SlideShare a Scribd company logo

[DL輪読会]Deep Learning 第20章 深層生成モデル

2018/01/29 Deep Learning JP: http://deeplearning.jp/seminar-2/

1 of 70
Download to read offline
����������������� ����
���� �������
����������������������
��������� �� � �D
����������� �������
���� ����
[DL輪読会]Deep Learning 第20章 深層生成モデル
[DL輪読会]Deep Learning 第20章 深層生成モデル
•
–
•
•
– ! ∈ 0,1 &
' = ( )
( )
•
–
•
•
–
•
–
Z [Long and Servedio, 2010]
→ P(v)

Recommended

[DL輪読会]Deep Learning 第6章 深層順伝播型ネットワーク
[DL輪読会]Deep Learning 第6章 深層順伝播型ネットワーク[DL輪読会]Deep Learning 第6章 深層順伝播型ネットワーク
[DL輪読会]Deep Learning 第6章 深層順伝播型ネットワークDeep Learning JP
 
[DL輪読会]Deep Learning 第17章 モンテカルロ法
[DL輪読会]Deep Learning 第17章 モンテカルロ法[DL輪読会]Deep Learning 第17章 モンテカルロ法
[DL輪読会]Deep Learning 第17章 モンテカルロ法Deep Learning JP
 
[DL輪読会]Deep Learning 第14章 自己符号化器
[DL輪読会]Deep Learning 第14章 自己符号化器[DL輪読会]Deep Learning 第14章 自己符号化器
[DL輪読会]Deep Learning 第14章 自己符号化器Deep Learning JP
 
[DL輪読会]Deep Learning 第16章 深層学習のための構造化確率モデル
[DL輪読会]Deep Learning 第16章 深層学習のための構造化確率モデル[DL輪読会]Deep Learning 第16章 深層学習のための構造化確率モデル
[DL輪読会]Deep Learning 第16章 深層学習のための構造化確率モデルDeep Learning JP
 
[DL輪読会]Deep Learning 第4章 数値計算
[DL輪読会]Deep Learning 第4章 数値計算[DL輪読会]Deep Learning 第4章 数値計算
[DL輪読会]Deep Learning 第4章 数値計算Deep Learning JP
 
[DL輪読会]Deep Learning 第10章 系列モデリング 回帰結合型ニューラルネットワークと再帰型ネットワーク
[DL輪読会]Deep Learning 第10章 系列モデリング 回帰結合型ニューラルネットワークと再帰型ネットワーク[DL輪読会]Deep Learning 第10章 系列モデリング 回帰結合型ニューラルネットワークと再帰型ネットワーク
[DL輪読会]Deep Learning 第10章 系列モデリング 回帰結合型ニューラルネットワークと再帰型ネットワークDeep Learning JP
 
[DL輪読会]Deep Learning 第3章 確率と情報理論
[DL輪読会]Deep Learning 第3章 確率と情報理論[DL輪読会]Deep Learning 第3章 確率と情報理論
[DL輪読会]Deep Learning 第3章 確率と情報理論Deep Learning JP
 
DeepLearning 14章 自己符号化器
DeepLearning 14章 自己符号化器DeepLearning 14章 自己符号化器
DeepLearning 14章 自己符号化器hirono kawashima
 

More Related Content

What's hot

[DL輪読会]Deep Learning 第8章 深層モデルの訓練のための最適化
[DL輪読会]Deep Learning 第8章 深層モデルの訓練のための最適化[DL輪読会]Deep Learning 第8章 深層モデルの訓練のための最適化
[DL輪読会]Deep Learning 第8章 深層モデルの訓練のための最適化Deep Learning JP
 
[DL輪読会]Deep Learning 第13章 線形因子モデル
[DL輪読会]Deep Learning 第13章 線形因子モデル[DL輪読会]Deep Learning 第13章 線形因子モデル
[DL輪読会]Deep Learning 第13章 線形因子モデルDeep Learning JP
 
[DL輪読会]Deep Learning 第12章 アプリケーション
[DL輪読会]Deep Learning 第12章 アプリケーション[DL輪読会]Deep Learning 第12章 アプリケーション
[DL輪読会]Deep Learning 第12章 アプリケーションDeep Learning JP
 
PRML 6.1章 カーネル法と双対表現
PRML 6.1章 カーネル法と双対表現PRML 6.1章 カーネル法と双対表現
PRML 6.1章 カーネル法と双対表現hagino 3000
 
[DL輪読会]Deep Learning 第11章 実用的な方法論
[DL輪読会]Deep Learning 第11章 実用的な方法論[DL輪読会]Deep Learning 第11章 実用的な方法論
[DL輪読会]Deep Learning 第11章 実用的な方法論Deep Learning JP
 
[DL輪読会]Deep Learning 第9章 畳み込みネットワーク
[DL輪読会]Deep Learning 第9章 畳み込みネットワーク[DL輪読会]Deep Learning 第9章 畳み込みネットワーク
[DL輪読会]Deep Learning 第9章 畳み込みネットワークDeep Learning JP
 
[DL輪読会]Deep Learning 第18章 分配関数との対峙
[DL輪読会]Deep Learning 第18章 分配関数との対峙[DL輪読会]Deep Learning 第18章 分配関数との対峙
[DL輪読会]Deep Learning 第18章 分配関数との対峙Deep Learning JP
 
PRML第6章「カーネル法」
PRML第6章「カーネル法」PRML第6章「カーネル法」
PRML第6章「カーネル法」Keisuke Sugawara
 
[DL輪読会]Deep Learning 第2章 線形代数
[DL輪読会]Deep Learning 第2章 線形代数[DL輪読会]Deep Learning 第2章 線形代数
[DL輪読会]Deep Learning 第2章 線形代数Deep Learning JP
 
DeepLearning 10章 回帰結合型ニューラルネットワークと再帰型ネットワーク
DeepLearning 10章 回帰結合型ニューラルネットワークと再帰型ネットワークDeepLearning 10章 回帰結合型ニューラルネットワークと再帰型ネットワーク
DeepLearning 10章 回帰結合型ニューラルネットワークと再帰型ネットワークhirono kawashima
 
PRML輪読#7
PRML輪読#7PRML輪読#7
PRML輪読#7matsuolab
 
変分推論法(変分ベイズ法)(PRML第10章)
変分推論法(変分ベイズ法)(PRML第10章)変分推論法(変分ベイズ法)(PRML第10章)
変分推論法(変分ベイズ法)(PRML第10章)Takao Yamanaka
 
PRML輪読#1
PRML輪読#1PRML輪読#1
PRML輪読#1matsuolab
 
PRML輪読#6
PRML輪読#6PRML輪読#6
PRML輪読#6matsuolab
 
[DL輪読会]Deep Learning 第7章 深層学習のための正則化
[DL輪読会]Deep Learning 第7章 深層学習のための正則化[DL輪読会]Deep Learning 第7章 深層学習のための正則化
[DL輪読会]Deep Learning 第7章 深層学習のための正則化Deep Learning JP
 
深層学習 勉強会第5回 ボルツマンマシン
深層学習 勉強会第5回 ボルツマンマシン深層学習 勉強会第5回 ボルツマンマシン
深層学習 勉強会第5回 ボルツマンマシンYuta Sugii
 
スパースモデリング、スパースコーディングとその数理(第11回WBA若手の会)
スパースモデリング、スパースコーディングとその数理(第11回WBA若手の会)スパースモデリング、スパースコーディングとその数理(第11回WBA若手の会)
スパースモデリング、スパースコーディングとその数理(第11回WBA若手の会)narumikanno0918
 
クラシックな機械学習入門:付録:よく使う線形代数の公式
クラシックな機械学習入門:付録:よく使う線形代数の公式クラシックな機械学習入門:付録:よく使う線形代数の公式
クラシックな機械学習入門:付録:よく使う線形代数の公式Hiroshi Nakagawa
 
[DL輪読会]近年のエネルギーベースモデルの進展
[DL輪読会]近年のエネルギーベースモデルの進展[DL輪読会]近年のエネルギーベースモデルの進展
[DL輪読会]近年のエネルギーベースモデルの進展Deep Learning JP
 
[DL輪読会]Deep Learning 第5章 機械学習の基礎
[DL輪読会]Deep Learning 第5章 機械学習の基礎[DL輪読会]Deep Learning 第5章 機械学習の基礎
[DL輪読会]Deep Learning 第5章 機械学習の基礎Deep Learning JP
 

What's hot (20)

[DL輪読会]Deep Learning 第8章 深層モデルの訓練のための最適化
[DL輪読会]Deep Learning 第8章 深層モデルの訓練のための最適化[DL輪読会]Deep Learning 第8章 深層モデルの訓練のための最適化
[DL輪読会]Deep Learning 第8章 深層モデルの訓練のための最適化
 
[DL輪読会]Deep Learning 第13章 線形因子モデル
[DL輪読会]Deep Learning 第13章 線形因子モデル[DL輪読会]Deep Learning 第13章 線形因子モデル
[DL輪読会]Deep Learning 第13章 線形因子モデル
 
[DL輪読会]Deep Learning 第12章 アプリケーション
[DL輪読会]Deep Learning 第12章 アプリケーション[DL輪読会]Deep Learning 第12章 アプリケーション
[DL輪読会]Deep Learning 第12章 アプリケーション
 
PRML 6.1章 カーネル法と双対表現
PRML 6.1章 カーネル法と双対表現PRML 6.1章 カーネル法と双対表現
PRML 6.1章 カーネル法と双対表現
 
[DL輪読会]Deep Learning 第11章 実用的な方法論
[DL輪読会]Deep Learning 第11章 実用的な方法論[DL輪読会]Deep Learning 第11章 実用的な方法論
[DL輪読会]Deep Learning 第11章 実用的な方法論
 
[DL輪読会]Deep Learning 第9章 畳み込みネットワーク
[DL輪読会]Deep Learning 第9章 畳み込みネットワーク[DL輪読会]Deep Learning 第9章 畳み込みネットワーク
[DL輪読会]Deep Learning 第9章 畳み込みネットワーク
 
[DL輪読会]Deep Learning 第18章 分配関数との対峙
[DL輪読会]Deep Learning 第18章 分配関数との対峙[DL輪読会]Deep Learning 第18章 分配関数との対峙
[DL輪読会]Deep Learning 第18章 分配関数との対峙
 
PRML第6章「カーネル法」
PRML第6章「カーネル法」PRML第6章「カーネル法」
PRML第6章「カーネル法」
 
[DL輪読会]Deep Learning 第2章 線形代数
[DL輪読会]Deep Learning 第2章 線形代数[DL輪読会]Deep Learning 第2章 線形代数
[DL輪読会]Deep Learning 第2章 線形代数
 
DeepLearning 10章 回帰結合型ニューラルネットワークと再帰型ネットワーク
DeepLearning 10章 回帰結合型ニューラルネットワークと再帰型ネットワークDeepLearning 10章 回帰結合型ニューラルネットワークと再帰型ネットワーク
DeepLearning 10章 回帰結合型ニューラルネットワークと再帰型ネットワーク
 
PRML輪読#7
PRML輪読#7PRML輪読#7
PRML輪読#7
 
変分推論法(変分ベイズ法)(PRML第10章)
変分推論法(変分ベイズ法)(PRML第10章)変分推論法(変分ベイズ法)(PRML第10章)
変分推論法(変分ベイズ法)(PRML第10章)
 
PRML輪読#1
PRML輪読#1PRML輪読#1
PRML輪読#1
 
PRML輪読#6
PRML輪読#6PRML輪読#6
PRML輪読#6
 
[DL輪読会]Deep Learning 第7章 深層学習のための正則化
[DL輪読会]Deep Learning 第7章 深層学習のための正則化[DL輪読会]Deep Learning 第7章 深層学習のための正則化
[DL輪読会]Deep Learning 第7章 深層学習のための正則化
 
深層学習 勉強会第5回 ボルツマンマシン
深層学習 勉強会第5回 ボルツマンマシン深層学習 勉強会第5回 ボルツマンマシン
深層学習 勉強会第5回 ボルツマンマシン
 
スパースモデリング、スパースコーディングとその数理(第11回WBA若手の会)
スパースモデリング、スパースコーディングとその数理(第11回WBA若手の会)スパースモデリング、スパースコーディングとその数理(第11回WBA若手の会)
スパースモデリング、スパースコーディングとその数理(第11回WBA若手の会)
 
クラシックな機械学習入門:付録:よく使う線形代数の公式
クラシックな機械学習入門:付録:よく使う線形代数の公式クラシックな機械学習入門:付録:よく使う線形代数の公式
クラシックな機械学習入門:付録:よく使う線形代数の公式
 
[DL輪読会]近年のエネルギーベースモデルの進展
[DL輪読会]近年のエネルギーベースモデルの進展[DL輪読会]近年のエネルギーベースモデルの進展
[DL輪読会]近年のエネルギーベースモデルの進展
 
[DL輪読会]Deep Learning 第5章 機械学習の基礎
[DL輪読会]Deep Learning 第5章 機械学習の基礎[DL輪読会]Deep Learning 第5章 機械学習の基礎
[DL輪読会]Deep Learning 第5章 機械学習の基礎
 

Similar to [DL輪読会]Deep Learning 第20章 深層生成モデル

Gérer ses références bibliographiques avec Zotero
Gérer ses références bibliographiques avec ZoteroGérer ses références bibliographiques avec Zotero
Gérer ses références bibliographiques avec ZoteroLesticetlart Invisu
 
Basic arabic-grammar-part03
Basic arabic-grammar-part03Basic arabic-grammar-part03
Basic arabic-grammar-part03Sonali Jannat
 
Мебельные компании. Рейтинги и профили ведущих производителей мебели для дома...
Мебельные компании. Рейтинги и профили ведущих производителей мебели для дома...Мебельные компании. Рейтинги и профили ведущих производителей мебели для дома...
Мебельные компании. Рейтинги и профили ведущих производителей мебели для дома...Экспресс-Обзор
 
Basic arabic-grammar part 01
Basic arabic-grammar part 01Basic arabic-grammar part 01
Basic arabic-grammar part 01Sonali Jannat
 
Разработка веб-сайта
Разработка веб-сайтаРазработка веб-сайта
Разработка веб-сайтаAleksandr Shchedrin
 
Ranciere - El maestro ignorante.pdf
Ranciere - El maestro ignorante.pdfRanciere - El maestro ignorante.pdf
Ranciere - El maestro ignorante.pdfBehelitExperimental
 
Ud 6 prendas de vestir y complementos - inmaculada tapia y mª mar martínez
Ud 6    prendas de vestir y complementos - inmaculada tapia y mª mar martínez Ud 6    prendas de vestir y complementos - inmaculada tapia y mª mar martínez
Ud 6 prendas de vestir y complementos - inmaculada tapia y mª mar martínez Teresa López Vicente
 
Презентация Галины Тартышной и Александра Снежко
Презентация Галины Тартышной и Александра СнежкоПрезентация Галины Тартышной и Александра Снежко
Презентация Галины Тартышной и Александра Снежкоisultanova
 
Kit de survie: Création et gestion d'une bibliothèque d'images numériques
Kit de survie: Création et gestion d'une bibliothèque d'images numériquesKit de survie: Création et gestion d'une bibliothèque d'images numériques
Kit de survie: Création et gestion d'une bibliothèque d'images numériquesLesticetlart Invisu
 

Similar to [DL輪読会]Deep Learning 第20章 深層生成モデル (20)

Limites
LimitesLimites
Limites
 
Limites
LimitesLimites
Limites
 
Limites
LimitesLimites
Limites
 
Limites
LimitesLimites
Limites
 
Limites
LimitesLimites
Limites
 
Limites
LimitesLimites
Limites
 
Atelier Zotero intermédiaire
Atelier Zotero intermédiaireAtelier Zotero intermédiaire
Atelier Zotero intermédiaire
 
Gérer ses références bibliographiques avec Zotero
Gérer ses références bibliographiques avec ZoteroGérer ses références bibliographiques avec Zotero
Gérer ses références bibliographiques avec Zotero
 
Basic arabic-grammar-part03
Basic arabic-grammar-part03Basic arabic-grammar-part03
Basic arabic-grammar-part03
 
Мебельные компании. Рейтинги и профили ведущих производителей мебели для дома...
Мебельные компании. Рейтинги и профили ведущих производителей мебели для дома...Мебельные компании. Рейтинги и профили ведущих производителей мебели для дома...
Мебельные компании. Рейтинги и профили ведущих производителей мебели для дома...
 
!!#$
 !!#$ !!#$
!!#$
 
Basic arabic-grammar part 01
Basic arabic-grammar part 01Basic arabic-grammar part 01
Basic arabic-grammar part 01
 
Разработка веб-сайта
Разработка веб-сайтаРазработка веб-сайта
Разработка веб-сайта
 
Ranciere - El maestro ignorante.pdf
Ranciere - El maestro ignorante.pdfRanciere - El maestro ignorante.pdf
Ranciere - El maestro ignorante.pdf
 
Увлекаем через бренд
Увлекаем через брендУвлекаем через бренд
Увлекаем через бренд
 
Ud 6 prendas de vestir y complementos - inmaculada tapia y mª mar martínez
Ud 6    prendas de vestir y complementos - inmaculada tapia y mª mar martínez Ud 6    prendas de vestir y complementos - inmaculada tapia y mª mar martínez
Ud 6 prendas de vestir y complementos - inmaculada tapia y mª mar martínez
 
Презентация Галины Тартышной и Александра Снежко
Презентация Галины Тартышной и Александра СнежкоПрезентация Галины Тартышной и Александра Снежко
Презентация Галины Тартышной и Александра Снежко
 
Knowsnow
KnowsnowKnowsnow
Knowsnow
 
Kit de survie: Création et gestion d'une bibliothèque d'images numériques
Kit de survie: Création et gestion d'une bibliothèque d'images numériquesKit de survie: Création et gestion d'une bibliothèque d'images numériques
Kit de survie: Création et gestion d'une bibliothèque d'images numériques
 
Domhunter Rus
Domhunter RusDomhunter Rus
Domhunter Rus
 

More from Deep Learning JP

【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving PlannersDeep Learning JP
 
【DL輪読会】事前学習用データセットについて
【DL輪読会】事前学習用データセットについて【DL輪読会】事前学習用データセットについて
【DL輪読会】事前学習用データセットについてDeep Learning JP
 
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...Deep Learning JP
 
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
【DL輪読会】AnyLoc: Towards Universal Visual Place RecognitionDeep Learning JP
 
【DL輪読会】Can Neural Network Memorization Be Localized?
【DL輪読会】Can Neural Network Memorization Be Localized?【DL輪読会】Can Neural Network Memorization Be Localized?
【DL輪読会】Can Neural Network Memorization Be Localized?Deep Learning JP
 
【DL輪読会】Hopfield network 関連研究について
【DL輪読会】Hopfield network 関連研究について【DL輪読会】Hopfield network 関連研究について
【DL輪読会】Hopfield network 関連研究についてDeep Learning JP
 
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )Deep Learning JP
 
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...Deep Learning JP
 
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"Deep Learning JP
 
【DL輪読会】"Language Instructed Reinforcement Learning for Human-AI Coordination "
【DL輪読会】"Language Instructed Reinforcement Learning  for Human-AI Coordination "【DL輪読会】"Language Instructed Reinforcement Learning  for Human-AI Coordination "
【DL輪読会】"Language Instructed Reinforcement Learning for Human-AI Coordination "Deep Learning JP
 
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat ModelsDeep Learning JP
 
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"Deep Learning JP
 
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...Deep Learning JP
 
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...Deep Learning JP
 
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...Deep Learning JP
 
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...Deep Learning JP
 
【DL輪読会】Deep Transformers without Shortcuts: Modifying Self-attention for Fait...
【DL輪読会】Deep Transformers without Shortcuts: Modifying Self-attention for Fait...【DL輪読会】Deep Transformers without Shortcuts: Modifying Self-attention for Fait...
【DL輪読会】Deep Transformers without Shortcuts: Modifying Self-attention for Fait...Deep Learning JP
 
【DL輪読会】マルチモーダル 基盤モデル
【DL輪読会】マルチモーダル 基盤モデル【DL輪読会】マルチモーダル 基盤モデル
【DL輪読会】マルチモーダル 基盤モデルDeep Learning JP
 
【DL輪読会】TrOCR: Transformer-based Optical Character Recognition with Pre-traine...
【DL輪読会】TrOCR: Transformer-based Optical Character Recognition with Pre-traine...【DL輪読会】TrOCR: Transformer-based Optical Character Recognition with Pre-traine...
【DL輪読会】TrOCR: Transformer-based Optical Character Recognition with Pre-traine...Deep Learning JP
 
【DL輪読会】HyperDiffusion: Generating Implicit Neural Fields withWeight-Space Dif...
【DL輪読会】HyperDiffusion: Generating Implicit Neural Fields withWeight-Space Dif...【DL輪読会】HyperDiffusion: Generating Implicit Neural Fields withWeight-Space Dif...
【DL輪読会】HyperDiffusion: Generating Implicit Neural Fields withWeight-Space Dif...Deep Learning JP
 

More from Deep Learning JP (20)

【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
【DL輪読会】AdaptDiffuser: Diffusion Models as Adaptive Self-evolving Planners
 
【DL輪読会】事前学習用データセットについて
【DL輪読会】事前学習用データセットについて【DL輪読会】事前学習用データセットについて
【DL輪読会】事前学習用データセットについて
 
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
【DL輪読会】 "Learning to render novel views from wide-baseline stereo pairs." CVP...
 
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
【DL輪読会】AnyLoc: Towards Universal Visual Place Recognition
 
【DL輪読会】Can Neural Network Memorization Be Localized?
【DL輪読会】Can Neural Network Memorization Be Localized?【DL輪読会】Can Neural Network Memorization Be Localized?
【DL輪読会】Can Neural Network Memorization Be Localized?
 
【DL輪読会】Hopfield network 関連研究について
【DL輪読会】Hopfield network 関連研究について【DL輪読会】Hopfield network 関連研究について
【DL輪読会】Hopfield network 関連研究について
 
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
【DL輪読会】SimPer: Simple self-supervised learning of periodic targets( ICLR 2023 )
 
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
【DL輪読会】RLCD: Reinforcement Learning from Contrast Distillation for Language M...
 
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
【DL輪読会】"Secrets of RLHF in Large Language Models Part I: PPO"
 
【DL輪読会】"Language Instructed Reinforcement Learning for Human-AI Coordination "
【DL輪読会】"Language Instructed Reinforcement Learning  for Human-AI Coordination "【DL輪読会】"Language Instructed Reinforcement Learning  for Human-AI Coordination "
【DL輪読会】"Language Instructed Reinforcement Learning for Human-AI Coordination "
 
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
【DL輪読会】Llama 2: Open Foundation and Fine-Tuned Chat Models
 
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
【DL輪読会】"Learning Fine-Grained Bimanual Manipulation with Low-Cost Hardware"
 
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
【DL輪読会】Parameter is Not All You Need:Starting from Non-Parametric Networks fo...
 
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
【DL輪読会】Drag Your GAN: Interactive Point-based Manipulation on the Generative ...
 
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
【DL輪読会】Self-Supervised Learning from Images with a Joint-Embedding Predictive...
 
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
【DL輪読会】Towards Understanding Ensemble, Knowledge Distillation and Self-Distil...
 
【DL輪読会】Deep Transformers without Shortcuts: Modifying Self-attention for Fait...
【DL輪読会】Deep Transformers without Shortcuts: Modifying Self-attention for Fait...【DL輪読会】Deep Transformers without Shortcuts: Modifying Self-attention for Fait...
【DL輪読会】Deep Transformers without Shortcuts: Modifying Self-attention for Fait...
 
【DL輪読会】マルチモーダル 基盤モデル
【DL輪読会】マルチモーダル 基盤モデル【DL輪読会】マルチモーダル 基盤モデル
【DL輪読会】マルチモーダル 基盤モデル
 
【DL輪読会】TrOCR: Transformer-based Optical Character Recognition with Pre-traine...
【DL輪読会】TrOCR: Transformer-based Optical Character Recognition with Pre-traine...【DL輪読会】TrOCR: Transformer-based Optical Character Recognition with Pre-traine...
【DL輪読会】TrOCR: Transformer-based Optical Character Recognition with Pre-traine...
 
【DL輪読会】HyperDiffusion: Generating Implicit Neural Fields withWeight-Space Dif...
【DL輪読会】HyperDiffusion: Generating Implicit Neural Fields withWeight-Space Dif...【DL輪読会】HyperDiffusion: Generating Implicit Neural Fields withWeight-Space Dif...
【DL輪読会】HyperDiffusion: Generating Implicit Neural Fields withWeight-Space Dif...
 

[DL輪読会]Deep Learning 第20章 深層生成モデル