SlideShare a Scribd company logo
1 of 179
Download to read offline
Ref. Calculation Output
1.0 Analysis and Designof Beam
Chac.Variable Action, QK =3.0 kN/m2
Weight of Concrete = 25kN/m3
Action on Slab
Self-weight = 0.15Γ—25kN/m3 = 3.75kN/m2
Finishes, ceiling and services = 1.5kN/m2
Brick wall = 2.6kN/m2
Chac. Permanent Action, GK = 7.85kN/m2
Ref. Calculation Output
Distribution of Actions from Slabs
Slab1 :
𝐼 𝑦
𝐼π‘₯
= 4.675π‘š
2.699π‘š
= 1.732 Λ‚ 2.0
Slab 2 :
𝐼 𝑦
𝐼π‘₯
= 3.802π‘š
3.475π‘š
= 1.094Λ‚ 2.0
Slab 3 :
𝐼 𝑦
𝐼π‘₯
= 5.698π‘š
2.939π‘š
= 1.94Λ‚ 2.0
Action from Slab
Slab1 w1GK1 = 0.26Γ—7.85kN/m2Γ—0.803m = 1.639kN/m
w1QK1 = 0.26Γ—3.0kN/m2Γ—0.803m = 0.626kN/m
w2GK2 = 0.40Γ—7.85kN/m2Γ—1.896m = 5.953kN/m
w2QK2 = 0.40 Γ—3.0kN/m2Γ—1.896m = 2.275kN/m
Slab2 w3GK3 = 0.36Γ—7.85kN/m2Γ—2.939m = 8.306kN/m
w3QK3 = 0.36Γ—3.00kN/m2Γ—2.939m = 3.174kN/m
Two
Way
Slab
Ref. Calculation Output
Action on Beam
Beam Self-weight = 0.20m Γ— (0.5-0.15)m Γ— 25 kN/m3
= 1.75kN/m
Span A – B
Permanent Action, GK
= 6.6825kN/m + kN/m + 1.75kN/m
= 14.5892kN/m
Variable Action, QK
= 2.4300kN/m + 1.7843kN/m = 4.2143N/m
Span B – C
Permanent Action, GK
= 6.1256kN/m + 8.4923kN/m + 3.00kN/m
= 17.6179kN/m
Variable Action, QK
= 2.2275kN/m + 3.0881kN/m = 5.3156kN/m
Ref. Calculation Output
Span C – D
Permanent Action, GK
= 7.9819kN/m + 6.2370kN/m + 3.00kN/m
= 17.2189kN/m
Variable Action, QK
= 2.9025kN/m + 2.2680kN/m = 5.1705kN/m
Span D – E
Permanent Action, GK
= 4.6963kN/m + 7.4003kN/m + 3.00kN/m
= 15.0966kN/m
Variable Action, QK
= 1.7078kN/m + 2.6910kN/m = 4.3988kN/m
Span E – F
Permanent Action, GK
= 5.9214kN/m + 6.4598kN/m + 3.00kN/m
= 15.3812kN/m
Variable Action, QK
= 2.1533kN/m + 2.3490kN/m = 4.5023kN/m
Span F – G
Permanent Action, GK
= 4.9005kN/m + 5.3460kN/m + 3.00kN/m
= 13.2465kN/m
Variable Action, QK
= 1.782kN/m + 1.9440kN/m = 3.7260kN/m
Ref. Calculation Output
Span G – H
Permanent Action, GK
= 8.1675kN/m + 9.9000kN/m + 3.00kN/m
= 21.0675kN/m
Variable Action, QK
= 2.9700kN/m + 3.6000kN/m = 6.5700kN/m
Ref. Calculation Output
6.1 Load Distribution of Beam
Case 1: Maximum Loading
FEM
FEMAB = -FEMBA = βˆ’
𝑀𝐿2
12
= βˆ’
[1.35 (14.5892 π‘˜π‘ π‘šβ„ )+1.50(4.2143π‘˜π‘ π‘šβ„ )](2.2875π‘š)2
12
= -11.3448 kNm
FEMBC = -FEMCB = βˆ’
𝑀𝐿2
12
= βˆ’
[1.35 (17.6179 π‘˜π‘ π‘šβ„ )+1.50(5.3156π‘˜π‘ π‘šβ„ )](2.2875π‘š)2
12
= -13.8480 kNm
FEMCD = -FEMDC = βˆ’
𝑀𝐿2
12
= βˆ’
[1.35 (17.2189 π‘˜π‘ π‘šβ„ )+1.50(5.1705π‘˜π‘ π‘šβ„ )](3.225π‘š)2
12
= -26.8694 kNm
FEMDE = -FEMED = βˆ’
𝑀𝐿2
12
= βˆ’
[1.35 (15.0966 π‘˜π‘ π‘šβ„ )+1.50(4.3988 π‘˜π‘ π‘šβ„ )](1.725π‘š)2
12
= -6.6899 kNm
FEMEF = -FEMFE = βˆ’
𝑀𝐿2
12
= βˆ’
[1.35 (15.3812 π‘˜π‘ π‘šβ„ )+1.50(4.5023π‘˜π‘ π‘šβ„ )](2.175π‘š)2
12
= -10.8481 kNm
FEMFG = -FEMGF = βˆ’
𝑀𝐿2
12
= βˆ’
[1.35 (13.2465 π‘˜π‘ π‘šβ„ )+1.50(3.7260π‘˜π‘ π‘šβ„ )](1.8π‘š)2
12
= -6.3374 kNm
FEMGH = -FEMHG = βˆ’
𝑀𝐿2
12
= βˆ’
[1.35 (21.0675 π‘˜π‘ π‘šβ„ )+1.50(6.5700π‘˜π‘ π‘šβ„ )](3.0π‘š)2
12
= -28.7221 kNm
Moment Distribution
Mem AB BA BC CB CD DC DE ED EF FE FG GF GH HG
CF 0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0
DF 1 0.5 0.5 0.585 0.415 0.3485 0.6515 0.5577 0.4423 0.4528 0.5472 0.625 0.375 1
FEM -11.3448 11.3448 -13.8480 13.8480 -26.8694 26.8694 -6.6899 6.6899 -10.8481 10.8481 -6.3374 6.3374 -28.7221 28.7221
Dist 11.3448 1.2516 1.2516 7.6175 5.4039 -7.0326 -13.1470 2.3191 1.8392 -2.0425 -2.4683 13.9904 8.3943 -28.7221
Co 0.6258 0 3.8087 0.6258 -3.5163 2.7019 1.1595 -6.5735 -1.0212 0.9196 6.9952 -1.2341 0 4.1971
Dist -0.6258 -1.9044 -1.9044 1.6909 1.1995 -1.3457 -2.5157 4.2356 3.3591 -3.5838 -4.3310 0.7713 0.4628 -4.1971
Co -0.9522 0 0.8455 -0.9522 -0.6729 0.5998 2.1178 -1.2579 -1.7919 1.6796 0.3857 -2.1655 0 0.2314
Dist 0.9522 -0.4227 -0.4227 0.9507 0.6744 -0.9471 -1.7705 1.7009 1.3489 -0.9351 -1.1301 1.3534 0.8121 -0.2314
Co -0.2114 0 0.4753 -0.2114 -0.4735 0.3372 0.8504 -0.8852 -0.4676 0.6745 0.6767 -0.5651 0 0.4060
Dist 0.2114 -0.2377 -0.2377 0.4007 0.2842 -0.4139 -0.7737 0.7545 0.5984 -0.6118 -0.7394 0.3532 0.2119 -0.4060
Co -0.1188 0 0.2003 -0.1188 -0.2069 0.1421 0.3772 -0.3869 -0.3059 0.2992 0.1766 -0.3697 0 0.1059
Dist 0.1188 -0.1002 -0.1002 0.1906 0.1352 -0.1810 -0.3384 0.3864 0.3064 -0.2154 -0.2603 0.2311 0.1386 -0.1059
Co -0.0501 0 0.0953 -0.0501 -0.0905 0.0676 0.1932 -0.1692 -0.1077 0.1532 0.1155 -0.1302 0 0.0693
Dist 0.0501 -0.0476 -0.0476 0.0822 0.0583 -0.0909 -0.1699 0.1544 0.1225 -0.1217 -0.1471 0.0814 0.0488 -0.0693
0 9.8838 -9.8838 24.0739 -24.0739 20.7069 -20.7069 6.9680 -6.9680 7.0638 -7.0638 18.6536 -18.6536 0
Ref. Calculation Output
Uniform Distribution Loading
Loading at Span A – B = [1.35(14.5892kN/m) + 1.50(4.2143kN/m)]
= 26.0169kN/m
Loading at Span B – C = [1.35(17.6179kN/m) + 1.50(5.3156kN/m)]
= 31.7575 kN/m
Loading at Span C – D = [1.35(17.2189kN/m) + 1.50(5.1705kN/m)]
= 31.0013 kN/m
Loading at Span D – E = [1.35(15.0966kN/m) + 1.50(4.3988kN/m)]
= 26.9786 kN/m
Loading at Span E – F = [1.35(15.3812kN/m) + 1.50(4.5023kN/m)]
= 26.9786 kN/m
Loading at Span E – F = [1.35(15.3812kN/m) + 1.50(4.5023kN/m)]
= 27.5181 kN/m
Loading at Span F – G = [1.35(13.2465kN/m) + 1.50(3.7260kN/m)]
= 23.4718 kN/m
Loading at Span G – H = [1.35(21.0675kN/m) + 1.50(6.5700kN/m)]
= 38.2961 kN/m
Ref. Calculation Output
Span A – B
+↻ βˆ‘ 𝑀 𝐡 = 0
= 2.2875π‘š 𝑅 𝐴 βˆ’ (26.0169 π‘˜π‘ π‘šβ„ )(2.2875π‘š)(
2.2875π‘š
2
) βˆ’
0π‘˜π‘π‘š + 9.8838π‘˜π‘π‘š
RA = 25.436kN
↑ βˆ‘ 𝐹𝑦 = ↓ βˆ‘ 𝐹𝑦
RA - RB1 = 26.0169kN/m (2.2875m)
RB1 = 34.078kN
β†’ βˆ‘ 𝐻𝐴 = ← βˆ‘ 𝐻 𝐡1
= 0
Ref. Calculation Output
Span B – C
+↻ βˆ‘ 𝑀 𝐢 = 0
= 2.2875π‘šπ‘… 𝐡2 βˆ’
(31.7575 π‘˜π‘ π‘šβ„ )(2.2875π‘š)(
2.2875π‘š
2
) βˆ’
9.8838π‘˜π‘π‘š + 24.0739π‘˜π‘π‘š
RB2 = 30.119kN
↑ βˆ‘ 𝐹𝑦 = ↓ βˆ‘ 𝐹𝑦
RB2 + RC1 = 31.7575 kN/m (2.2875m)
RC1 = 42.526kN
β†’ βˆ‘ 𝐻 𝐡2 = ← βˆ‘ 𝐻 𝐢1
= 0
Ref. Calculation Output
Span C – D
+↻ βˆ‘ 𝑀 𝐷 = 0
= 3.225π‘šπ‘… 𝐢2 βˆ’ (31.0013 π‘˜π‘ π‘šβ„ )(3.225π‘š)(
3.225π‘š
2
) βˆ’
24.0739π‘˜π‘π‘š + 20.7069π‘˜π‘π‘š
RC2 = 51.034kN
↑ βˆ‘ 𝐹𝑦 = ↓ βˆ‘ 𝐹𝑦
RC2 + RD1 = 31.0013kN/m (3.225m)
RD1 = 48.945kN
β†’ βˆ‘ 𝐻 𝐢2 = ← βˆ‘ 𝐻 𝐷1
= 0
Ref. Calculation Output
Span D - E
+↻ βˆ‘ 𝑀 𝐸 = 0
= 1.725π‘šπ‘… 𝐷2 βˆ’ (26.9786 π‘˜π‘ π‘šβ„ )(1.725π‘š)(
1.725π‘š
2
) βˆ’
20.7069π‘˜π‘π‘š + 6.9680π‘˜π‘π‘š
RD2 = 31.234kN
↑ βˆ‘ 𝐹𝑦 = ↓ βˆ‘ 𝐹𝑦
RD2 + RE1 = 26.9786 kN/m (1.725m)
RE1 = 15.304kN
β†’ βˆ‘ 𝐻 𝐷2 = ← βˆ‘ 𝐻 𝐸1
= 0
Ref. Calculation Output
Span E – F
+↻ βˆ‘ 𝑀 𝐸 = 0
= 2.175π‘šπ‘… 𝐸2 βˆ’ (27.5181 π‘˜π‘ π‘šβ„ )(2.175π‘š)(
2.175π‘š
2
) βˆ’
6.9680π‘˜π‘π‘š + 7.0638π‘˜π‘π‘š
RE2 = 29.882kN
↑ βˆ‘ 𝐹𝑦 = ↓ βˆ‘ 𝐹𝑦
RE2 + RF1 = 27.5181kN/m (2.175m)
RF1 = 29.970kN
β†’ βˆ‘ 𝐻 𝐸2 = ← βˆ‘ 𝐻 𝐹1
= 0
Ref. Calculation Output
Span F – G
+↻ βˆ‘ 𝑀 𝐹 = 0
= 1.8π‘šπ‘… 𝐹2 βˆ’ (23.4718π‘˜π‘ π‘šβ„ )(1.8π‘š)(
1.8π‘š
2
) βˆ’
7.0638π‘˜π‘π‘š + 18.6536π‘˜π‘π‘š
RF2 = 14.686kN
↑ βˆ‘ 𝐹𝑦 = ↓ βˆ‘ 𝐹𝑦
RF2 + RG1 = 23.4718kN/m (1.8m)
RG1 = 27.563kN
β†’ βˆ‘ 𝐻 𝐹2 = ← βˆ‘ 𝐻 𝐺1
= 0
Ref. Calculation Output
Span G – H
+↻ βˆ‘ 𝑀 𝐺 = 0
= 3.0π‘šπ‘… 𝐺2 βˆ’ (38.2961 π‘˜π‘ π‘šβ„ )(3.0π‘š)(
3.0π‘š
2
) βˆ’
18.6536π‘˜π‘π‘š + 0π‘˜π‘π‘š
RG2 = 63.662kN
↑ βˆ‘ 𝐹𝑦 = ↓ βˆ‘ 𝐹𝑦
RG2 + RH = 38.2961kN/m (3.0m)
RH = 1.226kN
β†’ βˆ‘ 𝐻 𝐺2 = ← βˆ‘ 𝐻 𝐻
= 0
Ref. Calculation Output
Summary
At point A,𝑅 𝐴 = 25.436π‘˜π‘
β†Ί 𝑀𝐴 = 0π‘˜π‘π‘š
At point B,𝑅 𝐡 = 64.197π‘˜π‘
β†Ί 𝑀 𝐡 = βˆ’9.884π‘˜π‘π‘š
↻ 𝑀 𝐡 = +9.884π‘˜π‘π‘š
At point C,𝑅 𝐢 = 93.560π‘˜π‘
β†Ί 𝑀𝑐 = βˆ’24.074π‘˜π‘π‘š
↻ 𝑀𝑐 = +24.074π‘˜π‘π‘š
At point D,𝑅 𝐷 = 80.179π‘˜π‘
β†Ί 𝑀 𝐷 = βˆ’20.707π‘˜π‘π‘š
↻ 𝑀 𝐷 = +20.707π‘˜π‘π‘š
At point E,𝑅 𝐸 = 45.186π‘˜π‘
β†Ί 𝑀 𝐸 = βˆ’6.968π‘π‘š
↻ 𝑀 𝐸 = +6.968π‘π‘š
At point F,𝑅 𝐹 = 44.656π‘˜π‘
β†Ί 𝑀 𝐹 = βˆ’7.064π‘˜π‘π‘š
↻ 𝑀 𝐹 = +7.064π‘˜π‘π‘š
At point G,𝑅 𝐺 = 91.225π‘˜π‘
β†Ί 𝑀 𝐺 = βˆ’18.654π‘˜π‘π‘š
↻ 𝑀 𝐺 = +18.654π‘˜π‘π‘š
At point H,𝑅 𝐻 = 51.226π‘˜π‘
↻ 𝑀 𝐻 = 0π‘˜π‘π‘š
Ref. Calculation Output
6.2 Load Distribution of Beam
Case 2: Alternative Loading
FEM
FEMAB = -FEMBA = βˆ’
𝑀𝐿2
12
= βˆ’
[1.35 (14.5892 π‘˜π‘ π‘šβ„ )+1.50(4.2143π‘˜π‘ π‘šβ„ )](2.2875π‘š)2
12
= -11.3448 kNm
FEMBC = -FEMCB = βˆ’
𝑀𝐿2
12
= βˆ’
[1.35 (17.6179 π‘˜π‘ π‘šβ„ )](2.2875π‘š)2
12
= -10.3712 kNm
FEMCD = -FEMDC = βˆ’
𝑀𝐿2
12
= βˆ’
[1.35 (17.2189 π‘˜π‘ π‘šβ„ )+1.50(5.1705π‘˜π‘ π‘šβ„ )](3.225π‘š)2
12
= -26.8694 kNm
FEMDE = -FEMED = βˆ’
𝑀𝐿2
12
= =βˆ’
[1.35(15.0966 π‘˜π‘ π‘šβ„ )](1.725π‘š)2
12
= -5.0537 kNm
FEMEF = -FEMFE = βˆ’
𝑀𝐿2
12
= βˆ’
[1.35 (15.3812 π‘˜π‘ π‘šβ„ )+1.50(4.5023π‘˜π‘ π‘šβ„ )](2.175π‘š)2
12
= -10.8481 kNm
FEMFG = -FEMGF = βˆ’
𝑀𝐿2
12
= βˆ’
[1.35 (13.2465 π‘˜π‘ π‘šβ„ )](1.8π‘š)2
12
= -4.8283 kNm
FEMGH = -FEMHG = βˆ’
𝑀𝐿2
12
= βˆ’
[1.35 (21.0675 π‘˜π‘ π‘šβ„ )+1.50(6.5700π‘˜π‘ π‘šβ„ )](3.0π‘š)2
12
= -28.7221 kNm
Moment Distribution
Mem AB BA BC CB CD DC DE ED EF FE FG GF GH HG
CF 0.000 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.000
DF 1.000 0.500 0.500 0.585 0.415 0.349 0.652 0.558 0.442 0.453 0.547 0.625 0.375 1.000
FEM -11.3448 11.3448 -10.3712 10.3712 -26.8694 26.8694 -5.0537 5.0537 -10.8481 10.8481 -4.8283 4.8283 -28.7221 28.7221
Dist 11.3448 -0.4868 -0.4868 9.6514 6.8467 -7.6028 -14.2129 3.2316 2.5629 -2.7258 -3.2940 14.9336 8.9602 -28.7221
Co -0.2434 0.0000 4.8257 -0.2434 -3.8014 3.4234 1.6158 -7.1065 -1.3629 1.2814 7.4668 -1.6470 0.0000 4.4801
Dist 0.2434 -2.4129 -2.4129 2.3662 1.6786 -1.7561 -3.2830 4.7233 3.7460 -3.9612 -4.7870 1.0294 0.6176 -4.4801
Co -1.2064 0.0000 1.1831 -1.2064 -0.8781 0.8393 2.3617 -1.6415 -1.9806 1.8730 0.5147 -2.3935 0.0000 0.3088
Dist 1.2064 -0.5915 -0.5915 1.2194 0.8651 -1.1155 -2.0854 2.0200 1.6021 -1.0811 -1.3065 1.4959 0.8976 -0.3088
Co -0.2958 0.0000 0.6097 -0.2958 -0.5578 0.4325 1.0100 -1.0427 -0.5406 0.8010 0.7480 -0.6533 0.0000 0.4488
Dist 0.2958 -0.3049 -0.3049 0.4993 0.3542 -0.5027 -0.9398 0.8830 0.7003 -0.7014 -0.8476 0.4083 0.2450 -0.4488
Co -0.1524 0.0000 0.2497 -0.1524 -0.2514 0.1771 0.4415 -0.4699 -0.3507 0.3501 0.2041 -0.4238 0.0000 0.1225
Dist 0.1524 -0.1248 -0.1248 0.2362 0.1676 -0.2156 -0.4030 0.4577 0.3630 -0.2510 -0.3033 0.2649 0.1589 -0.1225
Co -0.0624 0.0000 0.1181 -0.0624 -0.1078 0.0838 0.2288 -0.2015 -0.1255 0.1815 0.1324 -0.1517 0.0000 0.0795
Dist 0.0624 -0.0591 -0.0591 0.0996 0.0706 -0.1089 -0.2037 0.1824 0.1446 -0.1421 -0.1718 0.0948 0.0569 -0.0795
0.0000 7.3648 -7.3648 22.4829 -22.4829 20.5238 -20.5238 6.0896 -6.0896 6.4726 -6.4726 17.7860 -17.7860 0.0000
Ref. Calculation Output
Uniform Distribution Loading
Loading at Span A – B = [1.35(14.5892kN/m) + 1.50(4.2143kN/m)]
= 26.0169kN/m
Loading at Span B – C = [1.35(17.6179kN/m)]
= 23.7842kN/m
Loading at Span C – D = [1.35(17.2189kN/m) + 1.50(5.1705kN/m)]
= 31.0013 kN/m
Loading at Span D – E = [1.35(15.0966kN/m)]
= 20.3804kN/m
Loading at Span E – F = [1.35(15.3812kN/m) + 1.50(4.5023kN/m)]
= 26.9786 kN/m
Loading at Span E – F = [1.35(15.3812kN/m) + 1.50(4.5023kN/m)]
= 27.5181 kN/m
Loading at Span F – G = [1.35(13.2465kN/m)]
= 17.8828kN/m
Loading at Span G – H = [1.35(21.0675kN/m) + 1.50(6.5700kN/m)]
= 38.2961 kN/m
Ref. Calculation Output
Span A – B
+↻ βˆ‘ 𝑀 𝐡 = 0
= 2.2875π‘š 𝑅 𝐴 βˆ’ (26.0169 π‘˜π‘ π‘šβ„ )(2.2875π‘š)(
2.2875π‘š
2
) +
7.3648π‘˜π‘π‘š
RA = 26.537kN
↑ βˆ‘ 𝐹𝑦 = ↓ βˆ‘ 𝐹𝑦
RA - RB1 = 26.0169kN/m (2.2875m)
RB1 = 32.976kN
β†’ βˆ‘ 𝐻𝐴 = ← βˆ‘ 𝐻 𝐡1
= 0
Ref. Calculation Output
Span B – C
+↻ βˆ‘ 𝑀 𝐢 = 0
= 2.2875π‘šπ‘… 𝐡2 βˆ’
(23.7842π‘˜π‘ π‘šβ„ )(2.2875π‘š)(
2.2875π‘š
2
) βˆ’ 7.3648π‘˜π‘π‘š +
22.4829π‘˜π‘π‘š
RB2 = 20.594kN
↑ βˆ‘ 𝐹𝑦 = ↓ βˆ‘ 𝐹𝑦
RB2 + RC1 = 23.7842kN/m (2.2875m)
RC1 = 33.812kN
β†’ βˆ‘ 𝐻 𝐡2 = ← βˆ‘ 𝐻 𝐢1
= 0
Ref. Calculation Output
Span C – D
+↻ βˆ‘ 𝑀 𝐷 = 0
= 3.225π‘šπ‘… 𝐢2 βˆ’ (31.0013 π‘˜π‘ π‘šβ„ )(3.225π‘š)(
3.225π‘š
2
) βˆ’
22.4829π‘˜π‘π‘š + 20.5238π‘˜π‘π‘š
RC2 = 50.597kN
↑ βˆ‘ 𝐹𝑦 = ↓ βˆ‘ 𝐹𝑦
RC2 + RD1 = 31.0013kN/m (3.225m)
RD1 = 49.382kN
β†’ βˆ‘ 𝐻 𝐢2 = ← βˆ‘ 𝐻 𝐷1
= 0
Ref. Calculation Output
Span D - E
+↻ βˆ‘ 𝑀 𝐸 = 0
= 1.725π‘šπ‘… 𝐷2 βˆ’ (20.3804 π‘˜π‘ π‘šβ„ )(1.725π‘š)(
1.725π‘š
2
) βˆ’
20.5238π‘˜π‘π‘š + 6.0896π‘˜π‘π‘š
RD2 = 25.946kN
↑ βˆ‘ 𝐹𝑦 = ↓ βˆ‘ 𝐹𝑦
RD2 + RE1 = 20.3804kN/m (1.725m)
RE1 = 9.210kN
β†’ βˆ‘ 𝐻 𝐷2 = ← βˆ‘ 𝐻 𝐸1
= 0
Ref. Calculation Output
Span E – F
+↻ βˆ‘ 𝑀 𝐸 = 0
= 2.175π‘šπ‘… 𝐸2 βˆ’ (27.5181 π‘˜π‘ π‘šβ„ )(2.175π‘š)(
2.175π‘š
2
) βˆ’
6.0896π‘˜π‘π‘š + 6.4726π‘˜π‘π‘š
RE2 = 9.750kN
↑ βˆ‘ 𝐹𝑦 = ↓ βˆ‘ 𝐹𝑦
RE2 + RF1 = 27.5181kN/m (2.175m)
RF1 = 30.102kN
β†’ βˆ‘ 𝐻 𝐸2 = ← βˆ‘ 𝐻 𝐹1
= 0
Ref. Calculation Output
Span F – G
+↻ βˆ‘ 𝑀 𝐹 = 0
= 1.8π‘šπ‘… 𝐹2 βˆ’ (17.8828π‘˜π‘ π‘šβ„ )(1.8π‘š)(
1.8π‘š
2
) βˆ’
6.4726π‘˜π‘π‘š + 17.7860π‘˜π‘π‘š
RF2 = 9.809kN
↑ βˆ‘ 𝐹𝑦 = ↓ βˆ‘ 𝐹𝑦
RF2 + RG1 = 17.8828kN/m (1.8m)
RG1 = 22.380kN
β†’ βˆ‘ 𝐻 𝐹2 = ← βˆ‘ 𝐻 𝐺1
= 0
Ref. Calculation Output
Span G – H
+↻ βˆ‘ 𝑀 𝐺 = 0
= 3.0π‘šπ‘… 𝐺2 βˆ’ (38.2961 π‘˜π‘ π‘šβ„ )(3.0π‘š)(
3.0π‘š
2
) βˆ’
17.7860π‘˜π‘π‘š
RG2 = 63.373kN
↑ βˆ‘ 𝐹𝑦 = ↓ βˆ‘ 𝐹𝑦
RG2 + RH = 38.2961kN/m (3.0m)
RH = 51.516kN
β†’ βˆ‘ 𝐻 𝐺2 = ← βˆ‘ 𝐻 𝐻
= 0
Ref. Calculation Output
Summary
At point A,𝑅 𝐴 = 26.537π‘˜π‘
β†Ί 𝑀𝐴 = 0π‘˜π‘π‘š
At point B,𝑅 𝐡 = 53.571π‘˜π‘
β†Ί 𝑀 𝐡 = βˆ’7.365π‘˜π‘π‘š
↻ 𝑀 𝐡 = +7.365π‘˜π‘π‘š
At point C,𝑅 𝐢 = 84.409π‘˜π‘
β†Ί 𝑀𝑐 = βˆ’22.483π‘˜π‘π‘š
↻ 𝑀𝑐 = +22.483π‘˜π‘π‘š
At point D,𝑅 𝐷 = 75.328π‘˜π‘
β†Ί 𝑀 𝐷 = βˆ’20.524π‘˜π‘π‘š
↻ 𝑀 𝐷 = +20.524π‘˜π‘π‘š
At point E,𝑅 𝐸 = 38.960π‘˜π‘
β†Ί 𝑀 𝐸 = βˆ’6.090π‘˜π‘π‘š
↻ 𝑀 𝐸 = +6.090π‘π‘š
At point F,𝑅 𝐹 = 39.911π‘˜π‘
β†Ί 𝑀 𝐹 = βˆ’6.473π‘˜π‘π‘š
↻ 𝑀 𝐹 = +6.473π‘˜π‘π‘š
At point G,𝑅 𝐺 = 85.753π‘˜π‘
β†Ί 𝑀 𝐺 = βˆ’17.786π‘˜π‘π‘š
↻ 𝑀 𝐺 = +17.786π‘˜π‘π‘š
At point H,𝑅 𝐻 = 51.516π‘˜π‘
↻ 𝑀 𝐻 = 0π‘˜π‘π‘š
Ref. Calculation Output
6.3 Load Distribution of Beam
Case 3: Adjacent Loading
FEM
FEMAB = -FEMBA = βˆ’
𝑀𝐿2
12
= βˆ’
[1.35 (14.5892 π‘˜π‘ π‘šβ„ )](2.2875π‘š)2
12
= -8.5883 kNm
FEMBC = -FEMCB = βˆ’
𝑀𝐿2
12
= βˆ’
[1.35 (17.6179 π‘˜π‘ π‘šβ„ )+1.50(5.3156π‘˜π‘ π‘šβ„ )](2.2875π‘š)2
12
= -13.8480 kNm
FEMCD = -FEMDC = βˆ’
𝑀𝐿2
12
= βˆ’
[1.35 (17.2189 π‘˜π‘ π‘šβ„ )+1.50(5.1705π‘˜π‘ π‘šβ„ )](3.225π‘š)2
12
= -26.8694 kNm
FEMDE = -FEMED = βˆ’
𝑀𝐿2
12
= =βˆ’
[1.35(15.0966 π‘˜π‘ π‘šβ„ )](1.725π‘š)2
12
= -5.0537 kNm
FEMEF = -FEMFE = βˆ’
𝑀𝐿2
12
= βˆ’
[1.35 (15.3812 π‘˜π‘ π‘šβ„ )+1.50(4.5023π‘˜π‘ π‘šβ„ )](2.175π‘š)2
12
= -10.8481 kNm
FEMFG = -FEMGF = βˆ’
𝑀𝐿2
12
= βˆ’
[1.35 (13.2465 π‘˜π‘ π‘šβ„ )+1.50(3.7260π‘˜π‘ π‘šβ„ )](1.8π‘š)2
12
= -6.3374 kNm
FEMGH = -FEMHG = βˆ’
𝑀𝐿2
12
= βˆ’
[1.35 (21.0675 π‘˜π‘ π‘šβ„ )](3.0π‘š)2
12
= -21.3308 kNm
Moment Distribution
Mem AB BA BC CB CD DC DE ED EF FE FG GF GH HG
CF 0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0
DF 1 0.5 0.5 0.585 0.415 0.3485 0.6515 0.5577 0.4423 0.4528 0.5472 0.625 0.375 1
FEM -8.5883 8.5883 -13.8480 13.8480 -26.8694 26.8694 -5.0537 5.0537 -10.8481 10.8481 -6.3374 6.3374 -21.3308 21.3308
Dist 8.5883 2.6299 2.6299 7.6175 5.4039 -7.6028 -14.2129 3.2316 2.5629 -2.0425 -2.4683 9.3709 5.6225 -21.3308
Co 1.3149 0.0000 3.8087 1.3149 -3.8014 2.7019 1.6158 -7.1065 -1.0212 1.2814 4.6855 -1.2341 0.0000 2.8113
Dist -1.3149 -1.9044 -1.9044 1.4546 1.0319 -1.5047 -2.8130 4.5328 3.5949 -2.7018 -3.2651 0.7713 0.4628 -2.8113
Co -0.9522 0.0000 0.7273 -0.9522 -0.7524 0.5159 2.2664 -1.4065 -1.3509 1.7974 0.3857 -1.6325 0.0000 0.2314
Dist 0.9522 -0.3636 -0.3636 0.9972 0.7074 -0.9696 -1.8127 1.5378 1.2196 -0.9885 -1.1946 1.0203 0.6122 -0.2314
Co -0.1818 0.0000 0.4986 -0.1818 -0.4848 0.3537 0.7689 -0.9063 -0.4943 0.6098 0.5102 -0.5973 0.0000 0.3061
Dist 0.1818 -0.2493 -0.2493 0.3900 0.2767 -0.3912 -0.7314 0.7811 0.6195 -0.5071 -0.6128 0.3733 0.2240 -0.3061
Co -0.1246 0.0000 0.1950 -0.1246 -0.1956 0.1383 0.3906 -0.3657 -0.2536 0.3097 0.1867 -0.3064 0.0000 0.1120
Dist 0.1246 -0.0975 -0.0975 0.1874 0.1329 -0.1843 -0.3446 0.3454 0.2739 -0.2248 -0.2716 0.1915 0.1149 -0.1120
Co -0.0487 0.0000 0.0937 -0.0487 -0.0922 0.0665 0.1727 -0.1723 -0.1124 0.1369 0.0958 -0.1358 0.0000 0.0575
Dist 0.0487 -0.0468 -0.0468 0.0824 0.0585 -0.0833 -0.1558 0.1588 0.1259 -0.1054 -0.1273 0.0849 0.0509 -0.0575
0.0000 8.5565 -8.5565 24.5846 -24.5846 19.9097 -19.9097 5.6838 -5.6838 8.4135 -8.4135 14.2435 -14.2435 0.0000
37
Ref. Calculation Output
Uniform Distribution Loading
Loading at Span A – B = [1.35(14.5892kN/m)]
= 19.6954kN/m
Loading at Span B – C = [1.35(17.6179kN/m) + 1.50(5.3156kN/m)]
= 31.7576kN/m
Loading at Span C – D = [1.35(17.2189kN/m) + 1.50(5.1705kN/m)]
= 31.0013 kN/m
Loading at Span D – E = [1.35(15.0966kN/m)]
= 20.3804kN/m
Loading at Span E – F = [1.35(15.3812kN/m) + 1.50(4.5023kN/m)]
= 27.5181kN/m
Loading at Span E – F = [1.35(15.3812kN/m) + 1.50(4.5023kN/m)]
= 27.5181 kN/m
Loading at Span F – G = [1.35(13.2465kN/m) + 1.50(3.7260kN/m)]
= 23.4718kN/m
38
Loading at Span G – H = [1.35(21.0675kN/m)]
= 28.4411kN/m
39
Ref. Calculation Output
Span A – B
+↻
βˆ‘ 𝑀 𝐡
= 0
= 2.2875π‘š 𝑅 𝐴 βˆ’
(19.6954 π‘˜π‘ π‘šβ„ )(2.2875π‘š)(
2.2875π‘š
2
) βˆ’ 0π‘˜π‘π‘š +
8.5565π‘˜π‘π‘š
RA = 18.786kNm
↑ βˆ‘ 𝐹𝑦 = ↓ βˆ‘ 𝐹𝑦
RA - RB1 = 19.6954kN/m (2.2875m)
RB1 = 26.267kN
β†’ βˆ‘ 𝐻𝐴 = ← βˆ‘ 𝐻 𝐡1
= 0
40
Ref. Calculation Output
Span B – C
+↻ βˆ‘ 𝑀 𝐢 = 0
= 2.2875π‘šπ‘… 𝐡2 βˆ’
(31.7576π‘˜π‘ π‘šβ„ )(2.2875π‘š)(
2.2875π‘š
2
) βˆ’
8.5565π‘˜π‘π‘š + 24.5846π‘˜π‘π‘š
RB2 = 29.316kN
↑ βˆ‘ 𝐹𝑦 = ↓ βˆ‘ 𝐹𝑦
RB2 + RC1 = 31.7576kN/m (2.2875m)
RC1 = 43.330kN
β†’ βˆ‘ 𝐻 𝐡2 = ← βˆ‘ 𝐻 𝐢1
= 0
41
Ref. Calculation Output
Span C – D
+↻ βˆ‘ 𝑀 𝐷 = 0
= 3.225π‘šπ‘… 𝐢2 βˆ’ (31.0013 π‘˜π‘ π‘šβ„ )(3.225π‘š)(
3.225π‘š
2
) βˆ’
24.5846π‘˜π‘π‘š + 19.9097π‘˜π‘π‘š
RC2 = 51.439kN
↑ βˆ‘ 𝐹𝑦 = ↓ βˆ‘ 𝐹𝑦
RC2 + RD1 = 31.0013kN/m (3.225m)
RD1 = 48.540kN
β†’ βˆ‘ 𝐻 𝐢2 = ← βˆ‘ 𝐻 𝐷1
= 0
42
Ref. Calculation Output
Span D - E
+↻ βˆ‘ 𝑀 𝐸 = 0
= 1.725π‘šπ‘… 𝐷2 βˆ’ (20.3804 π‘˜π‘ π‘šβ„ )(1.725π‘š)(
1.725π‘š
2
) βˆ’
19.9097π‘˜π‘π‘š + 5.6838π‘˜π‘π‘š
RD2 = 25.825kN
↑ βˆ‘ 𝐹𝑦 = ↓ βˆ‘ 𝐹𝑦
RD2 + RE1 = 20.3804kN/m (1.725m)
RE1 = 9.331kN
β†’ βˆ‘ 𝐻 𝐷2 = ← βˆ‘ 𝐻 𝐸1
= 0
43
Ref. Calculation Output
Span E – F
+↻ βˆ‘ 𝑀 𝐸 = 0
= 2.175π‘šπ‘… 𝐸2 βˆ’ (27.5181 π‘˜π‘ π‘šβ„ )(2.175π‘š)(
2.175π‘š
2
) βˆ’
5.6838π‘˜π‘π‘š + 8.4135π‘˜π‘π‘š
RE2 = 28.671kN
↑ βˆ‘ 𝐹𝑦 = ↓ βˆ‘ 𝐹𝑦
RE2 + RF1 = 27.5181kN/m (2.175m)
RF1 = 31.181kN
β†’ βˆ‘ 𝐻 𝐸2 = ← βˆ‘ 𝐻 𝐹1
= 0
44
Ref. Calculation Output
Span F – G
+↻ βˆ‘ 𝑀 𝐹 = 0
= 1.8π‘šπ‘… 𝐹2 βˆ’ (23.4718π‘˜π‘ π‘šβ„ )(1.8π‘š)(
1.8π‘š
2
) βˆ’
8.4135π‘˜π‘π‘š + 14.2435π‘˜π‘π‘š
RF2 = 17.886kN
↑ βˆ‘ 𝐹𝑦 = ↓ βˆ‘ 𝐹𝑦
RF2 + RG1 = 23.4718kN/m (1.8m)
RG1 = 24.363kN
β†’ βˆ‘ 𝐻 𝐹2 = ← βˆ‘ 𝐻 𝐺1
= 0
45
Ref. Calculation Output
Span G – H
+↻ βˆ‘ 𝑀 𝐺 = 0
= 3.0π‘šπ‘… 𝐺2 βˆ’ (28.4411 π‘˜π‘ π‘šβ„ )(3.0π‘š)(
3.0π‘š
2
) βˆ’
14.2435π‘˜π‘π‘š + 0π‘˜π‘π‘š
RG2 = 47.410kN
↑ βˆ‘ 𝐹𝑦 = ↓ βˆ‘ 𝐹𝑦
RG2 + RH = 28.4411kN/m (3.0m)
RH = 37.914kN
β†’ βˆ‘ 𝐻 𝐺2 = ← βˆ‘ 𝐻 𝐻
= 0
46
Ref. Calculation Output
Summary
At point A,𝑅 𝐴 = 18.786π‘˜π‘
β†Ί 𝑀𝐴 = 0π‘˜π‘π‘š
At point B,𝑅 𝐡 = 55.583π‘˜π‘
β†Ί 𝑀 𝐡 = βˆ’8.557π‘˜π‘π‘š
↻ 𝑀 𝐡 = +8.557π‘˜π‘π‘š
At point C,𝑅 𝐢 = 94.769π‘˜π‘
β†Ί 𝑀𝑐 = βˆ’24.585π‘˜π‘π‘š
↻ 𝑀𝑐 = +24.585π‘˜π‘π‘š
At point D,𝑅 𝐷 = 74.365π‘˜π‘
β†Ί 𝑀 𝐷 = βˆ’19.910π‘˜π‘π‘š
↻ 𝑀 𝐷 = +19.910π‘˜π‘π‘š
At point E,𝑅 𝐸 = 38.002π‘˜π‘
β†Ί 𝑀 𝐸 = βˆ’5.684π‘˜π‘π‘š
↻ 𝑀 𝐸 = +5.684π‘˜π‘π‘š
At point F,𝑅 𝐹 = 49.067π‘˜π‘
β†Ί 𝑀 𝐹 = βˆ’8.413π‘˜π‘π‘š
47
↻ 𝑀 𝐹 = +8.413π‘˜π‘π‘š
At point G,𝑅 𝐺 = 71.773π‘˜π‘
β†Ί 𝑀 𝐺 = βˆ’14.243π‘˜π‘π‘š
↻ 𝑀 𝐺 = +14.243π‘˜π‘π‘š
At point H,𝑅 𝐻 = 37.914π‘˜π‘
↻ 𝑀 𝐻 = 0π‘˜π‘π‘š
48
Ref. Calculation Output
Distribution Factor, DF
KAB = KBA =
4𝐸𝐼
𝐿
=
4𝐸𝐼
2.2875
= 1.7486 EI
KBC = KCB =
4𝐸𝐼
𝐿
=
4𝐸𝐼
2.2875
= 1.7486 EI
KCD = KDC =
4𝐸𝐼
𝐿
=
4𝐸𝐼
3.225
= 1.2403 EI
KDE = KDE =
4𝐸𝐼
𝐿
=
4𝐸𝐼
1.725
= 2.3188 EI
KEF = KF =
4𝐸𝐼
𝐿
49
=
4𝐸𝐼
2.175
= 1.8391 EI
KFG = KGF =
4𝐸𝐼
𝐿
=
4𝐸𝐼
1.8
= 2.2222 EI
KGH = KHG =
4𝐸𝐼
𝐿
=
4𝐸𝐼
3.0
= 1.3333 EI
Ref. Calculation Output
DFAB = 𝐾 𝐴𝐡
𝐾 𝐴𝐡 +0
= 1.7468 𝐸𝐼
1.7468 𝐸𝐼+0
= 1
DFBA = 𝐾 𝐡𝐴
𝐾 𝐡𝐴 + 𝐾 𝐡𝐢
= 1.7468𝐸𝐼
1.7468 𝐸𝐼+1.7468 𝐸𝐼
= 0.5
DFBC = 𝐾 𝐡𝐢
𝐾 𝐡𝐴 + 𝐾 𝐡𝐢
= 1.7468 𝐸𝐼
1.7468 𝐸𝐼+1.7468 𝐸𝐼
= 0.5
DFCB = 𝐾 𝐢𝐡
𝐾 𝐢𝐡 + 𝐾 𝐢𝐷
= 1.7468 𝐸𝐼
1.7468 𝐸𝐼+1.2403 𝐸𝐼
= 0.585
DFCD = 𝐾 𝐢𝐷
𝐾 𝐢𝐡 +𝐾 𝐢𝐷
= 1.2403 𝐸𝐼
1.7468 𝐸𝐼+1.2403 𝐸𝐼
= 0.415
DFDC = 𝐾 𝐷𝐢
𝐾 𝐷𝐢+ 𝐾 𝐷𝐸
= 1.2403 𝐸𝐼
1.2403 𝐸𝐼+2.3188 𝐸𝐼
= 0.348
5
DFDE = 𝐾 𝐷𝐸
𝐾 𝐷𝐢+ 𝐾 𝐷𝐸
= 2.3188 𝐸𝐼
1.2403 𝐸𝐼+2.3188 𝐸𝐼
= 0.651
5
DFED = 𝐾 𝐸𝐷
𝐾 𝐸𝐷 + 𝐾 𝐸𝐹
= 2.3188 𝐸𝐼
2.3188 𝐸𝐼+1.8391 𝐸𝐼
= 0.557
7
DFEF = 𝐾 𝐸𝐹
𝐾 𝐸𝐷 + 𝐾 𝐸𝐹
= 1.8391 𝐸𝐼
2.3188 𝐸𝐼+1.8391 𝐸𝐼
= 0.442
3
DFFE = 𝐾 𝐹𝐸
𝐾 𝐹𝐸+ 𝐾 𝐹𝐺
= 1.8391 𝐸𝐼
1.8391 𝐸𝐼+2.2222 𝐸𝐼
= 0.452
8
DFFG = 𝐾 𝐹𝐺
𝐾 𝐹𝐸+ 𝐾 𝐹𝐺
= 2.2222 𝐸𝐼
1.8391 𝐸𝐼+2.2222 𝐸𝐼
= 0.547
2
50
DFGF = 𝐾 𝐺𝐹
𝐾 𝐺𝐹 + 𝐾 𝐺𝐻
= 2.2222 𝐸𝐼
2.2222 𝐸𝐼+1.3333 𝐸𝐼
= 0.625
DFGH = 𝐾 𝐺𝐻
𝐾 𝐺𝐹 + 𝐾 𝐺𝐻
= 1.3333 𝐸𝐼
2.2222 𝐸𝐼+1.3333 𝐸𝐼
= 0.375
DFHG = 𝐾 𝐻𝐺
𝐾 𝐻𝐺 + 0
= 1.3333 𝐸𝐼
1.3333 𝐸𝐼+0
= 1
51
Ref. Calculation Output
6.3.1 Simply Supported Beam
1. Specification
Effective Span, L = 1.8m
Characteristic Action :
Finishes, gk = 1.5kN/m
Variable, qk = 3.0kN/m
Design life = 50 Years
Fire Resistance = R90
Exposure Classes = XS3
Materials :
Characteristic Strength of Concrete, fck = 30N/mm2
Characteristic Strength of Steel, fyk = 500N/mm2
Characteristic Strength of Link, fyk = 500N/mm2
52
Unit Weight of Reinforced Concrete = 25kN/mm2
Assumed :
Øbar = 16mm
Ølink = 8mm
53
Ref. Calculation Output
2. Size
Overall depth, h = L/13
= 1.8/13
= 0.138462m
= 138.462mm
Width, b = 0.4h
= 0.4(138.4615mm)
= 55.385mm
Use b x h = 200mm x 350mm 200mm
= 70000mm2 350mm
54
Ref. Calculation Output
3. Durability, Fire and Bond Requirements
Min. concrete cover regard to bond, Cmin,b = 20mm
Min. concrete cover regard to durability,
Cmin,dur = 45mm
Min. required axis distance for R90 fire
resistance, asd = 45mm
asd = a + 10 = 55mm
Min. concrete cover regard to fire
Cmin = π‘Ž 𝑠𝑑 βˆ’ βˆ…π‘™π‘–π‘›π‘˜ βˆ’ βˆ… π‘π‘Žπ‘Ÿ 2⁄
= 39mm
Allowance in design for deviation, Ξ” Cdev = 10mm
Nominal cover, Cnom = Cmin + Ξ” Cdev
= 49mm Cnom
∴ Cnom = 51mm 51mm
4. Loading and Analysis
Loading on Slab 15:
Slab Thickness = 0.16m
Concrete Unit Weight = 25kN/m3
Self-weight = 25kN/m3 Γ— 0.16m = 4.0kN/m
Finishing, ceiling and Services = 1.5kN/m
55
Permanent Action, gk = 5.5kN/m
Variable Action, qk = 3.0kN/m
FS15
ly = 2.4m
lx = 1.8m
𝑙 𝑦
𝑙 π‘₯
= 1.33 Λ‚ 2.0 (2 way slab)
56
Ref. Calculation Output
Loading on Slab 16:
Slab Thickness = 0.21m
Concrete Unit Weight = 25kN/m3
Self-weight = 25kN/m3 Γ—
0.21m
= 5.25kN/m
Finishing, ceiling and Services = 1.5kN/m
Permanent Action, gk = 6.75kN/m
Variable Action, qk = 3.0kN/m
FS16
ly = 2.4m
lx = 1.8m
𝑙 𝑦
𝑙 π‘₯
= 1.33 Λ‚ 2.0 (2 way slab)
Load on beam 2-3/D-F
57
58
Ref. Calculation Output
Characteristic permanent load, Gk
Beam self-weight,
Ξ²vy = 0.36 and 0.33
Beam self-weight
w0 = 0.2m Γ— 0.35m Γ— 25kN/m3
= 1.75 kN/m
w15 = Ξ²vynlx
= 0.36 x 5.5kN/m2 x 1.8m
= 3.564kN/m
w16 = Ξ²vynlx
= 0.33 x 6.75kN/m2 x 1.2m
= 2.673kN/m
= Brickwall
w1 = 2.6kN/m2 Γ— 3.0m
= 7.8
Total GK = 15.787kN/m
Characteristic variable load, Qk
w15 = Ξ²vynlx
= 0.36 x 3.0kN/m2 x 1.8m
= 1.944kN/m
w16 = Ξ²vynlx
= 0.33 x 3.0kN/m2 x 1.2m
= 1.188kN/m
59
Total QK = 3.132kNm
60
Ref. Calculation Output
Design action, Wd = 1.35Gk + 1.5Qk Wd
= 1.35(15.787kN/m) + 1.5(3.132kN/m) 26.01
= 26.01 kN/m kN/m
Shear Force, V = π‘Š 𝑑 𝐿
2
V
= 26.01 π‘˜π‘ π‘šβ„ Γ—1.8π‘š
2
23.410
= 23.410kN kN
Bending Moment, 𝑀 = π‘Š 𝑑 𝐿2
8
M
= (26.01π‘˜π‘ π‘šβ„ )(1.8π‘š)2
8
10.534
= 10.534kNm kNm
61
Ref. Calculation Output
Effective depth
d = h - Cnom - Ølink - Øbar
= 350mm-50mm-8mm-16mm d
= 278mm 278mm
d' = Cnom + Ølink +
βˆ… π‘π‘Žπ‘Ÿ
2
= 36mm
Design bending moment, Med = 7.153kNm
𝐾 = 𝑀
𝑏𝑑2 𝑓 π‘π‘˜
= 10 .534 Γ—106
π‘π‘šπ‘š2
(200π‘šπ‘š )(278π‘šπ‘š)2(30𝑁/π‘šπ‘š2 )
= 0.0227
Kbal = 0.167
K < Kbal ; Compression reinforcement is not required
z =
𝑑[0.5 + √0.25 βˆ’
𝐾 π‘π‘Žπ‘™
1.134
]
z = 0.82𝑑
z = 227.96mm
Area of Tension steel, As
𝐴 𝑠 = 𝐾 π‘π‘Žπ‘™ 𝑓 π‘π‘˜ 𝑏𝑑2
0.87𝑓 π‘¦π‘˜ 𝑧
+ 𝐴 𝑠′
= (0.167)(30𝑁 π‘šπ‘š2⁄ )(200π‘šπ‘š)(278π‘šπ‘š )2
0.87 (500𝑁 π‘šπ‘š2⁄ )(226.32π‘šπ‘š)
+ 𝐴 𝑠′
= 780.925mm2
62
Min and max reinforcement area, As,min
𝐴 𝑠,π‘šπ‘–π‘› = 0.26
π‘“π‘π‘‘π‘š
π‘“π‘¦π‘˜
𝑏𝑑
=
0.26
2.90𝑁 π‘šπ‘š2⁄
500𝑁 π‘šπ‘š2⁄
𝑏𝑑
= 0.001508 bd
Exceed 0.0013bd; use 0.0015bd
= 83.844mm2
Ref. Calculation Output
As,max = 0.04Ac
= 0.04 Γ— 200mm Γ— 350mm
= 2800mm2
5. Shear Reinforcement
Design shear force, Ved = 23.410kN
Concrete strut capacity
𝑉𝑅𝑑,π‘šπ‘Žπ‘₯ = 0.3𝑏 𝑀 π‘‘π‘“π‘π‘˜(1βˆ’
𝑓 π‘π‘˜
250
)
(π‘π‘œπ‘‘πœƒ+π‘‘π‘Žπ‘›πœƒ)
= 0.3(200π‘šπ‘š)(278π‘šπ‘š)(30𝑁 π‘šπ‘š2⁄ )(1βˆ’
30𝑁 π‘šπ‘š2⁄
250
)
(π‘π‘œπ‘‘πœƒ+π‘‘π‘Žπ‘›πœƒ)
= 181.962π‘˜π‘ (πœƒ = 22Β°, π‘π‘œπ‘‘πœƒ = 2.5)
= 264.211π‘˜π‘ (πœƒ = 45Β°, π‘π‘œπ‘‘πœƒ = 1.0)
Ved < VRd,maxcot πœƒ= 2.5
Ved < VRd,maxcot πœƒ= 1.0
63
∴ 𝜽 < 𝟐𝟐°
πœƒ = 0.5 sinβˆ’1
[
𝑉 𝐸𝑑
0.18𝑏 𝑀 π‘‘π‘“π‘π‘˜(1βˆ’
𝑓 π‘π‘˜
250
)
]
= 0.5 sinβˆ’1
[
18.558Γ—103 𝑁
0.18(200π‘šπ‘š)(278π‘šπ‘š)(30𝑁 π‘šπ‘š2⁄ )(1βˆ’
30𝑁 π‘šπ‘š2⁄
250
)
]
= 2.01Β°
Use πœƒ = 22Β°
π‘‘π‘Žπ‘›πœƒ = 0.40, π‘π‘œπ‘‘πœƒ = 2.5
Shear Link,
𝐴 𝑠𝑀
𝑠
=
𝑉 𝐸𝑑
(0.78π‘“π‘¦π‘˜ π‘‘π‘π‘œπ‘‘πœƒ)
= 23.410Γ—103 𝑁
(0.78)(500𝑁 π‘šπ‘š2⁄ )(278π‘šπ‘š)(2.5)
= 0.0864mm
Try link: H6 𝐴 𝑠𝑀=28.3mm2
Spacing, s = 28.3 π‘šπ‘š2
0.0864 π‘šπ‘š
= 327.67mm
64
Ref. Calculation Output
Maximum spacing, = 0.75d
Smax = 0.75(278mm)
= 208.5mm
Use: H6 - 200 H6 - 200
Minimum links,
𝐴 𝑠𝑀
𝑠
= 0.08√ π‘“π‘π‘˜
𝑏 𝑀
𝑓 π‘¦π‘˜
= 0.08√30 𝑁 π‘šπ‘š2⁄
200π‘šπ‘š
500𝑁 π‘šπ‘š2⁄
= 0.175 mm
Spacing, s = 28.3 π‘šπ‘š2
0.175 π‘šπ‘š
= 161.454mm < 0.75d
Use: H6 - 175 H6 - 175
Minimum Links,
𝐴 𝑠𝑀
𝑠
= 0.08√ π‘“π‘π‘˜
𝑏 𝑀
𝑓 π‘¦π‘˜
= 0.08√30 𝑁 π‘šπ‘š2⁄
200π‘šπ‘š
500𝑁 π‘šπ‘š2⁄
= 0.175mm
Spacing, s = 28.3mm2/0.175mm
= 161.464mm Λ‚ 0.75d
Use: H6 - 175
Shear resistance of minimum links
65
𝑉 π‘šπ‘–π‘› =
𝐴 𝑠𝑀
𝑠
(0.78π‘“π‘¦π‘˜ π‘‘π‘π‘œπ‘‘πœƒ)
= 28.3π‘šπ‘š2
200 π‘šπ‘š
(0.78)(500𝑁 π‘šπ‘š2⁄ )(278π‘šπ‘š)(2.5)
= 43.833kN
66
Ref. Calculation Output
Link Arrangement
67
Ref. Calculation Output
6. Deflection
Percentage of required tension reinforcement,
𝜌
=
𝐴 𝑠,π‘Ÿπ‘’π‘ž
𝑏𝑑
= 775.307π‘šπ‘š2
(200π‘šπ‘š)(278π‘šπ‘š)
= 0.01405
Reference reinforcement ratio,
𝜌°
= √ π‘“π‘π‘˜ Γ— 10βˆ’3
= √30 𝑁 π‘šπ‘š2⁄ Γ— 10βˆ’3
= 0.00548
Percentage of required compression reinforcement,
πœŒβ€² = 0
𝜌 > 𝜌° ; Use equation:
𝑙
𝑑
= 𝐾[11 + 1.5√ π‘“π‘π‘˜
𝜌°
πœŒβˆ’πœŒβ€² +
1
12
√ π‘“π‘π‘˜βˆš
πœŒβ€²
𝜌°
𝑙
𝑑
= 1.0[11+ 1.5√30 𝑁 π‘šπ‘š2⁄
0.00548
0.01405βˆ’0
+
1
12
√30 𝑁 π‘šπ‘š2⁄ √
0
0.00548
]
𝑙
𝑑
= 1.0[11+ 0.5549+ 0]
𝑙
𝑑
= 11.555
Modification factor less than 7m = 1.00
Modification factor for steel area provided,
=
𝐴 𝑠,π‘π‘Ÿπ‘œπ‘£
𝐴 𝑠,π‘Ÿπ‘’π‘ž
=
943π‘šπ‘š2
780.925π‘šπ‘š2
68
= 1.208 <1.5 OK!
Allowable span effective depth ratio = (l/d) allowable
= 11.555 Γ— 1.208 Γ— 1.00
= 13.954
Actual Span-effective depth, (l/d)
actual
=
1800 π‘šπ‘š
278 π‘šπ‘š
= 6.475 < (l/d) allowable OK!
Ref. Calculation Output
7. Cracking
Limiting crack width, wmax = 0.3mm
Steel stress,
𝑓𝑠
= π‘“π‘¦π‘˜
1.15
[
𝐺 π‘˜+0.3𝑄 π‘˜
1.35𝐺 π‘˜+1.5𝑄 π‘˜
]
1
𝛿
= 500
1.15
[
9.75+0.3(3.0)
1.35(9.75)+1.5(3.0)
]1.0
= 288.813N/mm2
EC2: Max allowable bar spacing = 100mm
Table
4.2
69
Bar spacing,
S
= 200mm- 2(50mm) -2(6mm)-16mm
= 72mm < 100mm OK!
8. Detailing
70
Ref. Calculation Output
5.4.2 Continuous Beam
1. Specification
Span AB
Effective Span, L = 2.2875m
Dimension
Width = 300mm
Depth = 400mm
Characteristic Load
Permanent Loading, GK = 14.5892kN/m
Variable Loading, QK = 4.2143kN/m
Design life = 50 Years
Fire Resistance = R120
Exposure Cement = XS3
Materials:
Unit Weight of Concrete = 25kN/m3
Characteristic strength of concrete, fck = 30N/mm2
Characteristic strength of steel, fyk = 500N/mm2
Characteristic strength of link, fyk = 500Nmm2
Assumed
βˆ… π‘π‘Žπ‘Ÿ 1 = 12mm
βˆ… π‘π‘Žπ‘Ÿ 2 = 8mm
71
βˆ…π‘™π‘–π‘›π‘˜ = 6mm
72
Ref. Calculation Output
Span BC
Effective Span, L = 2.2875m
Dimension
Width = 300mm
Depth = 400mm
Characteristic Load
Permanent Loading, GK = 17.6179kN/m
Variable Loading, QK = 5.3156kN/m
Design life = 50 Years
Fire Resistance = R120
Exposure Cement = XS3
Materials:
Unit Weight of Concrete = 25kN/m3
Characteristic strength of concrete, fck = 30N/mm2
Characteristic strength of steel, fyk = 500N/mm2
Characteristic strength of link, fyk = 500Nmm2
Assumed
βˆ… π‘π‘Žπ‘Ÿ 1 = 12mm
βˆ… π‘π‘Žπ‘Ÿ 2 = 8mm
βˆ…π‘™π‘–π‘›π‘˜ = 6mm
73
74
Ref. Calculation Output
Span CD
Effective Span, L = 3.225m
Dimension
Width = 300mm
Depth = 400mm
Characteristic Load
Permanent Loading, GK = 17.2189kN/m
Variable Loading, QK = 5.1705kN/m
Design life = 50 Years
Fire Resistance = R120
Exposure Cement = XS3
Materials:
Unit Weight of Concrete = 25kN/m3
Characteristic strength of concrete, fck = 30N/mm2
Characteristic strength of steel, fyk = 500N/mm2
Characteristic strength of link, fyk = 500Nmm2
Assumed
βˆ… π‘π‘Žπ‘Ÿ 1 = 12mm
βˆ… π‘π‘Žπ‘Ÿ 2 = 8mm
βˆ…π‘™π‘–π‘›π‘˜ = 6mm
75
76
Ref. Calculation Output
Span DE
Effective Span, L = 1.725m
Dimension
Width = 300mm
Depth = 400mm
Characteristic Load
Permanent Loading, GK = 15.0966kN/m
Variable Loading, QK = 4.3988kN/m
Design life = 50 Years
Fire Resistance = R120
Exposure Cement = XS3
Materials:
Unit Weight of Concrete = 25kN/m3
Characteristic strength of concrete, fck = 30N/mm2
Characteristic strength of steel, fyk = 500N/mm2
Characteristic strength of link, fyk = 500Nmm2
Assumed
βˆ… π‘π‘Žπ‘Ÿ 1 = 12mm
βˆ… π‘π‘Žπ‘Ÿ 2 = 8mm
βˆ…π‘™π‘–π‘›π‘˜ = 6mm
77
78
Ref. Calculation Output
Span EF
Effective Span, L = 2.175m
Dimension
Width = 300mm
Depth = 400mm
Characteristic Load
Permanent Loading, GK = 15.3812kN/m
Variable Loading, QK = 4.5023kN/m
Design life = 50 Years
Fire Resistance = R120
Exposure Cement = XS3
Materials:
Unit Weight of Concrete = 25kN/m3
Characteristic strength of concrete, fck = 30N/mm2
Characteristic strength of steel, fyk = 500N/mm2
Characteristic strength of link, fyk = 500Nmm2
Assumed
βˆ… π‘π‘Žπ‘Ÿ 1 = 12mm
βˆ… π‘π‘Žπ‘Ÿ 2 = 8mm
βˆ…π‘™π‘–π‘›π‘˜ = 6mm
79
80
Ref. Calculation Output
Span FG
Effective Span, L = 1.8m
Dimension
Width = 300mm
Depth = 400mm
Characteristic Load
Permanent Loading, GK = 13.2465kN/m
Variable Loading, QK = 3.7260kN/m
Design life = 50 Years
Fire Resistance = R120
Exposure Cement = XS3
Materials:
Unit Weight of Concrete = 25kN/m3
Characteristic strength of concrete, fck = 30N/mm2
Characteristic strength of steel, fyk = 500N/mm2
Characteristic strength of link, fyk = 500Nmm2
Assumed
βˆ… π‘π‘Žπ‘Ÿ 1 = 12mm
βˆ… π‘π‘Žπ‘Ÿ 2 = 8mm
βˆ…π‘™π‘–π‘›π‘˜ = 6mm
81
82
Ref. Calculation Output
Span GH
Effective Span, L = 3.0m
Dimension
Width = 300mm
Depth = 400mm
Characteristic Load
Permanent Loading, GK = 21.0675kN/m
Variable Loading, QK = 6.570kN/m
Design life = 50 Years
Fire Resistance = R120
Exposure Cement = XS3
Materials:
Unit Weight of Concrete = 25kN/m3
Characteristic strength of concrete, fck = 30N/mm2
Characteristic strength of steel, fyk = 500N/mm2
Characteristic strength of link, fyk = 500Nmm2
Assumed
βˆ… π‘π‘Žπ‘Ÿ 1 = 12mm
βˆ… π‘π‘Žπ‘Ÿ 2 = 8mm
βˆ…π‘™π‘–π‘›π‘˜ = 6mm
83
84
Ref. Calculation Output
2. Durability, Fire and Bond Requirement
Min. Conc. Cover regard to bond, Cmin,b = 12mm
Min. conc. Cover regard to durability, Cmin,dur = 50mm
Min. required axis distance for R120 fire
resistance
asd = 35mm + 10mm
= 45mm
Min. concrete cover regard to fire,
Cmin = π‘Ž 𝑠𝑑 βˆ’ βˆ…π‘™π‘–π‘›π‘˜ βˆ’
βˆ… π‘π‘Žπ‘Ÿ
2
= 45mm – 6mm –
0.5(12mm)
= 33mm
Allowance in design for deviation, βˆ†Cdev = 10mm
Nominal cover
Cnom = Cmin + βˆ†Cdev
= 50mm + 10mm
= 60mm
85
Ref. Calculation Output
3. Loading and Analysis
Span AB
Design Load, wd = 1.35GK + 1.50QK
= 1.35(14.5892kN/m) + 1.50(4.2143kN/m)
= 26.0468kN/m
Design Moment
Span, MED = (0.09GK + 0.10QK)L2
= [0.09(14.5892π‘˜π‘ π‘šβ„ ) +
0.10(4.2143 π‘˜π‘ π‘šβ„ )](2.2875π‘š)2
= 12.583kNm
Support, MED = (0.106GK + 0.106QK)L2
= [0.106(14.5892π‘˜π‘ π‘šβ„ ) +
0.106(4.2143 π‘˜π‘ π‘šβ„ )](2.2875π‘š)2
= 14.4306kNm
Shear Force
Outer Support,
VED
= 0.45 Γ— wd Γ— L
= 0.45 Γ— 26.0468 π‘˜π‘ π‘šβ„ Γ— 2.2875π‘š
= 26.78kN
Inner Support, VED = 0.63 Γ— wd Γ— L
= 0.63 Γ— 26.0468 π‘˜π‘ π‘šβ„ Γ— 2.2875π‘š
86
= 37.49kN
87
Ref. Calculation Output
Span BC
Design Load, wd = 1.35GK + 1.50QK
= 1.35(17.6179kN/m) + 1.50(5.3156kN/m)
= 31.7576kN/m
Design Moment
Span, MED = (0.09GK + 0.10QK)L2
= [0.09(17.6179π‘˜π‘ π‘šβ„ ) +
0.10(5.3156 π‘˜π‘ π‘šβ„ )](2.2875π‘š)2
= 15.373kNm
Support, MED = (0.106GK + 0.106QK)L2
= [0.106(17.6179π‘˜π‘ π‘šβ„ ) +
0.106(5.3156 π‘˜π‘ π‘šβ„ )](2.2875π‘š)2
= 17.6147kNm
Shear Force
Outer Support,
VED
= 0.45 Γ— wd Γ— L
= 0.45 Γ— 31.7576 π‘˜π‘ π‘šβ„ Γ— 2.2875π‘š
= 32.6904kN
Inner Support, VED = 0.63 Γ— wd Γ— L
= 0.63 Γ— 31.7576 π‘˜π‘ π‘šβ„ Γ— 2.2875π‘š
= 45.7666kN
88
89
Ref. Calculation Output
Span CD
Design Load, wd = 1.35GK + 1.50QK
= 1.35(17.2189kN/m) + 1.50(5.1705kN/m)
= 31.0013kN/m
Design Moment
Span, MED = (0.09GK + 0.10QK)L2
= [0.09(17.2189π‘˜π‘ π‘šβ„ ) +
0.10(5.1705 π‘˜π‘ π‘šβ„ )](3.225π‘š)2
= 29.8260kNm
Support, MED = (0.106GK + 0.106QK)L2
= [0.106(17.2189π‘˜π‘ π‘šβ„ ) +
0.106(5.1705 π‘˜π‘ π‘šβ„ )](3.225π‘š)2
= 34.1779kNm
Shear Force
Outer Support,
VED
= 0.45 Γ— wd Γ— L
= 0.45 Γ— 31.0013 π‘˜π‘ π‘šβ„ Γ— 3.225π‘š
= 44.9906kN
Inner Support, VED = 0.63 Γ— wd Γ— L
= 0.63 Γ— 31.0013 π‘˜π‘ π‘šβ„ Γ— 3.225π‘š
= 62.9868kN
90
91
Ref. Calculation Output
Span DE
Design Load, wd = 1.35GK + 1.50QK
= 1.35(15.0966kN/m) + 1.50(4.3988kN/m)
= 26.9786kN/m
Design Moment
Span, MED = (0.09GK + 0.10QK)L2
= [0.09(15.0966π‘˜π‘ π‘šβ„ ) +
0.10(4.3988 π‘˜π‘ π‘šβ„ )](1.725π‘š)2
= 7.421kNm
Support, MED = (0.106GK + 0.106QK)L2
= [0.106(15.0966π‘˜π‘ π‘šβ„ ) +
0.106(4.3988 π‘˜π‘ π‘šβ„ )](1.725π‘š)2
= 8.5095kNm
Shear Force
Outer Support,
VED
= 0.45 Γ— wd Γ— L
= 0.45 Γ— 26.9786 π‘˜π‘ π‘šβ„ Γ— 1.725π‘š
= 20.9422kN
Inner Support, VED = 0.63 Γ— wd Γ— L
= 0.63 Γ— 26.9786 π‘˜π‘ π‘šβ„ Γ— 1.725π‘š
= 29.319kN
92
93
Ref. Calculation Output
Span EF
Design Load, wd = 1.35GK + 1.50QK
= 1.35(15.3812kN/m) + 1.50(4.5023kN/m)
= 27.5181kN/m
Design Moment
Span, MED = (0.09GK + 0.10QK)L2
= [0.09(15.3812π‘˜π‘ π‘šβ„ ) +
0.10(4.5023 π‘˜π‘ π‘šβ„ )](2.715π‘š)2
= 12.035kNm
Support, MED = (0.106GK + 0.106QK)L2
= [0.106(15.3812π‘˜π‘ π‘šβ„ ) +
0.106(4.5023 π‘˜π‘ π‘šβ„ )](2.715π‘š)2
= 13.7988kNm
Shear Force
Outer Support,
VED
= 0.45 Γ— wd Γ— L
= 0.45 Γ— 27.5181 π‘˜π‘ π‘šβ„ Γ— 2.715π‘š
= 26.9333kN
Inner Support, VED = 0.63 Γ— wd Γ— L
= 0.63 Γ— 27.5181 π‘˜π‘ π‘šβ„ Γ— 2.715π‘š
= 37.7066kN
94
95
Ref. Calculation Output
Span FG
Design Load, wd = 1.35GK + 1.50QK
= 1.35(13.2465kN/m) + 1.50(3.726kN/m)
= 23.4718kN/m
Design Moment
Span, MED = (0.09GK + 0.10QK)L2
= [0.09(13.2465π‘˜π‘ π‘šβ„ ) +
0.10(3.726 π‘˜π‘ π‘šβ„ )](1.8π‘š)2
= 7.025kNm
Support, MED = (0.106GK + 0.106QK)L2
= [0.106(13.2465π‘˜π‘ π‘šβ„ ) +
0.106(3.726 π‘˜π‘ π‘šβ„ )](1.8π‘š)2
= 8.0611kNm
Shear Force
Outer Support, VED = 0.45 Γ— wd Γ— L
= 0.45 Γ— 23.4718 π‘˜π‘ π‘šβ„ Γ— 1.8π‘š
= 19.0121kN
Inner Support, VED = 0.63 Γ— wd Γ— L
= 0.63 Γ— 23.4718 π‘˜π‘ π‘šβ„ Γ— 1.8π‘š
= 26.6170kN
96
97
Ref. Calculation Output
Span GH
Design Load, wd = 1.35GK + 1.50QK
= 1.35(21.0675kN/m) + 1.50(6.57kN/m)
= 38.2961kN/m
Design Moment
Span, MED = (0.09GK + 0.10QK)L2
= [0.09(21.0675π‘˜π‘ π‘šβ„ ) +
0.10(6.57 π‘˜π‘ π‘šβ„ )](3.0π‘š)2
= 31.907kNm
Support, MED = (0.106GK + 0.106QK)L2
= [0.106(21.0675π‘˜π‘ π‘šβ„ ) +
0.106(6.57 π‘˜π‘ π‘šβ„ )](2.2875π‘š)2
= 36.5345kNm
Shear Force
Outer Support,
VED
= 0.45 Γ— wd Γ— L
= 0.45 Γ— 38.2961 π‘˜π‘ π‘šβ„ Γ— 3.0π‘š
= 51.6998kN
Inner Support, VED = 0.63 Γ— wd Γ— L
= 0.63 Γ— 38.2961 π‘˜π‘ π‘šβ„ Γ— 3.0π‘š
= 72.3787kN
98
99
Ref. Calculation Output
4. Main Reinforcement
Effective Depth, d = β„Ž βˆ’ 𝐢 π‘›π‘œπ‘š βˆ’ βˆ…π‘™π‘–π‘›π‘˜ βˆ’ 0.5βˆ… π‘π‘Žπ‘Ÿ
= 400mm – 60mm – 6mm – 0.5(12mm)
= 328mm
d’ = 𝐢 π‘›π‘œπ‘š + βˆ…π‘™π‘–π‘›π‘˜ + 0.5βˆ… π‘π‘Žπ‘Ÿ
= 72mm
100
Ref. Calculation Output
Span AB
Bending Moment = 12.583kNm
K = 𝑀 𝐸𝐷
𝑓 π‘π‘˜ 𝑏𝑑2
= 12.583 Γ— 106
π‘π‘šπ‘š
30𝑁 π‘šπ‘š2⁄ Γ—300π‘š Γ— (328π‘šπ‘š)2
= 0.013 Λ‚ Kbal(0.167)
z = 𝑑 [0.5 + √0.25 βˆ’ 𝐾
1.134⁄ ]
= 𝑑 [0.5 + √0.25 βˆ’ 0.013
1.134⁄ ]
= 0.9884d
= 0.9884 Γ— 328mm
= 324.20mm
Area of Tension Reinforcement
As = 𝑀 𝐸𝐷
0.87 Γ— 𝑓 π‘¦π‘˜ ×𝑧
= 12.583 Γ— 106
π‘π‘šπ‘š
0.87 Γ—500𝑁 π‘šπ‘š2⁄ Γ—0.9884 Γ—328π‘šπ‘š
2H10
= 89.23mm2 157mm2
Minimum and maximum reinforcement area
As,min = 0.26 (
π‘“π‘π‘‘π‘š
π‘“π‘¦π‘˜
) 𝑏𝑑
=
0.26 Γ— (
2.9 𝑁 π‘šπ‘š2⁄
500 𝑁 π‘šπ‘š2⁄
) 𝑏𝑑
= 0.0015bd
101
= 0.0015 Γ— 300mm Γ— 328mm
= 148.39mm2
As,max = 0.04Ac
= 0.04bh
= 0.04 Γ— 300mm Γ— 400mm
= 4800mm2
102
Ref. Calculation Output
Span BC
Bending Moment = 15.373kNm
K = 𝑀 𝐸𝐷
𝑓 π‘π‘˜ 𝑏𝑑2
= 15.373 Γ— 106
π‘π‘šπ‘š
30𝑁 π‘šπ‘š2⁄ Γ—300π‘š Γ— (328π‘šπ‘š)2
= 0.016 Λ‚ Kbal(0.167)
z = 𝑑 [0.5 + √0.25 βˆ’ 𝐾
1.134⁄ ]
= 𝑑 [0.5 + √0.25 βˆ’ 0.016
1.134⁄ ]
= 0.9857d
= 0.9857 Γ— 328mm
= 324.20mm
Area of Tension Reinforcement
As = 𝑀 𝐸𝐷
0.87 Γ— 𝑓 π‘¦π‘˜ ×𝑧
= 15.373 Γ— 106
π‘π‘šπ‘š
0.87 Γ—500𝑁 π‘šπ‘š2⁄ Γ—0.9857 Γ—328π‘šπ‘š
2H10
= 109.31mm2 157mm2
Minimum and maximum reinforcement area
As,min = 0.26 (
π‘“π‘π‘‘π‘š
π‘“π‘¦π‘˜
) 𝑏𝑑
=
0.26 Γ— (
2.9 𝑁 π‘šπ‘š2⁄
500 𝑁 π‘šπ‘š2⁄
) 𝑏𝑑
= 0.0015bd
103
= 0.0015 Γ— 300mm Γ— 328mm
= 148.39mm2
As,max = 0.04Ac
= 0.04bh
= 0.04 Γ— 300mm Γ— 400mm
= 4800mm2
104
Ref. Calculation Output
Span CD
Bending Moment = 29.826kNm
K = 𝑀 𝐸𝐷
𝑓 π‘π‘˜ 𝑏𝑑2
= 29.826 Γ— 106
π‘π‘šπ‘š
30𝑁 π‘šπ‘š2⁄ Γ—300π‘š Γ— (328π‘šπ‘š)2
= 0.031 Λ‚ Kbal(0.167)
z = 𝑑 [0.5 + √0.25 βˆ’ 𝐾
1.134⁄ ]
= 𝑑 [0.5 + √0.25 βˆ’ 0.031
1.134⁄ ]
= 0.9719d
= 0.9719 Γ— 328mm
= 318.77mm
Area of Tension Reinforcement
As = 𝑀 𝐸𝐷
0.87 Γ— 𝑓 π‘¦π‘˜ ×𝑧
= 29.826 Γ— 106
π‘π‘šπ‘š
0.87 Γ—500𝑁 π‘šπ‘š2⁄ Γ—0.9719 Γ—328π‘šπ‘š
3H10
= 215.09mm2 236mm2
Minimum and maximum reinforcement area
As,min = 0.26 (
π‘“π‘π‘‘π‘š
π‘“π‘¦π‘˜
) 𝑏𝑑
=
0.26 Γ— (
2.9 𝑁 π‘šπ‘š2⁄
500 𝑁 π‘šπ‘š2⁄
) 𝑏𝑑
= 0.0015bd
105
= 0.0015 Γ— 300mm Γ— 328mm
= 148.39mm2
As,max = 0.04Ac
= 0.04bh
= 0.04 Γ— 300mm Γ— 400mm
= 4800mm2
106
Ref. Calculation Output
Span DE
Bending Moment = 7.421kNm
K = 𝑀 𝐸𝐷
𝑓 π‘π‘˜ 𝑏𝑑2
= 7.421 Γ— 106
π‘π‘šπ‘š
30𝑁 π‘šπ‘š2⁄ Γ—300π‘š Γ— (328π‘šπ‘š)2
= 0.008 Λ‚ Kbal(0.167)
z = 𝑑 [0.5 + √0.25 βˆ’ 𝐾
1.134⁄ ]
= 𝑑 [0.5 + √0.25 βˆ’ 0.008
1.134⁄ ]
= 0.9929d
= 0.9929 Γ— 328mm
= 325.67mm
Area of Tension Reinforcement
As = 𝑀 𝐸𝐷
0.87 Γ— 𝑓 π‘¦π‘˜ ×𝑧
= 7.421 Γ— 106
π‘π‘šπ‘š
0.87 Γ—500𝑁 π‘šπ‘š2⁄ Γ—0.9929 Γ—328π‘šπ‘š
2H10
= 52.38mm2 157mm2
Minimum and maximum reinforcement area
As,min =
0.26 (
π‘“π‘π‘‘π‘š
π‘“π‘¦π‘˜
) 𝑏𝑑
=
0.26 Γ— (
2.9 𝑁 π‘šπ‘š2⁄
500 𝑁 π‘šπ‘š2⁄
) 𝑏𝑑
= 0.0015bd
= 0.0015 Γ— 300mm Γ— 328mm
107
= 148.39mm2
As,max = 0.04Ac
= 0.04bh
= 0.04 Γ— 300mm Γ— 400mm
= 4800mm2
108
Ref. Calculation Output
Span EF
Bending Moment = 12.035kNm
K = 𝑀 𝐸𝐷
𝑓 π‘π‘˜ 𝑏𝑑2
= 12.035 Γ— 106
π‘π‘šπ‘š
30𝑁 π‘šπ‘š2⁄ Γ—300π‘š Γ— (328π‘šπ‘š)2
= 0.012 Λ‚ Kbal(0.167)
z = 𝑑 [0.5 + √0.25 βˆ’ 𝐾
1.134⁄ ]
= 𝑑 [0.5 + √0.25 βˆ’ 0.012
1.134⁄ ]
= 0.9893d
= 0.9893 Γ— 328mm
= 324.49mm
Area of Tension Reinforcement
As = 𝑀 𝐸𝐷
0.87 Γ— 𝑓 π‘¦π‘˜ ×𝑧
= 12.035 Γ— 106
π‘π‘šπ‘š
0.87 Γ—500𝑁 π‘šπ‘š2⁄ Γ—0.9893 Γ—328π‘šπ‘š
2H10
= 85.26mm2 157mm2
Minimum and maximum reinforcement area
As,min =
0.26 (
π‘“π‘π‘‘π‘š
π‘“π‘¦π‘˜
) 𝑏𝑑
=
0.26 Γ— (
2.9 𝑁 π‘šπ‘š2⁄
500 𝑁 π‘šπ‘š2⁄
) 𝑏𝑑
= 0.0015bd
= 0.0015 Γ— 300mm Γ— 328mm
109
= 148.39mm2
As,max = 0.04Ac
= 0.04bh
= 0.04 Γ— 300mm Γ— 400mm
= 4800mm2
110
Ref. Calculation Output
Span FG
Bending Moment = 7.025kNm
K = 𝑀 𝐸𝐷
𝑓 π‘π‘˜ 𝑏𝑑2
= 7.025 Γ— 106
π‘π‘šπ‘š
30𝑁 π‘šπ‘š2⁄ Γ—300π‘š Γ— (328π‘šπ‘š)2
= 0.007 Λ‚ Kbal(0.167)
z = 𝑑 [0.5 + √0.25 βˆ’ 𝐾
1.134⁄ ]
= 𝑑 [0.5 + √0.25 βˆ’ 0.007
1.134⁄ ]
= 0.9938d
= 0.9938 Γ— 328mm
= 325.96mm
Area of Tension Reinforcement
As = 𝑀 𝐸𝐷
0.87 Γ— 𝑓 π‘¦π‘˜ ×𝑧
= 7.025 Γ— 106
π‘π‘šπ‘š
0.87 Γ—500𝑁 π‘šπ‘š2⁄ Γ—0.9938 Γ—328π‘šπ‘š
2H10
= 49.54mm2 157mm2
Minimum and maximum reinforcement area
As,min =
0.26 (
π‘“π‘π‘‘π‘š
π‘“π‘¦π‘˜
) 𝑏𝑑
=
0.26 Γ— (
2.9 𝑁 π‘šπ‘š2⁄
500 𝑁 π‘šπ‘š2⁄
) 𝑏𝑑
= 0.0015bd
= 0.0015 Γ— 300mm Γ— 328mm
111
= 148.39mm2
As,max = 0.04Ac
= 0.04bh
= 0.04 Γ— 300mm Γ— 400mm
= 4800mm2
112
Ref. Calculation Output
Span GH
Bending Moment = 31.907kNm
K = 𝑀 𝐸𝐷
𝑓 π‘π‘˜ 𝑏𝑑2
= 31.907 Γ— 106
π‘π‘šπ‘š
30𝑁 π‘šπ‘š2⁄ Γ—300π‘š Γ— (328π‘šπ‘š)2
= 0.033 Λ‚ Kbal(0.167)
z = 𝑑 [0.5 + √0.25 βˆ’ 𝐾
1.134⁄ ]
= 𝑑 [0.5 + √0.25 βˆ’ 0.033
1.134⁄ ]
= 0.9700d
= 0.9700 Γ— 328mm
= 318.16mm
Area of Tension Reinforcement
As = 𝑀 𝐸𝐷
0.87 Γ— 𝑓 π‘¦π‘˜ ×𝑧
= 31.907 Γ— 106
π‘π‘šπ‘š
0.87 Γ—500𝑁 π‘šπ‘š2⁄ Γ—0.9700 Γ—328π‘šπ‘š
3H10
= 230.54mm2 236mm2
Minimum and maximum reinforcement area
As,min =
0.26 (
π‘“π‘π‘‘π‘š
π‘“π‘¦π‘˜
) 𝑏𝑑
=
0.26 Γ— (
2.9 𝑁 π‘šπ‘š2⁄
500 𝑁 π‘šπ‘š2⁄
) 𝑏𝑑
= 0.0015bd
= 0.0015 Γ— 300mm Γ— 328mm
113
= 148.39mm2
As,max = 0.04Ac
= 0.04bh
= 0.04 Γ— 300mm Γ— 400mm
= 4800mm2
114
Ref. Calculation Output
Support B
Bending Moment = 17.6147kNm
K = 𝑀 𝐸𝐷
𝑓 π‘π‘˜ 𝑏𝑑2
= 17.6147 Γ— 106
π‘π‘šπ‘š
30𝑁 π‘šπ‘š2⁄ Γ—300π‘š Γ— (328π‘šπ‘š)2
= 0.018 Λ‚ Kbal(0.167)
z = 𝑑 [0.5 + √0.25 βˆ’ 𝐾
1.134⁄ ]
= 𝑑 [0.5 + √0.25 βˆ’ 0.018
1.134⁄ ]
= 0.9839d
= 0.9839 Γ— 328mm
= 322.71mm
Area of Tension Reinforcement
As = 𝑀 𝐸𝐷
0.87 Γ— 𝑓 π‘¦π‘˜ ×𝑧
= 17.6147 Γ— 106
π‘π‘šπ‘š
0.87 Γ—500𝑁 π‘šπ‘š2⁄ Γ—0.9839 Γ—328π‘šπ‘š
2H10
= 125.48mm2 157mm2
Minimum and maximum reinforcement area
As,min =
0.26 (
π‘“π‘π‘‘π‘š
π‘“π‘¦π‘˜
) 𝑏𝑑
=
0.26 Γ— (
2.9 𝑁 π‘šπ‘š2⁄
500 𝑁 π‘šπ‘š2⁄
) 𝑏𝑑
= 0.0015bd
= 0.0015 Γ— 300mm Γ— 328mm
115
= 148.39mm2
As,max = 0.04Ac
= 0.04bh
= 0.04 Γ— 300mm Γ— 400mm
= 4800mm2
116
Ref. Calculation Output
Support C
Bending Moment = 34.1779kNm
K = 𝑀 𝐸𝐷
𝑓 π‘π‘˜ 𝑏𝑑2
= 34.1779 Γ— 106
π‘π‘šπ‘š
30𝑁 π‘šπ‘š2⁄ Γ—300π‘š Γ— (328π‘šπ‘š)2
= 0.035 Λ‚ Kbal(0.167)
z = 𝑑 [0.5 + √0.25 βˆ’ 𝐾
1.134⁄ ]
= 𝑑 [0.5 + √0.25 βˆ’ 0.035
1.134⁄ ]
= 0.9681d
= 0.9681 Γ— 328mm
= 322.71mm
Area of Tension Reinforcement
As = 𝑀 𝐸𝐷
0.87 Γ— 𝑓 π‘¦π‘˜ ×𝑧
= 34.1779 Γ— 106
π‘π‘šπ‘š
0.87 Γ—500𝑁 π‘šπ‘š2⁄ Γ—0.9681 Γ—328π‘šπ‘š
4H10
= 247.44mm2 314mm2
Minimum and maximum reinforcement area
As,min =
0.26 (
π‘“π‘π‘‘π‘š
π‘“π‘¦π‘˜
) 𝑏𝑑
=
0.26 Γ— (
2.9 𝑁 π‘šπ‘š2⁄
500 𝑁 π‘šπ‘š2⁄
) 𝑏𝑑
= 0.0015bd
= 0.0015 Γ— 300mm Γ— 328mm
117
= 148.39mm2
As,max = 0.04Ac
= 0.04bh
= 0.04 Γ— 300mm Γ— 400mm
= 4800mm2
118
Ref. Calculation Output
Support D
Bending Moment = 34.1779kNm
K = 𝑀 𝐸𝐷
𝑓 π‘π‘˜ 𝑏𝑑2
= 34.1779 Γ— 106
π‘π‘šπ‘š
30𝑁 π‘šπ‘š2⁄ Γ—300π‘š Γ— (328π‘šπ‘š)2
= 0.035 Λ‚ Kbal(0.167)
z = 𝑑 [0.5 + √0.25 βˆ’ 𝐾
1.134⁄ ]
= 𝑑 [0.5 + √0.25 βˆ’ 0.035
1.134⁄ ]
= 0.9681d
= 0.9681 Γ— 328mm
= 322.71mm
Area of Tension Reinforcement
As = 𝑀 𝐸𝐷
0.87 Γ— 𝑓 π‘¦π‘˜ ×𝑧
= 34.1779 Γ— 106
π‘π‘šπ‘š
0.87 Γ—500𝑁 π‘šπ‘š2⁄ Γ—0.9681 Γ—328π‘šπ‘š
4H10
= 247.44mm2 314mm2
Minimum and maximum reinforcement area
As,min =
0.26 (
π‘“π‘π‘‘π‘š
π‘“π‘¦π‘˜
) 𝑏𝑑
=
0.26 Γ— (
2.9 𝑁 π‘šπ‘š2⁄
500 𝑁 π‘šπ‘š2⁄
) 𝑏𝑑
= 0.0015bd
= 0.0015 Γ— 300mm Γ— 328mm
119
= 148.39mm2
As,max = 0.04Ac
= 0.04bh
= 0.04 Γ— 300mm Γ— 400mm
= 4800mm2
120
Ref. Calculation Output
Support E
Bending Moment = 13.7988kNm
K = 𝑀 𝐸𝐷
𝑓 π‘π‘˜ 𝑏𝑑2
= 13.7988 Γ— 106
π‘π‘šπ‘š
30𝑁 π‘šπ‘š2⁄ Γ—300π‘š Γ— (328π‘šπ‘š)2
= 0.014 Λ‚ Kbal(0.167)
z = 𝑑 [0.5 + √0.25 βˆ’ 𝐾
1.134⁄ ]
= 𝑑 [0.5 + √0.25 βˆ’ 0.014
1.134⁄ ]
= 0.9875d
= 0.9875 Γ— 328mm
= 322.71mm
Area of Tension Reinforcement
As = 𝑀 𝐸𝐷
0.87 Γ— 𝑓 π‘¦π‘˜ ×𝑧
= 13.7988 Γ— 106
π‘π‘šπ‘š
0.87 Γ—500𝑁 π‘šπ‘š2⁄ Γ—0.9875 Γ—328π‘šπ‘š
2H10
= 97.94mm2 157mm2
Minimum and maximum reinforcement area
As,min =
0.26 (
π‘“π‘π‘‘π‘š
π‘“π‘¦π‘˜
) 𝑏𝑑
=
0.26 Γ— (
2.9 𝑁 π‘šπ‘š2⁄
500 𝑁 π‘šπ‘š2⁄
) 𝑏𝑑
= 0.0015bd
= 0.0015 Γ— 300mm Γ— 328mm
121
= 148.39mm2
As,max = 0.04Ac
= 0.04bh
= 0.04 Γ— 300mm Γ— 400mm
= 4800mm2
122
Ref. Calculation Output
Support F
Bending Moment = 13.7988kNm
K = 𝑀 𝐸𝐷
𝑓 π‘π‘˜ 𝑏𝑑2
= 13.7988 Γ— 106
π‘π‘šπ‘š
30𝑁 π‘šπ‘š2⁄ Γ—300π‘š Γ— (328π‘šπ‘š)2
= 0.014 Λ‚ Kbal(0.167)
z = 𝑑 [0.5 + √0.25 βˆ’ 𝐾
1.134⁄ ]
= 𝑑 [0.5 + √0.25 βˆ’ 0.014
1.134⁄ ]
= 0.9875d
= 0.9875 Γ— 328mm
= 322.71mm
Area of Tension Reinforcement
As = 𝑀 𝐸𝐷
0.87 Γ— 𝑓 π‘¦π‘˜ ×𝑧
= 13.7988 Γ— 106
π‘π‘šπ‘š
0.87 Γ—500𝑁 π‘šπ‘š2⁄ Γ—0.9875 Γ—328π‘šπ‘š
2H10
= 97.94mm2 157mm2
Minimum and maximum reinforcement area
As,min =
0.26 (
π‘“π‘π‘‘π‘š
π‘“π‘¦π‘˜
) 𝑏𝑑
=
0.26 Γ— (
2.9 𝑁 π‘šπ‘š2⁄
500 𝑁 π‘šπ‘š2⁄
) 𝑏𝑑
= 0.0015bd
= 0.0015 Γ— 300mm Γ— 328mm
123
= 148.39mm2
As,max = 0.04Ac
= 0.04bh
= 0.04 Γ— 300mm Γ— 400mm
= 4800mm2
124
Ref. Calculation Output
Support G
Bending Moment = 36.5345kNm
K = 𝑀 𝐸𝐷
𝑓 π‘π‘˜ 𝑏𝑑2
= 36.5345 Γ— 106
π‘π‘šπ‘š
30𝑁 π‘šπ‘š2⁄ Γ—300π‘š Γ— (328π‘šπ‘š)2
= 0.038 Λ‚ Kbal(0.167)
z = 𝑑 [0.5 + √0.25 βˆ’ 𝐾
1.134⁄ ]
= 𝑑 [0.5 + √0.25 βˆ’ 0.038
1.134⁄ ]
= 0.9653d
= 0.9653 Γ— 328mm
= 316.61mm
Area of Tension Reinforcement
As = 𝑀 𝐸𝐷
0.87 Γ— 𝑓 π‘¦π‘˜ ×𝑧
= 36.5345 Γ— 106
π‘π‘šπ‘š
0.87 Γ—500𝑁 π‘šπ‘š2⁄ Γ—0.9653 Γ—328π‘šπ‘š
4H10
= 265.26mm2 314mm2
Minimum and maximum reinforcement area
As,min =
0.26 (
π‘“π‘π‘‘π‘š
π‘“π‘¦π‘˜
) 𝑏𝑑
=
0.26 Γ— (
2.9 𝑁 π‘šπ‘š2⁄
500 𝑁 π‘šπ‘š2⁄
) 𝑏𝑑
= 0.0015bd
= 0.0015 Γ— 300mm Γ— 328mm
125
= 148.39mm2
As,max = 0.04Ac
= 0.04bh
= 0.04 Γ— 300mm Γ— 400mm
= 4800mm2
126
Ref. Calculation Output
5. Shear Reinforcement
Concrete strut capacity
VRd,max = 0.36𝑏 𝑀 π‘‘π‘“π‘π‘˜ (1βˆ’
π‘“π‘π‘˜
250⁄ )
cotπœƒ+ tan πœƒ
= 322.48kN ( πœƒ = 22Β° ,cot πœƒ = 2.5 )
= 467.60kN( πœƒ = 45Β° , cot πœƒ = 1.0)
Support A and H
VED at A = 26.537kN
VED at H = 51.516kN
Shear links
𝐴 𝑠𝑀
𝑠
= 𝑉 𝐸𝐷
0.78𝑓 π‘¦π‘˜ 𝑑 cot πœƒ
For Support A = 26 .537 Γ— 103
𝑁
0.78 Γ—500𝑁 π‘šπ‘š2⁄ Γ—328π‘šπ‘š Γ—2.5
= 0.083mm
For Support H = 51 .516 Γ— 103
𝑁
0.78 Γ—500𝑁 π‘šπ‘š2⁄ Γ—328π‘šπ‘š Γ—2.5
= 0.161mm
Try link H6 (Asw = 28.3mm2)
For Support A, s = 28.3π‘šπ‘š2
0.083π‘šπ‘š
= 341.05mm H6 - 250
For Support H, s = 28.3π‘šπ‘š2
0.161π‘šπ‘š
= 175mm H6 - 175
127
Maximum Spacing = 0.75d
= 0.75 Γ— 328mm
= 246mm
H6 - 250
128
Ref. Calculation Output
For highest shear using at the support
Support B = 34.078kN
Support C = 51.439kN
Support D = 49.382kN
Support E = 29.882kN
Support F = 31.181kN
Support G = 63.662kN
For lowest shear using at support
Support B = 30.119kN
Support C = 43.330kN
Support D = 31.234kN
Support E = 15.304kN
Support F = 17.886kN
Support G = 27.563kN
Shear links for highest shear using
For Support B = 34.078 Γ— 103
𝑁
0.78 Γ—500𝑁 π‘šπ‘š2⁄ Γ—328π‘šπ‘š Γ—2.5
= 0.107mm
For Support C = 51 .439 Γ— 103
𝑁
0.78 Γ—500𝑁 π‘šπ‘š2⁄ Γ—328π‘šπ‘š Γ—2.5
= 0.107mm
For Support D = 49.382 Γ— 103
𝑁
0.78 Γ—500𝑁 π‘šπ‘š2⁄ Γ—328π‘šπ‘š Γ—2.5
= 0.154mm
129
For Support E = 29.882 Γ— 103
𝑁
0.78 Γ—500𝑁 π‘šπ‘š2⁄ Γ—328π‘šπ‘š Γ—2.5
= 0.093mm
For Support F = 31.181 Γ— 103
𝑁
0.78 Γ—500𝑁 π‘šπ‘š2⁄ Γ—328π‘šπ‘š Γ—2.5
= 0.098mm
For Support G = 63.662 Γ— 103
𝑁
0.78 Γ—500𝑁 π‘šπ‘š2⁄ Γ—328π‘šπ‘š Γ—2.5
= 0.199mm
130
Ref. Calculation Output
Shear link for lowest shear using
For Support B = 30 .119 Γ— 103
𝑁
0.78 Γ—500𝑁 π‘šπ‘š2⁄ Γ—328π‘šπ‘š Γ—2.5
= 0.094mm
For Support C = 43.330 Γ— 103
𝑁
0.78 Γ—500𝑁 π‘šπ‘š2⁄ Γ—328π‘šπ‘š Γ—2.5
= 0.135mm
For Support D = 31.234 Γ— 103
𝑁
0.78 Γ—500𝑁 π‘šπ‘š2⁄ Γ—328π‘šπ‘š Γ—2.5
= 0.098mm
For Support E = 15.304 Γ— 103
𝑁
0.78 Γ—500𝑁 π‘šπ‘š2⁄ Γ—328π‘šπ‘š Γ—2.5
= 0.048mm
For Support F = 17.886 Γ— 103
𝑁
0.78 Γ—500𝑁 π‘šπ‘š2⁄ Γ—328π‘šπ‘š Γ—2.5
= 0.056mm
For Support G = 27.563 Γ— 103
𝑁
0.78 Γ—500𝑁 π‘šπ‘š2⁄ Γ—328π‘šπ‘š Γ—2.5
= 0.086mm
Try links H6 (Asw = 28.3mm2)
For highest shear using, spacing
For Support B, s = 28.3π‘šπ‘š2
0.107π‘šπ‘š
= 265.58mm H6 – 250
For Support C, s = 28.3π‘šπ‘š2
0.161π‘šπ‘š
= 175.94mm H6 – 150
For Support D, s = 28.3π‘šπ‘š2
0.154π‘šπ‘š
= 183.27mm H6 – 175
131
For Support E, s = 28.3π‘šπ‘š2
0.093π‘šπ‘š
= 302.87mm H6 – 250
For Support F, s = 28.3π‘šπ‘š2
0.098π‘šπ‘š
= 290.25mm H6 – 250
For Support G, s = 28.3π‘šπ‘š2
0.199π‘šπ‘š
= 142.16mm H6 - 100
132
Ref. Calculation Output
For lowest shear using, spacing
For Support B, s = 28.3π‘šπ‘š2
0.094π‘šπ‘š
= 300.49mm H6 – 250
For Support C, s = 28.3π‘šπ‘š2
0.135π‘šπ‘š
= 208.87mm H6 - 200
For Support D, s = 28.3π‘šπ‘š2
0.098π‘šπ‘š
= 289.76mm H6 – 250
For Support E, s = 28.3π‘šπ‘š2
0.048π‘šπ‘š
= 591.37mm H6 - 250
For Support F, s = 28.3π‘šπ‘š2
0.056π‘šπ‘š
= 506.00mm H6 - 250
For Support G, s = 28.3π‘šπ‘š2
0.086π‘šπ‘š
= 328.35mm H6 - 250
Minimum links
𝐴 𝑠𝑀
𝑠
= 0.08π‘“π‘π‘˜
1
2 𝑏 𝑀
π‘“π‘¦π‘˜
= 0.08 Γ— (30 𝑁 π‘šπ‘š2⁄ )
1
2 Γ—300π‘šπ‘š
500𝑁 π‘šπ‘š2⁄
= 0.262mm
Try link H6 (Asw = 28.3mm2)
Spacing, s = 28.3 π‘šπ‘š2
0.262π‘šπ‘š
= 108.02mm H6 - 100
133
Shear resistance of minimum links
Vmin = (
𝐴 𝑠𝑀
𝑠
) (0.78π‘‘π‘“π‘¦π‘˜ cot πœƒ)
= (28.3π‘šπ‘š2
100 π‘šπ‘š
)(0.78 Γ— 328π‘šπ‘š Γ— 500𝑁 π‘šπ‘š2⁄ Γ— 2.5)
= 90.50kN
Since the min. shear resistance is higher than every shear force
calculated,
∴ 𝑼𝒔𝒆 π‘―πŸ” βˆ’ 𝟏𝟎𝟎 π’•π’‰π’“π’π’–π’ˆπ’‰ 𝒂𝒍𝒍 𝒔𝒑𝒂𝒏
134
Ref. Calculation Output
6. Deflection
Check at Span AB
Percentage of required tension reinforcement
𝜌 =
𝐴 𝑠,π‘Ÿπ‘’π‘ž
𝑏𝑑
= 89.23π‘šπ‘š2
300π‘šπ‘š Γ—328π‘šπ‘š
= 0.0009
Reference reinforcement ratio
𝜌0 = ( π‘“π‘π‘˜
)
1
2 Γ—
10βˆ’3
= (30 𝑁 π‘šπ‘š2⁄ )
1
2 Γ— 10βˆ’3
= 0.0055
Percentage of required compression reinforcement
πœŒβ€² = 𝐴 𝑠,π‘Ÿπ‘’π‘ž
β€²
𝑏𝑑
= 0π‘šπ‘š2
300π‘šπ‘š Γ—328π‘šπ‘š
= 0
Factor for structural system, K = 1.3
𝜌 < 𝜌0
𝑙
𝑑
= 𝐾 [11 + 1.5 √ 𝑓𝑐 π‘˜
𝜌0
𝜌
+ 3.2 √ 𝑓𝑐 π‘˜ (
𝜌0
𝜌
βˆ’ 1)
3
2
]
= 1.3 [11 + 1.5 √30𝑁 π‘šπ‘š2⁄ Γ— 10βˆ’3 0.0055
0.0009
+ 3.2 √30𝑁 π‘šπ‘š2⁄ Γ— 10βˆ’3 (0.0055
0.0009
βˆ’
1)
3
2
]
= 1.3[11 + 0.0504 + 0.1034]
= 14.4999
Modification factor for span greater than 7m
= 1.0
Modification factor for steel area provided,
135
=
𝐴 𝑠,π‘π‘Ÿπ‘œπ‘£
𝐴 𝑠,π‘Ÿπ‘’π‘ž
= 157π‘šπ‘š2
89.23π‘šπ‘š2
= 1.75
Therefore allowable span-effective depth ratio
(
𝑙
𝑑
)
π‘Žπ‘™π‘™π‘œπ‘€π‘Žπ‘π‘™π‘’
= 14.4999 Γ— 1.0 Γ— 1.5
= 21.7499
Actual span-effective depth
(
𝑙
𝑑
)
π‘Žπ‘π‘‘π‘’π‘Žπ‘™
= 2287.5π‘šπ‘š
328π‘šπ‘š
= 6.9741 OK
Ref. Calculation Output
Check at Span BC
Percentage of required tension reinforcement
𝜌 =
𝐴 𝑠,π‘Ÿπ‘’π‘ž
𝑏𝑑
= 109.31π‘šπ‘š2
300π‘šπ‘š Γ—328π‘šπ‘š
= 0.0011
Reference reinforcement ratio
𝜌0 = ( π‘“π‘π‘˜
)
1
2 Γ—
10βˆ’3
= (30 𝑁 π‘šπ‘š2⁄ )
1
2 Γ— 10βˆ’3
= 0.0055
Percentage of required compression reinforcement
πœŒβ€² = 𝐴 𝑠,π‘Ÿπ‘’π‘ž
β€²
𝑏𝑑
= 0π‘šπ‘š2
300π‘šπ‘š Γ—328π‘šπ‘š
= 0
136
Factor for structural system, K = 1.3
𝜌 < 𝜌0
𝑙
𝑑
= 𝐾 [11 + 1.5 √ 𝑓𝑐 π‘˜
𝜌0
𝜌
+ 3.2 √ 𝑓𝑐 π‘˜ (
𝜌0
𝜌
βˆ’ 1)
3
2
]
= 1.3 [11 + 1.5 √30𝑁 π‘šπ‘š2⁄ Γ— 10βˆ’3 0.0055
0.0011
+ 3.2 √30𝑁 π‘šπ‘š2⁄ Γ— 10βˆ’3 (0.0055
0.0011
βˆ’ 1)
3
2
]
= 1.3[11 + 0.0375 + 0.1408]
= 14.5318
Modification factor for span greater than 7m
= 1.0
Modification factor for steel area provided,
=
𝐴 𝑠,π‘π‘Ÿπ‘œπ‘£
𝐴 𝑠,π‘Ÿπ‘’π‘ž
= 157π‘šπ‘š2
109.31π‘šπ‘š2
= 1.44
Therefore allowable span-effective depth ratio
(
𝑙
𝑑
)
π‘Žπ‘™π‘™π‘œπ‘€π‘Žπ‘π‘™π‘’
= 14.5318 Γ— 1.0 Γ— 1.44
= 20.9258
Actual span-effective depth
(
𝑙
𝑑
)
π‘Žπ‘π‘‘π‘’π‘Žπ‘™
= 2287.5π‘šπ‘š
328π‘šπ‘š
= 6.9741 OK
137
Ref. Calculation Output
Check at Span CD
Percentage of required tension reinforcement
𝜌 =
𝐴 𝑠,π‘Ÿπ‘’π‘ž
𝑏𝑑
= 215.09π‘šπ‘š2
300π‘šπ‘š Γ—328π‘šπ‘š
= 0.0022
Reference reinforcement ratio
𝜌0 = ( π‘“π‘π‘˜
)
1
2 Γ— 10βˆ’3 = (30 𝑁 π‘šπ‘š2⁄ )
1
2 Γ— 10βˆ’3
= 0.0055
Percentage of required compression reinforcement
πœŒβ€² = 𝐴 𝑠,π‘Ÿπ‘’π‘ž
β€²
𝑏𝑑
= 0π‘šπ‘š2
300π‘šπ‘š Γ—328π‘šπ‘š
= 0
Factor for structural system, K = 1.3
𝜌 < 𝜌0
𝑙
𝑑
= 𝐾 [11 + 1.5 √ 𝑓𝑐 π‘˜
𝜌0
𝜌
+ 3.2 √ 𝑓𝑐 π‘˜ (
𝜌0
𝜌
βˆ’ 1)
3
2
]
= 1.3 [11 + 1.5 √30𝑁 π‘šπ‘š2⁄ Γ— 10βˆ’3 0.0055
0.0022
+ 3.2 √30𝑁 π‘šπ‘š2⁄ Γ— 10βˆ’3 (0.0055
0.0022
βˆ’ 1)
3
2
]
= 1.3[11 + 0.0206 + 0.0323]
= 14.3688
Modification factor for span greater than 7m
= 1.0
Modification factor for steel area provided,
=
𝐴 𝑠,π‘π‘Ÿπ‘œπ‘£
𝐴 𝑠,π‘Ÿπ‘’π‘ž
= 236π‘šπ‘š2
215.09π‘šπ‘š2
138
= 1.10
Therefore allowable span-effective depth ratio
(
𝑙
𝑑
)
π‘Žπ‘™π‘™π‘œπ‘€π‘Žπ‘π‘™π‘’
= 14.3688 Γ— 1.0 Γ— 1.10
= 15.8057
Actual span-effective depth
(
𝑙
𝑑
)
π‘Žπ‘π‘‘π‘’π‘Žπ‘™
= 3225π‘šπ‘š
328π‘šπ‘š
= 9.8323 OK
139
Ref. Calculation Output
Check at Span DE
Percentage of required tension reinforcement
𝜌 =
𝐴 𝑠,π‘Ÿπ‘’π‘ž
𝑏𝑑
= 52.38π‘šπ‘š2
300π‘šπ‘š Γ—328π‘šπ‘š
= 0.0005
Reference reinforcement ratio
𝜌0 = ( π‘“π‘π‘˜
)
1
2 Γ— 10βˆ’3 = (30 𝑁 π‘šπ‘š2⁄ )
1
2 Γ— 10βˆ’3
= 0.0055
Percentage of required compression reinforcement
πœŒβ€² = 𝐴 𝑠,π‘Ÿπ‘’π‘ž
β€²
𝑏𝑑
= 0π‘šπ‘š2
300π‘šπ‘š Γ—328π‘šπ‘š
= 0
Factor for structural system, K = 1.3
𝜌 < 𝜌0
𝑙
𝑑
= 𝐾 [11 + 1.5 √ 𝑓𝑐 π‘˜
𝜌0
𝜌
+ 3.2 √ 𝑓𝑐 π‘˜ (
𝜌0
𝜌
βˆ’ 1)
3
2
]
= 1.3 [11 + 1.5 √30𝑁 π‘šπ‘š2⁄ Γ— 10βˆ’3 0.0055
0.0005
+ 3.2 √30𝑁 π‘šπ‘š2⁄ Γ— 10βˆ’3 (0.0055
0.0005
βˆ’ 1)
3
2
]
= 1.3[11 + 0.0908 + 0.5566]
= 15.1416
Modification factor for span greater than 7m
= 1.0
Modification factor for steel area provided,
=
𝐴 𝑠,π‘π‘Ÿπ‘œπ‘£
𝐴 𝑠,π‘Ÿπ‘’π‘ž
= 157π‘šπ‘š2
52.38π‘šπ‘š2
140
= 2.997
Therefore allowable span-effective depth ratio
(
𝑙
𝑑
)
π‘Žπ‘™π‘™π‘œπ‘€π‘Žπ‘π‘™π‘’
= 15.1416 Γ— 1.0 Γ— 1.5
= 22.7124
Actual span-effective depth
(
𝑙
𝑑
)
π‘Žπ‘π‘‘π‘’π‘Žπ‘™
= 1725π‘šπ‘š
328π‘šπ‘š
= 5.26 OK
141
Ref. Calculation Output
Check at Span EF
Percentage of required tension reinforcement
𝜌 =
𝐴 𝑠,π‘Ÿπ‘’π‘ž
𝑏𝑑
= 85.26π‘šπ‘š2
300π‘šπ‘š Γ—328π‘šπ‘š
= 0.0009
Reference reinforcement ratio
𝜌0 = ( π‘“π‘π‘˜
)
1
2 Γ— 10βˆ’3 = (30 𝑁 π‘šπ‘š2⁄ )
1
2 Γ— 10βˆ’3
= 0.0055
Percentage of required compression reinforcement
πœŒβ€² = 𝐴 𝑠,π‘Ÿπ‘’π‘ž
β€²
𝑏𝑑
= 0π‘šπ‘š2
300π‘šπ‘š Γ—328π‘šπ‘š
= 0
Factor for structural system, K = 1.3
𝜌 < 𝜌0
𝑙
𝑑
= 𝐾 [11 + 1.5 √ 𝑓𝑐 π‘˜
𝜌0
𝜌
+ 3.2 √ 𝑓𝑐 π‘˜ (
𝜌0
𝜌
βˆ’ 1)
3
2
]
= 1.3 [11 + 1.5 √30𝑁 π‘šπ‘š2⁄ Γ— 10βˆ’3 0.0055
0.0009
+ 3.2 √30𝑁 π‘šπ‘š2⁄ Γ— 10βˆ’3 (0.0055
0.0009
βˆ’ 1)
3
2
]
= 1.3[11 + 0.0504 + 0.2034]
= 14.6299
Modification factor for span greater than 7m
= 1.0
Modification factor for steel area provided,
=
𝐴 𝑠,π‘π‘Ÿπ‘œπ‘£
𝐴 𝑠,π‘Ÿπ‘’π‘ž
= 157π‘šπ‘š2
85.26π‘šπ‘š2
142
= 1.84
Therefore allowable span-effective depth ratio
(
𝑙
𝑑
)
π‘Žπ‘™π‘™π‘œπ‘€π‘Žπ‘π‘™π‘’
= 14.6299 Γ— 1.0 Γ— 1.5
= 21.9449
Actual span-effective depth
(
𝑙
𝑑
)
π‘Žπ‘π‘‘π‘’π‘Žπ‘™
= 2175π‘šπ‘š
328π‘šπ‘š
= 8.2774 OK
143
Ref. Calculation Output
Check at Span FG
Percentage of required tension reinforcement
𝜌 =
𝐴 𝑠,π‘Ÿπ‘’π‘ž
𝑏𝑑
= 49.54π‘šπ‘š2
300π‘šπ‘š Γ—328π‘šπ‘š
= 0.0005
Reference reinforcement ratio
𝜌0 = ( π‘“π‘π‘˜
)
1
2 Γ— 10βˆ’3 = (30 𝑁 π‘šπ‘š2⁄ )
1
2 Γ— 10βˆ’3
= 0.0055
Percentage of required compression reinforcement
πœŒβ€² = 𝐴 𝑠,π‘Ÿπ‘’π‘ž
β€²
𝑏𝑑
= 0π‘šπ‘š2
300π‘šπ‘š Γ—328π‘šπ‘š
= 0
Factor for structural system, K = 1.3
𝜌 < 𝜌0
𝑙
𝑑
= 𝐾 [11 + 1.5 √ 𝑓𝑐 π‘˜
𝜌0
𝜌
+ 3.2 √ 𝑓𝑐 π‘˜ (
𝜌0
𝜌
βˆ’ 1)
3
2
]
= 1.3 [11 + 1.5 √30𝑁 π‘šπ‘š2⁄ Γ— 10βˆ’3 0.0055
0.0005
+ 3.2 √30𝑁 π‘šπ‘š2⁄ Γ— 10βˆ’3 (0.0055
0.0005
βˆ’ 1)
3
2
]
= 1.3[11 + 0.0908 + 0.5566]
= 15.1416
Modification factor for span greater than 7m
= 1.0
Modification factor for steel area provided,
=
𝐴 𝑠,π‘π‘Ÿπ‘œπ‘£
𝐴 𝑠,π‘Ÿπ‘’π‘ž
= 157π‘šπ‘š2
49.54π‘šπ‘š2
144
= 3.17
Therefore allowable span-effective depth ratio
(
𝑙
𝑑
)
π‘Žπ‘™π‘™π‘œπ‘€π‘Žπ‘π‘™π‘’
= 15.1416 Γ— 1.0 Γ— 1.5
= 22.7124
Actual span-effective depth
(
𝑙
𝑑
)
π‘Žπ‘π‘‘π‘’π‘Žπ‘™
= 1800π‘šπ‘š
328π‘šπ‘š
= 5.4878 OK
145
Ref. Calculation Output
Check at Span GH
Percentage of required tension reinforcement
𝜌 =
𝐴 𝑠,π‘Ÿπ‘’π‘ž
𝑏𝑑
= 230.54π‘šπ‘š2
300π‘šπ‘š Γ—328π‘šπ‘š
= 0.0023
Reference reinforcement ratio
𝜌0 = ( π‘“π‘π‘˜
)
1
2 Γ—
10βˆ’3
= (30 𝑁 π‘šπ‘š2⁄ )
1
2 Γ— 10βˆ’3
= 0.0055
Percentage of required compression reinforcement
πœŒβ€² = 𝐴 𝑠,π‘Ÿπ‘’π‘ž
β€²
𝑏𝑑
= 0π‘šπ‘š2
300π‘šπ‘š Γ—328π‘šπ‘š
= 0
Factor for structural system, K = 1.3
𝜌 < 𝜌0
𝑙
𝑑
= 𝐾 [11 + 1.5 √ 𝑓𝑐 π‘˜
𝜌0
𝜌
+ 3.2 √ 𝑓𝑐 π‘˜ (
𝜌0
𝜌
βˆ’ 1)
3
2
]
= 1.3 [11 + 1.5 √30𝑁 π‘šπ‘š2⁄ Γ— 10βˆ’3 0.0055
0.0023
+ 3.2 √30𝑁 π‘šπ‘š2⁄ Γ— 10βˆ’3 (0.0055
0.0023
βˆ’ 1)
3
2
]
= 1.3[11 + 0.0197 + 0.0289]
= 14.3632
Modification factor for span greater than 7m
= 1.0
Modification factor for steel area provided,
=
𝐴 𝑠,π‘π‘Ÿπ‘œπ‘£
𝐴 𝑠,π‘Ÿπ‘’π‘ž
= 236π‘šπ‘š2
230.54π‘šπ‘š2
146
= 1.02
Therefore allowable span-effective depth ratio
(
𝑙
𝑑
)
π‘Žπ‘™π‘™π‘œπ‘€π‘Žπ‘π‘™π‘’
= 14.3632 Γ— 1.0 Γ— 1.02
= 14.6557
Actual span-effective depth
(
𝑙
𝑑
)
π‘Žπ‘π‘‘π‘’π‘Žπ‘™
= 3000π‘šπ‘š
328π‘šπ‘š
= 9.1463 OK
147
Ref. Calculation Output
7. Cracking
Limiting cracking width,
wmax
= 0.3mm
Steel Stress, fs = π‘“π‘¦π‘˜
1.15
Γ—
𝐺 π‘˜+0.3𝑄 π‘˜
(1.35𝐺 π‘˜+1.50𝑄 π‘˜)
1
𝛿
= 500𝑁 π‘šπ‘š2⁄
1.15
Γ—
21.0675π‘˜π‘ π‘šβ„ +0.30(6.57π‘˜π‘ π‘šβ„ )
38.2961π‘˜π‘ π‘šβ„
Γ— 1.0
= 261.56mm2
Maximum allowing spacing = 150mm
Maximum allowing bar = 12mm
Bar spacing, s = π‘βˆ’2𝐢 π‘›π‘œπ‘šβˆ’2βˆ…π‘™π‘– 𝑛 π‘˜βˆ’ βˆ… π‘π‘Žπ‘Ÿ
2
= 300π‘šβˆ’2(60π‘šπ‘š)βˆ’2(6π‘šπ‘š)βˆ’10π‘šπ‘š
2
= 79mm
148
Ref. Calculation Output
8. Detailing
149
150
Ref. Calculation Output
5.5 Slab Design
5.5.1 Simply Supported One Way Spanning Slab
1.0 Specification
Effective span, Leff = 5.4m
Characteristic actions
Permanent, Gk = 3.0kN/m2
Variable, qk = 3.0kN/m2
Design life = 50 years
Fire resistance = R120
Exposure classes = XS3
Materials
Characteristic strength of concrete, fck = 30N/mm2
Characteristic strength of steel, fyk = 500N/mm2
Unit weight of reinforced concrete = 25kN/m3
Assumed: βˆ…bar = 20mm
2.0 Slab Thickness
Min, thickness for fire resistance = 120mm
Thickness for deflection control, h = 120mm
3.0 Durability , Fire and Bond Requirements
151
Min. concrete cover regard to bond, Cmin, b = 12mm
Min. concrete cover regard to durability, Cmin,
dur
= 20mm
Min. required axis distance for R120, a = 40mm
Min. concrete cover regard to fire
Cmin = a-βˆ…bar/2 = 40mm-20mm/2
= 30mm
Allowance in design for deviation, βˆ†Cdev = 10mm
Nominal cover, Cnom = Cmin + βˆ†Cdev = 30mm + 10mm
= 40mm
∴ Cnom = 40mm
Ref. Calculation Output
4.0 Loading and Analysis
Slab self-
weight
= 0.14 Γ— 25kN/m3 = 3.5kN/m2
Permanent load (excluding self –weight) = 3.0kN/m2
Characteristic permanent action, Gk = 6.5kN/m2
Characteristic variable action, Qk = 3.0kN/m2
Design action, nd = 1.35Gk + 1.5Qk
= 1.35(6.5kN/m2) + 1.5(3.0kN/m2)
= 13.275kN/m2
152
Consider 2m width, Wd = nd Γ—
2m
= 26.55 kN/m
Shear Force, V = π‘Š 𝑑 𝐿
2
= (26.55 π‘˜π‘ π‘šβ„ ) Γ— (3.125π‘š)
2
= 41.48 kN
Bending Moment, M = π‘Š 𝑑 𝐿2
8
= (26.55 π‘˜π‘ π‘šβ„ ) Γ— (3.125π‘š)2
8
= 32.41 kNm
5.0 Main Reinforcement
Effective depth, d = h-Cnom-βˆ…bar/2
= 140mm-40mm-(20mm/2)
= 90mm
Design bending moment, MEd = 32.41 kNm
= 𝑀 𝐸𝐷
𝑏𝑑2 𝑓 π‘π‘˜
= 32.41 Γ— 106
π‘π‘šπ‘š
2000π‘šπ‘š Γ— (90π‘šπ‘š)2 Γ—30 𝑁 π‘šπ‘š2⁄
= 0.032 < Kbal = 0.167
∴ Compression reinforcement is not required
153
Ref. Calculation Output
z = d[0.5+√0.25 βˆ’
𝐾
1.134
]
z = d[0.5+√0.25 βˆ’
0.032
1.134
]
z = 0.97d > 0.95d
Use 0.95d 0.95d
As =
𝑀 𝐸𝐷
0.89π‘“π‘¦π‘˜ 𝑧
= 32.41 Γ— 106 π‘π‘šπ‘š
0.87 Γ—500𝑁 π‘šπ‘š2⁄ Γ—0.95 Γ—90π‘šπ‘š
= 871.41 mm2
Main bar: H12-200 (566mm2/m) H12 - 200
Min. and max. reinforcement area,
As, min = 0.26(
π‘“π‘π‘‘π‘š
𝑓 π‘¦π‘˜
)bd
= 0.26x (
2.90 𝑁 π‘šπ‘š2⁄
500 𝑁 π‘šπ‘š2⁄
)bd
= 0.0015bd > 0.0013bd
Use 0.0015bd = 0.0015x2000mmx90mm
= 270mm2/m
As, max = 0.04Ac
= 0.04bh
= 0.04 Γ— 2000mm Γ— 140mm
= 11200mm2/m
Secondary bar: H12-450 (1251mm2/m) H12 - 450
6.0 Shear Reinforcement
154
Design shear force, VEd = 41.48kN
Design shear resistance,
k = 1 + (200/d)1/2 ≀ 2.0
= 1 + (200/90)1/2
= 2.49 β‰₯ 2.0
ρ’ = As1/bd ≀ 0.02
= 566mm2/ (2000mm Γ— 90mm)
= 0.0031 ≀ 0.02
155
Ref. Calculation Output
VRd, c = [0.12 Γ— π‘˜ Γ— √100πœŒβ€² π‘“π‘π‘˜
3
]bd
= [0.12 Γ— 2.0 Γ— √100 Γ— 0.0031 Γ— 30 𝑁 π‘šπ‘š2⁄3
] Γ— 2000mm Γ— 90mm
= 90847.2 N = 90.8kN
Vmin = (0.35 Γ— βˆšπ‘˜23
Γ— √ π‘“π‘π‘˜ )bd
= (0.35 Γ— √2.023
Γ— √30 𝑁 π‘šπ‘š2⁄ ) Γ— 2000π‘šπ‘š Γ— 90π‘šπ‘š
= 975991.8N = 976.0 kN
VRd, c ; Vmin > VEd (OK)
7.0 Deflection
Percentage of required tension reinforcement,
𝜌 = As, req/bd
= 413.52mm2/ (2000m Γ— 90mm)
= 0.0023
Reference reinforcement ratio
𝜌o = (fck)1/2x10-3
= (30 N/mm2)1/2x10-3
= 0.0055
Percentage of required compression reinforcemen
πœŒβ€™ = As’, req/bd
= 0/ (2000mm Γ— 90mm)
= 0
156
Factor for structural system, K = 1.0
𝜌 < 𝜌o
𝑙
𝑑
= K[11+1.5√ π‘“π‘π‘˜
𝜌o
𝜌
+3.2√ π‘“π‘π‘˜(
𝜌o
𝜌
-1)3/2
]
𝑙
𝑑
= 1.0 (11 + 1.5 √30 𝑁 π‘šπ‘š2⁄
𝜌0
𝜌
+ 3.2 √30 𝑁 π‘šπ‘š2⁄ (√(
𝜌0
𝜌
βˆ’ 1)
23
))
𝑙
𝑑
= 1.0 (11 + 19.6 + 28.8)
𝑙
𝑑
= 59.4
Modification factor for span less than 7m = 1.0
157
Ref. Calculation Output
Modification factor for steel area provided
= As, prov/As, req
= 566/413.52
= 1.37 < 1.5
Therefore allowable span-effective depth ratio
= (l/d)allowable
= 59.4 Γ— 1.0 Γ— 1.37
= 81.38
Actual span-effective depth
= (l/d)actual
= 3125mm/90mm
= 34.72 < (l/d)allowable
h = 140mm
Main bar,
Smax, slabs = 3h or 400mm = 420mm >
400mm
Max. bar spacing = 225mm ≀ Smax, slabs = 400mm (OK)
Secondary bar,
Smax, slabs = 3.5h or 450mm = 490mm > 450mm
Max. bar spacing = 450m ≀ Smax, slabs = 450mm (OK)
158
159
Ref. Calculation Output
5.5.2 Simply Supported Two Way Spanning Slab
1.0 Specification
Long span, Ly = 2.288m
Short span, Lx = 2.250m
𝐿 𝑦
𝐿 π‘₯
= 1.017m
Characteristic actions :
Permanent, Gk = 3kN/π‘š2
Variable, Qk = 3kN/π‘š2
Design life = 50 Years
Fire resistance = R120
Exposure classes = XS3
Materials :
Characteristic strength of concrete, fck = 30N/π‘šπ‘š2
Characteristic strength of steel, fyk = 500N/π‘šπ‘š2
Unit weight of reinforced concrete = 25KN/π‘š3
Assumed: Øbar = 20mm
2.0 Slab Thickness
Min thickness for fire resistance = 120mm
Estimated thickness of deflection control, h =
𝐿 π‘₯
22
=
2250π‘šπ‘š
22
Uses h
= 102mm 210mm
160
Use h 210mm
3.0 Durability, Fire and Bond Requirements
Min. conc. cover regard to bond , Cmin = 20mm
Min. Conc. cover regard to durability,
Cmin,dur
= 55mm
Min. Required axis distance for R60, a = 20mm
161
Ref. Calculation Output
Min. Conc. cover regard to fire, Cmin = π‘Ž βˆ’
βˆ… π΅π‘Žπ‘Ÿ
2
= 20mm – 10mm
= 10mm
Use min. conc cover regard to durability due to higher value.
Allowance in design for deviation, Ξ”Cdev = 10mm
Nominal cover, Cnom = Cmin+Ξ”Cdev
= 55mm + 10mm
= 65mm
4.0 Loading and Analysis
Slab self-weight = 0.21m Γ— 30 kN/m3
= 6.3 kN/m2
Permanent load = 3 kN/m2
Char. permanent action,
Gk
= 9.3 KN/π‘š2
Char. variable action, Qk = 3 KN/π‘š2
Design action, nd = 1.35GK + 1.5QK
= 1.35(9.3kN/m2)+1.5(3kN/m2)
= 17.06 kN/m2
Moment
Short span, Msx = Ξ±sx Γ— n Γ— Lx
2
= 0.062 x 17.06kN/m Γ— (2.250m)2
162
= 5.35 KNm/m
Long span, Msy = Ξ±sy Γ— n Γ— Ly
2
= 0.062 Γ— 17.06kN/m Γ— (2.288m)2
= 5.54kNm/m
5.0 Main Reinforcement
Effective depth, dx = h – Cnom - 0.5Øbar
= 210mm – 65mm - (0.5 x 20mm)
= 135mm
163
Ref. Calculation Output
Effective depth, dx = h – Cnom - 0.5Øbar
= 210mm – 65mm - (1.5 x 20mm)
= 115mm
Short span
Msx = 5.35 kNm/m
k = 𝑀 𝑠π‘₯
𝑏𝑑2 π‘“π‘π‘˜
= 5.35 Γ— 106 π‘π‘šπ‘š
2250π‘šπ‘š Γ— (135π‘šπ‘š)2 Γ—30 𝑁 π‘šπ‘š2⁄
= 0.0043
kbal = 0.167
K<πΎπ‘π‘Žπ‘™ , compression is not required
z = d [0.5+√0.25 βˆ’
𝐾
1.134
]
= d [0.5+√0.25 βˆ’
0.01
1.134
]
= 0.99d
= 0.99 Γ— 135mm
= 133.65mm/m
As = 𝑀 𝑠π‘₯
0.87 Γ— π‘“π‘¦π‘˜ ×𝑧
= 5.35 Γ— 106 π‘π‘šπ‘š
0.87 Γ—500 𝑁 π‘šπ‘š2⁄ Γ—0.99 Γ—135π‘šπ‘š
= 92.09mm2
H6-300(bot) (94π’Žπ’Ž 𝟐
/m)
164
Long span
Msy = 5.54 kNm/m
k = 𝑀 𝑠𝑦
𝑏𝑑2 π‘“π‘π‘˜
= 5.54 Γ— 106 π‘π‘šπ‘š
2288π‘šπ‘š Γ— (115π‘šπ‘š)2 Γ—30 𝑁 π‘šπ‘š2⁄
= 0.006
K<πΎπ‘π‘Žπ‘™ , compression is not required
165
Ref. Calculation Output
z = d [0.5+√0.25 βˆ’
𝐾
1.134
]
= d [0.5+√0.25 βˆ’
0.014
1.134
]
= 0.99d
= 0.99 x 115mm
= 113.85mm/m
As =
𝑀 𝑠𝑦
0.87 Γ— π‘“π‘¦π‘˜ ×𝑧
= 5.54 Γ— 106 π‘π‘šπ‘š
0.87 Γ—500𝑁 π‘šπ‘š2⁄ Γ—0.99 Γ—115π‘šπ‘š
= 108.03mm2
H6-250(bot) (113π’Žπ’Ž 𝟐
/m)
Min. and max. Reinforced area,
As,min = 0.26(
π‘“π‘π‘‘π‘š
π‘“π‘¦π‘˜
)bd
= 0.26 (
2.9 𝑁 π‘šπ‘š2⁄
500 𝑁 π‘šπ‘š2⁄
) bd
= 0.0015bd > 0.0013bd
= 0.0015 Γ— 2288mm Γ— 135mm
= 465.79mm2/m
As,max = 0.04Ac
= 0.04 Γ— 2288mm Γ— 210mm
= 19219.2mm2/m
6.0 Shear Reinforcement
166
Max. Design shear force, 𝑉𝐸𝐷 = 𝑛 𝑑 Γ—
𝐿 π‘₯
2
= 17.06 π‘˜π‘ π‘šβ„ Γ—
2.250π‘š
2
= 19.19kN
Design shear resistance, k = 1 + (200/d)1/2
≀ 2.0
= 1 + (200/135)1/2
= 2.22 β‰₯ 2.0
167
Ref. Calculation Output
πœŒβ€² = 𝐴 𝑠
𝑏𝑑
≀ 0.02
= 92.02 π‘šπ‘š2
2288π‘šπ‘š Γ—135π‘šπ‘š
= 0.0003 ≀ 0.02
𝑉𝑅𝐷,𝑐 = (0.12 Γ— π‘˜ Γ— √100 Γ— πœŒβ€² Γ— π‘“π‘π‘˜
3
) 𝑏𝑑
= 0.12 Γ— 2.0 Γ— √100 Γ— 0.012 Γ— 30 𝑁 π‘šπ‘š2⁄3
Γ— 2288π‘šπ‘š Γ— 135π‘šπ‘š
= 244.78 kN
𝑉 π‘šπ‘–π‘› = (0.035π‘˜3/2
π‘“π‘π‘˜1/2
)bd
= (0.035(2.0)3/2
(30 𝑁 π‘šπ‘š2⁄ )1/2
)Γ— 2288mm x 135mm
= 167.48kN
𝑽 𝑹𝑫: 𝑽 π’Žπ’Šπ’ β‰₯ 𝑽 π’Žπ’Šπ’
7.0 Reflection
Percentage of required tension reinforcement,
ρ =
𝐴 𝑠,π‘Ÿπ‘’π‘ž
𝑏𝑑
= 108.03 π‘šπ‘š2
2288π‘šπ‘š Γ—115π‘šπ‘š
= 0.0004
Reference reinforcement ratio,
𝜌0 = (fck)1/2
x 10βˆ’3
= (30)1/2
x 10βˆ’3
= 0.0055
168
Percentage of required compression reinforcement,
πœŒβ€² =
𝐴 𝑠′,π‘Ÿπ‘’π‘ž
𝑏𝑑
=
0 π‘šπ‘š
2288π‘šπ‘š Γ—135π‘šπ‘š
= 0
Factor for structural system,
k = 1.0
p ≀ 𝑝0
169
Ref. Calculation Output
1
𝑑
= π‘˜ [11+ 1.5 √ π‘“π‘π‘˜
𝑝0
𝑝
+ 3.2 √ π‘“π‘π‘˜ (
𝑝0
𝑝
-1)3/2
]
𝑙
𝑑
= 1.0 [11 + 1.5 √30
0.0055
0.0038
+ 3.2 √30 (
𝑝0
𝑝
-1)3/2
]
𝑙
𝑑
= 1.0 [11+ 11.9 + 5.24]
𝑙
𝑑
= 28.14
Modification factor for span less than 7m = 1.0
Modification factor for steel area provided =
𝐴 𝑠,π‘π‘Ÿπ‘œπ‘£
𝐴 𝑠,π‘Ÿπ‘’π‘ž
= 108.03 π‘šπ‘š2
108.03 π‘šπ‘š2
= 1.0 ≀ 1.5
Therefore allowable span-effective depth
ratio
= (
𝑙
𝑑
)
π‘Žπ‘™π‘™π‘œπ‘€π‘Žπ‘π‘™π‘’
= 28.14 Γ— 1.0 Γ— 2.288m
= 64.384m
Actual span-effective depth = (
𝑙
𝑑
)
π‘Žπ‘π‘‘π‘’π‘Žπ‘™
=
2288π‘šπ‘š
115π‘šπ‘š
= 19.86 Λ‚ 64.384
= OK
8.0 Cracking
170
n = 210mm < 210mm
Main bar
Ξ΄max, slabs = 3h or 400mm
= 3 (210mm) or 400mm
= 630mm > 400
= OK
171
Ref. Calculation Output
Max. bar spacing = 325mm ≀ Ξ΄max, slabs = 400mm
Secondary bar
Ξ΄max, slabs = 3.5 or 450mm
= 3.5 (210mm) or 400mm
= 735mm
= OK
Max. bar spacing = 350mm ≀ Ξ΄ max, slabs = 450mm
9.0 Detailing
Reinforcement
01: H6 - 300
172
02: H6 - 250
173
CHAPTER 6
MATERIAL PROPOSED
6.1 Physical Damage of Offshore Building
1. Salt crystallisation
οƒ˜ The surface of the concrete just above ground or water level is disrupted by the
growth of salts crystals in the pores of the concrete.
οƒ˜ In temperature climates most of the evaporation takes places at surface the
crystals also form at the surface and do little damage and became worst in hotter
climates.
2. Abrasion
οƒ˜ Occurs due to wave action carrying sand, shingle or other debris. Shipping
impact is another source of damage. The concrete needs to have sufficient
surface hardness to resist the abrasive forces.
οƒ˜ All the above types of physicals damage are mainly cosmetic although they do
reduce the cover depth to the reinforcement.
3. Marine growth
οƒ˜ Marine growth on concrete has generally been considered beneficial as it keeps
the concrete wet, thereby resisting diffusion of gases. Excessive growth can add
to the surface are of slender members such as piles, which could be important
when considering wave loading.
οƒ˜ Concrete-eating Mollusca has been reported at one place in the Gulf area. They
have an affinity for limestone and therefore only attack concretes made with
limestone aggregate.
174
6.2 Proposal of Material
Structure Material Advantages
Piling -Fibreglass Piling -Water proof
- Dislike by insect and
marine growth.
-Resist of salt water
-Pile cap is not needed
-Installed by vibratory
hammer with a sheet pile
clamp
Ground Beam -Concrete Class XS3 - Has longer durability
-Less moisture absorption
- Rust-resistant
reinforcement
- Resist to rust although
concrete crack
- Forms a stable film of
ferric oxide on its surface
due to alkalinity of
concrete.
Wall -Fly ash bricks -Less porous
-High compressive
strength
-Low thermal conductivity
-Lightweight, easy to
handle
175
CHAPTER 7
CONCLUSION
In the end of the project, we had learnt the process of design planning. We feel thankful as a
chance is given to design the building and analyse it into a building that could be construct one day.
In this project, we had learn how to estimate the beam size and slab thickness, load distribution and
action, analyse the beam and slab from bar size to the deflection, cracking control and detailing.
Furthermore, guideline from Eurocode has eased our process of designing and analysing.
Overall, the structural analysis is needed to be carried out as deflection will occur due to
overload of beam and slab. Both permanent action and variable action followed by moment are
important to be determined as it will affect the choosing of bar size, spacing and the concrete unit. In
an addition, cracking may occur due to extremely hot and cold weather. Hence, choosing the right
material like concrete and steel bar is needed to be considered to reduce the risk of cracking. For
instance, building near to the sea is exposed to high salinity of sea water; choosing material that could
resist water should be put into the main priority.
In conclusion, a well-engineered structure will minimize the failure of structure and produce a
building that is stable and safe enough for living.
176
REFERENCES
1. Al Nageim, H., Durka, F., Morgan, W. & Williams, D.T. 2010. Structural mechanics: loads,
analysis, materials and design of structural elements. 7th edition.
London, Pearson Education.
2. Amit A. Sathawane, R.S. Deotale. 2012. Analysis And Design Of Flat Slab
And Grid Slab And Their Cost Comparison.
3. Reinforced Concrete Design, 1990.Tata McGraw-Hill Publishing Company,
1st Revised Edition. Publisher of New Delhi.
4. Salvadori, M. & Heller, R. 1986. Structure in architecture: the building of
buildings. 3rd Edition. Englewood Cliffs, New Jersey, Prentice-Hall.
5. W.H.Mosley, J.H. Bungery & R. Husle. 1999. Reinforced Concrete Design
(5th Edition).Palgrave.
177
WORK PROGRESSION
N
O
WORK PROGRESSION
WEEK
1 2 3 4 5 6 7 8 9
1
0
1
1
1
2
1
3
1
4
1 Forming group
2
Determine the suitable design to make a
model
3
Discussion on methodology and work
progression
4 Design a model in sketchup and autoCAD
5 Make a model follow by the real scale
5
Determinate the continues beam, simply
supported beam, one-ways slab, and two-
ways slab
6 Pre-presentation
7 Calculate the loads, and analyze the structure
8 Presentation
9 Final Report
178
Ref. Calculation Output
5.4.2 Continuous Beam
9. Specification
Span AB
Effective Span, L = 3.235m
Dimension
Width = 200mm
Depth = 500mm
Characteristic Load
Action on slab
Selfweight=0.15x25=3.75 kN/m2
Finishes,ceiling and services=1.5 kN/m2
Brick wall =2.6 kN/m2
Permanent Loading, GK = 7.85kN/m
Variable Loading, QK = 3.0kN/m2
Design life = 50Years
Fire Resistance = R120
Exposure Cement = XC1
Materials:
Unit Weight of Concrete = 25kN/m3
179
Characteristic strength of concrete, fck = 25N/mm2
Characteristic strength of steel, fyk = 500N/mm2
Characteristic strength of link, fyk = 500Nmm2
Assumed
βˆ… π‘π‘Žπ‘Ÿ 1 = 10mm
βˆ…π‘™π‘–π‘›π‘˜ = 6mm

More Related Content

What's hot

Tri axial test
Tri axial testTri axial test
Tri axial testNatalie Ulza
Β 
LAB REPORT SHEAR FORCE IN A BEAM
LAB REPORT SHEAR FORCE IN A BEAMLAB REPORT SHEAR FORCE IN A BEAM
LAB REPORT SHEAR FORCE IN A BEAMYASMINE HASLAN
Β 
Soil mechanics report 2 copy
Soil mechanics report 2   copySoil mechanics report 2   copy
Soil mechanics report 2 copyKNUST
Β 
Problems on bearing capacity of soil
Problems on bearing capacity of soilProblems on bearing capacity of soil
Problems on bearing capacity of soilLatif Hyder Wadho
Β 
SLUMP TEST REPORT DCC 2042
SLUMP TEST REPORT DCC 2042 SLUMP TEST REPORT DCC 2042
SLUMP TEST REPORT DCC 2042 YASMINE HASLAN
Β 
Examples on total consolidation
Examples on total  consolidationExamples on total  consolidation
Examples on total consolidationMalika khalil
Β 
Geotechnical Engineering-I [Lec #11: USCS & AASHTO]
Geotechnical Engineering-I [Lec #11: USCS & AASHTO]Geotechnical Engineering-I [Lec #11: USCS & AASHTO]
Geotechnical Engineering-I [Lec #11: USCS & AASHTO]Muhammad Irfan
Β 
soal dan pembahasan buku braja m.das hal 59-60
soal dan pembahasan buku braja m.das hal 59-60soal dan pembahasan buku braja m.das hal 59-60
soal dan pembahasan buku braja m.das hal 59-60Radi Yosra
Β 
Determination of Field Density Using Sand Cone Method | Jameel Academy
Determination of Field Density Using Sand Cone Method | Jameel AcademyDetermination of Field Density Using Sand Cone Method | Jameel Academy
Determination of Field Density Using Sand Cone Method | Jameel AcademyJameel Academy
Β 
REPORT SURVEY LEVELLING CIVIL ENGINEERING.pdf
REPORT SURVEY LEVELLING CIVIL ENGINEERING.pdfREPORT SURVEY LEVELLING CIVIL ENGINEERING.pdf
REPORT SURVEY LEVELLING CIVIL ENGINEERING.pdfMuhammadMuazzam16
Β 
Design of isolated footing by ACI code
Design of isolated footing by ACI codeDesign of isolated footing by ACI code
Design of isolated footing by ACI codeMahmoud Al-Sharawi
Β 
Spot Speed Study (Lab)
Spot Speed Study (Lab)Spot Speed Study (Lab)
Spot Speed Study (Lab)Priyansh Singh
Β 
Problems on piles and deep footing
Problems on piles and deep footingProblems on piles and deep footing
Problems on piles and deep footingLatif Hyder Wadho
Β 
Examples on stress distribution
Examples on stress distributionExamples on stress distribution
Examples on stress distributionMalika khalil
Β 
slake durability index experiment
slake durability index experimentslake durability index experiment
slake durability index experimentMuhammad Shoaib Afridi
Β 

What's hot (20)

Tri axial test
Tri axial testTri axial test
Tri axial test
Β 
LAB REPORT SHEAR FORCE IN A BEAM
LAB REPORT SHEAR FORCE IN A BEAMLAB REPORT SHEAR FORCE IN A BEAM
LAB REPORT SHEAR FORCE IN A BEAM
Β 
Soil mechanics report 2 copy
Soil mechanics report 2   copySoil mechanics report 2   copy
Soil mechanics report 2 copy
Β 
Problems on bearing capacity of soil
Problems on bearing capacity of soilProblems on bearing capacity of soil
Problems on bearing capacity of soil
Β 
SLUMP TEST REPORT DCC 2042
SLUMP TEST REPORT DCC 2042 SLUMP TEST REPORT DCC 2042
SLUMP TEST REPORT DCC 2042
Β 
Hand auger
Hand augerHand auger
Hand auger
Β 
Examples on total consolidation
Examples on total  consolidationExamples on total  consolidation
Examples on total consolidation
Β 
Geotechnical Engineering-I [Lec #11: USCS & AASHTO]
Geotechnical Engineering-I [Lec #11: USCS & AASHTO]Geotechnical Engineering-I [Lec #11: USCS & AASHTO]
Geotechnical Engineering-I [Lec #11: USCS & AASHTO]
Β 
soal dan pembahasan buku braja m.das hal 59-60
soal dan pembahasan buku braja m.das hal 59-60soal dan pembahasan buku braja m.das hal 59-60
soal dan pembahasan buku braja m.das hal 59-60
Β 
Determination of Field Density Using Sand Cone Method | Jameel Academy
Determination of Field Density Using Sand Cone Method | Jameel AcademyDetermination of Field Density Using Sand Cone Method | Jameel Academy
Determination of Field Density Using Sand Cone Method | Jameel Academy
Β 
REPORT SURVEY LEVELLING CIVIL ENGINEERING.pdf
REPORT SURVEY LEVELLING CIVIL ENGINEERING.pdfREPORT SURVEY LEVELLING CIVIL ENGINEERING.pdf
REPORT SURVEY LEVELLING CIVIL ENGINEERING.pdf
Β 
Design of isolated footing by ACI code
Design of isolated footing by ACI codeDesign of isolated footing by ACI code
Design of isolated footing by ACI code
Β 
Spot Speed Study (Lab)
Spot Speed Study (Lab)Spot Speed Study (Lab)
Spot Speed Study (Lab)
Β 
Atterberg
AtterbergAtterberg
Atterberg
Β 
Problems on piles and deep footing
Problems on piles and deep footingProblems on piles and deep footing
Problems on piles and deep footing
Β 
Sieving Final Report
Sieving Final ReportSieving Final Report
Sieving Final Report
Β 
Homework 1 (solution )
Homework 1 (solution )Homework 1 (solution )
Homework 1 (solution )
Β 
Examples on stress distribution
Examples on stress distributionExamples on stress distribution
Examples on stress distribution
Β 
slake durability index experiment
slake durability index experimentslake durability index experiment
slake durability index experiment
Β 
Slump test report
Slump test reportSlump test report
Slump test report
Β 

Similar to Calculation template

project designa.docx
project designa.docxproject designa.docx
project designa.docxMahamad Jawhar
Β 
Shallow and Deep Founation Design Calucations
Shallow and Deep Founation Design CalucationsShallow and Deep Founation Design Calucations
Shallow and Deep Founation Design CalucationsTyler Edgington
Β 
Solucionario_Diseno_en_Ingenieria_Mecani (1).pdf
Solucionario_Diseno_en_Ingenieria_Mecani (1).pdfSolucionario_Diseno_en_Ingenieria_Mecani (1).pdf
Solucionario_Diseno_en_Ingenieria_Mecani (1).pdfDannyCoronel5
Β 
Solucionario_Diseno_en_Ingenieria_Mecani.pdf
Solucionario_Diseno_en_Ingenieria_Mecani.pdfSolucionario_Diseno_en_Ingenieria_Mecani.pdf
Solucionario_Diseno_en_Ingenieria_Mecani.pdffranciscoantoniomonr1
Β 
Determine bending moment and share force diagram of beam
Determine bending moment and share force diagram of beamDetermine bending moment and share force diagram of beam
Determine bending moment and share force diagram of beamTurja Deb
Β 
Capítulo 02 consideraçáes estatísticas
Capítulo 02   consideraçáes estatísticasCapítulo 02   consideraçáes estatísticas
Capítulo 02 consideraçáes estatísticasJhayson Carvalho
Β 
Muro contension raul1
Muro contension raul1Muro contension raul1
Muro contension raul1Diego Rodriguez
Β 
Calculo de momentos en una viga continua cuando se encuentran
Calculo de momentos en una viga continua cuando se encuentranCalculo de momentos en una viga continua cuando se encuentran
Calculo de momentos en una viga continua cuando se encuentranCNEL
Β 
CapΓ­tulo 14 engrenagens cilΓ­ndricas
CapΓ­tulo 14   engrenagens cilΓ­ndricasCapΓ­tulo 14   engrenagens cilΓ­ndricas
CapΓ­tulo 14 engrenagens cilΓ­ndricasJhayson Carvalho
Β 
Perhitunngan
PerhitunnganPerhitunngan
PerhitunnganNadya Herida
Β 
Geotech Notes -1 ( Important problem solve)
Geotech Notes -1 ( Important problem solve)Geotech Notes -1 ( Important problem solve)
Geotech Notes -1 ( Important problem solve)Md. Ragib Nur Alam
Β 
Volvo EC55B Compact Excavator Service Repair Manual.pdf
Volvo EC55B Compact Excavator Service Repair Manual.pdfVolvo EC55B Compact Excavator Service Repair Manual.pdf
Volvo EC55B Compact Excavator Service Repair Manual.pdfbin971209zhou
Β 
Volvo EC55B Compact Excavator Service Repair Manual
Volvo EC55B Compact Excavator Service Repair ManualVolvo EC55B Compact Excavator Service Repair Manual
Volvo EC55B Compact Excavator Service Repair Manualfujdfjjskrtekme
Β 
Volvo EC55B Compact Excavator Service Repair Manual.pdf
Volvo EC55B Compact Excavator Service Repair Manual.pdfVolvo EC55B Compact Excavator Service Repair Manual.pdf
Volvo EC55B Compact Excavator Service Repair Manual.pdffujsekddmdmdm
Β 
Volvo EC55B Compact Excavator Service Repair Manual.pdf
Volvo EC55B Compact Excavator Service Repair Manual.pdfVolvo EC55B Compact Excavator Service Repair Manual.pdf
Volvo EC55B Compact Excavator Service Repair Manual.pdffyhsejkdm8u
Β 
Volvo EC55B Compact Excavator Service Repair Manual.pdf
Volvo EC55B Compact Excavator Service Repair Manual.pdfVolvo EC55B Compact Excavator Service Repair Manual.pdf
Volvo EC55B Compact Excavator Service Repair Manual.pdfttf99929781
Β 

Similar to Calculation template (20)

project designa.docx
project designa.docxproject designa.docx
project designa.docx
Β 
Shallow and Deep Founation Design Calucations
Shallow and Deep Founation Design CalucationsShallow and Deep Founation Design Calucations
Shallow and Deep Founation Design Calucations
Β 
Solucionario_Diseno_en_Ingenieria_Mecani (1).pdf
Solucionario_Diseno_en_Ingenieria_Mecani (1).pdfSolucionario_Diseno_en_Ingenieria_Mecani (1).pdf
Solucionario_Diseno_en_Ingenieria_Mecani (1).pdf
Β 
Solucionario_Diseno_en_Ingenieria_Mecani.pdf
Solucionario_Diseno_en_Ingenieria_Mecani.pdfSolucionario_Diseno_en_Ingenieria_Mecani.pdf
Solucionario_Diseno_en_Ingenieria_Mecani.pdf
Β 
Determine bending moment and share force diagram of beam
Determine bending moment and share force diagram of beamDetermine bending moment and share force diagram of beam
Determine bending moment and share force diagram of beam
Β 
Capítulo 02 consideraçáes estatísticas
Capítulo 02   consideraçáes estatísticasCapítulo 02   consideraçáes estatísticas
Capítulo 02 consideraçáes estatísticas
Β 
Muro contension raul1
Muro contension raul1Muro contension raul1
Muro contension raul1
Β 
Calculo de momentos en una viga continua cuando se encuentran
Calculo de momentos en una viga continua cuando se encuentranCalculo de momentos en una viga continua cuando se encuentran
Calculo de momentos en una viga continua cuando se encuentran
Β 
CapΓ­tulo 14 engrenagens cilΓ­ndricas
CapΓ­tulo 14   engrenagens cilΓ­ndricasCapΓ­tulo 14   engrenagens cilΓ­ndricas
CapΓ­tulo 14 engrenagens cilΓ­ndricas
Β 
Perhitunngan
PerhitunnganPerhitunngan
Perhitunngan
Β 
Budynas sm ch01
Budynas sm ch01Budynas sm ch01
Budynas sm ch01
Β 
Shi20396 ch14
Shi20396 ch14Shi20396 ch14
Shi20396 ch14
Β 
Convolution as matrix multiplication
Convolution as matrix multiplicationConvolution as matrix multiplication
Convolution as matrix multiplication
Β 
Ch02
Ch02Ch02
Ch02
Β 
Geotech Notes -1 ( Important problem solve)
Geotech Notes -1 ( Important problem solve)Geotech Notes -1 ( Important problem solve)
Geotech Notes -1 ( Important problem solve)
Β 
Volvo EC55B Compact Excavator Service Repair Manual.pdf
Volvo EC55B Compact Excavator Service Repair Manual.pdfVolvo EC55B Compact Excavator Service Repair Manual.pdf
Volvo EC55B Compact Excavator Service Repair Manual.pdf
Β 
Volvo EC55B Compact Excavator Service Repair Manual
Volvo EC55B Compact Excavator Service Repair ManualVolvo EC55B Compact Excavator Service Repair Manual
Volvo EC55B Compact Excavator Service Repair Manual
Β 
Volvo EC55B Compact Excavator Service Repair Manual.pdf
Volvo EC55B Compact Excavator Service Repair Manual.pdfVolvo EC55B Compact Excavator Service Repair Manual.pdf
Volvo EC55B Compact Excavator Service Repair Manual.pdf
Β 
Volvo EC55B Compact Excavator Service Repair Manual.pdf
Volvo EC55B Compact Excavator Service Repair Manual.pdfVolvo EC55B Compact Excavator Service Repair Manual.pdf
Volvo EC55B Compact Excavator Service Repair Manual.pdf
Β 
Volvo EC55B Compact Excavator Service Repair Manual.pdf
Volvo EC55B Compact Excavator Service Repair Manual.pdfVolvo EC55B Compact Excavator Service Repair Manual.pdf
Volvo EC55B Compact Excavator Service Repair Manual.pdf
Β 

Recently uploaded

PORTFOLIO 2024 ANASTASIYA KUDINOVA
PORTFOLIO 2024       ANASTASIYA KUDINOVAPORTFOLIO 2024       ANASTASIYA KUDINOVA
PORTFOLIO 2024 ANASTASIYA KUDINOVAAnastasiya Kudinova
Β 
STITCH: HOW MIGHT WE PROMOTE AN EQUITABLE AND INCLUSIVE URBAN LIFESTYLE PRIOR...
STITCH: HOW MIGHT WE PROMOTE AN EQUITABLE AND INCLUSIVE URBAN LIFESTYLE PRIOR...STITCH: HOW MIGHT WE PROMOTE AN EQUITABLE AND INCLUSIVE URBAN LIFESTYLE PRIOR...
STITCH: HOW MIGHT WE PROMOTE AN EQUITABLE AND INCLUSIVE URBAN LIFESTYLE PRIOR...Pranav Subramanian
Β 
ARCHITECTURAL PORTFOLIO CRISTOBAL HERAUD 2024.pdf
ARCHITECTURAL PORTFOLIO CRISTOBAL HERAUD 2024.pdfARCHITECTURAL PORTFOLIO CRISTOBAL HERAUD 2024.pdf
ARCHITECTURAL PORTFOLIO CRISTOBAL HERAUD 2024.pdfCristobalHeraud
Β 
Interior Design for Office a cura di RMG Project Studio
Interior Design for Office a cura di RMG Project StudioInterior Design for Office a cura di RMG Project Studio
Interior Design for Office a cura di RMG Project StudioRMG Project Studio
Β 
ALISIA: HOW MIGHT WE ACHIEVE HIGH ENVIRONMENTAL PERFORMANCE WHILE MAINTAINING...
ALISIA: HOW MIGHT WE ACHIEVE HIGH ENVIRONMENTAL PERFORMANCE WHILE MAINTAINING...ALISIA: HOW MIGHT WE ACHIEVE HIGH ENVIRONMENTAL PERFORMANCE WHILE MAINTAINING...
ALISIA: HOW MIGHT WE ACHIEVE HIGH ENVIRONMENTAL PERFORMANCE WHILE MAINTAINING...Pranav Subramanian
Β 
TIMBRE: HOW MIGHT WE REMEDY MUSIC DESERTS AND FACILITATE GROWTH OF A MUSICAL ...
TIMBRE: HOW MIGHT WE REMEDY MUSIC DESERTS AND FACILITATE GROWTH OF A MUSICAL ...TIMBRE: HOW MIGHT WE REMEDY MUSIC DESERTS AND FACILITATE GROWTH OF A MUSICAL ...
TIMBRE: HOW MIGHT WE REMEDY MUSIC DESERTS AND FACILITATE GROWTH OF A MUSICAL ...Pranav Subramanian
Β 
FW25-26 Knit Cut & Sew Trend Book Peclers Paris
FW25-26 Knit Cut & Sew Trend Book Peclers ParisFW25-26 Knit Cut & Sew Trend Book Peclers Paris
FW25-26 Knit Cut & Sew Trend Book Peclers ParisPeclers Paris
Β 
Karim apartment ideas 02 ppppppppppppppp
Karim apartment ideas 02 pppppppppppppppKarim apartment ideas 02 ppppppppppppppp
Karim apartment ideas 02 pppppppppppppppNadaMohammed714321
Β 
Understanding Image Masking: What It Is and Why It's Matters
Understanding Image Masking: What It Is and Why It's MattersUnderstanding Image Masking: What It Is and Why It's Matters
Understanding Image Masking: What It Is and Why It's MattersCre8iveskill
Β 
guest bathroom white and blue ssssssssss
guest bathroom white and blue ssssssssssguest bathroom white and blue ssssssssss
guest bathroom white and blue ssssssssssNadaMohammed714321
Β 
Making and Unmaking of Chandigarh - A City of Two Plans2-4-24.ppt
Making and Unmaking of Chandigarh - A City of Two Plans2-4-24.pptMaking and Unmaking of Chandigarh - A City of Two Plans2-4-24.ppt
Making and Unmaking of Chandigarh - A City of Two Plans2-4-24.pptJIT KUMAR GUPTA
Β 
How Apple strives for the perfect sky and revives cities
How Apple strives for the perfect sky and revives citiesHow Apple strives for the perfect sky and revives cities
How Apple strives for the perfect sky and revives citiesThomas Schielke
Β 
Sharif's 9-BOX Monitoring Model for Adaptive Programme Management
Sharif's 9-BOX Monitoring Model for Adaptive Programme ManagementSharif's 9-BOX Monitoring Model for Adaptive Programme Management
Sharif's 9-BOX Monitoring Model for Adaptive Programme ManagementMd. Shariful Hoque
Β 
AI and Design Vol. 2: Navigating the New Frontier - Morgenbooster
AI and Design Vol. 2: Navigating the New Frontier - MorgenboosterAI and Design Vol. 2: Navigating the New Frontier - Morgenbooster
AI and Design Vol. 2: Navigating the New Frontier - Morgenbooster1508 A/S
Β 
simpson-lee_house_dt20ajshsjsjsjsjj15.pdf
simpson-lee_house_dt20ajshsjsjsjsjj15.pdfsimpson-lee_house_dt20ajshsjsjsjsjj15.pdf
simpson-lee_house_dt20ajshsjsjsjsjj15.pdfLucyBonelli
Β 
Exploring Tehran's Architectural Marvels: A Glimpse into Vilaas Studio's Dyna...
Exploring Tehran's Architectural Marvels: A Glimpse into Vilaas Studio's Dyna...Exploring Tehran's Architectural Marvels: A Glimpse into Vilaas Studio's Dyna...
Exploring Tehran's Architectural Marvels: A Glimpse into Vilaas Studio's Dyna...Yantram Animation Studio Corporation
Β 
Piece by Piece Magazine
Piece by Piece Magazine                      Piece by Piece Magazine
Piece by Piece Magazine CharlottePulte
Β 
guest bathroom white and bluesssssssssss
guest bathroom white and bluesssssssssssguest bathroom white and bluesssssssssss
guest bathroom white and bluesssssssssssNadaMohammed714321
Β 
Map of St. Louis Parks
Map of St. Louis Parks                              Map of St. Louis Parks
Map of St. Louis Parks CharlottePulte
Β 

Recently uploaded (20)

PORTFOLIO 2024 ANASTASIYA KUDINOVA
PORTFOLIO 2024       ANASTASIYA KUDINOVAPORTFOLIO 2024       ANASTASIYA KUDINOVA
PORTFOLIO 2024 ANASTASIYA KUDINOVA
Β 
STITCH: HOW MIGHT WE PROMOTE AN EQUITABLE AND INCLUSIVE URBAN LIFESTYLE PRIOR...
STITCH: HOW MIGHT WE PROMOTE AN EQUITABLE AND INCLUSIVE URBAN LIFESTYLE PRIOR...STITCH: HOW MIGHT WE PROMOTE AN EQUITABLE AND INCLUSIVE URBAN LIFESTYLE PRIOR...
STITCH: HOW MIGHT WE PROMOTE AN EQUITABLE AND INCLUSIVE URBAN LIFESTYLE PRIOR...
Β 
ARCHITECTURAL PORTFOLIO CRISTOBAL HERAUD 2024.pdf
ARCHITECTURAL PORTFOLIO CRISTOBAL HERAUD 2024.pdfARCHITECTURAL PORTFOLIO CRISTOBAL HERAUD 2024.pdf
ARCHITECTURAL PORTFOLIO CRISTOBAL HERAUD 2024.pdf
Β 
Interior Design for Office a cura di RMG Project Studio
Interior Design for Office a cura di RMG Project StudioInterior Design for Office a cura di RMG Project Studio
Interior Design for Office a cura di RMG Project Studio
Β 
ALISIA: HOW MIGHT WE ACHIEVE HIGH ENVIRONMENTAL PERFORMANCE WHILE MAINTAINING...
ALISIA: HOW MIGHT WE ACHIEVE HIGH ENVIRONMENTAL PERFORMANCE WHILE MAINTAINING...ALISIA: HOW MIGHT WE ACHIEVE HIGH ENVIRONMENTAL PERFORMANCE WHILE MAINTAINING...
ALISIA: HOW MIGHT WE ACHIEVE HIGH ENVIRONMENTAL PERFORMANCE WHILE MAINTAINING...
Β 
TIMBRE: HOW MIGHT WE REMEDY MUSIC DESERTS AND FACILITATE GROWTH OF A MUSICAL ...
TIMBRE: HOW MIGHT WE REMEDY MUSIC DESERTS AND FACILITATE GROWTH OF A MUSICAL ...TIMBRE: HOW MIGHT WE REMEDY MUSIC DESERTS AND FACILITATE GROWTH OF A MUSICAL ...
TIMBRE: HOW MIGHT WE REMEDY MUSIC DESERTS AND FACILITATE GROWTH OF A MUSICAL ...
Β 
FW25-26 Knit Cut & Sew Trend Book Peclers Paris
FW25-26 Knit Cut & Sew Trend Book Peclers ParisFW25-26 Knit Cut & Sew Trend Book Peclers Paris
FW25-26 Knit Cut & Sew Trend Book Peclers Paris
Β 
ASME B31.4-2022 estandar ductos aΓ±o 2022
ASME B31.4-2022 estandar ductos aΓ±o 2022ASME B31.4-2022 estandar ductos aΓ±o 2022
ASME B31.4-2022 estandar ductos aΓ±o 2022
Β 
Karim apartment ideas 02 ppppppppppppppp
Karim apartment ideas 02 pppppppppppppppKarim apartment ideas 02 ppppppppppppppp
Karim apartment ideas 02 ppppppppppppppp
Β 
Understanding Image Masking: What It Is and Why It's Matters
Understanding Image Masking: What It Is and Why It's MattersUnderstanding Image Masking: What It Is and Why It's Matters
Understanding Image Masking: What It Is and Why It's Matters
Β 
guest bathroom white and blue ssssssssss
guest bathroom white and blue ssssssssssguest bathroom white and blue ssssssssss
guest bathroom white and blue ssssssssss
Β 
Making and Unmaking of Chandigarh - A City of Two Plans2-4-24.ppt
Making and Unmaking of Chandigarh - A City of Two Plans2-4-24.pptMaking and Unmaking of Chandigarh - A City of Two Plans2-4-24.ppt
Making and Unmaking of Chandigarh - A City of Two Plans2-4-24.ppt
Β 
How Apple strives for the perfect sky and revives cities
How Apple strives for the perfect sky and revives citiesHow Apple strives for the perfect sky and revives cities
How Apple strives for the perfect sky and revives cities
Β 
Sharif's 9-BOX Monitoring Model for Adaptive Programme Management
Sharif's 9-BOX Monitoring Model for Adaptive Programme ManagementSharif's 9-BOX Monitoring Model for Adaptive Programme Management
Sharif's 9-BOX Monitoring Model for Adaptive Programme Management
Β 
AI and Design Vol. 2: Navigating the New Frontier - Morgenbooster
AI and Design Vol. 2: Navigating the New Frontier - MorgenboosterAI and Design Vol. 2: Navigating the New Frontier - Morgenbooster
AI and Design Vol. 2: Navigating the New Frontier - Morgenbooster
Β 
simpson-lee_house_dt20ajshsjsjsjsjj15.pdf
simpson-lee_house_dt20ajshsjsjsjsjj15.pdfsimpson-lee_house_dt20ajshsjsjsjsjj15.pdf
simpson-lee_house_dt20ajshsjsjsjsjj15.pdf
Β 
Exploring Tehran's Architectural Marvels: A Glimpse into Vilaas Studio's Dyna...
Exploring Tehran's Architectural Marvels: A Glimpse into Vilaas Studio's Dyna...Exploring Tehran's Architectural Marvels: A Glimpse into Vilaas Studio's Dyna...
Exploring Tehran's Architectural Marvels: A Glimpse into Vilaas Studio's Dyna...
Β 
Piece by Piece Magazine
Piece by Piece Magazine                      Piece by Piece Magazine
Piece by Piece Magazine
Β 
guest bathroom white and bluesssssssssss
guest bathroom white and bluesssssssssssguest bathroom white and bluesssssssssss
guest bathroom white and bluesssssssssss
Β 
Map of St. Louis Parks
Map of St. Louis Parks                              Map of St. Louis Parks
Map of St. Louis Parks
Β 

Calculation template

  • 1. Ref. Calculation Output 1.0 Analysis and Designof Beam Chac.Variable Action, QK =3.0 kN/m2 Weight of Concrete = 25kN/m3 Action on Slab Self-weight = 0.15Γ—25kN/m3 = 3.75kN/m2 Finishes, ceiling and services = 1.5kN/m2 Brick wall = 2.6kN/m2 Chac. Permanent Action, GK = 7.85kN/m2
  • 2. Ref. Calculation Output Distribution of Actions from Slabs Slab1 : 𝐼 𝑦 𝐼π‘₯ = 4.675π‘š 2.699π‘š = 1.732 Λ‚ 2.0 Slab 2 : 𝐼 𝑦 𝐼π‘₯ = 3.802π‘š 3.475π‘š = 1.094Λ‚ 2.0 Slab 3 : 𝐼 𝑦 𝐼π‘₯ = 5.698π‘š 2.939π‘š = 1.94Λ‚ 2.0 Action from Slab Slab1 w1GK1 = 0.26Γ—7.85kN/m2Γ—0.803m = 1.639kN/m w1QK1 = 0.26Γ—3.0kN/m2Γ—0.803m = 0.626kN/m w2GK2 = 0.40Γ—7.85kN/m2Γ—1.896m = 5.953kN/m w2QK2 = 0.40 Γ—3.0kN/m2Γ—1.896m = 2.275kN/m Slab2 w3GK3 = 0.36Γ—7.85kN/m2Γ—2.939m = 8.306kN/m w3QK3 = 0.36Γ—3.00kN/m2Γ—2.939m = 3.174kN/m Two Way Slab
  • 3. Ref. Calculation Output Action on Beam Beam Self-weight = 0.20m Γ— (0.5-0.15)m Γ— 25 kN/m3 = 1.75kN/m Span A – B Permanent Action, GK = 6.6825kN/m + kN/m + 1.75kN/m = 14.5892kN/m Variable Action, QK = 2.4300kN/m + 1.7843kN/m = 4.2143N/m Span B – C Permanent Action, GK = 6.1256kN/m + 8.4923kN/m + 3.00kN/m = 17.6179kN/m Variable Action, QK = 2.2275kN/m + 3.0881kN/m = 5.3156kN/m
  • 4.
  • 5. Ref. Calculation Output Span C – D Permanent Action, GK = 7.9819kN/m + 6.2370kN/m + 3.00kN/m = 17.2189kN/m Variable Action, QK = 2.9025kN/m + 2.2680kN/m = 5.1705kN/m Span D – E Permanent Action, GK = 4.6963kN/m + 7.4003kN/m + 3.00kN/m = 15.0966kN/m Variable Action, QK = 1.7078kN/m + 2.6910kN/m = 4.3988kN/m Span E – F Permanent Action, GK = 5.9214kN/m + 6.4598kN/m + 3.00kN/m = 15.3812kN/m Variable Action, QK = 2.1533kN/m + 2.3490kN/m = 4.5023kN/m
  • 6. Span F – G Permanent Action, GK = 4.9005kN/m + 5.3460kN/m + 3.00kN/m = 13.2465kN/m Variable Action, QK = 1.782kN/m + 1.9440kN/m = 3.7260kN/m
  • 7. Ref. Calculation Output Span G – H Permanent Action, GK = 8.1675kN/m + 9.9000kN/m + 3.00kN/m = 21.0675kN/m Variable Action, QK = 2.9700kN/m + 3.6000kN/m = 6.5700kN/m
  • 8. Ref. Calculation Output 6.1 Load Distribution of Beam Case 1: Maximum Loading FEM FEMAB = -FEMBA = βˆ’ 𝑀𝐿2 12 = βˆ’ [1.35 (14.5892 π‘˜π‘ π‘šβ„ )+1.50(4.2143π‘˜π‘ π‘šβ„ )](2.2875π‘š)2 12 = -11.3448 kNm FEMBC = -FEMCB = βˆ’ 𝑀𝐿2 12 = βˆ’ [1.35 (17.6179 π‘˜π‘ π‘šβ„ )+1.50(5.3156π‘˜π‘ π‘šβ„ )](2.2875π‘š)2 12 = -13.8480 kNm FEMCD = -FEMDC = βˆ’ 𝑀𝐿2 12 = βˆ’ [1.35 (17.2189 π‘˜π‘ π‘šβ„ )+1.50(5.1705π‘˜π‘ π‘šβ„ )](3.225π‘š)2 12 = -26.8694 kNm FEMDE = -FEMED = βˆ’ 𝑀𝐿2 12 = βˆ’ [1.35 (15.0966 π‘˜π‘ π‘šβ„ )+1.50(4.3988 π‘˜π‘ π‘šβ„ )](1.725π‘š)2 12 = -6.6899 kNm FEMEF = -FEMFE = βˆ’ 𝑀𝐿2 12 = βˆ’ [1.35 (15.3812 π‘˜π‘ π‘šβ„ )+1.50(4.5023π‘˜π‘ π‘šβ„ )](2.175π‘š)2 12 = -10.8481 kNm FEMFG = -FEMGF = βˆ’ 𝑀𝐿2 12
  • 9. = βˆ’ [1.35 (13.2465 π‘˜π‘ π‘šβ„ )+1.50(3.7260π‘˜π‘ π‘šβ„ )](1.8π‘š)2 12 = -6.3374 kNm FEMGH = -FEMHG = βˆ’ 𝑀𝐿2 12 = βˆ’ [1.35 (21.0675 π‘˜π‘ π‘šβ„ )+1.50(6.5700π‘˜π‘ π‘šβ„ )](3.0π‘š)2 12 = -28.7221 kNm
  • 10. Moment Distribution Mem AB BA BC CB CD DC DE ED EF FE FG GF GH HG CF 0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0 DF 1 0.5 0.5 0.585 0.415 0.3485 0.6515 0.5577 0.4423 0.4528 0.5472 0.625 0.375 1 FEM -11.3448 11.3448 -13.8480 13.8480 -26.8694 26.8694 -6.6899 6.6899 -10.8481 10.8481 -6.3374 6.3374 -28.7221 28.7221 Dist 11.3448 1.2516 1.2516 7.6175 5.4039 -7.0326 -13.1470 2.3191 1.8392 -2.0425 -2.4683 13.9904 8.3943 -28.7221 Co 0.6258 0 3.8087 0.6258 -3.5163 2.7019 1.1595 -6.5735 -1.0212 0.9196 6.9952 -1.2341 0 4.1971 Dist -0.6258 -1.9044 -1.9044 1.6909 1.1995 -1.3457 -2.5157 4.2356 3.3591 -3.5838 -4.3310 0.7713 0.4628 -4.1971 Co -0.9522 0 0.8455 -0.9522 -0.6729 0.5998 2.1178 -1.2579 -1.7919 1.6796 0.3857 -2.1655 0 0.2314 Dist 0.9522 -0.4227 -0.4227 0.9507 0.6744 -0.9471 -1.7705 1.7009 1.3489 -0.9351 -1.1301 1.3534 0.8121 -0.2314 Co -0.2114 0 0.4753 -0.2114 -0.4735 0.3372 0.8504 -0.8852 -0.4676 0.6745 0.6767 -0.5651 0 0.4060 Dist 0.2114 -0.2377 -0.2377 0.4007 0.2842 -0.4139 -0.7737 0.7545 0.5984 -0.6118 -0.7394 0.3532 0.2119 -0.4060 Co -0.1188 0 0.2003 -0.1188 -0.2069 0.1421 0.3772 -0.3869 -0.3059 0.2992 0.1766 -0.3697 0 0.1059 Dist 0.1188 -0.1002 -0.1002 0.1906 0.1352 -0.1810 -0.3384 0.3864 0.3064 -0.2154 -0.2603 0.2311 0.1386 -0.1059 Co -0.0501 0 0.0953 -0.0501 -0.0905 0.0676 0.1932 -0.1692 -0.1077 0.1532 0.1155 -0.1302 0 0.0693 Dist 0.0501 -0.0476 -0.0476 0.0822 0.0583 -0.0909 -0.1699 0.1544 0.1225 -0.1217 -0.1471 0.0814 0.0488 -0.0693 0 9.8838 -9.8838 24.0739 -24.0739 20.7069 -20.7069 6.9680 -6.9680 7.0638 -7.0638 18.6536 -18.6536 0
  • 11. Ref. Calculation Output Uniform Distribution Loading Loading at Span A – B = [1.35(14.5892kN/m) + 1.50(4.2143kN/m)] = 26.0169kN/m Loading at Span B – C = [1.35(17.6179kN/m) + 1.50(5.3156kN/m)] = 31.7575 kN/m Loading at Span C – D = [1.35(17.2189kN/m) + 1.50(5.1705kN/m)] = 31.0013 kN/m Loading at Span D – E = [1.35(15.0966kN/m) + 1.50(4.3988kN/m)] = 26.9786 kN/m Loading at Span E – F = [1.35(15.3812kN/m) + 1.50(4.5023kN/m)] = 26.9786 kN/m Loading at Span E – F = [1.35(15.3812kN/m) + 1.50(4.5023kN/m)] = 27.5181 kN/m Loading at Span F – G = [1.35(13.2465kN/m) + 1.50(3.7260kN/m)] = 23.4718 kN/m
  • 12. Loading at Span G – H = [1.35(21.0675kN/m) + 1.50(6.5700kN/m)] = 38.2961 kN/m
  • 13. Ref. Calculation Output Span A – B +↻ βˆ‘ 𝑀 𝐡 = 0 = 2.2875π‘š 𝑅 𝐴 βˆ’ (26.0169 π‘˜π‘ π‘šβ„ )(2.2875π‘š)( 2.2875π‘š 2 ) βˆ’ 0π‘˜π‘π‘š + 9.8838π‘˜π‘π‘š RA = 25.436kN ↑ βˆ‘ 𝐹𝑦 = ↓ βˆ‘ 𝐹𝑦 RA - RB1 = 26.0169kN/m (2.2875m) RB1 = 34.078kN β†’ βˆ‘ 𝐻𝐴 = ← βˆ‘ 𝐻 𝐡1 = 0
  • 14. Ref. Calculation Output Span B – C +↻ βˆ‘ 𝑀 𝐢 = 0 = 2.2875π‘šπ‘… 𝐡2 βˆ’ (31.7575 π‘˜π‘ π‘šβ„ )(2.2875π‘š)( 2.2875π‘š 2 ) βˆ’ 9.8838π‘˜π‘π‘š + 24.0739π‘˜π‘π‘š RB2 = 30.119kN ↑ βˆ‘ 𝐹𝑦 = ↓ βˆ‘ 𝐹𝑦 RB2 + RC1 = 31.7575 kN/m (2.2875m) RC1 = 42.526kN β†’ βˆ‘ 𝐻 𝐡2 = ← βˆ‘ 𝐻 𝐢1 = 0
  • 15. Ref. Calculation Output Span C – D +↻ βˆ‘ 𝑀 𝐷 = 0 = 3.225π‘šπ‘… 𝐢2 βˆ’ (31.0013 π‘˜π‘ π‘šβ„ )(3.225π‘š)( 3.225π‘š 2 ) βˆ’ 24.0739π‘˜π‘π‘š + 20.7069π‘˜π‘π‘š RC2 = 51.034kN ↑ βˆ‘ 𝐹𝑦 = ↓ βˆ‘ 𝐹𝑦 RC2 + RD1 = 31.0013kN/m (3.225m) RD1 = 48.945kN β†’ βˆ‘ 𝐻 𝐢2 = ← βˆ‘ 𝐻 𝐷1 = 0
  • 16. Ref. Calculation Output Span D - E +↻ βˆ‘ 𝑀 𝐸 = 0 = 1.725π‘šπ‘… 𝐷2 βˆ’ (26.9786 π‘˜π‘ π‘šβ„ )(1.725π‘š)( 1.725π‘š 2 ) βˆ’ 20.7069π‘˜π‘π‘š + 6.9680π‘˜π‘π‘š RD2 = 31.234kN ↑ βˆ‘ 𝐹𝑦 = ↓ βˆ‘ 𝐹𝑦 RD2 + RE1 = 26.9786 kN/m (1.725m) RE1 = 15.304kN β†’ βˆ‘ 𝐻 𝐷2 = ← βˆ‘ 𝐻 𝐸1 = 0
  • 17. Ref. Calculation Output Span E – F +↻ βˆ‘ 𝑀 𝐸 = 0 = 2.175π‘šπ‘… 𝐸2 βˆ’ (27.5181 π‘˜π‘ π‘šβ„ )(2.175π‘š)( 2.175π‘š 2 ) βˆ’ 6.9680π‘˜π‘π‘š + 7.0638π‘˜π‘π‘š RE2 = 29.882kN ↑ βˆ‘ 𝐹𝑦 = ↓ βˆ‘ 𝐹𝑦 RE2 + RF1 = 27.5181kN/m (2.175m) RF1 = 29.970kN β†’ βˆ‘ 𝐻 𝐸2 = ← βˆ‘ 𝐻 𝐹1 = 0
  • 18. Ref. Calculation Output Span F – G +↻ βˆ‘ 𝑀 𝐹 = 0 = 1.8π‘šπ‘… 𝐹2 βˆ’ (23.4718π‘˜π‘ π‘šβ„ )(1.8π‘š)( 1.8π‘š 2 ) βˆ’ 7.0638π‘˜π‘π‘š + 18.6536π‘˜π‘π‘š RF2 = 14.686kN ↑ βˆ‘ 𝐹𝑦 = ↓ βˆ‘ 𝐹𝑦 RF2 + RG1 = 23.4718kN/m (1.8m) RG1 = 27.563kN β†’ βˆ‘ 𝐻 𝐹2 = ← βˆ‘ 𝐻 𝐺1 = 0
  • 19. Ref. Calculation Output Span G – H +↻ βˆ‘ 𝑀 𝐺 = 0 = 3.0π‘šπ‘… 𝐺2 βˆ’ (38.2961 π‘˜π‘ π‘šβ„ )(3.0π‘š)( 3.0π‘š 2 ) βˆ’ 18.6536π‘˜π‘π‘š + 0π‘˜π‘π‘š RG2 = 63.662kN ↑ βˆ‘ 𝐹𝑦 = ↓ βˆ‘ 𝐹𝑦 RG2 + RH = 38.2961kN/m (3.0m) RH = 1.226kN β†’ βˆ‘ 𝐻 𝐺2 = ← βˆ‘ 𝐻 𝐻 = 0
  • 20. Ref. Calculation Output Summary At point A,𝑅 𝐴 = 25.436π‘˜π‘ β†Ί 𝑀𝐴 = 0π‘˜π‘π‘š At point B,𝑅 𝐡 = 64.197π‘˜π‘ β†Ί 𝑀 𝐡 = βˆ’9.884π‘˜π‘π‘š ↻ 𝑀 𝐡 = +9.884π‘˜π‘π‘š At point C,𝑅 𝐢 = 93.560π‘˜π‘ β†Ί 𝑀𝑐 = βˆ’24.074π‘˜π‘π‘š ↻ 𝑀𝑐 = +24.074π‘˜π‘π‘š At point D,𝑅 𝐷 = 80.179π‘˜π‘ β†Ί 𝑀 𝐷 = βˆ’20.707π‘˜π‘π‘š ↻ 𝑀 𝐷 = +20.707π‘˜π‘π‘š At point E,𝑅 𝐸 = 45.186π‘˜π‘ β†Ί 𝑀 𝐸 = βˆ’6.968π‘π‘š ↻ 𝑀 𝐸 = +6.968π‘π‘š At point F,𝑅 𝐹 = 44.656π‘˜π‘
  • 21. β†Ί 𝑀 𝐹 = βˆ’7.064π‘˜π‘π‘š ↻ 𝑀 𝐹 = +7.064π‘˜π‘π‘š At point G,𝑅 𝐺 = 91.225π‘˜π‘ β†Ί 𝑀 𝐺 = βˆ’18.654π‘˜π‘π‘š ↻ 𝑀 𝐺 = +18.654π‘˜π‘π‘š At point H,𝑅 𝐻 = 51.226π‘˜π‘ ↻ 𝑀 𝐻 = 0π‘˜π‘π‘š Ref. Calculation Output 6.2 Load Distribution of Beam Case 2: Alternative Loading FEM FEMAB = -FEMBA = βˆ’ 𝑀𝐿2 12 = βˆ’ [1.35 (14.5892 π‘˜π‘ π‘šβ„ )+1.50(4.2143π‘˜π‘ π‘šβ„ )](2.2875π‘š)2 12 = -11.3448 kNm FEMBC = -FEMCB = βˆ’ 𝑀𝐿2 12 = βˆ’ [1.35 (17.6179 π‘˜π‘ π‘šβ„ )](2.2875π‘š)2 12 = -10.3712 kNm
  • 22. FEMCD = -FEMDC = βˆ’ 𝑀𝐿2 12 = βˆ’ [1.35 (17.2189 π‘˜π‘ π‘šβ„ )+1.50(5.1705π‘˜π‘ π‘šβ„ )](3.225π‘š)2 12 = -26.8694 kNm FEMDE = -FEMED = βˆ’ 𝑀𝐿2 12 = =βˆ’ [1.35(15.0966 π‘˜π‘ π‘šβ„ )](1.725π‘š)2 12 = -5.0537 kNm FEMEF = -FEMFE = βˆ’ 𝑀𝐿2 12 = βˆ’ [1.35 (15.3812 π‘˜π‘ π‘šβ„ )+1.50(4.5023π‘˜π‘ π‘šβ„ )](2.175π‘š)2 12 = -10.8481 kNm FEMFG = -FEMGF = βˆ’ 𝑀𝐿2 12 = βˆ’ [1.35 (13.2465 π‘˜π‘ π‘šβ„ )](1.8π‘š)2 12 = -4.8283 kNm FEMGH = -FEMHG = βˆ’ 𝑀𝐿2 12 = βˆ’ [1.35 (21.0675 π‘˜π‘ π‘šβ„ )+1.50(6.5700π‘˜π‘ π‘šβ„ )](3.0π‘š)2 12 = -28.7221 kNm
  • 23. Moment Distribution Mem AB BA BC CB CD DC DE ED EF FE FG GF GH HG CF 0.000 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.000 DF 1.000 0.500 0.500 0.585 0.415 0.349 0.652 0.558 0.442 0.453 0.547 0.625 0.375 1.000 FEM -11.3448 11.3448 -10.3712 10.3712 -26.8694 26.8694 -5.0537 5.0537 -10.8481 10.8481 -4.8283 4.8283 -28.7221 28.7221 Dist 11.3448 -0.4868 -0.4868 9.6514 6.8467 -7.6028 -14.2129 3.2316 2.5629 -2.7258 -3.2940 14.9336 8.9602 -28.7221 Co -0.2434 0.0000 4.8257 -0.2434 -3.8014 3.4234 1.6158 -7.1065 -1.3629 1.2814 7.4668 -1.6470 0.0000 4.4801 Dist 0.2434 -2.4129 -2.4129 2.3662 1.6786 -1.7561 -3.2830 4.7233 3.7460 -3.9612 -4.7870 1.0294 0.6176 -4.4801 Co -1.2064 0.0000 1.1831 -1.2064 -0.8781 0.8393 2.3617 -1.6415 -1.9806 1.8730 0.5147 -2.3935 0.0000 0.3088 Dist 1.2064 -0.5915 -0.5915 1.2194 0.8651 -1.1155 -2.0854 2.0200 1.6021 -1.0811 -1.3065 1.4959 0.8976 -0.3088 Co -0.2958 0.0000 0.6097 -0.2958 -0.5578 0.4325 1.0100 -1.0427 -0.5406 0.8010 0.7480 -0.6533 0.0000 0.4488 Dist 0.2958 -0.3049 -0.3049 0.4993 0.3542 -0.5027 -0.9398 0.8830 0.7003 -0.7014 -0.8476 0.4083 0.2450 -0.4488 Co -0.1524 0.0000 0.2497 -0.1524 -0.2514 0.1771 0.4415 -0.4699 -0.3507 0.3501 0.2041 -0.4238 0.0000 0.1225 Dist 0.1524 -0.1248 -0.1248 0.2362 0.1676 -0.2156 -0.4030 0.4577 0.3630 -0.2510 -0.3033 0.2649 0.1589 -0.1225 Co -0.0624 0.0000 0.1181 -0.0624 -0.1078 0.0838 0.2288 -0.2015 -0.1255 0.1815 0.1324 -0.1517 0.0000 0.0795 Dist 0.0624 -0.0591 -0.0591 0.0996 0.0706 -0.1089 -0.2037 0.1824 0.1446 -0.1421 -0.1718 0.0948 0.0569 -0.0795 0.0000 7.3648 -7.3648 22.4829 -22.4829 20.5238 -20.5238 6.0896 -6.0896 6.4726 -6.4726 17.7860 -17.7860 0.0000
  • 24. Ref. Calculation Output Uniform Distribution Loading Loading at Span A – B = [1.35(14.5892kN/m) + 1.50(4.2143kN/m)] = 26.0169kN/m Loading at Span B – C = [1.35(17.6179kN/m)] = 23.7842kN/m Loading at Span C – D = [1.35(17.2189kN/m) + 1.50(5.1705kN/m)] = 31.0013 kN/m Loading at Span D – E = [1.35(15.0966kN/m)] = 20.3804kN/m Loading at Span E – F = [1.35(15.3812kN/m) + 1.50(4.5023kN/m)] = 26.9786 kN/m Loading at Span E – F = [1.35(15.3812kN/m) + 1.50(4.5023kN/m)] = 27.5181 kN/m Loading at Span F – G = [1.35(13.2465kN/m)] = 17.8828kN/m
  • 25. Loading at Span G – H = [1.35(21.0675kN/m) + 1.50(6.5700kN/m)] = 38.2961 kN/m
  • 26. Ref. Calculation Output Span A – B +↻ βˆ‘ 𝑀 𝐡 = 0 = 2.2875π‘š 𝑅 𝐴 βˆ’ (26.0169 π‘˜π‘ π‘šβ„ )(2.2875π‘š)( 2.2875π‘š 2 ) + 7.3648π‘˜π‘π‘š RA = 26.537kN ↑ βˆ‘ 𝐹𝑦 = ↓ βˆ‘ 𝐹𝑦 RA - RB1 = 26.0169kN/m (2.2875m) RB1 = 32.976kN β†’ βˆ‘ 𝐻𝐴 = ← βˆ‘ 𝐻 𝐡1 = 0
  • 27. Ref. Calculation Output Span B – C +↻ βˆ‘ 𝑀 𝐢 = 0 = 2.2875π‘šπ‘… 𝐡2 βˆ’ (23.7842π‘˜π‘ π‘šβ„ )(2.2875π‘š)( 2.2875π‘š 2 ) βˆ’ 7.3648π‘˜π‘π‘š + 22.4829π‘˜π‘π‘š RB2 = 20.594kN ↑ βˆ‘ 𝐹𝑦 = ↓ βˆ‘ 𝐹𝑦 RB2 + RC1 = 23.7842kN/m (2.2875m) RC1 = 33.812kN β†’ βˆ‘ 𝐻 𝐡2 = ← βˆ‘ 𝐻 𝐢1 = 0
  • 28. Ref. Calculation Output Span C – D +↻ βˆ‘ 𝑀 𝐷 = 0 = 3.225π‘šπ‘… 𝐢2 βˆ’ (31.0013 π‘˜π‘ π‘šβ„ )(3.225π‘š)( 3.225π‘š 2 ) βˆ’ 22.4829π‘˜π‘π‘š + 20.5238π‘˜π‘π‘š RC2 = 50.597kN ↑ βˆ‘ 𝐹𝑦 = ↓ βˆ‘ 𝐹𝑦 RC2 + RD1 = 31.0013kN/m (3.225m) RD1 = 49.382kN β†’ βˆ‘ 𝐻 𝐢2 = ← βˆ‘ 𝐻 𝐷1 = 0
  • 29. Ref. Calculation Output Span D - E +↻ βˆ‘ 𝑀 𝐸 = 0 = 1.725π‘šπ‘… 𝐷2 βˆ’ (20.3804 π‘˜π‘ π‘šβ„ )(1.725π‘š)( 1.725π‘š 2 ) βˆ’ 20.5238π‘˜π‘π‘š + 6.0896π‘˜π‘π‘š RD2 = 25.946kN ↑ βˆ‘ 𝐹𝑦 = ↓ βˆ‘ 𝐹𝑦 RD2 + RE1 = 20.3804kN/m (1.725m) RE1 = 9.210kN β†’ βˆ‘ 𝐻 𝐷2 = ← βˆ‘ 𝐻 𝐸1 = 0
  • 30. Ref. Calculation Output Span E – F +↻ βˆ‘ 𝑀 𝐸 = 0 = 2.175π‘šπ‘… 𝐸2 βˆ’ (27.5181 π‘˜π‘ π‘šβ„ )(2.175π‘š)( 2.175π‘š 2 ) βˆ’ 6.0896π‘˜π‘π‘š + 6.4726π‘˜π‘π‘š RE2 = 9.750kN ↑ βˆ‘ 𝐹𝑦 = ↓ βˆ‘ 𝐹𝑦 RE2 + RF1 = 27.5181kN/m (2.175m) RF1 = 30.102kN β†’ βˆ‘ 𝐻 𝐸2 = ← βˆ‘ 𝐻 𝐹1 = 0
  • 31. Ref. Calculation Output Span F – G +↻ βˆ‘ 𝑀 𝐹 = 0 = 1.8π‘šπ‘… 𝐹2 βˆ’ (17.8828π‘˜π‘ π‘šβ„ )(1.8π‘š)( 1.8π‘š 2 ) βˆ’ 6.4726π‘˜π‘π‘š + 17.7860π‘˜π‘π‘š RF2 = 9.809kN ↑ βˆ‘ 𝐹𝑦 = ↓ βˆ‘ 𝐹𝑦 RF2 + RG1 = 17.8828kN/m (1.8m) RG1 = 22.380kN β†’ βˆ‘ 𝐻 𝐹2 = ← βˆ‘ 𝐻 𝐺1 = 0
  • 32. Ref. Calculation Output Span G – H +↻ βˆ‘ 𝑀 𝐺 = 0 = 3.0π‘šπ‘… 𝐺2 βˆ’ (38.2961 π‘˜π‘ π‘šβ„ )(3.0π‘š)( 3.0π‘š 2 ) βˆ’ 17.7860π‘˜π‘π‘š RG2 = 63.373kN ↑ βˆ‘ 𝐹𝑦 = ↓ βˆ‘ 𝐹𝑦 RG2 + RH = 38.2961kN/m (3.0m) RH = 51.516kN β†’ βˆ‘ 𝐻 𝐺2 = ← βˆ‘ 𝐻 𝐻 = 0
  • 33. Ref. Calculation Output Summary At point A,𝑅 𝐴 = 26.537π‘˜π‘ β†Ί 𝑀𝐴 = 0π‘˜π‘π‘š At point B,𝑅 𝐡 = 53.571π‘˜π‘ β†Ί 𝑀 𝐡 = βˆ’7.365π‘˜π‘π‘š ↻ 𝑀 𝐡 = +7.365π‘˜π‘π‘š At point C,𝑅 𝐢 = 84.409π‘˜π‘ β†Ί 𝑀𝑐 = βˆ’22.483π‘˜π‘π‘š ↻ 𝑀𝑐 = +22.483π‘˜π‘π‘š At point D,𝑅 𝐷 = 75.328π‘˜π‘ β†Ί 𝑀 𝐷 = βˆ’20.524π‘˜π‘π‘š ↻ 𝑀 𝐷 = +20.524π‘˜π‘π‘š At point E,𝑅 𝐸 = 38.960π‘˜π‘ β†Ί 𝑀 𝐸 = βˆ’6.090π‘˜π‘π‘š ↻ 𝑀 𝐸 = +6.090π‘π‘š At point F,𝑅 𝐹 = 39.911π‘˜π‘
  • 34. β†Ί 𝑀 𝐹 = βˆ’6.473π‘˜π‘π‘š ↻ 𝑀 𝐹 = +6.473π‘˜π‘π‘š At point G,𝑅 𝐺 = 85.753π‘˜π‘ β†Ί 𝑀 𝐺 = βˆ’17.786π‘˜π‘π‘š ↻ 𝑀 𝐺 = +17.786π‘˜π‘π‘š At point H,𝑅 𝐻 = 51.516π‘˜π‘ ↻ 𝑀 𝐻 = 0π‘˜π‘π‘š Ref. Calculation Output 6.3 Load Distribution of Beam Case 3: Adjacent Loading FEM FEMAB = -FEMBA = βˆ’ 𝑀𝐿2 12 = βˆ’ [1.35 (14.5892 π‘˜π‘ π‘šβ„ )](2.2875π‘š)2 12 = -8.5883 kNm FEMBC = -FEMCB = βˆ’ 𝑀𝐿2 12 = βˆ’ [1.35 (17.6179 π‘˜π‘ π‘šβ„ )+1.50(5.3156π‘˜π‘ π‘šβ„ )](2.2875π‘š)2 12 = -13.8480 kNm
  • 35. FEMCD = -FEMDC = βˆ’ 𝑀𝐿2 12 = βˆ’ [1.35 (17.2189 π‘˜π‘ π‘šβ„ )+1.50(5.1705π‘˜π‘ π‘šβ„ )](3.225π‘š)2 12 = -26.8694 kNm FEMDE = -FEMED = βˆ’ 𝑀𝐿2 12 = =βˆ’ [1.35(15.0966 π‘˜π‘ π‘šβ„ )](1.725π‘š)2 12 = -5.0537 kNm FEMEF = -FEMFE = βˆ’ 𝑀𝐿2 12 = βˆ’ [1.35 (15.3812 π‘˜π‘ π‘šβ„ )+1.50(4.5023π‘˜π‘ π‘šβ„ )](2.175π‘š)2 12 = -10.8481 kNm FEMFG = -FEMGF = βˆ’ 𝑀𝐿2 12 = βˆ’ [1.35 (13.2465 π‘˜π‘ π‘šβ„ )+1.50(3.7260π‘˜π‘ π‘šβ„ )](1.8π‘š)2 12 = -6.3374 kNm FEMGH = -FEMHG = βˆ’ 𝑀𝐿2 12 = βˆ’ [1.35 (21.0675 π‘˜π‘ π‘šβ„ )](3.0π‘š)2 12 = -21.3308 kNm
  • 36. Moment Distribution Mem AB BA BC CB CD DC DE ED EF FE FG GF GH HG CF 0 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0.5 0 DF 1 0.5 0.5 0.585 0.415 0.3485 0.6515 0.5577 0.4423 0.4528 0.5472 0.625 0.375 1 FEM -8.5883 8.5883 -13.8480 13.8480 -26.8694 26.8694 -5.0537 5.0537 -10.8481 10.8481 -6.3374 6.3374 -21.3308 21.3308 Dist 8.5883 2.6299 2.6299 7.6175 5.4039 -7.6028 -14.2129 3.2316 2.5629 -2.0425 -2.4683 9.3709 5.6225 -21.3308 Co 1.3149 0.0000 3.8087 1.3149 -3.8014 2.7019 1.6158 -7.1065 -1.0212 1.2814 4.6855 -1.2341 0.0000 2.8113 Dist -1.3149 -1.9044 -1.9044 1.4546 1.0319 -1.5047 -2.8130 4.5328 3.5949 -2.7018 -3.2651 0.7713 0.4628 -2.8113 Co -0.9522 0.0000 0.7273 -0.9522 -0.7524 0.5159 2.2664 -1.4065 -1.3509 1.7974 0.3857 -1.6325 0.0000 0.2314 Dist 0.9522 -0.3636 -0.3636 0.9972 0.7074 -0.9696 -1.8127 1.5378 1.2196 -0.9885 -1.1946 1.0203 0.6122 -0.2314 Co -0.1818 0.0000 0.4986 -0.1818 -0.4848 0.3537 0.7689 -0.9063 -0.4943 0.6098 0.5102 -0.5973 0.0000 0.3061 Dist 0.1818 -0.2493 -0.2493 0.3900 0.2767 -0.3912 -0.7314 0.7811 0.6195 -0.5071 -0.6128 0.3733 0.2240 -0.3061 Co -0.1246 0.0000 0.1950 -0.1246 -0.1956 0.1383 0.3906 -0.3657 -0.2536 0.3097 0.1867 -0.3064 0.0000 0.1120 Dist 0.1246 -0.0975 -0.0975 0.1874 0.1329 -0.1843 -0.3446 0.3454 0.2739 -0.2248 -0.2716 0.1915 0.1149 -0.1120 Co -0.0487 0.0000 0.0937 -0.0487 -0.0922 0.0665 0.1727 -0.1723 -0.1124 0.1369 0.0958 -0.1358 0.0000 0.0575 Dist 0.0487 -0.0468 -0.0468 0.0824 0.0585 -0.0833 -0.1558 0.1588 0.1259 -0.1054 -0.1273 0.0849 0.0509 -0.0575 0.0000 8.5565 -8.5565 24.5846 -24.5846 19.9097 -19.9097 5.6838 -5.6838 8.4135 -8.4135 14.2435 -14.2435 0.0000
  • 37. 37 Ref. Calculation Output Uniform Distribution Loading Loading at Span A – B = [1.35(14.5892kN/m)] = 19.6954kN/m Loading at Span B – C = [1.35(17.6179kN/m) + 1.50(5.3156kN/m)] = 31.7576kN/m Loading at Span C – D = [1.35(17.2189kN/m) + 1.50(5.1705kN/m)] = 31.0013 kN/m Loading at Span D – E = [1.35(15.0966kN/m)] = 20.3804kN/m Loading at Span E – F = [1.35(15.3812kN/m) + 1.50(4.5023kN/m)] = 27.5181kN/m Loading at Span E – F = [1.35(15.3812kN/m) + 1.50(4.5023kN/m)] = 27.5181 kN/m Loading at Span F – G = [1.35(13.2465kN/m) + 1.50(3.7260kN/m)] = 23.4718kN/m
  • 38. 38 Loading at Span G – H = [1.35(21.0675kN/m)] = 28.4411kN/m
  • 39. 39 Ref. Calculation Output Span A – B +↻ βˆ‘ 𝑀 𝐡 = 0 = 2.2875π‘š 𝑅 𝐴 βˆ’ (19.6954 π‘˜π‘ π‘šβ„ )(2.2875π‘š)( 2.2875π‘š 2 ) βˆ’ 0π‘˜π‘π‘š + 8.5565π‘˜π‘π‘š RA = 18.786kNm ↑ βˆ‘ 𝐹𝑦 = ↓ βˆ‘ 𝐹𝑦 RA - RB1 = 19.6954kN/m (2.2875m) RB1 = 26.267kN β†’ βˆ‘ 𝐻𝐴 = ← βˆ‘ 𝐻 𝐡1 = 0
  • 40. 40 Ref. Calculation Output Span B – C +↻ βˆ‘ 𝑀 𝐢 = 0 = 2.2875π‘šπ‘… 𝐡2 βˆ’ (31.7576π‘˜π‘ π‘šβ„ )(2.2875π‘š)( 2.2875π‘š 2 ) βˆ’ 8.5565π‘˜π‘π‘š + 24.5846π‘˜π‘π‘š RB2 = 29.316kN ↑ βˆ‘ 𝐹𝑦 = ↓ βˆ‘ 𝐹𝑦 RB2 + RC1 = 31.7576kN/m (2.2875m) RC1 = 43.330kN β†’ βˆ‘ 𝐻 𝐡2 = ← βˆ‘ 𝐻 𝐢1 = 0
  • 41. 41 Ref. Calculation Output Span C – D +↻ βˆ‘ 𝑀 𝐷 = 0 = 3.225π‘šπ‘… 𝐢2 βˆ’ (31.0013 π‘˜π‘ π‘šβ„ )(3.225π‘š)( 3.225π‘š 2 ) βˆ’ 24.5846π‘˜π‘π‘š + 19.9097π‘˜π‘π‘š RC2 = 51.439kN ↑ βˆ‘ 𝐹𝑦 = ↓ βˆ‘ 𝐹𝑦 RC2 + RD1 = 31.0013kN/m (3.225m) RD1 = 48.540kN β†’ βˆ‘ 𝐻 𝐢2 = ← βˆ‘ 𝐻 𝐷1 = 0
  • 42. 42 Ref. Calculation Output Span D - E +↻ βˆ‘ 𝑀 𝐸 = 0 = 1.725π‘šπ‘… 𝐷2 βˆ’ (20.3804 π‘˜π‘ π‘šβ„ )(1.725π‘š)( 1.725π‘š 2 ) βˆ’ 19.9097π‘˜π‘π‘š + 5.6838π‘˜π‘π‘š RD2 = 25.825kN ↑ βˆ‘ 𝐹𝑦 = ↓ βˆ‘ 𝐹𝑦 RD2 + RE1 = 20.3804kN/m (1.725m) RE1 = 9.331kN β†’ βˆ‘ 𝐻 𝐷2 = ← βˆ‘ 𝐻 𝐸1 = 0
  • 43. 43 Ref. Calculation Output Span E – F +↻ βˆ‘ 𝑀 𝐸 = 0 = 2.175π‘šπ‘… 𝐸2 βˆ’ (27.5181 π‘˜π‘ π‘šβ„ )(2.175π‘š)( 2.175π‘š 2 ) βˆ’ 5.6838π‘˜π‘π‘š + 8.4135π‘˜π‘π‘š RE2 = 28.671kN ↑ βˆ‘ 𝐹𝑦 = ↓ βˆ‘ 𝐹𝑦 RE2 + RF1 = 27.5181kN/m (2.175m) RF1 = 31.181kN β†’ βˆ‘ 𝐻 𝐸2 = ← βˆ‘ 𝐻 𝐹1 = 0
  • 44. 44 Ref. Calculation Output Span F – G +↻ βˆ‘ 𝑀 𝐹 = 0 = 1.8π‘šπ‘… 𝐹2 βˆ’ (23.4718π‘˜π‘ π‘šβ„ )(1.8π‘š)( 1.8π‘š 2 ) βˆ’ 8.4135π‘˜π‘π‘š + 14.2435π‘˜π‘π‘š RF2 = 17.886kN ↑ βˆ‘ 𝐹𝑦 = ↓ βˆ‘ 𝐹𝑦 RF2 + RG1 = 23.4718kN/m (1.8m) RG1 = 24.363kN β†’ βˆ‘ 𝐻 𝐹2 = ← βˆ‘ 𝐻 𝐺1 = 0
  • 45. 45 Ref. Calculation Output Span G – H +↻ βˆ‘ 𝑀 𝐺 = 0 = 3.0π‘šπ‘… 𝐺2 βˆ’ (28.4411 π‘˜π‘ π‘šβ„ )(3.0π‘š)( 3.0π‘š 2 ) βˆ’ 14.2435π‘˜π‘π‘š + 0π‘˜π‘π‘š RG2 = 47.410kN ↑ βˆ‘ 𝐹𝑦 = ↓ βˆ‘ 𝐹𝑦 RG2 + RH = 28.4411kN/m (3.0m) RH = 37.914kN β†’ βˆ‘ 𝐻 𝐺2 = ← βˆ‘ 𝐻 𝐻 = 0
  • 46. 46 Ref. Calculation Output Summary At point A,𝑅 𝐴 = 18.786π‘˜π‘ β†Ί 𝑀𝐴 = 0π‘˜π‘π‘š At point B,𝑅 𝐡 = 55.583π‘˜π‘ β†Ί 𝑀 𝐡 = βˆ’8.557π‘˜π‘π‘š ↻ 𝑀 𝐡 = +8.557π‘˜π‘π‘š At point C,𝑅 𝐢 = 94.769π‘˜π‘ β†Ί 𝑀𝑐 = βˆ’24.585π‘˜π‘π‘š ↻ 𝑀𝑐 = +24.585π‘˜π‘π‘š At point D,𝑅 𝐷 = 74.365π‘˜π‘ β†Ί 𝑀 𝐷 = βˆ’19.910π‘˜π‘π‘š ↻ 𝑀 𝐷 = +19.910π‘˜π‘π‘š At point E,𝑅 𝐸 = 38.002π‘˜π‘ β†Ί 𝑀 𝐸 = βˆ’5.684π‘˜π‘π‘š ↻ 𝑀 𝐸 = +5.684π‘˜π‘π‘š At point F,𝑅 𝐹 = 49.067π‘˜π‘ β†Ί 𝑀 𝐹 = βˆ’8.413π‘˜π‘π‘š
  • 47. 47 ↻ 𝑀 𝐹 = +8.413π‘˜π‘π‘š At point G,𝑅 𝐺 = 71.773π‘˜π‘ β†Ί 𝑀 𝐺 = βˆ’14.243π‘˜π‘π‘š ↻ 𝑀 𝐺 = +14.243π‘˜π‘π‘š At point H,𝑅 𝐻 = 37.914π‘˜π‘ ↻ 𝑀 𝐻 = 0π‘˜π‘π‘š
  • 48. 48 Ref. Calculation Output Distribution Factor, DF KAB = KBA = 4𝐸𝐼 𝐿 = 4𝐸𝐼 2.2875 = 1.7486 EI KBC = KCB = 4𝐸𝐼 𝐿 = 4𝐸𝐼 2.2875 = 1.7486 EI KCD = KDC = 4𝐸𝐼 𝐿 = 4𝐸𝐼 3.225 = 1.2403 EI KDE = KDE = 4𝐸𝐼 𝐿 = 4𝐸𝐼 1.725 = 2.3188 EI KEF = KF = 4𝐸𝐼 𝐿
  • 49. 49 = 4𝐸𝐼 2.175 = 1.8391 EI KFG = KGF = 4𝐸𝐼 𝐿 = 4𝐸𝐼 1.8 = 2.2222 EI KGH = KHG = 4𝐸𝐼 𝐿 = 4𝐸𝐼 3.0 = 1.3333 EI Ref. Calculation Output DFAB = 𝐾 𝐴𝐡 𝐾 𝐴𝐡 +0 = 1.7468 𝐸𝐼 1.7468 𝐸𝐼+0 = 1 DFBA = 𝐾 𝐡𝐴 𝐾 𝐡𝐴 + 𝐾 𝐡𝐢 = 1.7468𝐸𝐼 1.7468 𝐸𝐼+1.7468 𝐸𝐼 = 0.5 DFBC = 𝐾 𝐡𝐢 𝐾 𝐡𝐴 + 𝐾 𝐡𝐢 = 1.7468 𝐸𝐼 1.7468 𝐸𝐼+1.7468 𝐸𝐼 = 0.5 DFCB = 𝐾 𝐢𝐡 𝐾 𝐢𝐡 + 𝐾 𝐢𝐷 = 1.7468 𝐸𝐼 1.7468 𝐸𝐼+1.2403 𝐸𝐼 = 0.585 DFCD = 𝐾 𝐢𝐷 𝐾 𝐢𝐡 +𝐾 𝐢𝐷 = 1.2403 𝐸𝐼 1.7468 𝐸𝐼+1.2403 𝐸𝐼 = 0.415 DFDC = 𝐾 𝐷𝐢 𝐾 𝐷𝐢+ 𝐾 𝐷𝐸 = 1.2403 𝐸𝐼 1.2403 𝐸𝐼+2.3188 𝐸𝐼 = 0.348 5 DFDE = 𝐾 𝐷𝐸 𝐾 𝐷𝐢+ 𝐾 𝐷𝐸 = 2.3188 𝐸𝐼 1.2403 𝐸𝐼+2.3188 𝐸𝐼 = 0.651 5 DFED = 𝐾 𝐸𝐷 𝐾 𝐸𝐷 + 𝐾 𝐸𝐹 = 2.3188 𝐸𝐼 2.3188 𝐸𝐼+1.8391 𝐸𝐼 = 0.557 7 DFEF = 𝐾 𝐸𝐹 𝐾 𝐸𝐷 + 𝐾 𝐸𝐹 = 1.8391 𝐸𝐼 2.3188 𝐸𝐼+1.8391 𝐸𝐼 = 0.442 3 DFFE = 𝐾 𝐹𝐸 𝐾 𝐹𝐸+ 𝐾 𝐹𝐺 = 1.8391 𝐸𝐼 1.8391 𝐸𝐼+2.2222 𝐸𝐼 = 0.452 8 DFFG = 𝐾 𝐹𝐺 𝐾 𝐹𝐸+ 𝐾 𝐹𝐺 = 2.2222 𝐸𝐼 1.8391 𝐸𝐼+2.2222 𝐸𝐼 = 0.547 2
  • 50. 50 DFGF = 𝐾 𝐺𝐹 𝐾 𝐺𝐹 + 𝐾 𝐺𝐻 = 2.2222 𝐸𝐼 2.2222 𝐸𝐼+1.3333 𝐸𝐼 = 0.625 DFGH = 𝐾 𝐺𝐻 𝐾 𝐺𝐹 + 𝐾 𝐺𝐻 = 1.3333 𝐸𝐼 2.2222 𝐸𝐼+1.3333 𝐸𝐼 = 0.375 DFHG = 𝐾 𝐻𝐺 𝐾 𝐻𝐺 + 0 = 1.3333 𝐸𝐼 1.3333 𝐸𝐼+0 = 1
  • 51. 51 Ref. Calculation Output 6.3.1 Simply Supported Beam 1. Specification Effective Span, L = 1.8m Characteristic Action : Finishes, gk = 1.5kN/m Variable, qk = 3.0kN/m Design life = 50 Years Fire Resistance = R90 Exposure Classes = XS3 Materials : Characteristic Strength of Concrete, fck = 30N/mm2 Characteristic Strength of Steel, fyk = 500N/mm2 Characteristic Strength of Link, fyk = 500N/mm2
  • 52. 52 Unit Weight of Reinforced Concrete = 25kN/mm2 Assumed : Øbar = 16mm Ølink = 8mm
  • 53. 53 Ref. Calculation Output 2. Size Overall depth, h = L/13 = 1.8/13 = 0.138462m = 138.462mm Width, b = 0.4h = 0.4(138.4615mm) = 55.385mm Use b x h = 200mm x 350mm 200mm = 70000mm2 350mm
  • 54. 54 Ref. Calculation Output 3. Durability, Fire and Bond Requirements Min. concrete cover regard to bond, Cmin,b = 20mm Min. concrete cover regard to durability, Cmin,dur = 45mm Min. required axis distance for R90 fire resistance, asd = 45mm asd = a + 10 = 55mm Min. concrete cover regard to fire Cmin = π‘Ž 𝑠𝑑 βˆ’ βˆ…π‘™π‘–π‘›π‘˜ βˆ’ βˆ… π‘π‘Žπ‘Ÿ 2⁄ = 39mm Allowance in design for deviation, Ξ” Cdev = 10mm Nominal cover, Cnom = Cmin + Ξ” Cdev = 49mm Cnom ∴ Cnom = 51mm 51mm 4. Loading and Analysis Loading on Slab 15: Slab Thickness = 0.16m Concrete Unit Weight = 25kN/m3 Self-weight = 25kN/m3 Γ— 0.16m = 4.0kN/m Finishing, ceiling and Services = 1.5kN/m
  • 55. 55 Permanent Action, gk = 5.5kN/m Variable Action, qk = 3.0kN/m FS15 ly = 2.4m lx = 1.8m 𝑙 𝑦 𝑙 π‘₯ = 1.33 Λ‚ 2.0 (2 way slab)
  • 56. 56 Ref. Calculation Output Loading on Slab 16: Slab Thickness = 0.21m Concrete Unit Weight = 25kN/m3 Self-weight = 25kN/m3 Γ— 0.21m = 5.25kN/m Finishing, ceiling and Services = 1.5kN/m Permanent Action, gk = 6.75kN/m Variable Action, qk = 3.0kN/m FS16 ly = 2.4m lx = 1.8m 𝑙 𝑦 𝑙 π‘₯ = 1.33 Λ‚ 2.0 (2 way slab) Load on beam 2-3/D-F
  • 57. 57
  • 58. 58 Ref. Calculation Output Characteristic permanent load, Gk Beam self-weight, Ξ²vy = 0.36 and 0.33 Beam self-weight w0 = 0.2m Γ— 0.35m Γ— 25kN/m3 = 1.75 kN/m w15 = Ξ²vynlx = 0.36 x 5.5kN/m2 x 1.8m = 3.564kN/m w16 = Ξ²vynlx = 0.33 x 6.75kN/m2 x 1.2m = 2.673kN/m = Brickwall w1 = 2.6kN/m2 Γ— 3.0m = 7.8 Total GK = 15.787kN/m Characteristic variable load, Qk w15 = Ξ²vynlx = 0.36 x 3.0kN/m2 x 1.8m = 1.944kN/m w16 = Ξ²vynlx = 0.33 x 3.0kN/m2 x 1.2m = 1.188kN/m
  • 59. 59 Total QK = 3.132kNm
  • 60. 60 Ref. Calculation Output Design action, Wd = 1.35Gk + 1.5Qk Wd = 1.35(15.787kN/m) + 1.5(3.132kN/m) 26.01 = 26.01 kN/m kN/m Shear Force, V = π‘Š 𝑑 𝐿 2 V = 26.01 π‘˜π‘ π‘šβ„ Γ—1.8π‘š 2 23.410 = 23.410kN kN Bending Moment, 𝑀 = π‘Š 𝑑 𝐿2 8 M = (26.01π‘˜π‘ π‘šβ„ )(1.8π‘š)2 8 10.534 = 10.534kNm kNm
  • 61. 61 Ref. Calculation Output Effective depth d = h - Cnom - Ølink - Øbar = 350mm-50mm-8mm-16mm d = 278mm 278mm d' = Cnom + Ølink + βˆ… π‘π‘Žπ‘Ÿ 2 = 36mm Design bending moment, Med = 7.153kNm 𝐾 = 𝑀 𝑏𝑑2 𝑓 π‘π‘˜ = 10 .534 Γ—106 π‘π‘šπ‘š2 (200π‘šπ‘š )(278π‘šπ‘š)2(30𝑁/π‘šπ‘š2 ) = 0.0227 Kbal = 0.167 K < Kbal ; Compression reinforcement is not required z = 𝑑[0.5 + √0.25 βˆ’ 𝐾 π‘π‘Žπ‘™ 1.134 ] z = 0.82𝑑 z = 227.96mm Area of Tension steel, As 𝐴 𝑠 = 𝐾 π‘π‘Žπ‘™ 𝑓 π‘π‘˜ 𝑏𝑑2 0.87𝑓 π‘¦π‘˜ 𝑧 + 𝐴 𝑠′ = (0.167)(30𝑁 π‘šπ‘š2⁄ )(200π‘šπ‘š)(278π‘šπ‘š )2 0.87 (500𝑁 π‘šπ‘š2⁄ )(226.32π‘šπ‘š) + 𝐴 𝑠′ = 780.925mm2
  • 62. 62 Min and max reinforcement area, As,min 𝐴 𝑠,π‘šπ‘–π‘› = 0.26 π‘“π‘π‘‘π‘š π‘“π‘¦π‘˜ 𝑏𝑑 = 0.26 2.90𝑁 π‘šπ‘š2⁄ 500𝑁 π‘šπ‘š2⁄ 𝑏𝑑 = 0.001508 bd Exceed 0.0013bd; use 0.0015bd = 83.844mm2 Ref. Calculation Output As,max = 0.04Ac = 0.04 Γ— 200mm Γ— 350mm = 2800mm2 5. Shear Reinforcement Design shear force, Ved = 23.410kN Concrete strut capacity 𝑉𝑅𝑑,π‘šπ‘Žπ‘₯ = 0.3𝑏 𝑀 π‘‘π‘“π‘π‘˜(1βˆ’ 𝑓 π‘π‘˜ 250 ) (π‘π‘œπ‘‘πœƒ+π‘‘π‘Žπ‘›πœƒ) = 0.3(200π‘šπ‘š)(278π‘šπ‘š)(30𝑁 π‘šπ‘š2⁄ )(1βˆ’ 30𝑁 π‘šπ‘š2⁄ 250 ) (π‘π‘œπ‘‘πœƒ+π‘‘π‘Žπ‘›πœƒ) = 181.962π‘˜π‘ (πœƒ = 22Β°, π‘π‘œπ‘‘πœƒ = 2.5) = 264.211π‘˜π‘ (πœƒ = 45Β°, π‘π‘œπ‘‘πœƒ = 1.0) Ved < VRd,maxcot πœƒ= 2.5 Ved < VRd,maxcot πœƒ= 1.0
  • 63. 63 ∴ 𝜽 < 𝟐𝟐° πœƒ = 0.5 sinβˆ’1 [ 𝑉 𝐸𝑑 0.18𝑏 𝑀 π‘‘π‘“π‘π‘˜(1βˆ’ 𝑓 π‘π‘˜ 250 ) ] = 0.5 sinβˆ’1 [ 18.558Γ—103 𝑁 0.18(200π‘šπ‘š)(278π‘šπ‘š)(30𝑁 π‘šπ‘š2⁄ )(1βˆ’ 30𝑁 π‘šπ‘š2⁄ 250 ) ] = 2.01Β° Use πœƒ = 22Β° π‘‘π‘Žπ‘›πœƒ = 0.40, π‘π‘œπ‘‘πœƒ = 2.5 Shear Link, 𝐴 𝑠𝑀 𝑠 = 𝑉 𝐸𝑑 (0.78π‘“π‘¦π‘˜ π‘‘π‘π‘œπ‘‘πœƒ) = 23.410Γ—103 𝑁 (0.78)(500𝑁 π‘šπ‘š2⁄ )(278π‘šπ‘š)(2.5) = 0.0864mm Try link: H6 𝐴 𝑠𝑀=28.3mm2 Spacing, s = 28.3 π‘šπ‘š2 0.0864 π‘šπ‘š = 327.67mm
  • 64. 64 Ref. Calculation Output Maximum spacing, = 0.75d Smax = 0.75(278mm) = 208.5mm Use: H6 - 200 H6 - 200 Minimum links, 𝐴 𝑠𝑀 𝑠 = 0.08√ π‘“π‘π‘˜ 𝑏 𝑀 𝑓 π‘¦π‘˜ = 0.08√30 𝑁 π‘šπ‘š2⁄ 200π‘šπ‘š 500𝑁 π‘šπ‘š2⁄ = 0.175 mm Spacing, s = 28.3 π‘šπ‘š2 0.175 π‘šπ‘š = 161.454mm < 0.75d Use: H6 - 175 H6 - 175 Minimum Links, 𝐴 𝑠𝑀 𝑠 = 0.08√ π‘“π‘π‘˜ 𝑏 𝑀 𝑓 π‘¦π‘˜ = 0.08√30 𝑁 π‘šπ‘š2⁄ 200π‘šπ‘š 500𝑁 π‘šπ‘š2⁄ = 0.175mm Spacing, s = 28.3mm2/0.175mm = 161.464mm Λ‚ 0.75d Use: H6 - 175 Shear resistance of minimum links
  • 65. 65 𝑉 π‘šπ‘–π‘› = 𝐴 𝑠𝑀 𝑠 (0.78π‘“π‘¦π‘˜ π‘‘π‘π‘œπ‘‘πœƒ) = 28.3π‘šπ‘š2 200 π‘šπ‘š (0.78)(500𝑁 π‘šπ‘š2⁄ )(278π‘šπ‘š)(2.5) = 43.833kN
  • 67. 67 Ref. Calculation Output 6. Deflection Percentage of required tension reinforcement, 𝜌 = 𝐴 𝑠,π‘Ÿπ‘’π‘ž 𝑏𝑑 = 775.307π‘šπ‘š2 (200π‘šπ‘š)(278π‘šπ‘š) = 0.01405 Reference reinforcement ratio, 𝜌° = √ π‘“π‘π‘˜ Γ— 10βˆ’3 = √30 𝑁 π‘šπ‘š2⁄ Γ— 10βˆ’3 = 0.00548 Percentage of required compression reinforcement, πœŒβ€² = 0 𝜌 > 𝜌° ; Use equation: 𝑙 𝑑 = 𝐾[11 + 1.5√ π‘“π‘π‘˜ 𝜌° πœŒβˆ’πœŒβ€² + 1 12 √ π‘“π‘π‘˜βˆš πœŒβ€² 𝜌° 𝑙 𝑑 = 1.0[11+ 1.5√30 𝑁 π‘šπ‘š2⁄ 0.00548 0.01405βˆ’0 + 1 12 √30 𝑁 π‘šπ‘š2⁄ √ 0 0.00548 ] 𝑙 𝑑 = 1.0[11+ 0.5549+ 0] 𝑙 𝑑 = 11.555 Modification factor less than 7m = 1.00 Modification factor for steel area provided, = 𝐴 𝑠,π‘π‘Ÿπ‘œπ‘£ 𝐴 𝑠,π‘Ÿπ‘’π‘ž = 943π‘šπ‘š2 780.925π‘šπ‘š2
  • 68. 68 = 1.208 <1.5 OK! Allowable span effective depth ratio = (l/d) allowable = 11.555 Γ— 1.208 Γ— 1.00 = 13.954 Actual Span-effective depth, (l/d) actual = 1800 π‘šπ‘š 278 π‘šπ‘š = 6.475 < (l/d) allowable OK! Ref. Calculation Output 7. Cracking Limiting crack width, wmax = 0.3mm Steel stress, 𝑓𝑠 = π‘“π‘¦π‘˜ 1.15 [ 𝐺 π‘˜+0.3𝑄 π‘˜ 1.35𝐺 π‘˜+1.5𝑄 π‘˜ ] 1 𝛿 = 500 1.15 [ 9.75+0.3(3.0) 1.35(9.75)+1.5(3.0) ]1.0 = 288.813N/mm2 EC2: Max allowable bar spacing = 100mm Table 4.2
  • 69. 69 Bar spacing, S = 200mm- 2(50mm) -2(6mm)-16mm = 72mm < 100mm OK! 8. Detailing
  • 70. 70 Ref. Calculation Output 5.4.2 Continuous Beam 1. Specification Span AB Effective Span, L = 2.2875m Dimension Width = 300mm Depth = 400mm Characteristic Load Permanent Loading, GK = 14.5892kN/m Variable Loading, QK = 4.2143kN/m Design life = 50 Years Fire Resistance = R120 Exposure Cement = XS3 Materials: Unit Weight of Concrete = 25kN/m3 Characteristic strength of concrete, fck = 30N/mm2 Characteristic strength of steel, fyk = 500N/mm2 Characteristic strength of link, fyk = 500Nmm2 Assumed βˆ… π‘π‘Žπ‘Ÿ 1 = 12mm βˆ… π‘π‘Žπ‘Ÿ 2 = 8mm
  • 72. 72 Ref. Calculation Output Span BC Effective Span, L = 2.2875m Dimension Width = 300mm Depth = 400mm Characteristic Load Permanent Loading, GK = 17.6179kN/m Variable Loading, QK = 5.3156kN/m Design life = 50 Years Fire Resistance = R120 Exposure Cement = XS3 Materials: Unit Weight of Concrete = 25kN/m3 Characteristic strength of concrete, fck = 30N/mm2 Characteristic strength of steel, fyk = 500N/mm2 Characteristic strength of link, fyk = 500Nmm2 Assumed βˆ… π‘π‘Žπ‘Ÿ 1 = 12mm βˆ… π‘π‘Žπ‘Ÿ 2 = 8mm βˆ…π‘™π‘–π‘›π‘˜ = 6mm
  • 73. 73
  • 74. 74 Ref. Calculation Output Span CD Effective Span, L = 3.225m Dimension Width = 300mm Depth = 400mm Characteristic Load Permanent Loading, GK = 17.2189kN/m Variable Loading, QK = 5.1705kN/m Design life = 50 Years Fire Resistance = R120 Exposure Cement = XS3 Materials: Unit Weight of Concrete = 25kN/m3 Characteristic strength of concrete, fck = 30N/mm2 Characteristic strength of steel, fyk = 500N/mm2 Characteristic strength of link, fyk = 500Nmm2 Assumed βˆ… π‘π‘Žπ‘Ÿ 1 = 12mm βˆ… π‘π‘Žπ‘Ÿ 2 = 8mm βˆ…π‘™π‘–π‘›π‘˜ = 6mm
  • 75. 75
  • 76. 76 Ref. Calculation Output Span DE Effective Span, L = 1.725m Dimension Width = 300mm Depth = 400mm Characteristic Load Permanent Loading, GK = 15.0966kN/m Variable Loading, QK = 4.3988kN/m Design life = 50 Years Fire Resistance = R120 Exposure Cement = XS3 Materials: Unit Weight of Concrete = 25kN/m3 Characteristic strength of concrete, fck = 30N/mm2 Characteristic strength of steel, fyk = 500N/mm2 Characteristic strength of link, fyk = 500Nmm2 Assumed βˆ… π‘π‘Žπ‘Ÿ 1 = 12mm βˆ… π‘π‘Žπ‘Ÿ 2 = 8mm βˆ…π‘™π‘–π‘›π‘˜ = 6mm
  • 77. 77
  • 78. 78 Ref. Calculation Output Span EF Effective Span, L = 2.175m Dimension Width = 300mm Depth = 400mm Characteristic Load Permanent Loading, GK = 15.3812kN/m Variable Loading, QK = 4.5023kN/m Design life = 50 Years Fire Resistance = R120 Exposure Cement = XS3 Materials: Unit Weight of Concrete = 25kN/m3 Characteristic strength of concrete, fck = 30N/mm2 Characteristic strength of steel, fyk = 500N/mm2 Characteristic strength of link, fyk = 500Nmm2 Assumed βˆ… π‘π‘Žπ‘Ÿ 1 = 12mm βˆ… π‘π‘Žπ‘Ÿ 2 = 8mm βˆ…π‘™π‘–π‘›π‘˜ = 6mm
  • 79. 79
  • 80. 80 Ref. Calculation Output Span FG Effective Span, L = 1.8m Dimension Width = 300mm Depth = 400mm Characteristic Load Permanent Loading, GK = 13.2465kN/m Variable Loading, QK = 3.7260kN/m Design life = 50 Years Fire Resistance = R120 Exposure Cement = XS3 Materials: Unit Weight of Concrete = 25kN/m3 Characteristic strength of concrete, fck = 30N/mm2 Characteristic strength of steel, fyk = 500N/mm2 Characteristic strength of link, fyk = 500Nmm2 Assumed βˆ… π‘π‘Žπ‘Ÿ 1 = 12mm βˆ… π‘π‘Žπ‘Ÿ 2 = 8mm βˆ…π‘™π‘–π‘›π‘˜ = 6mm
  • 81. 81
  • 82. 82 Ref. Calculation Output Span GH Effective Span, L = 3.0m Dimension Width = 300mm Depth = 400mm Characteristic Load Permanent Loading, GK = 21.0675kN/m Variable Loading, QK = 6.570kN/m Design life = 50 Years Fire Resistance = R120 Exposure Cement = XS3 Materials: Unit Weight of Concrete = 25kN/m3 Characteristic strength of concrete, fck = 30N/mm2 Characteristic strength of steel, fyk = 500N/mm2 Characteristic strength of link, fyk = 500Nmm2 Assumed βˆ… π‘π‘Žπ‘Ÿ 1 = 12mm βˆ… π‘π‘Žπ‘Ÿ 2 = 8mm βˆ…π‘™π‘–π‘›π‘˜ = 6mm
  • 83. 83
  • 84. 84 Ref. Calculation Output 2. Durability, Fire and Bond Requirement Min. Conc. Cover regard to bond, Cmin,b = 12mm Min. conc. Cover regard to durability, Cmin,dur = 50mm Min. required axis distance for R120 fire resistance asd = 35mm + 10mm = 45mm Min. concrete cover regard to fire, Cmin = π‘Ž 𝑠𝑑 βˆ’ βˆ…π‘™π‘–π‘›π‘˜ βˆ’ βˆ… π‘π‘Žπ‘Ÿ 2 = 45mm – 6mm – 0.5(12mm) = 33mm Allowance in design for deviation, βˆ†Cdev = 10mm Nominal cover Cnom = Cmin + βˆ†Cdev = 50mm + 10mm = 60mm
  • 85. 85 Ref. Calculation Output 3. Loading and Analysis Span AB Design Load, wd = 1.35GK + 1.50QK = 1.35(14.5892kN/m) + 1.50(4.2143kN/m) = 26.0468kN/m Design Moment Span, MED = (0.09GK + 0.10QK)L2 = [0.09(14.5892π‘˜π‘ π‘šβ„ ) + 0.10(4.2143 π‘˜π‘ π‘šβ„ )](2.2875π‘š)2 = 12.583kNm Support, MED = (0.106GK + 0.106QK)L2 = [0.106(14.5892π‘˜π‘ π‘šβ„ ) + 0.106(4.2143 π‘˜π‘ π‘šβ„ )](2.2875π‘š)2 = 14.4306kNm Shear Force Outer Support, VED = 0.45 Γ— wd Γ— L = 0.45 Γ— 26.0468 π‘˜π‘ π‘šβ„ Γ— 2.2875π‘š = 26.78kN Inner Support, VED = 0.63 Γ— wd Γ— L = 0.63 Γ— 26.0468 π‘˜π‘ π‘šβ„ Γ— 2.2875π‘š
  • 87. 87 Ref. Calculation Output Span BC Design Load, wd = 1.35GK + 1.50QK = 1.35(17.6179kN/m) + 1.50(5.3156kN/m) = 31.7576kN/m Design Moment Span, MED = (0.09GK + 0.10QK)L2 = [0.09(17.6179π‘˜π‘ π‘šβ„ ) + 0.10(5.3156 π‘˜π‘ π‘šβ„ )](2.2875π‘š)2 = 15.373kNm Support, MED = (0.106GK + 0.106QK)L2 = [0.106(17.6179π‘˜π‘ π‘šβ„ ) + 0.106(5.3156 π‘˜π‘ π‘šβ„ )](2.2875π‘š)2 = 17.6147kNm Shear Force Outer Support, VED = 0.45 Γ— wd Γ— L = 0.45 Γ— 31.7576 π‘˜π‘ π‘šβ„ Γ— 2.2875π‘š = 32.6904kN Inner Support, VED = 0.63 Γ— wd Γ— L = 0.63 Γ— 31.7576 π‘˜π‘ π‘šβ„ Γ— 2.2875π‘š = 45.7666kN
  • 88. 88
  • 89. 89 Ref. Calculation Output Span CD Design Load, wd = 1.35GK + 1.50QK = 1.35(17.2189kN/m) + 1.50(5.1705kN/m) = 31.0013kN/m Design Moment Span, MED = (0.09GK + 0.10QK)L2 = [0.09(17.2189π‘˜π‘ π‘šβ„ ) + 0.10(5.1705 π‘˜π‘ π‘šβ„ )](3.225π‘š)2 = 29.8260kNm Support, MED = (0.106GK + 0.106QK)L2 = [0.106(17.2189π‘˜π‘ π‘šβ„ ) + 0.106(5.1705 π‘˜π‘ π‘šβ„ )](3.225π‘š)2 = 34.1779kNm Shear Force Outer Support, VED = 0.45 Γ— wd Γ— L = 0.45 Γ— 31.0013 π‘˜π‘ π‘šβ„ Γ— 3.225π‘š = 44.9906kN Inner Support, VED = 0.63 Γ— wd Γ— L = 0.63 Γ— 31.0013 π‘˜π‘ π‘šβ„ Γ— 3.225π‘š = 62.9868kN
  • 90. 90
  • 91. 91 Ref. Calculation Output Span DE Design Load, wd = 1.35GK + 1.50QK = 1.35(15.0966kN/m) + 1.50(4.3988kN/m) = 26.9786kN/m Design Moment Span, MED = (0.09GK + 0.10QK)L2 = [0.09(15.0966π‘˜π‘ π‘šβ„ ) + 0.10(4.3988 π‘˜π‘ π‘šβ„ )](1.725π‘š)2 = 7.421kNm Support, MED = (0.106GK + 0.106QK)L2 = [0.106(15.0966π‘˜π‘ π‘šβ„ ) + 0.106(4.3988 π‘˜π‘ π‘šβ„ )](1.725π‘š)2 = 8.5095kNm Shear Force Outer Support, VED = 0.45 Γ— wd Γ— L = 0.45 Γ— 26.9786 π‘˜π‘ π‘šβ„ Γ— 1.725π‘š = 20.9422kN Inner Support, VED = 0.63 Γ— wd Γ— L = 0.63 Γ— 26.9786 π‘˜π‘ π‘šβ„ Γ— 1.725π‘š = 29.319kN
  • 92. 92
  • 93. 93 Ref. Calculation Output Span EF Design Load, wd = 1.35GK + 1.50QK = 1.35(15.3812kN/m) + 1.50(4.5023kN/m) = 27.5181kN/m Design Moment Span, MED = (0.09GK + 0.10QK)L2 = [0.09(15.3812π‘˜π‘ π‘šβ„ ) + 0.10(4.5023 π‘˜π‘ π‘šβ„ )](2.715π‘š)2 = 12.035kNm Support, MED = (0.106GK + 0.106QK)L2 = [0.106(15.3812π‘˜π‘ π‘šβ„ ) + 0.106(4.5023 π‘˜π‘ π‘šβ„ )](2.715π‘š)2 = 13.7988kNm Shear Force Outer Support, VED = 0.45 Γ— wd Γ— L = 0.45 Γ— 27.5181 π‘˜π‘ π‘šβ„ Γ— 2.715π‘š = 26.9333kN Inner Support, VED = 0.63 Γ— wd Γ— L = 0.63 Γ— 27.5181 π‘˜π‘ π‘šβ„ Γ— 2.715π‘š = 37.7066kN
  • 94. 94
  • 95. 95 Ref. Calculation Output Span FG Design Load, wd = 1.35GK + 1.50QK = 1.35(13.2465kN/m) + 1.50(3.726kN/m) = 23.4718kN/m Design Moment Span, MED = (0.09GK + 0.10QK)L2 = [0.09(13.2465π‘˜π‘ π‘šβ„ ) + 0.10(3.726 π‘˜π‘ π‘šβ„ )](1.8π‘š)2 = 7.025kNm Support, MED = (0.106GK + 0.106QK)L2 = [0.106(13.2465π‘˜π‘ π‘šβ„ ) + 0.106(3.726 π‘˜π‘ π‘šβ„ )](1.8π‘š)2 = 8.0611kNm Shear Force Outer Support, VED = 0.45 Γ— wd Γ— L = 0.45 Γ— 23.4718 π‘˜π‘ π‘šβ„ Γ— 1.8π‘š = 19.0121kN Inner Support, VED = 0.63 Γ— wd Γ— L = 0.63 Γ— 23.4718 π‘˜π‘ π‘šβ„ Γ— 1.8π‘š = 26.6170kN
  • 96. 96
  • 97. 97 Ref. Calculation Output Span GH Design Load, wd = 1.35GK + 1.50QK = 1.35(21.0675kN/m) + 1.50(6.57kN/m) = 38.2961kN/m Design Moment Span, MED = (0.09GK + 0.10QK)L2 = [0.09(21.0675π‘˜π‘ π‘šβ„ ) + 0.10(6.57 π‘˜π‘ π‘šβ„ )](3.0π‘š)2 = 31.907kNm Support, MED = (0.106GK + 0.106QK)L2 = [0.106(21.0675π‘˜π‘ π‘šβ„ ) + 0.106(6.57 π‘˜π‘ π‘šβ„ )](2.2875π‘š)2 = 36.5345kNm Shear Force Outer Support, VED = 0.45 Γ— wd Γ— L = 0.45 Γ— 38.2961 π‘˜π‘ π‘šβ„ Γ— 3.0π‘š = 51.6998kN Inner Support, VED = 0.63 Γ— wd Γ— L = 0.63 Γ— 38.2961 π‘˜π‘ π‘šβ„ Γ— 3.0π‘š = 72.3787kN
  • 98. 98
  • 99. 99 Ref. Calculation Output 4. Main Reinforcement Effective Depth, d = β„Ž βˆ’ 𝐢 π‘›π‘œπ‘š βˆ’ βˆ…π‘™π‘–π‘›π‘˜ βˆ’ 0.5βˆ… π‘π‘Žπ‘Ÿ = 400mm – 60mm – 6mm – 0.5(12mm) = 328mm d’ = 𝐢 π‘›π‘œπ‘š + βˆ…π‘™π‘–π‘›π‘˜ + 0.5βˆ… π‘π‘Žπ‘Ÿ = 72mm
  • 100. 100 Ref. Calculation Output Span AB Bending Moment = 12.583kNm K = 𝑀 𝐸𝐷 𝑓 π‘π‘˜ 𝑏𝑑2 = 12.583 Γ— 106 π‘π‘šπ‘š 30𝑁 π‘šπ‘š2⁄ Γ—300π‘š Γ— (328π‘šπ‘š)2 = 0.013 Λ‚ Kbal(0.167) z = 𝑑 [0.5 + √0.25 βˆ’ 𝐾 1.134⁄ ] = 𝑑 [0.5 + √0.25 βˆ’ 0.013 1.134⁄ ] = 0.9884d = 0.9884 Γ— 328mm = 324.20mm Area of Tension Reinforcement As = 𝑀 𝐸𝐷 0.87 Γ— 𝑓 π‘¦π‘˜ ×𝑧 = 12.583 Γ— 106 π‘π‘šπ‘š 0.87 Γ—500𝑁 π‘šπ‘š2⁄ Γ—0.9884 Γ—328π‘šπ‘š 2H10 = 89.23mm2 157mm2 Minimum and maximum reinforcement area As,min = 0.26 ( π‘“π‘π‘‘π‘š π‘“π‘¦π‘˜ ) 𝑏𝑑 = 0.26 Γ— ( 2.9 𝑁 π‘šπ‘š2⁄ 500 𝑁 π‘šπ‘š2⁄ ) 𝑏𝑑 = 0.0015bd
  • 101. 101 = 0.0015 Γ— 300mm Γ— 328mm = 148.39mm2 As,max = 0.04Ac = 0.04bh = 0.04 Γ— 300mm Γ— 400mm = 4800mm2
  • 102. 102 Ref. Calculation Output Span BC Bending Moment = 15.373kNm K = 𝑀 𝐸𝐷 𝑓 π‘π‘˜ 𝑏𝑑2 = 15.373 Γ— 106 π‘π‘šπ‘š 30𝑁 π‘šπ‘š2⁄ Γ—300π‘š Γ— (328π‘šπ‘š)2 = 0.016 Λ‚ Kbal(0.167) z = 𝑑 [0.5 + √0.25 βˆ’ 𝐾 1.134⁄ ] = 𝑑 [0.5 + √0.25 βˆ’ 0.016 1.134⁄ ] = 0.9857d = 0.9857 Γ— 328mm = 324.20mm Area of Tension Reinforcement As = 𝑀 𝐸𝐷 0.87 Γ— 𝑓 π‘¦π‘˜ ×𝑧 = 15.373 Γ— 106 π‘π‘šπ‘š 0.87 Γ—500𝑁 π‘šπ‘š2⁄ Γ—0.9857 Γ—328π‘šπ‘š 2H10 = 109.31mm2 157mm2 Minimum and maximum reinforcement area As,min = 0.26 ( π‘“π‘π‘‘π‘š π‘“π‘¦π‘˜ ) 𝑏𝑑 = 0.26 Γ— ( 2.9 𝑁 π‘šπ‘š2⁄ 500 𝑁 π‘šπ‘š2⁄ ) 𝑏𝑑 = 0.0015bd
  • 103. 103 = 0.0015 Γ— 300mm Γ— 328mm = 148.39mm2 As,max = 0.04Ac = 0.04bh = 0.04 Γ— 300mm Γ— 400mm = 4800mm2
  • 104. 104 Ref. Calculation Output Span CD Bending Moment = 29.826kNm K = 𝑀 𝐸𝐷 𝑓 π‘π‘˜ 𝑏𝑑2 = 29.826 Γ— 106 π‘π‘šπ‘š 30𝑁 π‘šπ‘š2⁄ Γ—300π‘š Γ— (328π‘šπ‘š)2 = 0.031 Λ‚ Kbal(0.167) z = 𝑑 [0.5 + √0.25 βˆ’ 𝐾 1.134⁄ ] = 𝑑 [0.5 + √0.25 βˆ’ 0.031 1.134⁄ ] = 0.9719d = 0.9719 Γ— 328mm = 318.77mm Area of Tension Reinforcement As = 𝑀 𝐸𝐷 0.87 Γ— 𝑓 π‘¦π‘˜ ×𝑧 = 29.826 Γ— 106 π‘π‘šπ‘š 0.87 Γ—500𝑁 π‘šπ‘š2⁄ Γ—0.9719 Γ—328π‘šπ‘š 3H10 = 215.09mm2 236mm2 Minimum and maximum reinforcement area As,min = 0.26 ( π‘“π‘π‘‘π‘š π‘“π‘¦π‘˜ ) 𝑏𝑑 = 0.26 Γ— ( 2.9 𝑁 π‘šπ‘š2⁄ 500 𝑁 π‘šπ‘š2⁄ ) 𝑏𝑑 = 0.0015bd
  • 105. 105 = 0.0015 Γ— 300mm Γ— 328mm = 148.39mm2 As,max = 0.04Ac = 0.04bh = 0.04 Γ— 300mm Γ— 400mm = 4800mm2
  • 106. 106 Ref. Calculation Output Span DE Bending Moment = 7.421kNm K = 𝑀 𝐸𝐷 𝑓 π‘π‘˜ 𝑏𝑑2 = 7.421 Γ— 106 π‘π‘šπ‘š 30𝑁 π‘šπ‘š2⁄ Γ—300π‘š Γ— (328π‘šπ‘š)2 = 0.008 Λ‚ Kbal(0.167) z = 𝑑 [0.5 + √0.25 βˆ’ 𝐾 1.134⁄ ] = 𝑑 [0.5 + √0.25 βˆ’ 0.008 1.134⁄ ] = 0.9929d = 0.9929 Γ— 328mm = 325.67mm Area of Tension Reinforcement As = 𝑀 𝐸𝐷 0.87 Γ— 𝑓 π‘¦π‘˜ ×𝑧 = 7.421 Γ— 106 π‘π‘šπ‘š 0.87 Γ—500𝑁 π‘šπ‘š2⁄ Γ—0.9929 Γ—328π‘šπ‘š 2H10 = 52.38mm2 157mm2 Minimum and maximum reinforcement area As,min = 0.26 ( π‘“π‘π‘‘π‘š π‘“π‘¦π‘˜ ) 𝑏𝑑 = 0.26 Γ— ( 2.9 𝑁 π‘šπ‘š2⁄ 500 𝑁 π‘šπ‘š2⁄ ) 𝑏𝑑 = 0.0015bd = 0.0015 Γ— 300mm Γ— 328mm
  • 107. 107 = 148.39mm2 As,max = 0.04Ac = 0.04bh = 0.04 Γ— 300mm Γ— 400mm = 4800mm2
  • 108. 108 Ref. Calculation Output Span EF Bending Moment = 12.035kNm K = 𝑀 𝐸𝐷 𝑓 π‘π‘˜ 𝑏𝑑2 = 12.035 Γ— 106 π‘π‘šπ‘š 30𝑁 π‘šπ‘š2⁄ Γ—300π‘š Γ— (328π‘šπ‘š)2 = 0.012 Λ‚ Kbal(0.167) z = 𝑑 [0.5 + √0.25 βˆ’ 𝐾 1.134⁄ ] = 𝑑 [0.5 + √0.25 βˆ’ 0.012 1.134⁄ ] = 0.9893d = 0.9893 Γ— 328mm = 324.49mm Area of Tension Reinforcement As = 𝑀 𝐸𝐷 0.87 Γ— 𝑓 π‘¦π‘˜ ×𝑧 = 12.035 Γ— 106 π‘π‘šπ‘š 0.87 Γ—500𝑁 π‘šπ‘š2⁄ Γ—0.9893 Γ—328π‘šπ‘š 2H10 = 85.26mm2 157mm2 Minimum and maximum reinforcement area As,min = 0.26 ( π‘“π‘π‘‘π‘š π‘“π‘¦π‘˜ ) 𝑏𝑑 = 0.26 Γ— ( 2.9 𝑁 π‘šπ‘š2⁄ 500 𝑁 π‘šπ‘š2⁄ ) 𝑏𝑑 = 0.0015bd = 0.0015 Γ— 300mm Γ— 328mm
  • 109. 109 = 148.39mm2 As,max = 0.04Ac = 0.04bh = 0.04 Γ— 300mm Γ— 400mm = 4800mm2
  • 110. 110 Ref. Calculation Output Span FG Bending Moment = 7.025kNm K = 𝑀 𝐸𝐷 𝑓 π‘π‘˜ 𝑏𝑑2 = 7.025 Γ— 106 π‘π‘šπ‘š 30𝑁 π‘šπ‘š2⁄ Γ—300π‘š Γ— (328π‘šπ‘š)2 = 0.007 Λ‚ Kbal(0.167) z = 𝑑 [0.5 + √0.25 βˆ’ 𝐾 1.134⁄ ] = 𝑑 [0.5 + √0.25 βˆ’ 0.007 1.134⁄ ] = 0.9938d = 0.9938 Γ— 328mm = 325.96mm Area of Tension Reinforcement As = 𝑀 𝐸𝐷 0.87 Γ— 𝑓 π‘¦π‘˜ ×𝑧 = 7.025 Γ— 106 π‘π‘šπ‘š 0.87 Γ—500𝑁 π‘šπ‘š2⁄ Γ—0.9938 Γ—328π‘šπ‘š 2H10 = 49.54mm2 157mm2 Minimum and maximum reinforcement area As,min = 0.26 ( π‘“π‘π‘‘π‘š π‘“π‘¦π‘˜ ) 𝑏𝑑 = 0.26 Γ— ( 2.9 𝑁 π‘šπ‘š2⁄ 500 𝑁 π‘šπ‘š2⁄ ) 𝑏𝑑 = 0.0015bd = 0.0015 Γ— 300mm Γ— 328mm
  • 111. 111 = 148.39mm2 As,max = 0.04Ac = 0.04bh = 0.04 Γ— 300mm Γ— 400mm = 4800mm2
  • 112. 112 Ref. Calculation Output Span GH Bending Moment = 31.907kNm K = 𝑀 𝐸𝐷 𝑓 π‘π‘˜ 𝑏𝑑2 = 31.907 Γ— 106 π‘π‘šπ‘š 30𝑁 π‘šπ‘š2⁄ Γ—300π‘š Γ— (328π‘šπ‘š)2 = 0.033 Λ‚ Kbal(0.167) z = 𝑑 [0.5 + √0.25 βˆ’ 𝐾 1.134⁄ ] = 𝑑 [0.5 + √0.25 βˆ’ 0.033 1.134⁄ ] = 0.9700d = 0.9700 Γ— 328mm = 318.16mm Area of Tension Reinforcement As = 𝑀 𝐸𝐷 0.87 Γ— 𝑓 π‘¦π‘˜ ×𝑧 = 31.907 Γ— 106 π‘π‘šπ‘š 0.87 Γ—500𝑁 π‘šπ‘š2⁄ Γ—0.9700 Γ—328π‘šπ‘š 3H10 = 230.54mm2 236mm2 Minimum and maximum reinforcement area As,min = 0.26 ( π‘“π‘π‘‘π‘š π‘“π‘¦π‘˜ ) 𝑏𝑑 = 0.26 Γ— ( 2.9 𝑁 π‘šπ‘š2⁄ 500 𝑁 π‘šπ‘š2⁄ ) 𝑏𝑑 = 0.0015bd = 0.0015 Γ— 300mm Γ— 328mm
  • 113. 113 = 148.39mm2 As,max = 0.04Ac = 0.04bh = 0.04 Γ— 300mm Γ— 400mm = 4800mm2
  • 114. 114 Ref. Calculation Output Support B Bending Moment = 17.6147kNm K = 𝑀 𝐸𝐷 𝑓 π‘π‘˜ 𝑏𝑑2 = 17.6147 Γ— 106 π‘π‘šπ‘š 30𝑁 π‘šπ‘š2⁄ Γ—300π‘š Γ— (328π‘šπ‘š)2 = 0.018 Λ‚ Kbal(0.167) z = 𝑑 [0.5 + √0.25 βˆ’ 𝐾 1.134⁄ ] = 𝑑 [0.5 + √0.25 βˆ’ 0.018 1.134⁄ ] = 0.9839d = 0.9839 Γ— 328mm = 322.71mm Area of Tension Reinforcement As = 𝑀 𝐸𝐷 0.87 Γ— 𝑓 π‘¦π‘˜ ×𝑧 = 17.6147 Γ— 106 π‘π‘šπ‘š 0.87 Γ—500𝑁 π‘šπ‘š2⁄ Γ—0.9839 Γ—328π‘šπ‘š 2H10 = 125.48mm2 157mm2 Minimum and maximum reinforcement area As,min = 0.26 ( π‘“π‘π‘‘π‘š π‘“π‘¦π‘˜ ) 𝑏𝑑 = 0.26 Γ— ( 2.9 𝑁 π‘šπ‘š2⁄ 500 𝑁 π‘šπ‘š2⁄ ) 𝑏𝑑 = 0.0015bd = 0.0015 Γ— 300mm Γ— 328mm
  • 115. 115 = 148.39mm2 As,max = 0.04Ac = 0.04bh = 0.04 Γ— 300mm Γ— 400mm = 4800mm2
  • 116. 116 Ref. Calculation Output Support C Bending Moment = 34.1779kNm K = 𝑀 𝐸𝐷 𝑓 π‘π‘˜ 𝑏𝑑2 = 34.1779 Γ— 106 π‘π‘šπ‘š 30𝑁 π‘šπ‘š2⁄ Γ—300π‘š Γ— (328π‘šπ‘š)2 = 0.035 Λ‚ Kbal(0.167) z = 𝑑 [0.5 + √0.25 βˆ’ 𝐾 1.134⁄ ] = 𝑑 [0.5 + √0.25 βˆ’ 0.035 1.134⁄ ] = 0.9681d = 0.9681 Γ— 328mm = 322.71mm Area of Tension Reinforcement As = 𝑀 𝐸𝐷 0.87 Γ— 𝑓 π‘¦π‘˜ ×𝑧 = 34.1779 Γ— 106 π‘π‘šπ‘š 0.87 Γ—500𝑁 π‘šπ‘š2⁄ Γ—0.9681 Γ—328π‘šπ‘š 4H10 = 247.44mm2 314mm2 Minimum and maximum reinforcement area As,min = 0.26 ( π‘“π‘π‘‘π‘š π‘“π‘¦π‘˜ ) 𝑏𝑑 = 0.26 Γ— ( 2.9 𝑁 π‘šπ‘š2⁄ 500 𝑁 π‘šπ‘š2⁄ ) 𝑏𝑑 = 0.0015bd = 0.0015 Γ— 300mm Γ— 328mm
  • 117. 117 = 148.39mm2 As,max = 0.04Ac = 0.04bh = 0.04 Γ— 300mm Γ— 400mm = 4800mm2
  • 118. 118 Ref. Calculation Output Support D Bending Moment = 34.1779kNm K = 𝑀 𝐸𝐷 𝑓 π‘π‘˜ 𝑏𝑑2 = 34.1779 Γ— 106 π‘π‘šπ‘š 30𝑁 π‘šπ‘š2⁄ Γ—300π‘š Γ— (328π‘šπ‘š)2 = 0.035 Λ‚ Kbal(0.167) z = 𝑑 [0.5 + √0.25 βˆ’ 𝐾 1.134⁄ ] = 𝑑 [0.5 + √0.25 βˆ’ 0.035 1.134⁄ ] = 0.9681d = 0.9681 Γ— 328mm = 322.71mm Area of Tension Reinforcement As = 𝑀 𝐸𝐷 0.87 Γ— 𝑓 π‘¦π‘˜ ×𝑧 = 34.1779 Γ— 106 π‘π‘šπ‘š 0.87 Γ—500𝑁 π‘šπ‘š2⁄ Γ—0.9681 Γ—328π‘šπ‘š 4H10 = 247.44mm2 314mm2 Minimum and maximum reinforcement area As,min = 0.26 ( π‘“π‘π‘‘π‘š π‘“π‘¦π‘˜ ) 𝑏𝑑 = 0.26 Γ— ( 2.9 𝑁 π‘šπ‘š2⁄ 500 𝑁 π‘šπ‘š2⁄ ) 𝑏𝑑 = 0.0015bd = 0.0015 Γ— 300mm Γ— 328mm
  • 119. 119 = 148.39mm2 As,max = 0.04Ac = 0.04bh = 0.04 Γ— 300mm Γ— 400mm = 4800mm2
  • 120. 120 Ref. Calculation Output Support E Bending Moment = 13.7988kNm K = 𝑀 𝐸𝐷 𝑓 π‘π‘˜ 𝑏𝑑2 = 13.7988 Γ— 106 π‘π‘šπ‘š 30𝑁 π‘šπ‘š2⁄ Γ—300π‘š Γ— (328π‘šπ‘š)2 = 0.014 Λ‚ Kbal(0.167) z = 𝑑 [0.5 + √0.25 βˆ’ 𝐾 1.134⁄ ] = 𝑑 [0.5 + √0.25 βˆ’ 0.014 1.134⁄ ] = 0.9875d = 0.9875 Γ— 328mm = 322.71mm Area of Tension Reinforcement As = 𝑀 𝐸𝐷 0.87 Γ— 𝑓 π‘¦π‘˜ ×𝑧 = 13.7988 Γ— 106 π‘π‘šπ‘š 0.87 Γ—500𝑁 π‘šπ‘š2⁄ Γ—0.9875 Γ—328π‘šπ‘š 2H10 = 97.94mm2 157mm2 Minimum and maximum reinforcement area As,min = 0.26 ( π‘“π‘π‘‘π‘š π‘“π‘¦π‘˜ ) 𝑏𝑑 = 0.26 Γ— ( 2.9 𝑁 π‘šπ‘š2⁄ 500 𝑁 π‘šπ‘š2⁄ ) 𝑏𝑑 = 0.0015bd = 0.0015 Γ— 300mm Γ— 328mm
  • 121. 121 = 148.39mm2 As,max = 0.04Ac = 0.04bh = 0.04 Γ— 300mm Γ— 400mm = 4800mm2
  • 122. 122 Ref. Calculation Output Support F Bending Moment = 13.7988kNm K = 𝑀 𝐸𝐷 𝑓 π‘π‘˜ 𝑏𝑑2 = 13.7988 Γ— 106 π‘π‘šπ‘š 30𝑁 π‘šπ‘š2⁄ Γ—300π‘š Γ— (328π‘šπ‘š)2 = 0.014 Λ‚ Kbal(0.167) z = 𝑑 [0.5 + √0.25 βˆ’ 𝐾 1.134⁄ ] = 𝑑 [0.5 + √0.25 βˆ’ 0.014 1.134⁄ ] = 0.9875d = 0.9875 Γ— 328mm = 322.71mm Area of Tension Reinforcement As = 𝑀 𝐸𝐷 0.87 Γ— 𝑓 π‘¦π‘˜ ×𝑧 = 13.7988 Γ— 106 π‘π‘šπ‘š 0.87 Γ—500𝑁 π‘šπ‘š2⁄ Γ—0.9875 Γ—328π‘šπ‘š 2H10 = 97.94mm2 157mm2 Minimum and maximum reinforcement area As,min = 0.26 ( π‘“π‘π‘‘π‘š π‘“π‘¦π‘˜ ) 𝑏𝑑 = 0.26 Γ— ( 2.9 𝑁 π‘šπ‘š2⁄ 500 𝑁 π‘šπ‘š2⁄ ) 𝑏𝑑 = 0.0015bd = 0.0015 Γ— 300mm Γ— 328mm
  • 123. 123 = 148.39mm2 As,max = 0.04Ac = 0.04bh = 0.04 Γ— 300mm Γ— 400mm = 4800mm2
  • 124. 124 Ref. Calculation Output Support G Bending Moment = 36.5345kNm K = 𝑀 𝐸𝐷 𝑓 π‘π‘˜ 𝑏𝑑2 = 36.5345 Γ— 106 π‘π‘šπ‘š 30𝑁 π‘šπ‘š2⁄ Γ—300π‘š Γ— (328π‘šπ‘š)2 = 0.038 Λ‚ Kbal(0.167) z = 𝑑 [0.5 + √0.25 βˆ’ 𝐾 1.134⁄ ] = 𝑑 [0.5 + √0.25 βˆ’ 0.038 1.134⁄ ] = 0.9653d = 0.9653 Γ— 328mm = 316.61mm Area of Tension Reinforcement As = 𝑀 𝐸𝐷 0.87 Γ— 𝑓 π‘¦π‘˜ ×𝑧 = 36.5345 Γ— 106 π‘π‘šπ‘š 0.87 Γ—500𝑁 π‘šπ‘š2⁄ Γ—0.9653 Γ—328π‘šπ‘š 4H10 = 265.26mm2 314mm2 Minimum and maximum reinforcement area As,min = 0.26 ( π‘“π‘π‘‘π‘š π‘“π‘¦π‘˜ ) 𝑏𝑑 = 0.26 Γ— ( 2.9 𝑁 π‘šπ‘š2⁄ 500 𝑁 π‘šπ‘š2⁄ ) 𝑏𝑑 = 0.0015bd = 0.0015 Γ— 300mm Γ— 328mm
  • 125. 125 = 148.39mm2 As,max = 0.04Ac = 0.04bh = 0.04 Γ— 300mm Γ— 400mm = 4800mm2
  • 126. 126 Ref. Calculation Output 5. Shear Reinforcement Concrete strut capacity VRd,max = 0.36𝑏 𝑀 π‘‘π‘“π‘π‘˜ (1βˆ’ π‘“π‘π‘˜ 250⁄ ) cotπœƒ+ tan πœƒ = 322.48kN ( πœƒ = 22Β° ,cot πœƒ = 2.5 ) = 467.60kN( πœƒ = 45Β° , cot πœƒ = 1.0) Support A and H VED at A = 26.537kN VED at H = 51.516kN Shear links 𝐴 𝑠𝑀 𝑠 = 𝑉 𝐸𝐷 0.78𝑓 π‘¦π‘˜ 𝑑 cot πœƒ For Support A = 26 .537 Γ— 103 𝑁 0.78 Γ—500𝑁 π‘šπ‘š2⁄ Γ—328π‘šπ‘š Γ—2.5 = 0.083mm For Support H = 51 .516 Γ— 103 𝑁 0.78 Γ—500𝑁 π‘šπ‘š2⁄ Γ—328π‘šπ‘š Γ—2.5 = 0.161mm Try link H6 (Asw = 28.3mm2) For Support A, s = 28.3π‘šπ‘š2 0.083π‘šπ‘š = 341.05mm H6 - 250 For Support H, s = 28.3π‘šπ‘š2 0.161π‘šπ‘š = 175mm H6 - 175
  • 127. 127 Maximum Spacing = 0.75d = 0.75 Γ— 328mm = 246mm H6 - 250
  • 128. 128 Ref. Calculation Output For highest shear using at the support Support B = 34.078kN Support C = 51.439kN Support D = 49.382kN Support E = 29.882kN Support F = 31.181kN Support G = 63.662kN For lowest shear using at support Support B = 30.119kN Support C = 43.330kN Support D = 31.234kN Support E = 15.304kN Support F = 17.886kN Support G = 27.563kN Shear links for highest shear using For Support B = 34.078 Γ— 103 𝑁 0.78 Γ—500𝑁 π‘šπ‘š2⁄ Γ—328π‘šπ‘š Γ—2.5 = 0.107mm For Support C = 51 .439 Γ— 103 𝑁 0.78 Γ—500𝑁 π‘šπ‘š2⁄ Γ—328π‘šπ‘š Γ—2.5 = 0.107mm For Support D = 49.382 Γ— 103 𝑁 0.78 Γ—500𝑁 π‘šπ‘š2⁄ Γ—328π‘šπ‘š Γ—2.5 = 0.154mm
  • 129. 129 For Support E = 29.882 Γ— 103 𝑁 0.78 Γ—500𝑁 π‘šπ‘š2⁄ Γ—328π‘šπ‘š Γ—2.5 = 0.093mm For Support F = 31.181 Γ— 103 𝑁 0.78 Γ—500𝑁 π‘šπ‘š2⁄ Γ—328π‘šπ‘š Γ—2.5 = 0.098mm For Support G = 63.662 Γ— 103 𝑁 0.78 Γ—500𝑁 π‘šπ‘š2⁄ Γ—328π‘šπ‘š Γ—2.5 = 0.199mm
  • 130. 130 Ref. Calculation Output Shear link for lowest shear using For Support B = 30 .119 Γ— 103 𝑁 0.78 Γ—500𝑁 π‘šπ‘š2⁄ Γ—328π‘šπ‘š Γ—2.5 = 0.094mm For Support C = 43.330 Γ— 103 𝑁 0.78 Γ—500𝑁 π‘šπ‘š2⁄ Γ—328π‘šπ‘š Γ—2.5 = 0.135mm For Support D = 31.234 Γ— 103 𝑁 0.78 Γ—500𝑁 π‘šπ‘š2⁄ Γ—328π‘šπ‘š Γ—2.5 = 0.098mm For Support E = 15.304 Γ— 103 𝑁 0.78 Γ—500𝑁 π‘šπ‘š2⁄ Γ—328π‘šπ‘š Γ—2.5 = 0.048mm For Support F = 17.886 Γ— 103 𝑁 0.78 Γ—500𝑁 π‘šπ‘š2⁄ Γ—328π‘šπ‘š Γ—2.5 = 0.056mm For Support G = 27.563 Γ— 103 𝑁 0.78 Γ—500𝑁 π‘šπ‘š2⁄ Γ—328π‘šπ‘š Γ—2.5 = 0.086mm Try links H6 (Asw = 28.3mm2) For highest shear using, spacing For Support B, s = 28.3π‘šπ‘š2 0.107π‘šπ‘š = 265.58mm H6 – 250 For Support C, s = 28.3π‘šπ‘š2 0.161π‘šπ‘š = 175.94mm H6 – 150 For Support D, s = 28.3π‘šπ‘š2 0.154π‘šπ‘š = 183.27mm H6 – 175
  • 131. 131 For Support E, s = 28.3π‘šπ‘š2 0.093π‘šπ‘š = 302.87mm H6 – 250 For Support F, s = 28.3π‘šπ‘š2 0.098π‘šπ‘š = 290.25mm H6 – 250 For Support G, s = 28.3π‘šπ‘š2 0.199π‘šπ‘š = 142.16mm H6 - 100
  • 132. 132 Ref. Calculation Output For lowest shear using, spacing For Support B, s = 28.3π‘šπ‘š2 0.094π‘šπ‘š = 300.49mm H6 – 250 For Support C, s = 28.3π‘šπ‘š2 0.135π‘šπ‘š = 208.87mm H6 - 200 For Support D, s = 28.3π‘šπ‘š2 0.098π‘šπ‘š = 289.76mm H6 – 250 For Support E, s = 28.3π‘šπ‘š2 0.048π‘šπ‘š = 591.37mm H6 - 250 For Support F, s = 28.3π‘šπ‘š2 0.056π‘šπ‘š = 506.00mm H6 - 250 For Support G, s = 28.3π‘šπ‘š2 0.086π‘šπ‘š = 328.35mm H6 - 250 Minimum links 𝐴 𝑠𝑀 𝑠 = 0.08π‘“π‘π‘˜ 1 2 𝑏 𝑀 π‘“π‘¦π‘˜ = 0.08 Γ— (30 𝑁 π‘šπ‘š2⁄ ) 1 2 Γ—300π‘šπ‘š 500𝑁 π‘šπ‘š2⁄ = 0.262mm Try link H6 (Asw = 28.3mm2) Spacing, s = 28.3 π‘šπ‘š2 0.262π‘šπ‘š = 108.02mm H6 - 100
  • 133. 133 Shear resistance of minimum links Vmin = ( 𝐴 𝑠𝑀 𝑠 ) (0.78π‘‘π‘“π‘¦π‘˜ cot πœƒ) = (28.3π‘šπ‘š2 100 π‘šπ‘š )(0.78 Γ— 328π‘šπ‘š Γ— 500𝑁 π‘šπ‘š2⁄ Γ— 2.5) = 90.50kN Since the min. shear resistance is higher than every shear force calculated, ∴ 𝑼𝒔𝒆 π‘―πŸ” βˆ’ 𝟏𝟎𝟎 π’•π’‰π’“π’π’–π’ˆπ’‰ 𝒂𝒍𝒍 𝒔𝒑𝒂𝒏
  • 134. 134 Ref. Calculation Output 6. Deflection Check at Span AB Percentage of required tension reinforcement 𝜌 = 𝐴 𝑠,π‘Ÿπ‘’π‘ž 𝑏𝑑 = 89.23π‘šπ‘š2 300π‘šπ‘š Γ—328π‘šπ‘š = 0.0009 Reference reinforcement ratio 𝜌0 = ( π‘“π‘π‘˜ ) 1 2 Γ— 10βˆ’3 = (30 𝑁 π‘šπ‘š2⁄ ) 1 2 Γ— 10βˆ’3 = 0.0055 Percentage of required compression reinforcement πœŒβ€² = 𝐴 𝑠,π‘Ÿπ‘’π‘ž β€² 𝑏𝑑 = 0π‘šπ‘š2 300π‘šπ‘š Γ—328π‘šπ‘š = 0 Factor for structural system, K = 1.3 𝜌 < 𝜌0 𝑙 𝑑 = 𝐾 [11 + 1.5 √ 𝑓𝑐 π‘˜ 𝜌0 𝜌 + 3.2 √ 𝑓𝑐 π‘˜ ( 𝜌0 𝜌 βˆ’ 1) 3 2 ] = 1.3 [11 + 1.5 √30𝑁 π‘šπ‘š2⁄ Γ— 10βˆ’3 0.0055 0.0009 + 3.2 √30𝑁 π‘šπ‘š2⁄ Γ— 10βˆ’3 (0.0055 0.0009 βˆ’ 1) 3 2 ] = 1.3[11 + 0.0504 + 0.1034] = 14.4999 Modification factor for span greater than 7m = 1.0 Modification factor for steel area provided,
  • 135. 135 = 𝐴 𝑠,π‘π‘Ÿπ‘œπ‘£ 𝐴 𝑠,π‘Ÿπ‘’π‘ž = 157π‘šπ‘š2 89.23π‘šπ‘š2 = 1.75 Therefore allowable span-effective depth ratio ( 𝑙 𝑑 ) π‘Žπ‘™π‘™π‘œπ‘€π‘Žπ‘π‘™π‘’ = 14.4999 Γ— 1.0 Γ— 1.5 = 21.7499 Actual span-effective depth ( 𝑙 𝑑 ) π‘Žπ‘π‘‘π‘’π‘Žπ‘™ = 2287.5π‘šπ‘š 328π‘šπ‘š = 6.9741 OK Ref. Calculation Output Check at Span BC Percentage of required tension reinforcement 𝜌 = 𝐴 𝑠,π‘Ÿπ‘’π‘ž 𝑏𝑑 = 109.31π‘šπ‘š2 300π‘šπ‘š Γ—328π‘šπ‘š = 0.0011 Reference reinforcement ratio 𝜌0 = ( π‘“π‘π‘˜ ) 1 2 Γ— 10βˆ’3 = (30 𝑁 π‘šπ‘š2⁄ ) 1 2 Γ— 10βˆ’3 = 0.0055 Percentage of required compression reinforcement πœŒβ€² = 𝐴 𝑠,π‘Ÿπ‘’π‘ž β€² 𝑏𝑑 = 0π‘šπ‘š2 300π‘šπ‘š Γ—328π‘šπ‘š = 0
  • 136. 136 Factor for structural system, K = 1.3 𝜌 < 𝜌0 𝑙 𝑑 = 𝐾 [11 + 1.5 √ 𝑓𝑐 π‘˜ 𝜌0 𝜌 + 3.2 √ 𝑓𝑐 π‘˜ ( 𝜌0 𝜌 βˆ’ 1) 3 2 ] = 1.3 [11 + 1.5 √30𝑁 π‘šπ‘š2⁄ Γ— 10βˆ’3 0.0055 0.0011 + 3.2 √30𝑁 π‘šπ‘š2⁄ Γ— 10βˆ’3 (0.0055 0.0011 βˆ’ 1) 3 2 ] = 1.3[11 + 0.0375 + 0.1408] = 14.5318 Modification factor for span greater than 7m = 1.0 Modification factor for steel area provided, = 𝐴 𝑠,π‘π‘Ÿπ‘œπ‘£ 𝐴 𝑠,π‘Ÿπ‘’π‘ž = 157π‘šπ‘š2 109.31π‘šπ‘š2 = 1.44 Therefore allowable span-effective depth ratio ( 𝑙 𝑑 ) π‘Žπ‘™π‘™π‘œπ‘€π‘Žπ‘π‘™π‘’ = 14.5318 Γ— 1.0 Γ— 1.44 = 20.9258 Actual span-effective depth ( 𝑙 𝑑 ) π‘Žπ‘π‘‘π‘’π‘Žπ‘™ = 2287.5π‘šπ‘š 328π‘šπ‘š = 6.9741 OK
  • 137. 137 Ref. Calculation Output Check at Span CD Percentage of required tension reinforcement 𝜌 = 𝐴 𝑠,π‘Ÿπ‘’π‘ž 𝑏𝑑 = 215.09π‘šπ‘š2 300π‘šπ‘š Γ—328π‘šπ‘š = 0.0022 Reference reinforcement ratio 𝜌0 = ( π‘“π‘π‘˜ ) 1 2 Γ— 10βˆ’3 = (30 𝑁 π‘šπ‘š2⁄ ) 1 2 Γ— 10βˆ’3 = 0.0055 Percentage of required compression reinforcement πœŒβ€² = 𝐴 𝑠,π‘Ÿπ‘’π‘ž β€² 𝑏𝑑 = 0π‘šπ‘š2 300π‘šπ‘š Γ—328π‘šπ‘š = 0 Factor for structural system, K = 1.3 𝜌 < 𝜌0 𝑙 𝑑 = 𝐾 [11 + 1.5 √ 𝑓𝑐 π‘˜ 𝜌0 𝜌 + 3.2 √ 𝑓𝑐 π‘˜ ( 𝜌0 𝜌 βˆ’ 1) 3 2 ] = 1.3 [11 + 1.5 √30𝑁 π‘šπ‘š2⁄ Γ— 10βˆ’3 0.0055 0.0022 + 3.2 √30𝑁 π‘šπ‘š2⁄ Γ— 10βˆ’3 (0.0055 0.0022 βˆ’ 1) 3 2 ] = 1.3[11 + 0.0206 + 0.0323] = 14.3688 Modification factor for span greater than 7m = 1.0 Modification factor for steel area provided, = 𝐴 𝑠,π‘π‘Ÿπ‘œπ‘£ 𝐴 𝑠,π‘Ÿπ‘’π‘ž = 236π‘šπ‘š2 215.09π‘šπ‘š2
  • 138. 138 = 1.10 Therefore allowable span-effective depth ratio ( 𝑙 𝑑 ) π‘Žπ‘™π‘™π‘œπ‘€π‘Žπ‘π‘™π‘’ = 14.3688 Γ— 1.0 Γ— 1.10 = 15.8057 Actual span-effective depth ( 𝑙 𝑑 ) π‘Žπ‘π‘‘π‘’π‘Žπ‘™ = 3225π‘šπ‘š 328π‘šπ‘š = 9.8323 OK
  • 139. 139 Ref. Calculation Output Check at Span DE Percentage of required tension reinforcement 𝜌 = 𝐴 𝑠,π‘Ÿπ‘’π‘ž 𝑏𝑑 = 52.38π‘šπ‘š2 300π‘šπ‘š Γ—328π‘šπ‘š = 0.0005 Reference reinforcement ratio 𝜌0 = ( π‘“π‘π‘˜ ) 1 2 Γ— 10βˆ’3 = (30 𝑁 π‘šπ‘š2⁄ ) 1 2 Γ— 10βˆ’3 = 0.0055 Percentage of required compression reinforcement πœŒβ€² = 𝐴 𝑠,π‘Ÿπ‘’π‘ž β€² 𝑏𝑑 = 0π‘šπ‘š2 300π‘šπ‘š Γ—328π‘šπ‘š = 0 Factor for structural system, K = 1.3 𝜌 < 𝜌0 𝑙 𝑑 = 𝐾 [11 + 1.5 √ 𝑓𝑐 π‘˜ 𝜌0 𝜌 + 3.2 √ 𝑓𝑐 π‘˜ ( 𝜌0 𝜌 βˆ’ 1) 3 2 ] = 1.3 [11 + 1.5 √30𝑁 π‘šπ‘š2⁄ Γ— 10βˆ’3 0.0055 0.0005 + 3.2 √30𝑁 π‘šπ‘š2⁄ Γ— 10βˆ’3 (0.0055 0.0005 βˆ’ 1) 3 2 ] = 1.3[11 + 0.0908 + 0.5566] = 15.1416 Modification factor for span greater than 7m = 1.0 Modification factor for steel area provided, = 𝐴 𝑠,π‘π‘Ÿπ‘œπ‘£ 𝐴 𝑠,π‘Ÿπ‘’π‘ž = 157π‘šπ‘š2 52.38π‘šπ‘š2
  • 140. 140 = 2.997 Therefore allowable span-effective depth ratio ( 𝑙 𝑑 ) π‘Žπ‘™π‘™π‘œπ‘€π‘Žπ‘π‘™π‘’ = 15.1416 Γ— 1.0 Γ— 1.5 = 22.7124 Actual span-effective depth ( 𝑙 𝑑 ) π‘Žπ‘π‘‘π‘’π‘Žπ‘™ = 1725π‘šπ‘š 328π‘šπ‘š = 5.26 OK
  • 141. 141 Ref. Calculation Output Check at Span EF Percentage of required tension reinforcement 𝜌 = 𝐴 𝑠,π‘Ÿπ‘’π‘ž 𝑏𝑑 = 85.26π‘šπ‘š2 300π‘šπ‘š Γ—328π‘šπ‘š = 0.0009 Reference reinforcement ratio 𝜌0 = ( π‘“π‘π‘˜ ) 1 2 Γ— 10βˆ’3 = (30 𝑁 π‘šπ‘š2⁄ ) 1 2 Γ— 10βˆ’3 = 0.0055 Percentage of required compression reinforcement πœŒβ€² = 𝐴 𝑠,π‘Ÿπ‘’π‘ž β€² 𝑏𝑑 = 0π‘šπ‘š2 300π‘šπ‘š Γ—328π‘šπ‘š = 0 Factor for structural system, K = 1.3 𝜌 < 𝜌0 𝑙 𝑑 = 𝐾 [11 + 1.5 √ 𝑓𝑐 π‘˜ 𝜌0 𝜌 + 3.2 √ 𝑓𝑐 π‘˜ ( 𝜌0 𝜌 βˆ’ 1) 3 2 ] = 1.3 [11 + 1.5 √30𝑁 π‘šπ‘š2⁄ Γ— 10βˆ’3 0.0055 0.0009 + 3.2 √30𝑁 π‘šπ‘š2⁄ Γ— 10βˆ’3 (0.0055 0.0009 βˆ’ 1) 3 2 ] = 1.3[11 + 0.0504 + 0.2034] = 14.6299 Modification factor for span greater than 7m = 1.0 Modification factor for steel area provided, = 𝐴 𝑠,π‘π‘Ÿπ‘œπ‘£ 𝐴 𝑠,π‘Ÿπ‘’π‘ž = 157π‘šπ‘š2 85.26π‘šπ‘š2
  • 142. 142 = 1.84 Therefore allowable span-effective depth ratio ( 𝑙 𝑑 ) π‘Žπ‘™π‘™π‘œπ‘€π‘Žπ‘π‘™π‘’ = 14.6299 Γ— 1.0 Γ— 1.5 = 21.9449 Actual span-effective depth ( 𝑙 𝑑 ) π‘Žπ‘π‘‘π‘’π‘Žπ‘™ = 2175π‘šπ‘š 328π‘šπ‘š = 8.2774 OK
  • 143. 143 Ref. Calculation Output Check at Span FG Percentage of required tension reinforcement 𝜌 = 𝐴 𝑠,π‘Ÿπ‘’π‘ž 𝑏𝑑 = 49.54π‘šπ‘š2 300π‘šπ‘š Γ—328π‘šπ‘š = 0.0005 Reference reinforcement ratio 𝜌0 = ( π‘“π‘π‘˜ ) 1 2 Γ— 10βˆ’3 = (30 𝑁 π‘šπ‘š2⁄ ) 1 2 Γ— 10βˆ’3 = 0.0055 Percentage of required compression reinforcement πœŒβ€² = 𝐴 𝑠,π‘Ÿπ‘’π‘ž β€² 𝑏𝑑 = 0π‘šπ‘š2 300π‘šπ‘š Γ—328π‘šπ‘š = 0 Factor for structural system, K = 1.3 𝜌 < 𝜌0 𝑙 𝑑 = 𝐾 [11 + 1.5 √ 𝑓𝑐 π‘˜ 𝜌0 𝜌 + 3.2 √ 𝑓𝑐 π‘˜ ( 𝜌0 𝜌 βˆ’ 1) 3 2 ] = 1.3 [11 + 1.5 √30𝑁 π‘šπ‘š2⁄ Γ— 10βˆ’3 0.0055 0.0005 + 3.2 √30𝑁 π‘šπ‘š2⁄ Γ— 10βˆ’3 (0.0055 0.0005 βˆ’ 1) 3 2 ] = 1.3[11 + 0.0908 + 0.5566] = 15.1416 Modification factor for span greater than 7m = 1.0 Modification factor for steel area provided, = 𝐴 𝑠,π‘π‘Ÿπ‘œπ‘£ 𝐴 𝑠,π‘Ÿπ‘’π‘ž = 157π‘šπ‘š2 49.54π‘šπ‘š2
  • 144. 144 = 3.17 Therefore allowable span-effective depth ratio ( 𝑙 𝑑 ) π‘Žπ‘™π‘™π‘œπ‘€π‘Žπ‘π‘™π‘’ = 15.1416 Γ— 1.0 Γ— 1.5 = 22.7124 Actual span-effective depth ( 𝑙 𝑑 ) π‘Žπ‘π‘‘π‘’π‘Žπ‘™ = 1800π‘šπ‘š 328π‘šπ‘š = 5.4878 OK
  • 145. 145 Ref. Calculation Output Check at Span GH Percentage of required tension reinforcement 𝜌 = 𝐴 𝑠,π‘Ÿπ‘’π‘ž 𝑏𝑑 = 230.54π‘šπ‘š2 300π‘šπ‘š Γ—328π‘šπ‘š = 0.0023 Reference reinforcement ratio 𝜌0 = ( π‘“π‘π‘˜ ) 1 2 Γ— 10βˆ’3 = (30 𝑁 π‘šπ‘š2⁄ ) 1 2 Γ— 10βˆ’3 = 0.0055 Percentage of required compression reinforcement πœŒβ€² = 𝐴 𝑠,π‘Ÿπ‘’π‘ž β€² 𝑏𝑑 = 0π‘šπ‘š2 300π‘šπ‘š Γ—328π‘šπ‘š = 0 Factor for structural system, K = 1.3 𝜌 < 𝜌0 𝑙 𝑑 = 𝐾 [11 + 1.5 √ 𝑓𝑐 π‘˜ 𝜌0 𝜌 + 3.2 √ 𝑓𝑐 π‘˜ ( 𝜌0 𝜌 βˆ’ 1) 3 2 ] = 1.3 [11 + 1.5 √30𝑁 π‘šπ‘š2⁄ Γ— 10βˆ’3 0.0055 0.0023 + 3.2 √30𝑁 π‘šπ‘š2⁄ Γ— 10βˆ’3 (0.0055 0.0023 βˆ’ 1) 3 2 ] = 1.3[11 + 0.0197 + 0.0289] = 14.3632 Modification factor for span greater than 7m = 1.0 Modification factor for steel area provided, = 𝐴 𝑠,π‘π‘Ÿπ‘œπ‘£ 𝐴 𝑠,π‘Ÿπ‘’π‘ž = 236π‘šπ‘š2 230.54π‘šπ‘š2
  • 146. 146 = 1.02 Therefore allowable span-effective depth ratio ( 𝑙 𝑑 ) π‘Žπ‘™π‘™π‘œπ‘€π‘Žπ‘π‘™π‘’ = 14.3632 Γ— 1.0 Γ— 1.02 = 14.6557 Actual span-effective depth ( 𝑙 𝑑 ) π‘Žπ‘π‘‘π‘’π‘Žπ‘™ = 3000π‘šπ‘š 328π‘šπ‘š = 9.1463 OK
  • 147. 147 Ref. Calculation Output 7. Cracking Limiting cracking width, wmax = 0.3mm Steel Stress, fs = π‘“π‘¦π‘˜ 1.15 Γ— 𝐺 π‘˜+0.3𝑄 π‘˜ (1.35𝐺 π‘˜+1.50𝑄 π‘˜) 1 𝛿 = 500𝑁 π‘šπ‘š2⁄ 1.15 Γ— 21.0675π‘˜π‘ π‘šβ„ +0.30(6.57π‘˜π‘ π‘šβ„ ) 38.2961π‘˜π‘ π‘šβ„ Γ— 1.0 = 261.56mm2 Maximum allowing spacing = 150mm Maximum allowing bar = 12mm Bar spacing, s = π‘βˆ’2𝐢 π‘›π‘œπ‘šβˆ’2βˆ…π‘™π‘– 𝑛 π‘˜βˆ’ βˆ… π‘π‘Žπ‘Ÿ 2 = 300π‘šβˆ’2(60π‘šπ‘š)βˆ’2(6π‘šπ‘š)βˆ’10π‘šπ‘š 2 = 79mm
  • 149. 149
  • 150. 150 Ref. Calculation Output 5.5 Slab Design 5.5.1 Simply Supported One Way Spanning Slab 1.0 Specification Effective span, Leff = 5.4m Characteristic actions Permanent, Gk = 3.0kN/m2 Variable, qk = 3.0kN/m2 Design life = 50 years Fire resistance = R120 Exposure classes = XS3 Materials Characteristic strength of concrete, fck = 30N/mm2 Characteristic strength of steel, fyk = 500N/mm2 Unit weight of reinforced concrete = 25kN/m3 Assumed: βˆ…bar = 20mm 2.0 Slab Thickness Min, thickness for fire resistance = 120mm Thickness for deflection control, h = 120mm 3.0 Durability , Fire and Bond Requirements
  • 151. 151 Min. concrete cover regard to bond, Cmin, b = 12mm Min. concrete cover regard to durability, Cmin, dur = 20mm Min. required axis distance for R120, a = 40mm Min. concrete cover regard to fire Cmin = a-βˆ…bar/2 = 40mm-20mm/2 = 30mm Allowance in design for deviation, βˆ†Cdev = 10mm Nominal cover, Cnom = Cmin + βˆ†Cdev = 30mm + 10mm = 40mm ∴ Cnom = 40mm Ref. Calculation Output 4.0 Loading and Analysis Slab self- weight = 0.14 Γ— 25kN/m3 = 3.5kN/m2 Permanent load (excluding self –weight) = 3.0kN/m2 Characteristic permanent action, Gk = 6.5kN/m2 Characteristic variable action, Qk = 3.0kN/m2 Design action, nd = 1.35Gk + 1.5Qk = 1.35(6.5kN/m2) + 1.5(3.0kN/m2) = 13.275kN/m2
  • 152. 152 Consider 2m width, Wd = nd Γ— 2m = 26.55 kN/m Shear Force, V = π‘Š 𝑑 𝐿 2 = (26.55 π‘˜π‘ π‘šβ„ ) Γ— (3.125π‘š) 2 = 41.48 kN Bending Moment, M = π‘Š 𝑑 𝐿2 8 = (26.55 π‘˜π‘ π‘šβ„ ) Γ— (3.125π‘š)2 8 = 32.41 kNm 5.0 Main Reinforcement Effective depth, d = h-Cnom-βˆ…bar/2 = 140mm-40mm-(20mm/2) = 90mm Design bending moment, MEd = 32.41 kNm = 𝑀 𝐸𝐷 𝑏𝑑2 𝑓 π‘π‘˜ = 32.41 Γ— 106 π‘π‘šπ‘š 2000π‘šπ‘š Γ— (90π‘šπ‘š)2 Γ—30 𝑁 π‘šπ‘š2⁄ = 0.032 < Kbal = 0.167 ∴ Compression reinforcement is not required
  • 153. 153 Ref. Calculation Output z = d[0.5+√0.25 βˆ’ 𝐾 1.134 ] z = d[0.5+√0.25 βˆ’ 0.032 1.134 ] z = 0.97d > 0.95d Use 0.95d 0.95d As = 𝑀 𝐸𝐷 0.89π‘“π‘¦π‘˜ 𝑧 = 32.41 Γ— 106 π‘π‘šπ‘š 0.87 Γ—500𝑁 π‘šπ‘š2⁄ Γ—0.95 Γ—90π‘šπ‘š = 871.41 mm2 Main bar: H12-200 (566mm2/m) H12 - 200 Min. and max. reinforcement area, As, min = 0.26( π‘“π‘π‘‘π‘š 𝑓 π‘¦π‘˜ )bd = 0.26x ( 2.90 𝑁 π‘šπ‘š2⁄ 500 𝑁 π‘šπ‘š2⁄ )bd = 0.0015bd > 0.0013bd Use 0.0015bd = 0.0015x2000mmx90mm = 270mm2/m As, max = 0.04Ac = 0.04bh = 0.04 Γ— 2000mm Γ— 140mm = 11200mm2/m Secondary bar: H12-450 (1251mm2/m) H12 - 450 6.0 Shear Reinforcement
  • 154. 154 Design shear force, VEd = 41.48kN Design shear resistance, k = 1 + (200/d)1/2 ≀ 2.0 = 1 + (200/90)1/2 = 2.49 β‰₯ 2.0 ρ’ = As1/bd ≀ 0.02 = 566mm2/ (2000mm Γ— 90mm) = 0.0031 ≀ 0.02
  • 155. 155 Ref. Calculation Output VRd, c = [0.12 Γ— π‘˜ Γ— √100πœŒβ€² π‘“π‘π‘˜ 3 ]bd = [0.12 Γ— 2.0 Γ— √100 Γ— 0.0031 Γ— 30 𝑁 π‘šπ‘š2⁄3 ] Γ— 2000mm Γ— 90mm = 90847.2 N = 90.8kN Vmin = (0.35 Γ— βˆšπ‘˜23 Γ— √ π‘“π‘π‘˜ )bd = (0.35 Γ— √2.023 Γ— √30 𝑁 π‘šπ‘š2⁄ ) Γ— 2000π‘šπ‘š Γ— 90π‘šπ‘š = 975991.8N = 976.0 kN VRd, c ; Vmin > VEd (OK) 7.0 Deflection Percentage of required tension reinforcement, 𝜌 = As, req/bd = 413.52mm2/ (2000m Γ— 90mm) = 0.0023 Reference reinforcement ratio 𝜌o = (fck)1/2x10-3 = (30 N/mm2)1/2x10-3 = 0.0055 Percentage of required compression reinforcemen πœŒβ€™ = As’, req/bd = 0/ (2000mm Γ— 90mm) = 0
  • 156. 156 Factor for structural system, K = 1.0 𝜌 < 𝜌o 𝑙 𝑑 = K[11+1.5√ π‘“π‘π‘˜ 𝜌o 𝜌 +3.2√ π‘“π‘π‘˜( 𝜌o 𝜌 -1)3/2 ] 𝑙 𝑑 = 1.0 (11 + 1.5 √30 𝑁 π‘šπ‘š2⁄ 𝜌0 𝜌 + 3.2 √30 𝑁 π‘šπ‘š2⁄ (√( 𝜌0 𝜌 βˆ’ 1) 23 )) 𝑙 𝑑 = 1.0 (11 + 19.6 + 28.8) 𝑙 𝑑 = 59.4 Modification factor for span less than 7m = 1.0
  • 157. 157 Ref. Calculation Output Modification factor for steel area provided = As, prov/As, req = 566/413.52 = 1.37 < 1.5 Therefore allowable span-effective depth ratio = (l/d)allowable = 59.4 Γ— 1.0 Γ— 1.37 = 81.38 Actual span-effective depth = (l/d)actual = 3125mm/90mm = 34.72 < (l/d)allowable h = 140mm Main bar, Smax, slabs = 3h or 400mm = 420mm > 400mm Max. bar spacing = 225mm ≀ Smax, slabs = 400mm (OK) Secondary bar, Smax, slabs = 3.5h or 450mm = 490mm > 450mm Max. bar spacing = 450m ≀ Smax, slabs = 450mm (OK)
  • 158. 158
  • 159. 159 Ref. Calculation Output 5.5.2 Simply Supported Two Way Spanning Slab 1.0 Specification Long span, Ly = 2.288m Short span, Lx = 2.250m 𝐿 𝑦 𝐿 π‘₯ = 1.017m Characteristic actions : Permanent, Gk = 3kN/π‘š2 Variable, Qk = 3kN/π‘š2 Design life = 50 Years Fire resistance = R120 Exposure classes = XS3 Materials : Characteristic strength of concrete, fck = 30N/π‘šπ‘š2 Characteristic strength of steel, fyk = 500N/π‘šπ‘š2 Unit weight of reinforced concrete = 25KN/π‘š3 Assumed: Øbar = 20mm 2.0 Slab Thickness Min thickness for fire resistance = 120mm Estimated thickness of deflection control, h = 𝐿 π‘₯ 22 = 2250π‘šπ‘š 22 Uses h = 102mm 210mm
  • 160. 160 Use h 210mm 3.0 Durability, Fire and Bond Requirements Min. conc. cover regard to bond , Cmin = 20mm Min. Conc. cover regard to durability, Cmin,dur = 55mm Min. Required axis distance for R60, a = 20mm
  • 161. 161 Ref. Calculation Output Min. Conc. cover regard to fire, Cmin = π‘Ž βˆ’ βˆ… π΅π‘Žπ‘Ÿ 2 = 20mm – 10mm = 10mm Use min. conc cover regard to durability due to higher value. Allowance in design for deviation, Ξ”Cdev = 10mm Nominal cover, Cnom = Cmin+Ξ”Cdev = 55mm + 10mm = 65mm 4.0 Loading and Analysis Slab self-weight = 0.21m Γ— 30 kN/m3 = 6.3 kN/m2 Permanent load = 3 kN/m2 Char. permanent action, Gk = 9.3 KN/π‘š2 Char. variable action, Qk = 3 KN/π‘š2 Design action, nd = 1.35GK + 1.5QK = 1.35(9.3kN/m2)+1.5(3kN/m2) = 17.06 kN/m2 Moment Short span, Msx = Ξ±sx Γ— n Γ— Lx 2 = 0.062 x 17.06kN/m Γ— (2.250m)2
  • 162. 162 = 5.35 KNm/m Long span, Msy = Ξ±sy Γ— n Γ— Ly 2 = 0.062 Γ— 17.06kN/m Γ— (2.288m)2 = 5.54kNm/m 5.0 Main Reinforcement Effective depth, dx = h – Cnom - 0.5Øbar = 210mm – 65mm - (0.5 x 20mm) = 135mm
  • 163. 163 Ref. Calculation Output Effective depth, dx = h – Cnom - 0.5Øbar = 210mm – 65mm - (1.5 x 20mm) = 115mm Short span Msx = 5.35 kNm/m k = 𝑀 𝑠π‘₯ 𝑏𝑑2 π‘“π‘π‘˜ = 5.35 Γ— 106 π‘π‘šπ‘š 2250π‘šπ‘š Γ— (135π‘šπ‘š)2 Γ—30 𝑁 π‘šπ‘š2⁄ = 0.0043 kbal = 0.167 K<πΎπ‘π‘Žπ‘™ , compression is not required z = d [0.5+√0.25 βˆ’ 𝐾 1.134 ] = d [0.5+√0.25 βˆ’ 0.01 1.134 ] = 0.99d = 0.99 Γ— 135mm = 133.65mm/m As = 𝑀 𝑠π‘₯ 0.87 Γ— π‘“π‘¦π‘˜ ×𝑧 = 5.35 Γ— 106 π‘π‘šπ‘š 0.87 Γ—500 𝑁 π‘šπ‘š2⁄ Γ—0.99 Γ—135π‘šπ‘š = 92.09mm2 H6-300(bot) (94π’Žπ’Ž 𝟐 /m)
  • 164. 164 Long span Msy = 5.54 kNm/m k = 𝑀 𝑠𝑦 𝑏𝑑2 π‘“π‘π‘˜ = 5.54 Γ— 106 π‘π‘šπ‘š 2288π‘šπ‘š Γ— (115π‘šπ‘š)2 Γ—30 𝑁 π‘šπ‘š2⁄ = 0.006 K<πΎπ‘π‘Žπ‘™ , compression is not required
  • 165. 165 Ref. Calculation Output z = d [0.5+√0.25 βˆ’ 𝐾 1.134 ] = d [0.5+√0.25 βˆ’ 0.014 1.134 ] = 0.99d = 0.99 x 115mm = 113.85mm/m As = 𝑀 𝑠𝑦 0.87 Γ— π‘“π‘¦π‘˜ ×𝑧 = 5.54 Γ— 106 π‘π‘šπ‘š 0.87 Γ—500𝑁 π‘šπ‘š2⁄ Γ—0.99 Γ—115π‘šπ‘š = 108.03mm2 H6-250(bot) (113π’Žπ’Ž 𝟐 /m) Min. and max. Reinforced area, As,min = 0.26( π‘“π‘π‘‘π‘š π‘“π‘¦π‘˜ )bd = 0.26 ( 2.9 𝑁 π‘šπ‘š2⁄ 500 𝑁 π‘šπ‘š2⁄ ) bd = 0.0015bd > 0.0013bd = 0.0015 Γ— 2288mm Γ— 135mm = 465.79mm2/m As,max = 0.04Ac = 0.04 Γ— 2288mm Γ— 210mm = 19219.2mm2/m 6.0 Shear Reinforcement
  • 166. 166 Max. Design shear force, 𝑉𝐸𝐷 = 𝑛 𝑑 Γ— 𝐿 π‘₯ 2 = 17.06 π‘˜π‘ π‘šβ„ Γ— 2.250π‘š 2 = 19.19kN Design shear resistance, k = 1 + (200/d)1/2 ≀ 2.0 = 1 + (200/135)1/2 = 2.22 β‰₯ 2.0
  • 167. 167 Ref. Calculation Output πœŒβ€² = 𝐴 𝑠 𝑏𝑑 ≀ 0.02 = 92.02 π‘šπ‘š2 2288π‘šπ‘š Γ—135π‘šπ‘š = 0.0003 ≀ 0.02 𝑉𝑅𝐷,𝑐 = (0.12 Γ— π‘˜ Γ— √100 Γ— πœŒβ€² Γ— π‘“π‘π‘˜ 3 ) 𝑏𝑑 = 0.12 Γ— 2.0 Γ— √100 Γ— 0.012 Γ— 30 𝑁 π‘šπ‘š2⁄3 Γ— 2288π‘šπ‘š Γ— 135π‘šπ‘š = 244.78 kN 𝑉 π‘šπ‘–π‘› = (0.035π‘˜3/2 π‘“π‘π‘˜1/2 )bd = (0.035(2.0)3/2 (30 𝑁 π‘šπ‘š2⁄ )1/2 )Γ— 2288mm x 135mm = 167.48kN 𝑽 𝑹𝑫: 𝑽 π’Žπ’Šπ’ β‰₯ 𝑽 π’Žπ’Šπ’ 7.0 Reflection Percentage of required tension reinforcement, ρ = 𝐴 𝑠,π‘Ÿπ‘’π‘ž 𝑏𝑑 = 108.03 π‘šπ‘š2 2288π‘šπ‘š Γ—115π‘šπ‘š = 0.0004 Reference reinforcement ratio, 𝜌0 = (fck)1/2 x 10βˆ’3 = (30)1/2 x 10βˆ’3 = 0.0055
  • 168. 168 Percentage of required compression reinforcement, πœŒβ€² = 𝐴 𝑠′,π‘Ÿπ‘’π‘ž 𝑏𝑑 = 0 π‘šπ‘š 2288π‘šπ‘š Γ—135π‘šπ‘š = 0 Factor for structural system, k = 1.0 p ≀ 𝑝0
  • 169. 169 Ref. Calculation Output 1 𝑑 = π‘˜ [11+ 1.5 √ π‘“π‘π‘˜ 𝑝0 𝑝 + 3.2 √ π‘“π‘π‘˜ ( 𝑝0 𝑝 -1)3/2 ] 𝑙 𝑑 = 1.0 [11 + 1.5 √30 0.0055 0.0038 + 3.2 √30 ( 𝑝0 𝑝 -1)3/2 ] 𝑙 𝑑 = 1.0 [11+ 11.9 + 5.24] 𝑙 𝑑 = 28.14 Modification factor for span less than 7m = 1.0 Modification factor for steel area provided = 𝐴 𝑠,π‘π‘Ÿπ‘œπ‘£ 𝐴 𝑠,π‘Ÿπ‘’π‘ž = 108.03 π‘šπ‘š2 108.03 π‘šπ‘š2 = 1.0 ≀ 1.5 Therefore allowable span-effective depth ratio = ( 𝑙 𝑑 ) π‘Žπ‘™π‘™π‘œπ‘€π‘Žπ‘π‘™π‘’ = 28.14 Γ— 1.0 Γ— 2.288m = 64.384m Actual span-effective depth = ( 𝑙 𝑑 ) π‘Žπ‘π‘‘π‘’π‘Žπ‘™ = 2288π‘šπ‘š 115π‘šπ‘š = 19.86 Λ‚ 64.384 = OK 8.0 Cracking
  • 170. 170 n = 210mm < 210mm Main bar Ξ΄max, slabs = 3h or 400mm = 3 (210mm) or 400mm = 630mm > 400 = OK
  • 171. 171 Ref. Calculation Output Max. bar spacing = 325mm ≀ Ξ΄max, slabs = 400mm Secondary bar Ξ΄max, slabs = 3.5 or 450mm = 3.5 (210mm) or 400mm = 735mm = OK Max. bar spacing = 350mm ≀ Ξ΄ max, slabs = 450mm 9.0 Detailing Reinforcement 01: H6 - 300
  • 172. 172 02: H6 - 250
  • 173. 173 CHAPTER 6 MATERIAL PROPOSED 6.1 Physical Damage of Offshore Building 1. Salt crystallisation οƒ˜ The surface of the concrete just above ground or water level is disrupted by the growth of salts crystals in the pores of the concrete. οƒ˜ In temperature climates most of the evaporation takes places at surface the crystals also form at the surface and do little damage and became worst in hotter climates. 2. Abrasion οƒ˜ Occurs due to wave action carrying sand, shingle or other debris. Shipping impact is another source of damage. The concrete needs to have sufficient surface hardness to resist the abrasive forces. οƒ˜ All the above types of physicals damage are mainly cosmetic although they do reduce the cover depth to the reinforcement. 3. Marine growth οƒ˜ Marine growth on concrete has generally been considered beneficial as it keeps the concrete wet, thereby resisting diffusion of gases. Excessive growth can add to the surface are of slender members such as piles, which could be important when considering wave loading. οƒ˜ Concrete-eating Mollusca has been reported at one place in the Gulf area. They have an affinity for limestone and therefore only attack concretes made with limestone aggregate.
  • 174. 174 6.2 Proposal of Material Structure Material Advantages Piling -Fibreglass Piling -Water proof - Dislike by insect and marine growth. -Resist of salt water -Pile cap is not needed -Installed by vibratory hammer with a sheet pile clamp Ground Beam -Concrete Class XS3 - Has longer durability -Less moisture absorption - Rust-resistant reinforcement - Resist to rust although concrete crack - Forms a stable film of ferric oxide on its surface due to alkalinity of concrete. Wall -Fly ash bricks -Less porous -High compressive strength -Low thermal conductivity -Lightweight, easy to handle
  • 175. 175 CHAPTER 7 CONCLUSION In the end of the project, we had learnt the process of design planning. We feel thankful as a chance is given to design the building and analyse it into a building that could be construct one day. In this project, we had learn how to estimate the beam size and slab thickness, load distribution and action, analyse the beam and slab from bar size to the deflection, cracking control and detailing. Furthermore, guideline from Eurocode has eased our process of designing and analysing. Overall, the structural analysis is needed to be carried out as deflection will occur due to overload of beam and slab. Both permanent action and variable action followed by moment are important to be determined as it will affect the choosing of bar size, spacing and the concrete unit. In an addition, cracking may occur due to extremely hot and cold weather. Hence, choosing the right material like concrete and steel bar is needed to be considered to reduce the risk of cracking. For instance, building near to the sea is exposed to high salinity of sea water; choosing material that could resist water should be put into the main priority. In conclusion, a well-engineered structure will minimize the failure of structure and produce a building that is stable and safe enough for living.
  • 176. 176 REFERENCES 1. Al Nageim, H., Durka, F., Morgan, W. & Williams, D.T. 2010. Structural mechanics: loads, analysis, materials and design of structural elements. 7th edition. London, Pearson Education. 2. Amit A. Sathawane, R.S. Deotale. 2012. Analysis And Design Of Flat Slab And Grid Slab And Their Cost Comparison. 3. Reinforced Concrete Design, 1990.Tata McGraw-Hill Publishing Company, 1st Revised Edition. Publisher of New Delhi. 4. Salvadori, M. & Heller, R. 1986. Structure in architecture: the building of buildings. 3rd Edition. Englewood Cliffs, New Jersey, Prentice-Hall. 5. W.H.Mosley, J.H. Bungery & R. Husle. 1999. Reinforced Concrete Design (5th Edition).Palgrave.
  • 177. 177 WORK PROGRESSION N O WORK PROGRESSION WEEK 1 2 3 4 5 6 7 8 9 1 0 1 1 1 2 1 3 1 4 1 Forming group 2 Determine the suitable design to make a model 3 Discussion on methodology and work progression 4 Design a model in sketchup and autoCAD 5 Make a model follow by the real scale 5 Determinate the continues beam, simply supported beam, one-ways slab, and two- ways slab 6 Pre-presentation 7 Calculate the loads, and analyze the structure 8 Presentation 9 Final Report
  • 178. 178 Ref. Calculation Output 5.4.2 Continuous Beam 9. Specification Span AB Effective Span, L = 3.235m Dimension Width = 200mm Depth = 500mm Characteristic Load Action on slab Selfweight=0.15x25=3.75 kN/m2 Finishes,ceiling and services=1.5 kN/m2 Brick wall =2.6 kN/m2 Permanent Loading, GK = 7.85kN/m Variable Loading, QK = 3.0kN/m2 Design life = 50Years Fire Resistance = R120 Exposure Cement = XC1 Materials: Unit Weight of Concrete = 25kN/m3
  • 179. 179 Characteristic strength of concrete, fck = 25N/mm2 Characteristic strength of steel, fyk = 500N/mm2 Characteristic strength of link, fyk = 500Nmm2 Assumed βˆ… π‘π‘Žπ‘Ÿ 1 = 10mm βˆ…π‘™π‘–π‘›π‘˜ = 6mm