Ž๐‘Ÿ๐‘š @ ๐‘“๐‘Ž๐‘๐‘’ ๐‘œ๐‘“ ๐‘๐‘œ๐‘™๐‘ข๐‘š๐‘› =
(3.7 โˆ’ 0.40)
2
= 1.65๐‘š
๐‘€ =
๐‘๐‘™
2
=
184.6 ร— 1.65
2
= 162.0๐‘˜๐‘. ๐‘š/m
๐‘˜ =
๐‘€
๐‘๐‘‘ ๐‘“
=
162 ร— 10
10 ร— 542 ร— 20
= 0.028 < 0.168
๐‘ง = ๐‘‘ 0.5 + โˆš0.25 โˆ’ 0.882๐‘˜ โ‰ค 0.95๐‘‘
StructuresCentre.xyz
32
= 0.95๐‘‘ = 0.95 ร— 542 = 514.9๐‘š๐‘š
๐ด =
๐‘€
0.87๐‘“ ๐‘ง
=
162 ร— 10
0.87 ร— 410 ร— 514.9
= 882.04๐‘š๐‘š /m
๐‘‡๐‘Ÿ๐‘ฆ ๐‘Œ16 โˆ’ 150 ๐‘๐‘’๐‘›๐‘ก๐‘Ÿ๐‘’๐‘  ๐‘๐‘œ๐‘กโ„Ž ๐‘ค๐‘Ž๐‘ฆ๐‘  ๐ด , = 1340๐‘š๐‘š /๐‘š
Punching Shear at Basic Control Perimeter 2.0d from column face
๐‘‰ = ๐‘ โˆ’ โˆ†๐‘‰
โˆ†๐‘‰ = ๐‘A
๐ด = ๐‘ ๐‘ + ๐œ‹(2๐‘‘) + 4(๐‘ + ๐‘ )๐‘‘ = 400 + ๐œ‹(2 ร— 542) + 4(400 + 400)542 = 5.6๐‘š
๐‘ = 2(๐‘ + ๐‘ ) + 4๐œ‹๐‘‘ = 2(400 + 400) + 4๐œ‹(542) = 8414๐‘š๐‘š
๐‘‰ = 2527 โˆ’ 184.6(5.6) = 1493๐‘˜๐‘
๐‘ฃ =
๐‘‰
๐‘ ๐‘‘
=
1493 ร— 10
8414 ร— 542
= 0.33๐‘€๐‘๐‘Ž
๐‘ฃ , = 0.12๐‘˜(100๐œŒ๐‘“ ) /
โ‰ฅ 0.035๐‘˜ /
๐‘“
๐œŒ = =
ร—
= 0.0025 ; ๐‘˜ = 1 + = 1 + = 1.61 < 2
๐‘ฃ , = 0.12 ร— 1.61(100 ร— 0.0025 ร— 20) /
โ‰ฅ 0.035 ร— 1.61 โˆš20 = 0.33๐‘€๐‘๐‘Ž
๐‘†๐‘–๐‘›๐‘๐‘’ (๐‘ฃ = 0.33๐‘€๐‘๐‘Ž) โ‰ค (๐‘ฃ , = 0.33๐‘€๐‘๐‘Ž) ๐ถ๐‘Ÿ๐‘–๐‘ก๐‘–๐‘๐‘Ž๐‘™ ๐‘๐‘ข๐‘ก ๐‘‚. ๐‘˜.
Transverse shear: Taken at 1.0d from the face of the column
๐‘‰ = ๐‘(1.325 โˆ’ 1.0d) = 184.6 ร— (1.65 โˆ’ 0.542) = 204.6๐‘˜๐‘/๐‘š
๐‘ฃ =
๐‘‰
๐‘๐‘‘
=
204.6 ร— 10
1000 ร— 542
= 0.38
๐‘ฃ , = 0.33๐‘€๐‘๐‘Ž (as before)
(๐‘ฃ = 0.36๐‘€๐‘๐‘Ž) = (๐‘ฃ , = 0.36๐‘€๐‘๐‘Ž) ๐‘๐‘œ๐‘ก ๐‘‚. ๐พ.
Since the base is barely passing in punching and failing in transverse shear, the base thickness
can be increased to 650mm.
Verify Minimum Area of Steel
๐ด , =
0.078๐‘“
/
๐‘“
๐‘ d โ‰ฅ 0.0013๐‘ ๐‘‘
StructuresCentre.xyz
33
๐ด , =
0.078(20) /
410
ร— 1000 ร— 542 โ‰ฅ 0.0013 ร— 1000 ร— 542
= 876.5๐‘š๐‘š < 1340๐‘š๐‘š o. k
Use 24T16-150 both ways
3.6 Design Summary
Figure 7: Slab Reinforcement Summary
StructuresCentre.xyz
34
Figure 8: Summary of Reinforcement in Beam C-C
Figure 9: Summary of Reinforcement in Beam 2-2
StructuresCentre.xyz
35
Figure 10: Summary of Reinforcement in Column C2
Figure 11: Summary of Pad Base to Column C2

More Related Content

What's hot

Stress&strain part 2
Stress&strain part 2Stress&strain part 2
Stress&strain part 2AHMED SABER
ย 
Chapter 03 MECHANICS OF MATERIAL
Chapter 03 MECHANICS OF MATERIALChapter 03 MECHANICS OF MATERIAL
Chapter 03 MECHANICS OF MATERIALabu_mlk
ย 
Deflection and member deformation
Deflection and member deformationDeflection and member deformation
Deflection and member deformationMahmoud Youssef Abido
ย 
Areas related to circles ppt by jk
Areas related to circles ppt by jkAreas related to circles ppt by jk
Areas related to circles ppt by jkJyothikumar M
ย 
Chapter 3 (rib)MOSTAFA
Chapter 3 (rib)MOSTAFAChapter 3 (rib)MOSTAFA
Chapter 3 (rib)MOSTAFAMustafa Al Bakri
ย 
Determine bending moment and share force diagram of beam
Determine bending moment and share force diagram of beamDetermine bending moment and share force diagram of beam
Determine bending moment and share force diagram of beamTurja Deb
ย 
0136023126 ism 06(1)
0136023126 ism 06(1)0136023126 ism 06(1)
0136023126 ism 06(1)aryaanuj1
ย 
Design of an automotive differential with reduction ratio greater than 6
Design of an automotive differential with reduction ratio greater than 6Design of an automotive differential with reduction ratio greater than 6
Design of an automotive differential with reduction ratio greater than 6eSAT Publishing House
ย 
Solution manual 16
Solution manual 16Solution manual 16
Solution manual 16Rafi Flydarkzz
ย 
Bending stress and shear stress for Asymmetric I-Section.
Bending stress and shear stress for Asymmetric  I-Section.Bending stress and shear stress for Asymmetric  I-Section.
Bending stress and shear stress for Asymmetric I-Section.Dr.Abhinav .
ย 
CASE STUDY - STRUCTURAL DESIGN FOR MODERN INSULATOR'S SHUTTLE KILN ROOF
CASE STUDY - STRUCTURAL DESIGN FOR MODERN INSULATOR'S SHUTTLE KILN ROOFCASE STUDY - STRUCTURAL DESIGN FOR MODERN INSULATOR'S SHUTTLE KILN ROOF
CASE STUDY - STRUCTURAL DESIGN FOR MODERN INSULATOR'S SHUTTLE KILN ROOFRituraj Dhar
ย 
Solutions completo elementos de maquinas de shigley 8th edition
Solutions completo elementos de maquinas de shigley 8th editionSolutions completo elementos de maquinas de shigley 8th edition
Solutions completo elementos de maquinas de shigley 8th editionfercrotti
ย 
Design of Bioclimatic Structure with Insulation of Cavity Wall
Design of  Bioclimatic Structure with Insulation of Cavity WallDesign of  Bioclimatic Structure with Insulation of Cavity Wall
Design of Bioclimatic Structure with Insulation of Cavity WallIRJET Journal
ย 
Solution manual 17 19
Solution manual 17 19Solution manual 17 19
Solution manual 17 19Rafi Flydarkzz
ย 
Truss examples
Truss examplesTruss examples
Truss examplesAHMED SABER
ย 
ME 5720 Fall 2015 - Wind Turbine Project_FINAL
ME 5720 Fall 2015 - Wind Turbine Project_FINALME 5720 Fall 2015 - Wind Turbine Project_FINAL
ME 5720 Fall 2015 - Wind Turbine Project_FINALOmar Latifi
ย 
Solution Manual for Structural Analysis 6th SI by Aslam Kassimali
Solution Manual for Structural Analysis 6th SI by Aslam KassimaliSolution Manual for Structural Analysis 6th SI by Aslam Kassimali
Solution Manual for Structural Analysis 6th SI by Aslam Kassimaliphysicsbook
ย 

What's hot (20)

Stress&strain part 2
Stress&strain part 2Stress&strain part 2
Stress&strain part 2
ย 
Chapter 03 MECHANICS OF MATERIAL
Chapter 03 MECHANICS OF MATERIALChapter 03 MECHANICS OF MATERIAL
Chapter 03 MECHANICS OF MATERIAL
ย 
Deflection and member deformation
Deflection and member deformationDeflection and member deformation
Deflection and member deformation
ย 
Areas related to circles ppt by jk
Areas related to circles ppt by jkAreas related to circles ppt by jk
Areas related to circles ppt by jk
ย 
Problemas esfuerzos en vigas
Problemas esfuerzos en vigasProblemas esfuerzos en vigas
Problemas esfuerzos en vigas
ย 
Chapter 3 (rib)MOSTAFA
Chapter 3 (rib)MOSTAFAChapter 3 (rib)MOSTAFA
Chapter 3 (rib)MOSTAFA
ย 
Determine bending moment and share force diagram of beam
Determine bending moment and share force diagram of beamDetermine bending moment and share force diagram of beam
Determine bending moment and share force diagram of beam
ย 
0136023126 ism 06(1)
0136023126 ism 06(1)0136023126 ism 06(1)
0136023126 ism 06(1)
ย 
Design of an automotive differential with reduction ratio greater than 6
Design of an automotive differential with reduction ratio greater than 6Design of an automotive differential with reduction ratio greater than 6
Design of an automotive differential with reduction ratio greater than 6
ย 
Solution manual 16
Solution manual 16Solution manual 16
Solution manual 16
ย 
Bending stress and shear stress for Asymmetric I-Section.
Bending stress and shear stress for Asymmetric  I-Section.Bending stress and shear stress for Asymmetric  I-Section.
Bending stress and shear stress for Asymmetric I-Section.
ย 
09 review
09 review09 review
09 review
ย 
CASE STUDY - STRUCTURAL DESIGN FOR MODERN INSULATOR'S SHUTTLE KILN ROOF
CASE STUDY - STRUCTURAL DESIGN FOR MODERN INSULATOR'S SHUTTLE KILN ROOFCASE STUDY - STRUCTURAL DESIGN FOR MODERN INSULATOR'S SHUTTLE KILN ROOF
CASE STUDY - STRUCTURAL DESIGN FOR MODERN INSULATOR'S SHUTTLE KILN ROOF
ย 
Solutions completo elementos de maquinas de shigley 8th edition
Solutions completo elementos de maquinas de shigley 8th editionSolutions completo elementos de maquinas de shigley 8th edition
Solutions completo elementos de maquinas de shigley 8th edition
ย 
Design of Bioclimatic Structure with Insulation of Cavity Wall
Design of  Bioclimatic Structure with Insulation of Cavity WallDesign of  Bioclimatic Structure with Insulation of Cavity Wall
Design of Bioclimatic Structure with Insulation of Cavity Wall
ย 
Solution manual 17 19
Solution manual 17 19Solution manual 17 19
Solution manual 17 19
ย 
Truss examples
Truss examplesTruss examples
Truss examples
ย 
ME 5720 Fall 2015 - Wind Turbine Project_FINAL
ME 5720 Fall 2015 - Wind Turbine Project_FINALME 5720 Fall 2015 - Wind Turbine Project_FINAL
ME 5720 Fall 2015 - Wind Turbine Project_FINAL
ย 
Solution Manual for Structural Analysis 6th SI by Aslam Kassimali
Solution Manual for Structural Analysis 6th SI by Aslam KassimaliSolution Manual for Structural Analysis 6th SI by Aslam Kassimali
Solution Manual for Structural Analysis 6th SI by Aslam Kassimali
ย 
Problemas de cables
Problemas de cablesProblemas de cables
Problemas de cables
ย 

Similar to Possible solution struct_hub_design assessment

Design and analysis of school building
Design and analysis of school buildingDesign and analysis of school building
Design and analysis of school buildingRaghav Sankar
ย 
Design ppt
Design pptDesign ppt
Design ppttishu001
ย 
Structural building by engineer abdikani farah ahmed(enggalaydh)
Structural building by engineer abdikani farah ahmed(enggalaydh)Structural building by engineer abdikani farah ahmed(enggalaydh)
Structural building by engineer abdikani farah ahmed(enggalaydh)EngGalaydh Farah Axmed
ย 
Worked example extract_flat_slabs
Worked example extract_flat_slabsWorked example extract_flat_slabs
Worked example extract_flat_slabsLuan Truong Van
ย 
1 reinforced concrete lectures-t-beam2
1 reinforced concrete lectures-t-beam21 reinforced concrete lectures-t-beam2
1 reinforced concrete lectures-t-beam2Malika khalil
ย 
Muro contension raul1
Muro contension raul1Muro contension raul1
Muro contension raul1Diego Rodriguez
ย 
Flanged beams design for t beam
Flanged beams   design for t beamFlanged beams   design for t beam
Flanged beams design for t beamSelvakumar Palanisamy
ย 
PLANNING,ANALYSIS,DESIGNING AND ESTIMATION OF CANTILEVER RESIDENTIAL BUILDING
PLANNING,ANALYSIS,DESIGNING AND ESTIMATION OF CANTILEVER RESIDENTIAL BUILDINGPLANNING,ANALYSIS,DESIGNING AND ESTIMATION OF CANTILEVER RESIDENTIAL BUILDING
PLANNING,ANALYSIS,DESIGNING AND ESTIMATION OF CANTILEVER RESIDENTIAL BUILDINGSeranjeevi Seranjeevi
ย 
Worked example extract_flat_slabs
Worked example extract_flat_slabsWorked example extract_flat_slabs
Worked example extract_flat_slabsluantvconst
ย 
Chapter 12
Chapter 12Chapter 12
Chapter 12Afgaab Cumar
ย 
Design of Structures Chapter2.pdf
Design of Structures Chapter2.pdfDesign of Structures Chapter2.pdf
Design of Structures Chapter2.pdfUmarSaba1
ย 
DESIGN OF CIRCULAR OVERHEAD WATER TANK.pptx
DESIGN OF CIRCULAR OVERHEAD WATER TANK.pptxDESIGN OF CIRCULAR OVERHEAD WATER TANK.pptx
DESIGN OF CIRCULAR OVERHEAD WATER TANK.pptxsubhashini214160
ย 
Power screw application
Power screw applicationPower screw application
Power screw applicationalsaid fathy
ย 
Preliminary design of slab
Preliminary design of slabPreliminary design of slab
Preliminary design of slabila vamsi krishna
ย 
steel question.pdf.pdf
steel question.pdf.pdfsteel question.pdf.pdf
steel question.pdf.pdfnabal_iitb
ย 
Design of Structures Chapter2.pptx
Design of Structures Chapter2.pptxDesign of Structures Chapter2.pptx
Design of Structures Chapter2.pptxUmarSaba1
ย 
Diseรฑo de Escalera
Diseรฑo de EscaleraDiseรฑo de Escalera
Diseรฑo de EscaleraJoel Lรณpez
ย 
final internship ppt.pptx
final internship ppt.pptxfinal internship ppt.pptx
final internship ppt.pptxKiranKr32
ย 

Similar to Possible solution struct_hub_design assessment (20)

Design and analysis of school building
Design and analysis of school buildingDesign and analysis of school building
Design and analysis of school building
ย 
RCC BMD
RCC BMDRCC BMD
RCC BMD
ย 
Design ppt
Design pptDesign ppt
Design ppt
ย 
Structural building by engineer abdikani farah ahmed(enggalaydh)
Structural building by engineer abdikani farah ahmed(enggalaydh)Structural building by engineer abdikani farah ahmed(enggalaydh)
Structural building by engineer abdikani farah ahmed(enggalaydh)
ย 
Worked example extract_flat_slabs
Worked example extract_flat_slabsWorked example extract_flat_slabs
Worked example extract_flat_slabs
ย 
1 reinforced concrete lectures-t-beam2
1 reinforced concrete lectures-t-beam21 reinforced concrete lectures-t-beam2
1 reinforced concrete lectures-t-beam2
ย 
Muro contension raul1
Muro contension raul1Muro contension raul1
Muro contension raul1
ย 
Flanged beams design for t beam
Flanged beams   design for t beamFlanged beams   design for t beam
Flanged beams design for t beam
ย 
PLANNING,ANALYSIS,DESIGNING AND ESTIMATION OF CANTILEVER RESIDENTIAL BUILDING
PLANNING,ANALYSIS,DESIGNING AND ESTIMATION OF CANTILEVER RESIDENTIAL BUILDINGPLANNING,ANALYSIS,DESIGNING AND ESTIMATION OF CANTILEVER RESIDENTIAL BUILDING
PLANNING,ANALYSIS,DESIGNING AND ESTIMATION OF CANTILEVER RESIDENTIAL BUILDING
ย 
Worked example extract_flat_slabs
Worked example extract_flat_slabsWorked example extract_flat_slabs
Worked example extract_flat_slabs
ย 
Chapter 12
Chapter 12Chapter 12
Chapter 12
ย 
Design of Structures Chapter2.pdf
Design of Structures Chapter2.pdfDesign of Structures Chapter2.pdf
Design of Structures Chapter2.pdf
ย 
DESIGN OF CIRCULAR OVERHEAD WATER TANK.pptx
DESIGN OF CIRCULAR OVERHEAD WATER TANK.pptxDESIGN OF CIRCULAR OVERHEAD WATER TANK.pptx
DESIGN OF CIRCULAR OVERHEAD WATER TANK.pptx
ย 
Power screw application
Power screw applicationPower screw application
Power screw application
ย 
Preliminary design of slab
Preliminary design of slabPreliminary design of slab
Preliminary design of slab
ย 
steel question.pdf.pdf
steel question.pdf.pdfsteel question.pdf.pdf
steel question.pdf.pdf
ย 
Puentes
PuentesPuentes
Puentes
ย 
Design of Structures Chapter2.pptx
Design of Structures Chapter2.pptxDesign of Structures Chapter2.pptx
Design of Structures Chapter2.pptx
ย 
Diseรฑo de Escalera
Diseรฑo de EscaleraDiseรฑo de Escalera
Diseรฑo de Escalera
ย 
final internship ppt.pptx
final internship ppt.pptxfinal internship ppt.pptx
final internship ppt.pptx
ย 

Recently uploaded

Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...srsj9000
ย 
Analog to Digital and Digital to Analog Converter
Analog to Digital and Digital to Analog ConverterAnalog to Digital and Digital to Analog Converter
Analog to Digital and Digital to Analog ConverterAbhinavSharma374939
ย 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
ย 
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...ranjana rawat
ย 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxupamatechverse
ย 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
ย 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxupamatechverse
ย 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxupamatechverse
ย 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSCAESB
ย 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxAsutosh Ranjan
ย 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130Suhani Kapoor
ย 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
ย 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Dr.Costas Sachpazis
ย 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidNikhilNagaraju
ย 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
ย 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Serviceranjana rawat
ย 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
ย 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escortsranjana rawat
ย 
Model Call Girl in Narela Delhi reach out to us at ๐Ÿ”8264348440๐Ÿ”
Model Call Girl in Narela Delhi reach out to us at ๐Ÿ”8264348440๐Ÿ”Model Call Girl in Narela Delhi reach out to us at ๐Ÿ”8264348440๐Ÿ”
Model Call Girl in Narela Delhi reach out to us at ๐Ÿ”8264348440๐Ÿ”soniya singh
ย 

Recently uploaded (20)

Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
Gfe Mayur Vihar Call Girls Service WhatsApp -> 9999965857 Available 24x7 ^ De...
ย 
Analog to Digital and Digital to Analog Converter
Analog to Digital and Digital to Analog ConverterAnalog to Digital and Digital to Analog Converter
Analog to Digital and Digital to Analog Converter
ย 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
ย 
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
(SHREYA) Chakan Call Girls Just Call 7001035870 [ Cash on Delivery ] Pune Esc...
ย 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptx
ย 
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
Call Girls in Nagpur Suman Call 7001035870 Meet With Nagpur Escorts
ย 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptx
ย 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptx
ย 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentation
ย 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptx
ย 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
ย 
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur EscortsCall Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
Call Girls Service Nagpur Tanvi Call 7001035870 Meet With Nagpur Escorts
ย 
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
Structural Analysis and Design of Foundations: A Comprehensive Handbook for S...
ย 
main PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfidmain PPT.pptx of girls hostel security using rfid
main PPT.pptx of girls hostel security using rfid
ย 
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(ANVI) Koregaon Park Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
ย 
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
(RIA) Call Girls Bhosari ( 7001035870 ) HI-Fi Pune Escorts Service
ย 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
ย 
โ˜… CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
โ˜… CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCRโ˜… CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
โ˜… CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
ย 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
ย 
Model Call Girl in Narela Delhi reach out to us at ๐Ÿ”8264348440๐Ÿ”
Model Call Girl in Narela Delhi reach out to us at ๐Ÿ”8264348440๐Ÿ”Model Call Girl in Narela Delhi reach out to us at ๐Ÿ”8264348440๐Ÿ”
Model Call Girl in Narela Delhi reach out to us at ๐Ÿ”8264348440๐Ÿ”
ย 

Possible solution struct_hub_design assessment

  • 1. StructuresCentre.xyz 1 POSSIBLE SOLUTION TO STRUCT-HUB: DESIGN ASSESSMENT II Omotoriogun Victor Femi Copyright ยฉStructures centre, 2021. All rights reserved 18th February 2021 structurescentre@gmail.com 1.0 DESIGN SOLUTION Preliminary sizing of the structural element has been carried using the guidance provided in: Preliminary sizing of structural elements as well as the guidance provided in the publication by the Concrete Centre- Economic Concrete Frame Elements.
  • 2. StructuresCentre.xyz 2 3.1 Actions 3.1 1 Roof Permanent Actions = 1.5๐‘˜๐‘/๐‘š Variable Actions = 0.6๐‘˜๐‘/๐‘š 3.1.2 Floors Permanent Actions: i. Self weight of slab = 0.20 ร— 25 = 5๐‘˜๐‘/๐‘š (๐ถ๐‘™๐‘Ž๐‘ ๐‘ ๐‘Ÿ๐‘œ๐‘œ๐‘š) = 0.15 ร— 25 = 3.75๐‘˜๐‘/๐‘š (๐‘Š๐‘Ž๐‘™๐‘˜๐‘ค๐‘Ž๐‘ฆ) ii. Finishes & Services = 1.5๐‘˜๐‘/๐‘š iii. Partition Allowances = 1.0๐‘˜๐‘/๐‘š Total Permanent Actions = ๐‘” = 7.5๐‘˜๐‘/๐‘š & 6.25๐‘˜๐‘/๐‘š Variable Actions: i. Floor Imposed Loading (Classroom & Walkways) = ๐‘ž = 3.0๐‘˜๐‘/๐‘š Design Value of Actions: By inspection the permanent actions are less than 4.5 times the variable actions, therefore equation 6.13b of BS EN 1990 will give the most unfavourable results. Roof Design Actions= 1.35๐œ‰๐‘” + 1.5๐‘ž =(1.35 ร— 0.925 ร— 1.5) + (1.5 ร— 0.6) = 2.77๐‘˜๐‘๐‘š Design Permanent Load 1.35๐œ‰๐‘” = 1.35 ร— 0.925 ร— 1.5 = 1.87๐‘˜๐‘/๐‘š Classroom Panels Design Actions= 1.35๐œ‰๐‘” + 1.5๐‘ž =(1.35 ร— 0.925 ร— 7.5) + (1.5 ร— 3) = 13.87๐‘˜๐‘๐‘š Design Permanent Load 1.35๐œ‰๐‘” = 1.35 ร— 0.925 ร— 7.5 = 9.37๐‘˜๐‘/๐‘š Walkway Panels Design Actions= 1.35๐œ‰๐‘” + 1.5๐‘ž =(1.35 ร— 0.925 ร— 6.25) + (1.5 ร— 3) = 12.30๐‘˜๐‘๐‘š
  • 3. StructuresCentre.xyz 3 Design Permanent Load 1.35๐œ‰๐‘” = 1.35 ร— 0.925 ร— 6.25 = 7.80๐‘˜๐‘/๐‘š 3.2 Slab Panels 3.2.1 Classroom Panels ๐ฟ ๐ฟ = 9000 7500 = 1.2 (๐‘‡๐‘ค๐‘œ ๐‘ค๐‘Ž๐‘ฆ ๐‘†๐‘™๐‘Ž๐‘ โˆ’ ๐‘‡๐‘ค๐‘œ ๐ด๐‘‘๐‘—๐‘Ž๐‘๐‘’๐‘›๐‘ก ๐‘†๐‘–๐‘‘๐‘’๐‘  ๐ท๐‘–๐‘ ๐‘๐‘œ๐‘›๐‘ก๐‘–๐‘›๐‘œ๐‘ข๐‘ ) Using coefficients from table for two ways slabs with two adjacent sides discontinuous. Short span coefficients = โˆ’0.064 & 0.047 Long span coefficients = โˆ’0.045 & 0.034 3.2.1.1 Flexural Design Negative Moment at Support (Short Span) ๐‘€ = โˆ’0.064๐‘› , ๐‘™ = โˆ’0.064 ร— 13.87 ร— 7.5 = โˆ’49.93๐‘˜๐‘. ๐‘š/๐‘š Assuming cover to reinforcement of 20mm, 12mm bars d = h โˆ’ c + links + โˆ… = 200 โˆ’ 20 + = 174mm; b = 1000mm k = M bd f = 49.93 ร— 10 1000 ร— 174 ร— 20 = 0.0825 z = d 0.5 + โˆš0.25 โˆ’ 0.882k โ‰ค 0.95d =d 0.5 + 0.25 โˆ’ 0.882(0.0825) โ‰ค 0.95d =0.92d = 0.92 ร— 174 = 160.08mm A = M 0.87f z = 49.93 ร— 10 0.87 ร— 410 ร— 160.08 = 874.42mm /m Try Y12mm bars @ 125mm Centres (As, prov = 904mm2 ) Positive Moment at Midspan (Short Span) ๐‘€ = 0.047๐‘› , ๐‘™ = 0.047 ร— 13.87 ร— 7.5 = 36.67๐‘˜๐‘. ๐‘š/๐‘š Assuming cover to reinforcement of 20mm, 12mm bars
  • 4. StructuresCentre.xyz 4 d = h โˆ’ c + links + โˆ… = 200 โˆ’ 20 + = 174mm; b = 1000mm k = M bd f = 36.67 ร— 10 1000 ร— 174 ร— 20 = 0.0606 z = d 0.5 + โˆš0.25 โˆ’ 0.882k โ‰ค 0.95d =d 0.5 + 0.25 โˆ’ 0.882(0.0606) โ‰ค 0.95d =0.94d = 0.94 ร— 174 = 163.56mm A = M 0.87f z = 36.67 ร— 10 0.87 ร— 410 ร— 163.56 = 628.54mm /m Try Y12mm bars @ 125mm Centres (As, prov = 904mm2 ) Negative Moment at Support (Long Span) ๐‘€ = โˆ’0.045๐‘› , ๐‘™ = โˆ’0.045 ร— 13.87 ร— 7.5 = โˆ’35.11๐‘˜๐‘. ๐‘š/๐‘š Assuming cover to reinforcement of 20mm, 12mm bars d = h โˆ’ c + links + โˆ… + โˆ… = 200 โˆ’ 20 + + 12 = 162mm; b = 1000mm k = M bd f = 35.11 ร— 10 1000 ร— 162 ร— 20 = 0.067 z = d 0.5 + โˆš0.25 โˆ’ 0.882k โ‰ค 0.95d =d 0.5 + 0.25 โˆ’ 0.882(0.067) โ‰ค 0.95d =0.94d = 0.94 ร— 162 = 152.28mm A = M 0.87f z = 35.11 ร— 10 0.87 ร— 410 ร— 152.28 = 646.38mm /m Try Y12mm bars @ 150mm Centres (As, prov = 753mm2 ) Positive Moment at Midspan (Long Span) ๐‘€ = 0.034๐‘› , ๐‘™ = 0.034 ร— 13.87 ร— 7.5 = 26.53๐‘˜๐‘. ๐‘š/๐‘š Assuming cover to reinforcement of 20mm, 12mm bars d = h โˆ’ c + links + โˆ… + โˆ… = 200 โˆ’ 20 + + 12 = 162mm; b = 1000mm
  • 5. StructuresCentre.xyz 5 k = M bd f = 26.53 ร— 10 1000 ร— 162 ร— 20 = 0.051 z = d 0.5 + โˆš0.25 โˆ’ 0.882k โ‰ค 0.95d =d 0.5 + 0.25 โˆ’ 0.882(0.051) โ‰ค 0.95d =0.95d = 0.95 ร— 162 = 153.9mm A = M 0.87f z = 26.53 ร— 10 0.87 ร— 410 ร— 153.9 = 483.28mm /m Try Y12mm bars @ 150mm Centres (As, prov = 753mm2 /m) 3.2.1.2 Deflection Verification Deflection verification can be carried using either of the two alternative method provided in section 7.4 of Eurocode 2 (Part 1). The conservative span-effective method and the rigorous calculation approach which involve using theoretical expression to estimate the actual deflection of the slab. The span-effective method is used here, the rigorous method is not suitable for hand calculations, spreadsheets or finite element softwareโ€™s are required for fast calculations. Basic Requirement: โ‰ฅ = ๐‘ ร— ๐พ ร— ๐น1 ร— ๐น2 ร— ๐น3 ๐œŒ = ๐ด , ๐ด = ๐ด , ๐‘๐‘‘ = 628.54 (1000 ร— 174) = 0.36% ฯ = 10 f = 10 ร— โˆš20 = 0.45% since ฯ < ฯ N = 11 + 1.5 f ฯ ฯ + 3.2 f ฯ ฯ โˆ’ 1 = 11 + 1.5โˆš20 ร— 0.45 0.36 + 3.2โˆš20 0.45 0.36 โˆ’ 1 = 21.20 F1 = 1.0 K = 1.3 (end spans)
  • 6. StructuresCentre.xyz 6 F2 = 7.0 l = 7.0 7.5 = 0.93 F3 = 310 ฯƒ โ‰ค 1.5 ฯƒ = f ฮณ g + ฯ†q n A , A , โˆ™ 1 ฮด = 410 1.15 ร— 7.5 + 0.6(3) 13.87 ร— 628.54 904 = 166.21Mpa F3 = 310 166.21 = 1.87 > 1.5 L d = 21.20 ร— 1.3 ร— 1.0 ร— 0.93 ร— 1.50 = 38.45 L d = span effective depth = 7500 174 = 43.10 Since actual span-effective depth ratio is greater than the limiting span-effective depth ratio. It shows that we might have a deflection problem. Hence, the options available includes, increasing the slab thickness, the concrete class or even the steel bars grade. However, readers are reminded that, the span/effective depth approach is only a fast and conservative method of verifying deflection. In this case the rigorous calculation method was used and the slab found to perform satisfactory with respect to deflection. 3.2.1.3 Detailing Checks. The minimum area of steel required in panel: A , = 0.26 f f ๐‘ d โ‰ฅ 0.0013bd f = 0.30f = 0.3 ร— 20 = 2.21Mpa A , = 0.26 ร— 2.21 410 ร— 1000 ร— 174 โ‰ฅ 0.0013 ร— 1000 ร— 174 = 243.85mm . By observation it is not critical anywhere in slab. Hence adopt all steel bars. 3.2.2 Walkway Panels The walkways panel are one-way slabs which can be idealized as propped cantilevers.
  • 7. StructuresCentre.xyz 7 Moment in Spans ๐‘€ = ๐‘› , ๐‘™ 10 = 12.30 ร— 2.25 10 = 6.23๐‘˜๐‘. ๐‘š/๐‘š Since moment is relatively low. Provide Y12 @ 200mm Centres (As, prov = 565mm2 /m) 3.3 Concrete Beams 3.3.1 Beam C-C (300x750) 3.3.1.1 Actions on Beam Permanent Actions: Span 1 a. Equivalent uniformly distributed load transferred from slab to beam = 2 ร— ๐‘› ๐‘™ 6 3 โˆ’ ๐‘™ ๐‘™ = 2 ร— 7.5 ร— 7.5 6 3 โˆ’ 7.5 9.0 = 43.31kN/m b. self-weight of beam = (0.75 โˆ’ 0.2) ร— 0.3 ร— 25 = 4.125kN/m c. Walls = (3.75 โˆ’ 0.75) ร— 3.5 = 10.5kN/m Permanent Actions G = 43.31 + 4.125 + 10.5 = 57.94kN/m Span 2 a. Equivalent uniformly distributed load transferred from slab to beam = 0kN/m b. self-weight of beam = (0.45 โˆ’ 0.15) ร— 0.3 ร— 25 = 2.25kN/m Permanent Actions G = 2.25kN/m Variable Actions: Span 1 a. Equivalent uniformly distributed load transferred from slab to beam = 2 ร— ๐‘› ๐‘™ 6 3 โˆ’ ๐‘™ ๐‘™ = 2 ร— 3.0 ร— 7.5 6 3 โˆ’ 7.5 9.0 = 17.32kN/m Variable Actions Q = 17.32kN/m Design Value of Actions on Beam
  • 8. StructuresCentre.xyz 8 By inspection the permanent actions are less than 4.5 times the variable actions, therefore equation 6.13b of BS EN 1990 will give the most unfavourable results. Span 1: Design Load = 1.35๐œ‰๐บ + 1.5๐‘„ = (1.35 ร— 0.925 ร— 57.94) + (1.5 ร— 17.32) = ๐Ÿ—๐Ÿ–. ๐Ÿ‘๐’Œ๐‘ต/๐’Ž Design Permanent Load 1.35๐œ‰๐บ = 1.35 ร— 0.925 ร— 57.94 = ๐Ÿ•๐Ÿ. ๐Ÿ’๐’Œ๐‘ต/๐’Ž Span 2: Design Load = 1.35๐œ‰๐บ + 1.5๐‘„ = (1.35 ร— 0.925 ร— 2.25) + (1.5 ร— 0) = ๐Ÿ‘. ๐Ÿ–๐ŸŽ๐’Œ๐‘ต/๐’Ž Design Permanent Load 1.35๐œ‰๐บ = 1.35 ร— 0.925 ร— 2.25 = ๐Ÿ‘. ๐Ÿ–๐ŸŽ๐’Œ๐‘ต/๐’Ž 3.3.1.2 Analysis of Beam Approximate methods of analysis could be used, this requires, the use of simple coefficients reflecting the approximate value of the internal forces within the structural element. However, an analysis of the subframe will be carried out here, with the basic aim of obtaining the loads & moment transferred to the column as well as the internal forces on the beam. Only the shear and bending moment diagrams are presented here. The reader is expected to already have a basic knowledge on analysis of subframes. However, guidance can be obtained from: How to Analyse Element in Frames. The load cases considered are: ๏‚ท All spans loaded with the maximum design loads ๏‚ท Alternate spans loaded with the maximum design load while the other spans are loaded with the design permanent actions
  • 9. StructuresCentre.xyz 9 Figure 1: Subframe C-C Figure 2: Bending Moment Envelope Figure 3: Shear Force Envelope
  • 10. StructuresCentre.xyz 10 3.3.1.3 Flexural Design End Support (3-2) M = 200.6kN. m Assuming cover to reinforcement of 25mm, 25mm tensile bars, 16mm compression bars & 8mm links d = c + links + โˆ… 2 = 25 + 10 + 16 2 = 43๐‘š๐‘š d = h โˆ’ c + links + โˆ… = 450 โˆ’ 25 + 10 + = 402.5mm; b = 300mm k = M bd f = 200.6 ร— 10 300 ร— 402.5 ร— 20 = 0.021 > 0.168 (Section is doubly reinforced) ๐ด = (๐‘˜ โˆ’ ๐‘˜ )๐‘“ ๐‘๐‘‘ 0.87๐‘“ (๐‘‘ โˆ’ ๐‘‘ ) = (0.21 โˆ’ 0.168) ร— 20 ร— 300 ร— 404.5 0.87 ร— 410 ร— (402.5 โˆ’ 43) = 321.54๐‘š๐‘š Try 3Y16mm bars Bottom (As, prov = 602mm2 ). z = d 0.5 + โˆš0.25 โˆ’ 0.882k โ‰ค 0.95d =d 0.5 + 0.25 โˆ’ 0.882(0.21) โ‰ค 0.95d =0.75d = 0.75 ร— 402.5 = 301.88mm A = ๐‘˜๐‘“ ๐‘๐‘‘ 0.87f z + ๐ด = 0.168 ร— 20 ร— 300 ร— 402.5 0.87 ร— 410 ร— 301.88 + 321.54 = 1838.08mm Try 4Y25mm bars Top (As, prov = 1962mm2 ). Interior Support (2-1) M = 531.4kN. m Assuming cover to reinforcement of 25mm, 25mm tensile bars, 16mm compression bars & 8mm links d = c + links + โˆ… 2 = 25 + 10 + 16 2 = 43๐‘š๐‘š d = h โˆ’ c + links + โˆ… = 750 โˆ’ 25 + 10 + = 702.5mm; b = 300mm k = M bd f = 531.4 ร— 10 300 ร— 702.5 ร— 20 = 0.018 > 0.168 (Section is doubly reinforced)
  • 11. StructuresCentre.xyz 11 ๐ด = (๐‘˜ โˆ’ ๐‘˜ )๐‘“ ๐‘๐‘‘ 0.87๐‘“ (๐‘‘ โˆ’ ๐‘‘ ) = (0.18 โˆ’ 0.168) ร— 20 ร— 300 ร— 702.5 0.87 ร— 410 ร— (702.5 โˆ’ 43) = 151.05๐‘š๐‘š Try 3Y16mm bars Bottom (As, prov = 602mm2 ) . z = d 0.5 + โˆš0.25 โˆ’ 0.882k โ‰ค 0.95d =d 0.5 + 0.25 โˆ’ 0.882(0.18) โ‰ค 0.95d =0.80d = 0.80 ร— 702.5 = 562mm A = ๐‘˜๐‘“ ๐‘๐‘‘ 0.87f z + ๐ด = 0.168 ร— 20 ร— 300 ร— 702.5 0.87 ร— 410 ร— 562 + 151.05 = 2632.55mm Try 4Y25mm + 4Y20mm bars Top (As, prov = 3218mm2 ). To be spread across the effective width. b = b + b , + b , โ‰ค b b , = 0.1l = 0.1 ร— 0.15(l + l ) = 0.1 ร— 0.15(2250 + 7500) = 146.25mm b = 300 + 146.25 + 146.25 = 592.5mm Therefore, this reinforcement will be spread across a width of 592.5mm. Span (2-1) M = 524.2kN. m Assuming cover to reinforcement of 25mm, two layers of 25mm tensile bars, 16mm compression bars & 8mm links d = c + links + โˆ… 2 = 25 + 10 + 16 2 = 43๐‘š๐‘š d = h โˆ’ c + links + โˆ… = 750 โˆ’ 25 + 10 + = 677.5mm; b = b = b + b , + b , โ‰ค b b , = b , = 0.2b + 0.1๐‘™ โ‰ค 0.2๐‘™ ๐‘ = 7500 โˆ’ 150 โˆ’ 150 2 = 3600๐‘š๐‘š ๐‘™ = 0.85๐‘™ = 0.85 ร— 9000 = 7650๐‘š๐‘š b , = b , = (0.2 ร— 3600) + (0.1 ร— 7650) โ‰ค (0.2 ร— 7650) = 1485๐‘š๐‘š b = 300 + 1485 + 1485 = 3270mm โ‰ค 3600mm k = M bd f = 524.2 ร— 10 3270 ร— 677.5 ร— 20 = 0.017
  • 12. StructuresCentre.xyz 12 z = d 0.5 + โˆš0.25 โˆ’ 0.882k โ‰ค 0.95d =d 0.5 + 0.25 โˆ’ 0.882(0.017) โ‰ค 0.95d =0.95d = 0.95 ร— 677.5 = 643.63mm We have to verify the position of the neutral axis: x = 2.5(d โˆ’ z) = 2.5(677.5 โˆ’ 643.63) = 84.68mm Therefore x < h = 84.68 < 200 (neutral axis is within the flange) Hence, we can design as a rectangular section. A = M 0.87f z = 524.2 ร— 10 0.87 ร— 410 ร— 643.63 = 2283.27mm Try 5Y25mm bars Bottom in two layers (As, prov = 2452.5mm2 ). End Support (1-2) M = 412.6kN. m Assuming cover to reinforcement of 25mm, 25mm tensile bars, 16mm compression bars & 8mm links d = c + links + โˆ… 2 = 25 + 10 + 16 2 = 43๐‘š๐‘š d = h โˆ’ c + links + โˆ… = 750 โˆ’ 25 + 10 + = 702.5mm; b = 300mm k = M bd f = 412.6 ร— 10 300 ร— 702.5 ร— 20 = 0.14 < 0.168 (Section is singly reinforced) z = d 0.5 + โˆš0.25 โˆ’ 0.882k โ‰ค 0.95d =d 0.5 + 0.25 โˆ’ 0.882(0.14) โ‰ค 0.95d =0.86d = 0.86 ร— 702.5 = 604.15mm A = M 0.87f z = 412.6 ร— 10 0.87 ร— 410 ร— 604.15 = 1914.6mm Try 3Y25mm +3Y20mm bars Top (As, prov = 2413mm2 ). To be spread across the effective width. 3.3.1.4 Shear Design By inspection, the critical section for shear occurs at the interior support 2, hence can be used to conservatively size the shear reinforcement for the whole beam.
  • 13. StructuresCentre.xyz 13 ๐‘‰ = (455.6 โˆ’ 0.6775 ร— 98.3) = 389.0๐‘˜๐‘ ๐‘‰ , = 0.18 ๐›พ ๐‘˜(100๐œŒ ๐‘“ ) ๐‘ ๐‘‘ โ‰ฅ 0.035๐‘˜ ๐‘“ ๐‘ ๐‘‘ ๐‘˜ = 1 + 200 677.5 = 1 + 200 677.5 = 1.54 < 2 ๐ด = 2453๐‘š๐‘š ๐‘ = 300๐‘š๐‘š ๐œŒ = ๐ด ๐‘ ๐‘‘ = 2453 300 ร— 677.5 = 0.012 ๐‘‰ , = 0.18 1.5 ร— 1.54 ร— (100 ร— 0.012 ร— 20) โˆ™ 300 ร— 677.5 โ‰ฅ 0.035 ร— 1.54 ร— โˆš20 ร— 300 ร— 677.5 = 108.34kN Since ๐‘‰ > ๐‘‰ , (389.0๐‘˜๐‘ > 108.34๐‘˜๐‘) therefore shear reinforcement is required. ๐œƒ = 0.5๐‘ ๐‘–๐‘› 5.56๐‘‰ ๐‘ ๐‘‘(1 โˆ’ ๐‘“ 250 )๐‘“ = 0.5๐‘ ๐‘–๐‘› 5.56 ร— 389.0 ร— 10 300 ร— 677.5 1 โˆ’ 20 250 20 = 17.66ยฐ cot ๐œƒ = cot 17.66 = 3.14 > 2.5 Hence take cot ๐œƒ = 2.5 โ‰ฅ where z = 0.9d = 0.9 ร— 677.5 = 609.75mm A S โ‰ฅ 389.0 ร— 10 609.75 ร— 2.5 ร— 410 = 0.62 max spacing = 0.75d = 0.75 ร— 677.5 = 508.13mm ๐ด , ๐‘† = 0.08 ๐‘“ ๐‘ ๐‘“ = 0.08 ร— โˆš20 ร— 300 410 = 0.26 Use Y10 @ 200mm centres (0.78). 3.3.1.5 Deflection Verification Deflection seems not to be critical in this beam, however for the purpose of illustration, the 9.0m span will be verified using the span-effective depth ratios.
  • 14. StructuresCentre.xyz 14 = ๐‘ ร— ๐พ ร— ๐น1 ร— ๐น2 ร— ๐น3 ๐œŒ = ๐ด , ๐ด = ๐ด , ๐‘ ๐‘‘ + (๐‘ โˆ’ ๐‘ )โ„Ž = 2283.27 (300 ร— 677.5) + (3270 โˆ’ 300)200 = 0.29% ฯ = 10 f = 10 ร— โˆš20 = 0.45% since ฯ < ฯ N = 11 + 1.5 f ฯ ฯ + 3.2 f ฯ ฯ โˆ’ 1 = 11 + 1.5โˆš20 ร— 0.45 0.29 + 3.2โˆš30 0.45 0.29 โˆ’ 1 = 29.81 F1 = 0.82 K = 1.3 (end spans) F2 = 7.5 ๐‘™ = 7.5 9.0 = 0.83 F3 = 310 ฯƒ โ‰ค 1.5 ฯƒ = f ฮณ g + ฯ†q n A , A , โˆ™ 1 ฮด = 410 1.15 ร— 57.94 + 0.6(17.32) 98.3 ร— 2283.27 2453 = 230.7Mpa F3 = 310 230.7 = 1.34 L d = 29.81 ร— 1.3 ร— 0.82 ร— 0.83 ร— 1.34 = 35.34 L d = span effective depth = 9000 677.5 = 13.28 Since the limiting span-effective depth ratio is greater than the actual span-effective depth ratio. It therefore follows that deflection has been satisfied in the end spans. 3.3.1.6 Detailing Checks Minimum Area of Steel A , = 0.26 f f ๐‘ d โ‰ฅ 0.0013bd f = 0.30f = 0.3 ร— 20 = 2.21Mpa
  • 15. StructuresCentre.xyz 15 Hogging at Supports A , = 0.26 ร— 2.21 410 ร— 300 ร— 702.5 โ‰ฅ 0.0013 ร— 300 ร— 702.5 = 295.4mm . By observation it is not critical anywhere at the supports. Sagging in Spans A , = 0.26 ร— 2.21 410 ร— 300 ร— 677.5 โ‰ฅ 0.0013 ร— 300 ร— 677.5 = 284.99mm . By observation it is not critical anywhere in the spans. Hence adopt all attempted bars. 3.3.2 Beam 2-2 (225x750) 3.3.2.1 Actions on Beam Permanent Actions: Span 1 & 2 a. Equivalent uniformly distributed load transferred from slab to beam = ๐‘› , ๐‘™ , 3 + ๐‘› , ๐‘™ , 2 = (7.5 ร— 7.5) 3 + (6.25 ร— 2.25) 2 = 25.8kN/m b. self-weight of beam = (0.75 โˆ’ 0.2) ร— 0.225 ร— 25 = 3.1kN/m c. Walls = (3.75 โˆ’ 0.75) ร— 3.5 = 10.5kN/m Permanent Actions G = 25.8 + 3.1 + 10.5 = 39.4kN/m Variable Actions: Span 1 & 2 a. Equivalent uniformly distributed load transferred from slab to beam = ๐‘› , ๐‘™ , 3 + ๐‘› , ๐‘™ , 2 = (3.0 ร— 7.5) 3 + (3.0 ร— 2.25) 2 = 10.88kN/m Variable Actions Q = 10.88kN/m Design Value of Actions on Beam By inspection the permanent actions are less than 4.5 times the variable actions, therefore equation 6.13b of BS EN 1990 will give the most unfavourable results.
  • 16. StructuresCentre.xyz 16 Span 1 & 2: Design Load = 1.35๐œ‰๐บ + 1.5๐‘„ = (1.35 ร— 0.925 ร— 39.4) + (1.5 ร— 10.88) = ๐Ÿ”๐Ÿ“. ๐Ÿ“๐Ÿ๐’Œ๐‘ต/๐’Ž Design Permanent Load 1.35๐œ‰๐บ = 1.35 ร— 0.925 ร— 39.4 = ๐Ÿ’๐Ÿ—. ๐Ÿ๐ŸŽ๐’Œ๐‘ต/๐’Ž 3.3.2.2 Analysis of Beam Coefficients for beam analysis can be used to determine the internal forces in this beam, since the spans are equal and uniformly loaded. However, in-order to determine the column moments, analysis of the entire subframe 2-2 will be carried out The load cases considered are: ๏‚ท All spans loaded with the maximum design loads ๏‚ท Alternate spans loaded with the maximum design load while the other spans are loaded with the design permanent actions Figure 4: Subframe 2-2
  • 17. StructuresCentre.xyz 17 Figure 5: Bending Moment Envelope Figure 6: Shear Force Envelope 3.3.2.3 Flexural Design End Support (A & D) M = 172.5kN. m Assuming cover to reinforcement of 25mm, 20mm tensile bars, 16mm compression bars & 8mm links d = c + links + โˆ… 2 = 25 + 10 + 16 2 = 43๐‘š๐‘š d = h โˆ’ c + links + โˆ… = 750 โˆ’ 25 + 10 + = 705mm; b = 225mm
  • 18. StructuresCentre.xyz 18 k = M bd f = 172.5 ร— 10 225 ร— 705 ร— 20 = 0.078 < 0.168 (Section is singly reinforced) z = d 0.5 + โˆš0.25 โˆ’ 0.882k โ‰ค 0.95d =d 0.5 + 0.25 โˆ’ 0.882(0.078) โ‰ค 0.95d =0.93d = 0.93 ร— 705 = 655.7mm A = M 0.87f z = 172.5 ร— 10 0.87 ร— 410 ร— 655.7 = 737.53mm Try 4Y16mm bars Top (As, prov = 1608mm2 ). Span (2-1) M = 206.0kN. m Assuming cover to reinforcement of 25mm, 20mm tensile bars, 16mm compression bars & 8mm links d = c + links + โˆ… 2 = 25 + 10 + 16 2 = 43๐‘š๐‘š d = h โˆ’ c + links + โˆ… = 750 โˆ’ 25 + 10 + = 705mm; b = b = b + b , + b , โ‰ค b b , = 0.2๐‘ + 0.1๐‘™ , โ‰ค 0.2๐‘™ , ๐‘ = 9000 โˆ’ 112.5 โˆ’ 112.5 2 = 4387.5๐‘š๐‘š ๐‘™ , = 0.85๐‘™ = 0.85 ร— 7500 = 6375๐‘š๐‘š b , = (0.2 ร— 4387.5) + (0.1 ร— 6375) โ‰ค (0.2 ร— 6375) = 1275๐‘š๐‘š b , = 0.2๐‘ + 0.1๐‘™ , โ‰ค 0.2๐‘™ , ๐‘ = 2250 โˆ’ 112.5 โˆ’ 112.5 2 = 1012.5๐‘š๐‘š ๐‘™ , = 0.85๐‘™ = 0.85 ร— 7500 = 6375๐‘š๐‘š b , = (0.2 ร— 1012.5) + (0.1 ร— 6375) โ‰ค (0.2 ร— 6375) = 840๐‘š๐‘š b = 225 + 1275 + 840 = 2340mm โ‰ค 4387.5mm
  • 19. StructuresCentre.xyz 19 k = M bd f = 206 ร— 10 2340 ร— 705 ร— 20 = 0.009 z = d 0.5 + โˆš0.25 โˆ’ 0.882k โ‰ค 0.95d =d 0.5 + 0.25 โˆ’ 0.882(0.009) โ‰ค 0.95d =0.95d = 0.95 ร— 705 = 669.75mm We have to verify the position of the neutral axis: x = 2.5(d โˆ’ z) = 2.5(705 โˆ’ 669.75) = 88.13mm Therefore x < h = 88.13 < 200 (neutral axis is within the flange) Hence, we can design as a rectangular section. A = M 0.87f z = 206 ร— 10 0.87 ร— 410 ร— 669.75 = 862.3mm Try 3Y20mm bars Bottom in two layers (As, prov = 942mm2 ). Interior Support (C) M = 373.1kN. m Assuming cover to reinforcement of 25mm, two layers of 20mm tensile bars, 16mm compression bars & 8mm links d = c + links + โˆ… 2 = 25 + 10 + 16 2 = 43๐‘š๐‘š d = h โˆ’ c + links + โˆ… = 750 โˆ’ 25 + 10 + = 705mm; b = 225mm k = M bd f = 373.1 ร— 10 225 ร— 685 ร— 20 = 0.167 < 0.168 (Section is singly reinforced) z = d 0.5 + โˆš0.25 โˆ’ 0.882k โ‰ค 0.95d =d 0.5 + 0.25 โˆ’ 0.882(0.167) โ‰ค 0.95d =0.82d = 0.82 ร— 705 = 578.1mm A = M 0.87f z = 373.1 ร— 10 0.87 ร— 410 ร— 578.1 = 1809.3mm Try 6Y20mm bars Top (As, prov = 1884mm2 ) Spread across effective width of the beam.
  • 20. StructuresCentre.xyz 20 3.3.2.4 Shear Design By inspection, the critical section for shear occurs at the interior support C, hence can be used to conservatively size the shear reinforcement for the whole beam. ๐‘‰ = (273.5 โˆ’ 0.705 ร— 65.52) = 227.3๐‘˜๐‘ ๐‘‰ , = 0.18 ๐›พ ๐‘˜(100๐œŒ ๐‘“ ) ๐‘ ๐‘‘ โ‰ฅ 0.035๐‘˜ ๐‘“ ๐‘ ๐‘‘ ๐‘˜ = 1 + 200 705 = 1 + 200 705 = 1.53 < 2 ๐ด = 942๐‘š๐‘š ๐‘ = 225๐‘š๐‘š ๐œŒ = ๐ด ๐‘ ๐‘‘ = 942 225 ร— 705 = 0.0059 ๐‘‰ , = 0.18 1.5 ร— 1.53 ร— (100 ร— 0.0059 ร— 20) โˆ™ 225 ร— 705 โ‰ฅ 0.035 ร— 1.53 ร— โˆš20 ร— 225 ร— 705 = 66.3kN Since ๐‘‰ > ๐‘‰ , (389.0๐‘˜๐‘ > 66.3๐‘˜๐‘) therefore shear reinforcement is required. ๐œƒ = 0.5๐‘ ๐‘–๐‘› 5.56๐‘‰ ๐‘ ๐‘‘(1 โˆ’ ๐‘“ 250 )๐‘“ = 0.5๐‘ ๐‘–๐‘› 5.56 ร— 227.3 ร— 10 225 ร— 705 1 โˆ’ 20 250 20 = 12.8ยฐ cot ๐œƒ = cot 12.8 = 4.40 > 2.5 Hence take cot ๐œƒ = 2.5 โ‰ฅ where z = 0.9d = 0.9 ร— 705 = 634.5mm A S โ‰ฅ 227.3 ร— 10 634.5 ร— 2.5 ร— 410 = 0.34 max spacing = 0.75d = 0.75 ร— 705 = 528.75mm ๐ด , ๐‘† = 0.08 ๐‘“ ๐‘ ๐‘“ = 0.08 ร— โˆš20 ร— 225 410 = 0.26 Use Y10 @ 200mm centres (0.78).
  • 21. StructuresCentre.xyz 21 3.3.2.5 Deflection Verification = ๐‘ ร— ๐พ ร— ๐น1 ร— ๐น2 ร— ๐น3 ๐œŒ = ๐ด , ๐ด = ๐ด , ๐‘ ๐‘‘ + (๐‘ โˆ’ ๐‘ )โ„Ž = 862.3 (225 ร— 705) + (2270 โˆ’ 225)200 = 0.15% ฯ = 10 f = 10 ร— โˆš20 = 0.45% since ฯ < ฯ N = 11 + 1.5 f ฯ ฯ + 3.2 f ฯ ฯ โˆ’ 1 = 11 + 1.5โˆš20 ร— 0.45 0.15 + 3.2โˆš20 0.45 0.15 โˆ’ 1 = 63.1 F1 = 0.82 K = 1.3 (end spans) F2 = 1.0 F3 = 310 ฯƒ โ‰ค 1.5 ฯƒ = f ฮณ g + ฯ†q n A , A , โˆ™ 1 ฮด = 410 1.15 ร— 39.4 + 0.6(10.88) 65.52 ร— 862.3 942 = 228.8Mpa F3 = 310 228.8 = 1.35 L d = 63.1 ร— 1.3 ร— 0.82 ร— 1.0 ร— 1.35 = 90.81 L d = span effective depth = 7500 705 = 10.64 Since the limiting span-effective depth ratio is greater than the actual span-effective depth ratio. It therefore follows that deflection has been satisfied. 3.3.2.6 Detailing Checks Minimum Area of Steel A , = 0.2687 f f ๐‘ d โ‰ฅ 0.0013bd f = 0.30f = 0.3 ร— 20 = 2.21Mpa
  • 22. StructuresCentre.xyz 22 Hogging at Supports & Sagging in Spans A , = 0.26 ร— 2.21 410 ร— 225 ร— 705 โ‰ฅ 0.0013 ร— 300 ร— 702.5 = 222.3mm . By observation it is not critical anywhere at the supports. Hence adopt all attempted bars. 3.4 Concrete Columns 3.4.1 Column C2 3.4.1.1 Actions on Column Roof Permanent Action: a. Roof Load = ๐‘” , ร— ๐ด๐‘Ÿ๐‘’๐‘Ž = 1.5 ร— . ร—( . . ) = 63.28๐‘˜๐‘ b. Beam self weight = 3.2 ร— . . . . = 42๐‘˜๐‘ c. Column Weight = (0.4 ร— 0.4 ร— 3.3) ร— 25 = 13.2๐‘˜๐‘ ๐‘ฎ๐’Œ,๐’“๐’๐’๐’‡ = ๐Ÿ”๐Ÿ‘. ๐Ÿ”๐’Œ๐‘ต Variable Actions: a. Roof Load = ๐‘” , ร— ๐ด๐‘Ÿ๐‘’๐‘Ž = 0.6 ร— . ร—( . . ) = 25.3๐‘˜๐‘ ๐‘ธ๐’Œ,๐’“๐’๐’๐’‡ = ๐Ÿ๐Ÿ“. ๐Ÿ‘๐’Œ๐‘ต Floors Permanent Action: a. Roof Load = ๐‘” , ร— ๐ด๐‘Ÿ๐‘’๐‘Ž = 7.5 ร— . ร— + 6.25 ร— . ร— . = 305.86๐‘˜๐‘ b. Beam self weight = 3.2 ร— . . . . = 42๐‘˜๐‘ c. Walls = 10.5 ร— . . . . = 137.81๐‘˜๐‘ d. Column Weight = (0.4 ร— 0.4 ร— 3.0) ร— 25 = 12๐‘˜๐‘ ๐‘ฎ๐’Œ,๐’‡๐’๐’๐’๐’“๐’” = ๐Ÿ’๐Ÿ—๐Ÿ•. ๐Ÿ•๐’Œ๐‘ต Variable Actions: a. Roof Load = ๐‘” , ร— ๐ด๐‘Ÿ๐‘’๐‘Ž = 3.0 ร— . ร—( . . ) = 126.6๐‘˜๐‘
  • 23. StructuresCentre.xyz 23 ๐‘ธ๐’Œ,๐’“๐’๐’๐’‡ = ๐Ÿ๐Ÿ๐Ÿ”. ๐Ÿ”๐’Œ๐‘ต Imposed Reduction Factors ฮฑ = 1 โˆ’ = 1 โˆ’ ( . ร— ) = 0.83 โ‰ฅ 0.75 ; ๐›ผ = 0.83 (same for all floors) ฮฑ = 1 โˆ’ 0 10 = 1 โˆ’ 0 10 = 1.0 for 3rd โˆ’ Roof ฮฑ = 1 โˆ’ 1 10 = 1 โˆ’ 1 10 = 0.9 for 2nd โˆ’ 3rd floor ฮฑ = 1 โˆ’ 2 10 = 1 โˆ’ 2 10 = 0.8 for 1st โˆ’ 2nd floor ฮฑ = 1 โˆ’ 3 10 = 1 โˆ’ 3 10 = 0.7 for Ground โˆ’ 1st floor Table 1: Load Take Down for Column C2 Floors ๐›ผ ๐›ผ ๐บ (kN) ๐บ (kN) . ๐‘„ (kN) ๐‘„ (kN) . ๐‘„ (kN) . 3rd -Roof 0.83 1.0 63.6 63.6 25.3 25.3 21.0 2nd โ€“ 3rd Floor 0.83 0.9 497.7 561.3 126.6 151.9 126.1 1st โ€“ 2nd Floor 0.83 0.8 497.7 1059 126.6 278.5 222.8 G โ€“ 1st Floor 0.83 0.7 497.7 1556.7 126.6 405.1 283.57 The bending moment on the column is obtained from the analysis of the subframes 2-2 and C-C. The roof subframe have not been analysed, the roof moments are also determined through a similar process applied at the floors. Table 2: Bending Moments on Column C2 Floor ๐‘€ , ๐‘€ , ๐‘€ , ๐‘€ , 3rd -Roof -21.5 165.4 -5.7 18.3 2nd -3rd Floor -165.4 165.4 -18.3 18.3 1st -2nd Floor -165.4 165.4 -18.3 18.3 G-1st Floor -165.4 82.7 -18.3 9.2
  • 24. StructuresCentre.xyz 24 3.4.1.1 Column Design The column has been sized to be โ€œstockyโ€ hence slenderness need not to be verified. 3rd Floor - Roof Design Axial Action By inspection the permanent actions are less than 4.5 times the variable actions, therefore equation 6.13b of BS EN 1990 will give the most unfavourable results. ๐‘ = 1.35๐œ‰๐บ + 1.5๐‘„ = 1.35(0.925 ร— 63.6) + (1.5 ร— 21) = ๐Ÿ๐Ÿ๐ŸŽ. ๐Ÿ—๐’Œ๐‘ต Design Moments Y-Y Direction ๐‘€ , = ๐‘š๐‘Ž๐‘ฅ|๐‘€ ; ๐‘€ | ๐‘€ , = ๐‘š๐‘Ž๐‘ฅ ๐‘€ ; ๐‘€ + ๐‘’ ๐‘ = 165.4 + 0.75 ร— 3750 400 ร— 110.9 โˆ™ 10 = 166.2๐‘˜๐‘. ๐‘š ๐‘€ , = ๐‘ ๐‘’ ; ๐‘’ = = โ‰ฅ 20 = 20๐‘š๐‘š ๐‘€ , = (110.9 ร— 20) โˆ™ 10 = 2.2๐‘˜๐‘. ๐‘š M , = max|166.2 ; 2.2| = ๐Ÿ๐Ÿ”๐Ÿ”. ๐Ÿ๐ค๐. ๐ฆ Z-Z Direction ๐‘€ , = ๐‘š๐‘Ž๐‘ฅ|๐‘€ ; ๐‘€ | ๐‘€ , = ๐‘š๐‘Ž๐‘ฅ ๐‘€ ; ๐‘€ + ๐‘’ ๐‘ = 18.3 + 0.75 ร— 3750 400 ร— 110.9 โˆ™ 10 = 19.1๐‘˜๐‘. ๐‘š ๐‘€ , = ๐‘ ๐‘’ ; ๐‘’ = = โ‰ฅ 20 = 20๐‘š๐‘š ๐‘€ , = (110.9 ร— 20) โˆ™ 10 = 2.2๐‘˜๐‘. ๐‘š M , = max|19.1 ; 2.2| = ๐Ÿ๐Ÿ—. ๐Ÿ๐ค๐. ๐ฆ Having obtained our design moments, the column is designed in the most critical direction (y-y axis) and we then conclude by checking out biaxial bending.
  • 25. StructuresCentre.xyz 25 Design Using Chart ๐‘‘ = โ„Ž โˆ’ ๐‘ + โˆ… 2 + ๐‘™๐‘–๐‘›๐‘˜๐‘  = 400 โˆ’ 25 + 20 2 + 8 = 357๐‘š๐‘š ๐‘‘ โ„Ž = 357 400 = 0.89 ; ๐‘ˆ๐‘ ๐‘’ ๐‘โ„Ž๐‘Ž๐‘Ÿ๐‘ก ๐‘“๐‘œ๐‘Ÿ 0.85 ๐‘ ๐‘โ„Ž๐‘“ = 110.9 ร— 10 (400 ร— 400) ร— 20 = 0.03; ๐‘€ ๐‘โ„Ž๐‘“ = 166.2 ร— 10 (400 ร— 400 ) ร— 20 = 0.13 ๐ด ๐‘“ ๐‘โ„Ž๐‘“ = 0.35 ๐ด = 0.35 ๐‘โ„Ž๐‘“ ๐‘“ 0.35 ร— (400 ร— 400) ร— 20 410 = ๐Ÿ๐Ÿ•๐Ÿ๐Ÿ‘. ๐Ÿ•๐’Ž๐’Ž๐Ÿ Try 10Y20mm Bars (As.prov = 3140mm2 ) ๐ด , = 0.1 ๐‘ 0.87๐‘“ โ‰ฅ 0.002๐ด = 0.1 ร— 110.9 ร— 10 0.87 ร— 410 โ‰ฅ 0.002(400 ร— 400) = 320๐‘š๐‘š ๐ด , = 0.04๐ด = 0.04 ร— (400 ร— 400) = 6400๐‘š๐‘š ๐ด , < ๐ด < ๐ด , = (320๐‘š๐‘š < 2723.7๐‘š๐‘š < 6400๐‘š๐‘š ) O.K Use 10Y20 bars ๐‘จ๐’”,๐’‘๐’“๐’ (๐Ÿ‘๐Ÿ๐Ÿ’๐ŸŽ๐’Ž๐’Ž๐Ÿ ) โ€“ Containment Links Link diameter = ๐‘š๐‘Ž๐‘ฅ 6 ; โˆ… = ๐‘š๐‘Ž๐‘ฅ 6 ; ; ๐‘ˆ๐‘ ๐‘’ 8๐‘š๐‘š Link spacing = ๐‘š๐‘–๐‘›{20โˆ… ; ๐‘ ; 400๐‘š๐‘š} = min 0.6 ร— {20 ร— 20 ; 400 ; 400๐‘š๐‘š} = 240mm Use 2T8 links at 200mm centre. By inspection, biaxial bending is not critical for this column stack, hence the check can be ignored. 2nd - 3rd Floor Design Axial Action By inspection the permanent actions are less than 4.5 times the variable actions, therefore equation 6.13b of BS EN 1990 will give the most unfavourable results.
  • 26. StructuresCentre.xyz 26 ๐‘ = 1.35๐œ‰๐บ + 1.5๐‘„ = 1.35(0.925 ร— 561.3) + (1.5 ร— 126.1) = ๐Ÿ–๐Ÿ—๐Ÿ๐’Œ๐‘ต Design Moments Y-Y Direction ๐‘€ , = ๐‘š๐‘Ž๐‘ฅ|๐‘€ ; ๐‘€ | ๐‘€ , = ๐‘š๐‘Ž๐‘ฅ ๐‘€ ; ๐‘€ + ๐‘’ ๐‘ = 165.4 + 0.75 ร— 3750 400 ร— 891 โˆ™ 10 = 171.7๐‘˜๐‘. ๐‘š ๐‘€ , = ๐‘ ๐‘’ ; ๐‘’ = = โ‰ฅ 20 = 20๐‘š๐‘š ๐‘€ , = (891 ร— 20) โˆ™ 10 = 17.82๐‘˜๐‘. ๐‘š M , = max|171.7 ; 17.82| = ๐Ÿ๐Ÿ•๐Ÿ. ๐Ÿ•๐ค๐. ๐ฆ Z-Z Direction ๐‘€ , = ๐‘š๐‘Ž๐‘ฅ|๐‘€ ; ๐‘€ | ๐‘€ , = ๐‘š๐‘Ž๐‘ฅ ๐‘€ ; ๐‘€ + ๐‘’ ๐‘ = 18.3 + 0.75 ร— 3750 400 ร— 891 โˆ™ 10 = 24.6๐‘˜๐‘. ๐‘š ๐‘€ , = ๐‘ ๐‘’ ; ๐‘’ = = โ‰ฅ 20 = 20๐‘š๐‘š ๐‘€ , = (891 ร— 20) โˆ™ 10 = 17.82๐‘˜๐‘. ๐‘š M , = max|24.6 ; 17.82| = ๐Ÿ๐Ÿ—. ๐Ÿ๐ค๐. ๐ฆ The column is designed in the most critical direction (y-y axis) and we then conclude by checking out biaxial bending. Design Using Chart ๐‘‘ = โ„Ž โˆ’ ๐‘ + โˆ… 2 + ๐‘™๐‘–๐‘›๐‘˜๐‘  = 400 โˆ’ 25 + 25 2 + 8 = 354.5๐‘š๐‘š ๐‘‘ โ„Ž = 354.5 400 = 0.89 ; ๐‘ˆ๐‘ ๐‘’ ๐‘โ„Ž๐‘Ž๐‘Ÿ๐‘ก ๐‘“๐‘œ๐‘Ÿ 0.85 ๐‘ ๐‘โ„Ž๐‘“ = 891 ร— 10 (400 ร— 400) ร— 20 = 0.3; ๐‘€ ๐‘โ„Ž๐‘“ = 171.7 ร— 10 (400 ร— 400 ) ร— 20 = 0.13 ๐ด ๐‘“ ๐‘โ„Ž๐‘“ = 0.20 ๐ด = 0.20 ๐‘โ„Ž๐‘“ ๐‘“
  • 27. StructuresCentre.xyz 27 0.20 ร— (400 ร— 400) ร— 20 410 = ๐Ÿ๐Ÿ“๐Ÿ”๐Ÿ๐’Ž๐’Ž๐Ÿ Try 10Y20mm Bars (As.prov = 3140mm2 ) ๐ด , = 0.1 ๐‘ 0.87๐‘“ โ‰ฅ 0.002๐ด = 0.1 ร— 891 ร— 10 0.87 ร— 410 โ‰ฅ 0.002(400 ร— 400) = 320๐‘š๐‘š ๐ด , = 0.04๐ด = 0.04 ร— (400 ร— 400) = 6400๐‘š๐‘š ๐ด , < ๐ด < ๐ด , = (320๐‘š๐‘š < 1561๐‘š๐‘š < 6400๐‘š๐‘š ) O.K Use 10Y20 bars ๐‘จ๐’”,๐’‘๐’“๐’ = (๐Ÿ‘๐Ÿ๐Ÿ’๐ŸŽ๐’Ž๐’Ž๐Ÿ ) โ€“ Containment Links Link diameter = ๐‘š๐‘Ž๐‘ฅ 6 ; โˆ… = ๐‘š๐‘Ž๐‘ฅ 6 ; ; ๐‘ˆ๐‘ ๐‘’ 8๐‘š๐‘š Link spacing = ๐‘š๐‘–๐‘›{20โˆ… ; ๐‘ ; 400๐‘š๐‘š} = min 0.6 ร— {20 ร— 20 ; 400 ; 400๐‘š๐‘š} = 240mm Use 2T8 links at 200mm centre. By inspection, biaxial bending is not critical for this column stack, hence the check can be ignored. 1st - 2nd Floor Design Axial Action By inspection the permanent actions are greater than 4.5 times the variable actions, therefore equation 6.13a of BS EN 1990 will give the most unfavourable results. ๐‘ = 1.35๐บ + 1.5๐œ“๐‘„ = 1.35(1059) + (1.5 ร— 0.7 ร— 126.1) = ๐Ÿ๐Ÿ“๐Ÿ”๐Ÿ. ๐Ÿ๐’Œ๐‘ต Design Moments Y-Y Direction ๐‘€ , = ๐‘š๐‘Ž๐‘ฅ|๐‘€ ; ๐‘€ | ๐‘€ , = ๐‘š๐‘Ž๐‘ฅ ๐‘€ ; ๐‘€ + ๐‘’ ๐‘ = 165.4 + 0.75 ร— 3750 400 ร— 1562.1 โˆ™ 10 = 176.4๐‘˜๐‘. ๐‘š ๐‘€ , = ๐‘ ๐‘’ ; ๐‘’ = = โ‰ฅ 20 = 20๐‘š๐‘š ๐‘€ , = (1562.1 ร— 20) โˆ™ 10 = 31.2๐‘˜๐‘. ๐‘š
  • 28. StructuresCentre.xyz 28 M , = max|176.4 ; 31.2| = ๐Ÿ๐Ÿ•๐Ÿ”. ๐Ÿ’๐ค๐. ๐ฆ Z-Z Direction ๐‘€ , = ๐‘š๐‘Ž๐‘ฅ|๐‘€ ; ๐‘€ | ๐‘€ , = ๐‘š๐‘Ž๐‘ฅ ๐‘€ ; ๐‘€ + ๐‘’ ๐‘ = 18.3 + 0.75 ร— 3750 400 ร— 1562.1 โˆ™ 10 = 29.3๐‘˜๐‘. ๐‘š ๐‘€ , = ๐‘ ๐‘’ ; ๐‘’ = = โ‰ฅ 20 = 20๐‘š๐‘š ๐‘€ , = (1562.1 ร— 20) โˆ™ 10 = 31.2๐‘˜๐‘. ๐‘š M , = max|29.3 ; 31.2| = ๐Ÿ‘๐Ÿ. ๐Ÿ๐ค๐. ๐ฆ The column is designed in the most critical direction (y-y axis) and we then conclude by checking out biaxial bending. Design Using Chart ๐‘‘ = โ„Ž โˆ’ ๐‘ + โˆ… 2 + ๐‘™๐‘–๐‘›๐‘˜๐‘  = 400 โˆ’ 25 + 25 2 + 8 = 354.5๐‘š๐‘š ๐‘‘ โ„Ž = 354.5 400 = 0.89 ; ๐‘ˆ๐‘ ๐‘’ ๐‘โ„Ž๐‘Ž๐‘Ÿ๐‘ก ๐‘“๐‘œ๐‘Ÿ 0.85 ๐‘ ๐‘โ„Ž๐‘“ = 1562.1 ร— 10 (400 ร— 400) ร— 20 = 0.49; ๐‘€ ๐‘โ„Ž๐‘“ = 176.4 ร— 10 (400 ร— 400 ) ร— 20 = 0.14 ๐ด ๐‘“ ๐‘โ„Ž๐‘“ = 0.40 ๐ด = 0.40 ๐‘โ„Ž๐‘“ ๐‘“ 0.40 ร— (400 ร— 400) ร— 20 410 = ๐Ÿ‘๐Ÿ๐Ÿ๐Ÿ๐’Ž๐’Ž๐Ÿ Try 12Y20mm Bars (As.prov = 3768mm2 ) ๐ด , = 0.1 ๐‘ 0.87๐‘“ โ‰ฅ 0.002๐ด = 0.1 ร— 1562.1 ร— 10 0.87 ร— 410 โ‰ฅ 0.002(400 ร— 400) = 438๐‘š๐‘š ๐ด , = 0.04๐ด = 0.04 ร— (400 ร— 400) = 6400๐‘š๐‘š ๐ด , < ๐ด < ๐ด , = (438๐‘š๐‘š < 3122๐‘š๐‘š < 6400๐‘š๐‘š ) O.K Use 12Y20 bars ๐‘จ๐’”,๐’‘๐’“๐’ = (๐Ÿ‘๐Ÿ•๐Ÿ–๐Ÿ–๐’Ž๐’Ž๐Ÿ )
  • 29. StructuresCentre.xyz 29 โ€“ Containment Links Link diameter = ๐‘š๐‘Ž๐‘ฅ 6 ; โˆ… = ๐‘š๐‘Ž๐‘ฅ 6 ; ; ๐‘ˆ๐‘ ๐‘’ 8๐‘š๐‘š Link spacing = ๐‘š๐‘–๐‘›{20โˆ… ; ๐‘ ; 400๐‘š๐‘š} = min 0.6 ร— {20 ร— 20 ; 400 ; 400๐‘š๐‘š} = 240mm Use 2T8 links at 200mm centre. By inspection, biaxial bending is not critical for this column stack, hence the check can be ignored. Ground โ€“ 1st Floor Design Axial Action By inspection the permanent actions are greater than 4.5 times the variable actions, therefore equation 6.13a of BS EN 1990 will give the most unfavourable results. ๐‘ = 1.35๐บ + 1.5๐œ“๐‘„ = 1.35(1556.7) + (1.5 ร— 0.7 ร— 283.57) = ๐Ÿ๐Ÿ‘๐Ÿ—๐Ÿ—. ๐Ÿ‘๐’Œ๐‘ต Design Moments Y-Y Direction ๐‘€ , = ๐‘š๐‘Ž๐‘ฅ|๐‘€ ; ๐‘€ | ๐‘€ , = ๐‘š๐‘Ž๐‘ฅ ๐‘€ ; ๐‘€ + ๐‘’ ๐‘ = 165.4 + 0.75 ร— 3750 400 ร— 2399.3 โˆ™ 10 = 182.3๐‘˜๐‘. ๐‘š ๐‘€ , = ๐‘ ๐‘’ ; ๐‘’ = = โ‰ฅ 20 = 20๐‘š๐‘š ๐‘€ , = (2399.3 ร— 20) โˆ™ 10 = 47.99๐‘˜๐‘. ๐‘š M , = max|182.3 ; 47.99| = ๐Ÿ๐Ÿ–๐Ÿ. ๐Ÿ‘๐ค๐. ๐ฆ Z-Z Direction ๐‘€ , = ๐‘š๐‘Ž๐‘ฅ|๐‘€ ; ๐‘€ | ๐‘€ , = ๐‘š๐‘Ž๐‘ฅ ๐‘€ ; ๐‘€ + ๐‘’ ๐‘ = 18.3 + 0.75 ร— 3750 400 ร— 2399.3 โˆ™ 10 = 35.17๐‘˜๐‘. ๐‘š ๐‘€ , = ๐‘ ๐‘’ ; ๐‘’ = = โ‰ฅ 20 = 20๐‘š๐‘š ๐‘€ , = (2399.3 ร— 20) โˆ™ 10 = 47.99๐‘˜๐‘. ๐‘š
  • 30. StructuresCentre.xyz 30 M , = max|35.17 ; 47.99| = ๐Ÿ’๐Ÿ•. ๐Ÿ—๐Ÿ—๐ค๐. ๐ฆ The column is designed in the most critical direction (y-y axis) and we then conclude by checking out biaxial bending. Design Using Chart ๐‘‘ = โ„Ž โˆ’ ๐‘ + โˆ… 2 + ๐‘™๐‘–๐‘›๐‘˜๐‘  = 400 โˆ’ 25 + 25 2 + 8 = 354.5๐‘š๐‘š ๐‘‘ โ„Ž = 354.5 400 = 0.89 ; ๐‘ˆ๐‘ ๐‘’ ๐‘โ„Ž๐‘Ž๐‘Ÿ๐‘ก ๐‘“๐‘œ๐‘Ÿ 0.85 ๐‘ ๐‘โ„Ž๐‘“ = 2399.3 ร— 10 (400 ร— 400) ร— 20 = 0.75; ๐‘€ ๐‘โ„Ž๐‘“ = 182.3 ร— 10 (400 ร— 400 ) ร— 20 = 0.142 ๐ด ๐‘“ ๐‘โ„Ž๐‘“ = 0.65 ๐ด = 0.65 ๐‘โ„Ž๐‘“ ๐‘“ 0.65 ร— (400 ร— 400) ร— 20 410 = ๐Ÿ“๐ŸŽ๐Ÿ•๐Ÿ‘. ๐Ÿ๐’Ž๐’Ž๐Ÿ Try 12Y25mm Bars (As.prov = 5886mm2 ) ๐ด , = 0.1 ๐‘ 0.87๐‘“ โ‰ฅ 0.002๐ด = 0.1 ร— 2339.3 ร— 10 0.87 ร— 410 โ‰ฅ 0.002(400 ร— 400) = 438๐‘š๐‘š ๐ด , = 0.04๐ด = 0.04 ร— (400 ร— 400) = 6400๐‘š๐‘š ๐ด , < ๐ด < ๐ด , = (655.8๐‘š๐‘š < 5073.2๐‘š๐‘š < 6400๐‘š๐‘š ) O.K Use 12Y25 bars ๐‘จ๐’”,๐’‘๐’“๐’ = (๐Ÿ“๐Ÿ–๐Ÿ–๐Ÿ”๐’Ž๐’Ž๐Ÿ ) โ€“ Containment Links Link diameter = ๐‘š๐‘Ž๐‘ฅ 6 ; โˆ… = ๐‘š๐‘Ž๐‘ฅ 6 ; ; ๐‘ˆ๐‘ ๐‘’ 8๐‘š๐‘š Link spacing = ๐‘š๐‘–๐‘›{20โˆ… ; ๐‘ ; 400๐‘š๐‘š} = min 0.6 ร— {20 ร— 25 ; 400 ; 400๐‘š๐‘š} = 240mm Use 2T8 links at 200mm centre. By inspection, biaxial bending is not critical for this column stack, hence the check can be ignored.
  • 31. StructuresCentre.xyz 31 3.5 Pad Foundation to Column C2 3.5.1 Serviceability Limit State ๐บ = 1556.7๐‘˜๐‘ ๐‘„ = 283.57๐‘˜๐‘ ๐‘ = 1.0๐บ + 1.0๐‘„ = 1556.7 + 283.57 = 1840.3๐‘˜N Assume 10% increase in axial actions to actions to account for footing self weight ๐‘‡๐‘œ๐‘ก๐‘Ž๐‘™ ๐‘™๐‘œ๐‘Ž๐‘‘ = (1 + 0.1) ร— 1840.3 = 2024.3๐‘˜๐‘ ๐ด๐‘Ÿ๐‘’๐‘Ž ๐‘Ÿ๐‘’๐‘ž๐‘ข๐‘–๐‘Ÿ๐‘’๐‘‘ = ๐‘‡๐‘œ๐‘ก๐‘Ž๐‘™ ๐‘™๐‘œ๐‘Ž๐‘‘ ๐‘๐‘’๐‘Ž๐‘Ÿ๐‘–๐‘›๐‘” ๐‘Ÿ๐‘’๐‘ ๐‘–๐‘ ๐‘ก๐‘Ž๐‘›๐‘๐‘’ = 2024.3 150 = 13.5๐‘š Assume a square base: length = breadth โˆš13.5 = 3.67๐‘š Provide a Base of 3.7m ร— 3.7m (say 0.6m deep) ๐ด๐‘Ÿ๐‘’๐‘Ž ๐‘๐‘Ÿ๐‘œ๐‘ฃ๐‘–๐‘‘๐‘’๐‘‘ = 13.69๐‘š 3.5.1 Ultimate Limit State N = 1.35G + 1.5Q = (1.35 ร— 1556.7) + (1.5 ร— 283.57) = 2527kN bearing pressure = Design axial action Area provided = N A = 2527 (3.7 ร— 3.7) = 184.6kN/m Punching check at Column face Assume cover to reinforcement is 50mm and reinforcement of 16mm d = h โˆ’ c + ฯ• 2 = 600 โˆ’ 50 + 16 2 = 542mm Verify that N โ‰ค V , ๐‘‰ , = 0.2 1 โˆ’ ๐‘“ 250 ๐‘“ ๐‘ ๐‘‘ = 0.2 1 โˆ’ 20 250 20 ร— (4 ร— 400) ร— 542 ร— 10 = 3191.3๐‘˜๐‘ Thus (๐‘ = 2527๐‘˜๐‘) < ๐‘‰ , = (3191.3kN) O. K Flexural Design ๐‘™๐‘’๐‘ฃ๐‘’๐‘Ÿ ๐‘Ž๐‘Ÿ๐‘š @ ๐‘“๐‘Ž๐‘๐‘’ ๐‘œ๐‘“ ๐‘๐‘œ๐‘™๐‘ข๐‘š๐‘› = (3.7 โˆ’ 0.40) 2 = 1.65๐‘š ๐‘€ = ๐‘๐‘™ 2 = 184.6 ร— 1.65 2 = 162.0๐‘˜๐‘. ๐‘š/m ๐‘˜ = ๐‘€ ๐‘๐‘‘ ๐‘“ = 162 ร— 10 10 ร— 542 ร— 20 = 0.028 < 0.168 ๐‘ง = ๐‘‘ 0.5 + โˆš0.25 โˆ’ 0.882๐‘˜ โ‰ค 0.95๐‘‘
  • 32. StructuresCentre.xyz 32 = 0.95๐‘‘ = 0.95 ร— 542 = 514.9๐‘š๐‘š ๐ด = ๐‘€ 0.87๐‘“ ๐‘ง = 162 ร— 10 0.87 ร— 410 ร— 514.9 = 882.04๐‘š๐‘š /m ๐‘‡๐‘Ÿ๐‘ฆ ๐‘Œ16 โˆ’ 150 ๐‘๐‘’๐‘›๐‘ก๐‘Ÿ๐‘’๐‘  ๐‘๐‘œ๐‘กโ„Ž ๐‘ค๐‘Ž๐‘ฆ๐‘  ๐ด , = 1340๐‘š๐‘š /๐‘š Punching Shear at Basic Control Perimeter 2.0d from column face ๐‘‰ = ๐‘ โˆ’ โˆ†๐‘‰ โˆ†๐‘‰ = ๐‘A ๐ด = ๐‘ ๐‘ + ๐œ‹(2๐‘‘) + 4(๐‘ + ๐‘ )๐‘‘ = 400 + ๐œ‹(2 ร— 542) + 4(400 + 400)542 = 5.6๐‘š ๐‘ = 2(๐‘ + ๐‘ ) + 4๐œ‹๐‘‘ = 2(400 + 400) + 4๐œ‹(542) = 8414๐‘š๐‘š ๐‘‰ = 2527 โˆ’ 184.6(5.6) = 1493๐‘˜๐‘ ๐‘ฃ = ๐‘‰ ๐‘ ๐‘‘ = 1493 ร— 10 8414 ร— 542 = 0.33๐‘€๐‘๐‘Ž ๐‘ฃ , = 0.12๐‘˜(100๐œŒ๐‘“ ) / โ‰ฅ 0.035๐‘˜ / ๐‘“ ๐œŒ = = ร— = 0.0025 ; ๐‘˜ = 1 + = 1 + = 1.61 < 2 ๐‘ฃ , = 0.12 ร— 1.61(100 ร— 0.0025 ร— 20) / โ‰ฅ 0.035 ร— 1.61 โˆš20 = 0.33๐‘€๐‘๐‘Ž ๐‘†๐‘–๐‘›๐‘๐‘’ (๐‘ฃ = 0.33๐‘€๐‘๐‘Ž) โ‰ค (๐‘ฃ , = 0.33๐‘€๐‘๐‘Ž) ๐ถ๐‘Ÿ๐‘–๐‘ก๐‘–๐‘๐‘Ž๐‘™ ๐‘๐‘ข๐‘ก ๐‘‚. ๐‘˜. Transverse shear: Taken at 1.0d from the face of the column ๐‘‰ = ๐‘(1.325 โˆ’ 1.0d) = 184.6 ร— (1.65 โˆ’ 0.542) = 204.6๐‘˜๐‘/๐‘š ๐‘ฃ = ๐‘‰ ๐‘๐‘‘ = 204.6 ร— 10 1000 ร— 542 = 0.38 ๐‘ฃ , = 0.33๐‘€๐‘๐‘Ž (as before) (๐‘ฃ = 0.36๐‘€๐‘๐‘Ž) = (๐‘ฃ , = 0.36๐‘€๐‘๐‘Ž) ๐‘๐‘œ๐‘ก ๐‘‚. ๐พ. Since the base is barely passing in punching and failing in transverse shear, the base thickness can be increased to 650mm. Verify Minimum Area of Steel ๐ด , = 0.078๐‘“ / ๐‘“ ๐‘ d โ‰ฅ 0.0013๐‘ ๐‘‘
  • 33. StructuresCentre.xyz 33 ๐ด , = 0.078(20) / 410 ร— 1000 ร— 542 โ‰ฅ 0.0013 ร— 1000 ร— 542 = 876.5๐‘š๐‘š < 1340๐‘š๐‘š o. k Use 24T16-150 both ways 3.6 Design Summary Figure 7: Slab Reinforcement Summary
  • 34. StructuresCentre.xyz 34 Figure 8: Summary of Reinforcement in Beam C-C Figure 9: Summary of Reinforcement in Beam 2-2
  • 35. StructuresCentre.xyz 35 Figure 10: Summary of Reinforcement in Column C2 Figure 11: Summary of Pad Base to Column C2