SlideShare a Scribd company logo
1 of 29
LESSON 8: ANALOG SIGNAL
CONVERSION
ET 438b Sequential Control and Data Acquisition
Department of Technology
1
Lesson
8_et438b.pptx
LEARNING OBJECTIVES
2
Lesson
8_et438b.pptx
After this presentation you will be able to:
 Determine the resolution and accuracy of a digitized
analog signal.
 Explain how digital-to-analog converts operate
 Explain how commonly used analog-to-digital converts
operate
 Compare and contrast the characteristics several
commonly used analog-to-digital converters.
ANALOG SIGNAL CONVERSION
3
Lesson
8_et438b.pptx
Two Problems
Input
Analog-to-digital conversion (ADC):
continuous signals converted to
discrete values after sampling
Output
Digital-to-analog conversion (DAC)
Discrete values converted t continuous
signals
Number of bits in digital signal determines the resolution of
the digital signals. Resolution also depends on voltage span..
RESOLUTION AND ACCURACY OF DIGITIZED SIGNALS
4
Lesson
8_et438b.pptx
et438b-2.pptx 4
Resolution - smallest number that can be measured
Accuracy - is the number measured correct
ADC Resolution Max. digital value
Infinite
resolution
line
0
-7
in
binary
000
001
010
011
100
101
110
111
Full scale
analog input
Vin
zero
error
pts.
The output is a
discretized version of
the continuous input.
Error determined by
the step size of the
digital representation
RESOLUTION FORMULAS
Lesson 8_et438b.pptx
5
Resolution, in terms of full scale voltage of ADC, is equal
to value of Least Significant Bit (LSB)
n
fs
LSB
2
V
V 
Where Vfs = full scale voltage
n = number of bits
VLSB = voltage value of LSB
Finite bit digital conversion introduces quantization errors that range
from ± VLSB /2
Maximum quantization
error is equal to:
Q E
VLSB
. .
2
Where Q.E. = quantization error
VLSB = voltage value of LSB
DIGITAL RESOLUTION AND ERROR IN ADC
Lesson
8_et438b.pptx
6
000
001
010
011
100
101
110
111
Vin
1 LSB
+1/2
LSB
-1/2 LSB
10 V
1.25
8.75
Full scale
analog input
Error in natural binary coding
is ±1/2 LSB
Resolution 3-bit system
n
fs
LSB
2
V
V 
V
V
LSB   
10
2
10
8
125
3
.
All voltage values between
8.75-10 V map to the 111 code
Number of counts reduced by 1
RESOLUTION FORMULAS
Lesson
8_et438b.pptx
Percent Resolution- Based on the number of transitions (2n-1)
%
100
1
2
1
resolution
% n



Where n = number of bits in digital representation
Example 1: An 8-bit digital system is used to convert an analog signal
to digital signal for a data acquisition system. The voltage range for the
conversion is 0-10 V. Find the resolution of the system and the value of
the least significant bit
n=8 so signal converted to 256 different levels.
Vfs=10 Vdc
n
fs
LSB
2
V
V 
V
0390625
.
0
256
10
2
V
10
2
V
V 8
n
fs
LSB 



%
100
1
2
1
resolution
% n



%
392
.
0
resolution
%
%
100
1
2
1
resolution
% 8




Lesson 8_et438b.pptx
8
Example 2: The 8-bit converter of the previous
example is replaced with a 12 bit system. Compute
the resolution and the value of the least significant bit.
Signal converted to 4096 different levels n = 12
n
fs
LSB
2
V
V  Vfs = 10 Vdc
n = 12 bits V
V
LSB
fs
n
   
2
10
2
10
4096
0 002441
12
V
V
.
%
0244
.
0
resolution
%
%
100
1
2
1
resolution
% 12




0 0.005 0.01 0.01 0.02
5
0
5
Digital Reconstruction
time
amplitude
Difference between
analog value and digital
reconstruction is
quantizing error
Lesson
8_et438b.pptx
9
Digital-to-Analog Conversion
Digital-to-Analog Converter (DAC) Transfer Function
Analog
Output
Signal
000 001 010 011 100 101 110 111
FS
Full scale
Digital Code
Digital Input Code
(7/8)FS
(3/4)FS
(5/8)FS
(1/2)FS
(3/8)FS
(1/4)FS
(1/8)FS
0
DAC produces discrete voltage
values for each digital code
Infinite
resolution
line
Maximum Voltage
Output, Vomax
1
n
max
o
LSB
2
V
V
resolution 


Max output approaches
FS as n goes to infinity
TYPE OF DIGITAL-TO-ANALOG CONVERTERS
10
Lesson
8_et438b,pptx
Binary-Weighted Resistor DAC
Summing amplifier
with digitally
controlled inputs
Rules of Ideal OP AMPs Iin = 0,
Zin = infinity
B0, B(n-3), B(n-2), ....B(n-1) take on
values of 1 or 0 depending of the
digital output controlling switch
  







n
1
i 1
i
F
0
F
F
0
R
2
V
)
i
n
(
B
R
V
R
I
V
In
I3
I2
I1
Iin
IA
IF
B0
B(n-3)
B(n-2)
B(n-1)
R
MSB
LSB
R
)
2
(
V
I
...
,
R
4
V
I
,
R
2
V
I
,
R
V
I 1
n
n
3
2
1 




n
3
2
1
A I
....
I
I
I
I 







































 
R
)
2
(
V
0
B
...
R
4
V
)
3
n
(
B
R
2
V
)
2
n
(
B
R
V
)
1
n
(
B
I 1
n
A
Formula for output V
BINARY WEIGHTED DAC EXAMPLE
11
Lesson
8_et438b.pptx
Example: For the binary-weighted resistor DAC below find the output
when the input word is 11012 V = 10 Vdc, Rf = R
 




n
1
i 1
i
F
0
R
2
V
)
i
n
(
B
R
V n=4
B=11012
B(4-1)=B3=1 MSB
B(4-2)=B2=1
B(4-3)=B1=0
B(4-4)=B0=1 LSB
B3
B2
B1
B0
Since Rf = R





 








 



R
2
V
0
B
R
2
V
1
B
R
2
V
2
B
R
2
V
3
B
R
V 1
4
1
3
1
2
1
1
o





 








 3
2
1
0
o
2
V
1
2
V
0
2
V
1
2
V
1
R
R
V





 








 3
2
1
0
o
2
10
1
2
10
0
2
10
1
2
10
1
1
V
  25
.
16
25
.
1
5
10
8
10
0
2
10
10
Vo 
















R-2R BINARY LADDER DAC
12
Lesson
8_et438b.pptx
R-2R Ladder produces binary weighted current values from only 2
resistance values.
R= 10k
2R = 20k
Req3
Req2
Req1
Vref = 10 Vdc
Circuit Analysis
Currents through each 2R value
resistor directed to OP AMP or
ground by digital switch
Find Req3 by assuming
all switches are closed to
ground



















k
10
R
k
10
k
20
R
R
k
20
k
10
k
20
R
R
k
20
k
10
k
20
k
20
R
3
eq
2
eq
3
eq
1
eq
2
eq
1
eq
Network equivalent resistance is R
Virtual
Ground
R-2R LADDER ANALYSIS (CONTINUED)
13
10k 10k
V=10 Vdc
20k
20k
20k
20k
V1 V2 V3
I1 I2 I3
I4
I I’
Iin
Find Iin from Req3 and V
V
5
5
10
k
10
mA
5
.
0
10
V
R
I
V
V
mA
0.5
mA
0.5
-
mA
1
I
I
I
mA
5
.
0
k
20
V
10
R
V
I
2
2
1
2
1
in
1
1
1



















V
5
.
2
5
.
2
5
k
10
mA
25
.
0
5
V
R
'
I
V
V
mA
0.25
mA
0.25
-
mA
5
.
0
I
I
I'
mA
25
.
0
k
20
V
5
R
V
I
3
4
2
3
2
1
3
2
2



















R1
R2
R3
R4
R5
R6
mA
125
.
0
k
20
V
5
.
2
R
V
I
mA
125
.
0
k
20
V
5
.
2
R
V
I
6
3
4
5
3
3 







mA
0
.
1
k
10
V
0
1
R
V
I
3
eq
in 



Current Values
I1 = 0.5 mA MSB
I2 = 0.25 mA
I3 = 0.125 mA LSB
Current values directed
to OP AMP summing
junction or ground. At
summing junction:
Vo =-Rf∙IT
Lesson
8_et438b.pptx
R-2R EXAMPLE
14
Find the output voltage for the R-2R DAC shown below. The digital input is 1102.
R=15k, 2R=30k and Rf=15k , Vref=5 Vdc
IT
I0
I1
I2
Req
Find currents I0, I1, I2 and use
formula V0 = - ITRf
All other currents reduced by
factor of 2.
Lesson
8_et438b.pptx
COMMERCIAL DACS: DAC0800 FAMILY
15
Devices used in practical designs use integrated R-2R networks
and transistor switching. They have TTL compatible inputs.
4
2
14
Iref
8-bit binary code converted to 256 levels of
I0. Full scale value set by reference current.
1 bit change produces change of 1/256 in I0
Design Equations
I
V
R
ref
ref
ref

I I
D
ref
0
256







I
V
R
fs
ref
ref







255
256
D = decimal
equivalent of
binary input
Full scale
output
Lesson
8_et438b.pptx
DAC0800 EXAMPLE
16
Use OP AMP to convert current to voltage. The reference voltage is +10 V
dc and the reference resistance is 5k. The value of Rf = 2.5k
a.) Digital input 000011012
b.) Digital input 100011012
mA
0
.
2
k
5
V
10
R
V
I
ref
ref
ref 



a.) convert binary
to decimal
Io
13
D
13
1
4
8
1101
)
1
(
2
)
0
(
2
)
1
(
2
)
1
(
2
1101
2
0
1
2
3
2









I I
D
ref
0
256







A
101.5625
mA
1015625
.
0
256
13
mA)
0
.
2
(
I0 









Io enters so negative
Find I0
V
253906
.
0
)
k
mA)(2.5
1015625
.
0
(
R
)
I
(
V f
0
0 








Lesson
8_et438b.pptx
DAC0800 EXAMPLE (CONTINUED)
17
b.) Digital input 100011012
Io
mA
0
.
2
k
5
V
10
R
V
I
ref
ref
ref 



b.) convert binary to decimal
141
D
141
1
4
8
128
1101
)
1
(
2
)
0
(
2
)
1
(
2
)
1
(
2
)
0
(
2
)
0
(
2
)
0
(
2
)
1
(
2
10001101
2
0
1
2
3
4
5
6
7
2














mA
1015626
.
1
256
141
)
0
.
2
(
256
D
I
I ref
0 















Io enters so negative
V
753906
.
2
)
k
mA)(2.5
1015625
.
1
(
R
)
I
(
V f
0
0 








I0
mA
0.8984375
mA
1015625
.
1
0
.
2
I
I
I 0
ref
0 




Lesson
8_et438b.pptx
ANALOG-TO-DIGITAL CONVERSION (ADC)
18
Converting continuous signals to digital values requires 3
steps
1
Sample analog signal. Nyquist rate or above
Need a minimum of 2x highest frequency
Higher rates ease signal reconstruction
2
Hold analog sample while conversion is in
progress
3 Convert analog value to digital value (binary)
Lesson
8_et438b.pptx
TYPES OF ANALOG-TO-DIGITAL CONVERTERS
19
Integrating
• High Accuracy
• Low Speed
• Low Cost
• Not commonly
used in DAQ
Tracking
(Counter Type)
• High Speed in
tracking mode
• Slow
Conversion
times (Some
Sub-types)
• Noise
Sensitive
Successive
Approximation
• Conversion
time
independent
of input value
• Most
commonly
used in DAQ
applications
Lesson
8_et438b.pptx
20
TYPES OF ANALOG-TO-DIGITAL CONVERTERS
“Flash” or
Parallel
• Multi-
Comparators
• Highest
Speed
• High Cost
Delta/Sigma
• One bit
Conversion
• High
Resolution
• Ratio of 1-to-0
represent
input
• Uses digital
filtering
Lesson
8_et438b.pptx
COUNTER-TYPE ANALOG-TO-DIGITAL
CONVERTER OPERATION
21
Clock
AND
C
O
U
N
T
E
R
D
A
C
+
-
V+
V-
A
B
V
Digital output
V
When V+ = V-
1.) Input a constant value. Requires a sample and hold circuit.
(Not Shown)
2.) AND gate passes clock signal when point A logic high
3.) Counter incremented by signal B
4.) DAC output increases as counter output increases
Lesson
8_et438b.pptx
22
COUNTER-TYPE ANALOG-TO-DIGITAL
CONVERTER OPERATION
Clock
AND
C
O
U
N
T
E
R
D
A
C
+
-
V+
V-
A
B
V
Digital output
Input
V
Time
Input
Value
DAC Output
Value
5.) Counter stops when DAC V exceeds input V
Tracking A/D
converters use
up/down counters to
minimize
conversion times
Conversion time
depends on the
input level
Lesson
8_et438b.pptx
SUCCESSIVE APPROXIMATION ADC
23
Counter A/D converters conversion time proportional to
the input level. Improve conversion speed using a
binary search technique.
Procedure
1. Set MSB to 1
2. Test input, Vin, against DAC output, VDAC
3. If VDAC > Vin, reset bit to 0, else bit = 1 (VDAC < Vin)
4. Move to next bit and repeat steps 1 - 3
The input is converted to digital value in n steps, where n = the
number of bits in digital representation
Lesson
8_et438b.pptx
SUCCESSIVE APPROXIMATION ADCS
24
Successive Approx.
Register
Lesson
8_et438b.pptx
SUCCESSIVE APPROXIMATION ADC
25
Example: An 8-bit successive approximation ADC has an input voltage
of 13.478 V. The ADC full scale input voltage is 20 V. Use the
successive approximation algorithm given previously to determine the
binary value. Assuming that each bit test takes a single clock cycle,
determine the maximum conversion time for the ADC if it is clocked at
4.77 MHz.
Lesson
8_et438b.pptx
0
26
Voltage
Weight
10.0 5.0 2.5 1.25 0.625 0.3125 0.15625 0.078125 Cycle
Bit D7 D6 D5 D4 D3 D2 D1 D0
1
2
3
4
5
6
7
8
Example Solution
1. 10<13.478 bit remains set
1
1
0 0 0 0 0 0 0
Set D7 0
Set D6
2. 10+5>13.478 reset bit
0 0 0 0 0 0
1 0
0 0 0 0 0 0
1 0
Set D5
1
3. 10+2.5<13.478 bit remains set
1 0 0 0 0 0
1 0
Set D4
4. 10+2.5+1.25>13.478 reset bit
1
1 0 0 0 0 0
1 0
Set D3
1
5. 10+2.5+0.625<13.478 bit remains set
1 0 1 0 0 0
1 0
Set D2
1
6. 10+2.5+0.625+0.3125<13.478 bit remains set
1 0 1 1 0 0
1 0
Set D1
1
7. 10+2.5+0.625+0.3125+.15625>13.478 bit reset
1 0 1 1 0 0
1 0
Set D0
8. 10+2.5+0.625+0.3125+.15625+0.078125>13.478
bit reset
1
Lesson
8_et438b.pptx
27
Example Solution (Continued)
Final binary value: B=101011002
Final voltage: 10+2.5+0.625+0.3125 = 13.4375 V
Quantization Error voltage: VQE=13.478 V-13.4375 V = 0.0405 V
or 40.5 mV
Determine conversion time
Define Tc as clock period = 1/fc Where fc = ADC Clock = 4.77 MHz
Summary Results
S
2096
.
0
S
10
096
.
2
Hz
10
77
.
4
1
f
1
T 7
6
c
c 





 
All conversions take 8 clock cycles so maximum conversion time is 8∙Tc
Tcon = 8∙Tc = 8 ∙(0.2096 S) = 1.667 S Ans
Lesson
8_et438b.pptx
Lesson
8_et438b.pptx
28
Example Solution (Continued)
What is the highest frequency that the system can convert without
folding or aliasing. Assume that the sample and hold time is zero.
Define the maximum conversion rate frequency, fcon(max)
Hz
250
,
596
S
10
677
.
1
1
T
1
f 6
con
(max)
con 


 
Signals must be sampled at least twice per period (Nyquist rate)
Hz
125
,
298
2
Hz
250
,
596
2
f
f
f
f
2
(max)
con
in
(max)
con
in





Ans
END LESSON 8: ANALOG SIGNAL
CONVERSION
ET 438b Sequential Control and Data Acquisition
Department of Technology
Lesson
8_et438b.pptx
29

More Related Content

Similar to Lesson 8_et438b (2).ppsx

Top schools in noida
Top schools in noidaTop schools in noida
Top schools in noidaEdhole.com
 
5942709.ppt
5942709.ppt5942709.ppt
5942709.pptmoh2020
 
Analog-Digital-Converter.ppt
Analog-Digital-Converter.pptAnalog-Digital-Converter.ppt
Analog-Digital-Converter.pptssuserf2cc17
 
Analog-Digital-Converter for nyquiest model.ppt
Analog-Digital-Converter for nyquiest model.pptAnalog-Digital-Converter for nyquiest model.ppt
Analog-Digital-Converter for nyquiest model.pptBEVARAVASUDEVAAP1813
 
Analog-Digital-Converter.ppt
Analog-Digital-Converter.pptAnalog-Digital-Converter.ppt
Analog-Digital-Converter.pptanilvasudev19
 
dac-180418111805 (1).pdf
dac-180418111805 (1).pdfdac-180418111805 (1).pdf
dac-180418111805 (1).pdfJawadaliMirjat
 
adc dac converter
adc dac converteradc dac converter
adc dac converterGaurav Rai
 
Top schools in noida
Top schools in noidaTop schools in noida
Top schools in noidaEdhole.com
 
Adc and dac
Adc and dacAdc and dac
Adc and dacboarddk1
 
05 analog control_sp15
05 analog control_sp1505 analog control_sp15
05 analog control_sp15John Todora
 
ADC Conveter Performance and Limitations.ppt
ADC Conveter Performance and Limitations.pptADC Conveter Performance and Limitations.ppt
ADC Conveter Performance and Limitations.pptBEVARAVASUDEVAAP1813
 
Chapter 10
Chapter 10Chapter 10
Chapter 10Tha Mike
 
Hardware combinational
Hardware combinationalHardware combinational
Hardware combinationalDefri Tan
 

Similar to Lesson 8_et438b (2).ppsx (20)

Ditial to Analog Converter
Ditial to Analog ConverterDitial to Analog Converter
Ditial to Analog Converter
 
Top schools in noida
Top schools in noidaTop schools in noida
Top schools in noida
 
5942709.ppt
5942709.ppt5942709.ppt
5942709.ppt
 
Analog-Digital-Converter.ppt
Analog-Digital-Converter.pptAnalog-Digital-Converter.ppt
Analog-Digital-Converter.ppt
 
Analog-Digital-Converter.ppt
Analog-Digital-Converter.pptAnalog-Digital-Converter.ppt
Analog-Digital-Converter.ppt
 
Analog-Digital-Converter for nyquiest model.ppt
Analog-Digital-Converter for nyquiest model.pptAnalog-Digital-Converter for nyquiest model.ppt
Analog-Digital-Converter for nyquiest model.ppt
 
Analog-Digital-Converter.ppt
Analog-Digital-Converter.pptAnalog-Digital-Converter.ppt
Analog-Digital-Converter.ppt
 
Chapter5 dek3133
Chapter5 dek3133Chapter5 dek3133
Chapter5 dek3133
 
dac-180418111805 (1).pdf
dac-180418111805 (1).pdfdac-180418111805 (1).pdf
dac-180418111805 (1).pdf
 
adc dac converter
adc dac converteradc dac converter
adc dac converter
 
adc-dac.pptx
adc-dac.pptxadc-dac.pptx
adc-dac.pptx
 
Top schools in noida
Top schools in noidaTop schools in noida
Top schools in noida
 
Adc and dac
Adc and dacAdc and dac
Adc and dac
 
Adc dac converter
Adc dac converterAdc dac converter
Adc dac converter
 
05 analog control_sp15
05 analog control_sp1505 analog control_sp15
05 analog control_sp15
 
Prese000
Prese000Prese000
Prese000
 
ADC Conveter Performance and Limitations.ppt
ADC Conveter Performance and Limitations.pptADC Conveter Performance and Limitations.ppt
ADC Conveter Performance and Limitations.ppt
 
Chapter 10
Chapter 10Chapter 10
Chapter 10
 
ADC LAB MANUAL.docx
ADC LAB MANUAL.docxADC LAB MANUAL.docx
ADC LAB MANUAL.docx
 
Hardware combinational
Hardware combinationalHardware combinational
Hardware combinational
 

More from Bkannan2

3. Types of Managers, Mangerial roles and skills.pptx
3. Types of Managers, Mangerial roles and skills.pptx3. Types of Managers, Mangerial roles and skills.pptx
3. Types of Managers, Mangerial roles and skills.pptxBkannan2
 
4. Evolution of Management - Scientific Management.pptx
4. Evolution of Management - Scientific Management.pptx4. Evolution of Management - Scientific Management.pptx
4. Evolution of Management - Scientific Management.pptxBkannan2
 
Pom-delegation of authority, centralization and decentralization
Pom-delegation of authority, centralization and decentralizationPom-delegation of authority, centralization and decentralization
Pom-delegation of authority, centralization and decentralizationBkannan2
 
8051 timer
8051 timer8051 timer
8051 timerBkannan2
 
Motorola parallel port
Motorola parallel portMotorola parallel port
Motorola parallel portBkannan2
 
Root locus
Root locusRoot locus
Root locusBkannan2
 
Energy band diagram
Energy band diagramEnergy band diagram
Energy band diagramBkannan2
 
Io interfacing
Io interfacingIo interfacing
Io interfacingBkannan2
 
8086 instruction set
8086 instruction set8086 instruction set
8086 instruction setBkannan2
 
Cisc pentium
Cisc pentiumCisc pentium
Cisc pentiumBkannan2
 

More from Bkannan2 (13)

3. Types of Managers, Mangerial roles and skills.pptx
3. Types of Managers, Mangerial roles and skills.pptx3. Types of Managers, Mangerial roles and skills.pptx
3. Types of Managers, Mangerial roles and skills.pptx
 
4. Evolution of Management - Scientific Management.pptx
4. Evolution of Management - Scientific Management.pptx4. Evolution of Management - Scientific Management.pptx
4. Evolution of Management - Scientific Management.pptx
 
IOT.pptx
IOT.pptxIOT.pptx
IOT.pptx
 
USP.ppt
USP.pptUSP.ppt
USP.ppt
 
Pom-delegation of authority, centralization and decentralization
Pom-delegation of authority, centralization and decentralizationPom-delegation of authority, centralization and decentralization
Pom-delegation of authority, centralization and decentralization
 
CNTFET
CNTFETCNTFET
CNTFET
 
8051 timer
8051 timer8051 timer
8051 timer
 
Motorola parallel port
Motorola parallel portMotorola parallel port
Motorola parallel port
 
Root locus
Root locusRoot locus
Root locus
 
Energy band diagram
Energy band diagramEnergy band diagram
Energy band diagram
 
Io interfacing
Io interfacingIo interfacing
Io interfacing
 
8086 instruction set
8086 instruction set8086 instruction set
8086 instruction set
 
Cisc pentium
Cisc pentiumCisc pentium
Cisc pentium
 

Recently uploaded

Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxpurnimasatapathy1234
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxDeepakSakkari2
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AIabhishek36461
 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxPoojaBan
 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineeringmalavadedarshan25
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130Suhani Kapoor
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSCAESB
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx959SahilShah
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSKurinjimalarL3
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024Mark Billinghurst
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile servicerehmti665
 
complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...asadnawaz62
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.eptoze12
 
Electronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfElectronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfme23b1001
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...VICTOR MAESTRE RAMIREZ
 
power system scada applications and uses
power system scada applications and usespower system scada applications and uses
power system scada applications and usesDevarapalliHaritha
 
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ
 

Recently uploaded (20)

Microscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptxMicroscopic Analysis of Ceramic Materials.pptx
Microscopic Analysis of Ceramic Materials.pptx
 
SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
Biology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptxBiology for Computer Engineers Course Handout.pptx
Biology for Computer Engineers Course Handout.pptx
 
Past, Present and Future of Generative AI
Past, Present and Future of Generative AIPast, Present and Future of Generative AI
Past, Present and Future of Generative AI
 
Heart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptxHeart Disease Prediction using machine learning.pptx
Heart Disease Prediction using machine learning.pptx
 
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
9953056974 Call Girls In South Ex, Escorts (Delhi) NCR.pdf
 
Internship report on mechanical engineering
Internship report on mechanical engineeringInternship report on mechanical engineering
Internship report on mechanical engineering
 
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
VIP Call Girls Service Hitech City Hyderabad Call +91-8250192130
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentation
 
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
★ CALL US 9953330565 ( HOT Young Call Girls In Badarpur delhi NCR
 
Application of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptxApplication of Residue Theorem to evaluate real integrations.pptx
Application of Residue Theorem to evaluate real integrations.pptx
 
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICSAPPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
APPLICATIONS-AC/DC DRIVES-OPERATING CHARACTERISTICS
 
IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024IVE Industry Focused Event - Defence Sector 2024
IVE Industry Focused Event - Defence Sector 2024
 
Call Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile serviceCall Girls Delhi {Jodhpur} 9711199012 high profile service
Call Girls Delhi {Jodhpur} 9711199012 high profile service
 
complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...complete construction, environmental and economics information of biomass com...
complete construction, environmental and economics information of biomass com...
 
Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.Oxy acetylene welding presentation note.
Oxy acetylene welding presentation note.
 
Electronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdfElectronically Controlled suspensions system .pdf
Electronically Controlled suspensions system .pdf
 
Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...Software and Systems Engineering Standards: Verification and Validation of Sy...
Software and Systems Engineering Standards: Verification and Validation of Sy...
 
power system scada applications and uses
power system scada applications and usespower system scada applications and uses
power system scada applications and uses
 
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
VICTOR MAESTRE RAMIREZ - Planetary Defender on NASA's Double Asteroid Redirec...
 

Lesson 8_et438b (2).ppsx

  • 1. LESSON 8: ANALOG SIGNAL CONVERSION ET 438b Sequential Control and Data Acquisition Department of Technology 1 Lesson 8_et438b.pptx
  • 2. LEARNING OBJECTIVES 2 Lesson 8_et438b.pptx After this presentation you will be able to:  Determine the resolution and accuracy of a digitized analog signal.  Explain how digital-to-analog converts operate  Explain how commonly used analog-to-digital converts operate  Compare and contrast the characteristics several commonly used analog-to-digital converters.
  • 3. ANALOG SIGNAL CONVERSION 3 Lesson 8_et438b.pptx Two Problems Input Analog-to-digital conversion (ADC): continuous signals converted to discrete values after sampling Output Digital-to-analog conversion (DAC) Discrete values converted t continuous signals Number of bits in digital signal determines the resolution of the digital signals. Resolution also depends on voltage span..
  • 4. RESOLUTION AND ACCURACY OF DIGITIZED SIGNALS 4 Lesson 8_et438b.pptx et438b-2.pptx 4 Resolution - smallest number that can be measured Accuracy - is the number measured correct ADC Resolution Max. digital value Infinite resolution line 0 -7 in binary 000 001 010 011 100 101 110 111 Full scale analog input Vin zero error pts. The output is a discretized version of the continuous input. Error determined by the step size of the digital representation
  • 5. RESOLUTION FORMULAS Lesson 8_et438b.pptx 5 Resolution, in terms of full scale voltage of ADC, is equal to value of Least Significant Bit (LSB) n fs LSB 2 V V  Where Vfs = full scale voltage n = number of bits VLSB = voltage value of LSB Finite bit digital conversion introduces quantization errors that range from ± VLSB /2 Maximum quantization error is equal to: Q E VLSB . . 2 Where Q.E. = quantization error VLSB = voltage value of LSB
  • 6. DIGITAL RESOLUTION AND ERROR IN ADC Lesson 8_et438b.pptx 6 000 001 010 011 100 101 110 111 Vin 1 LSB +1/2 LSB -1/2 LSB 10 V 1.25 8.75 Full scale analog input Error in natural binary coding is ±1/2 LSB Resolution 3-bit system n fs LSB 2 V V  V V LSB    10 2 10 8 125 3 . All voltage values between 8.75-10 V map to the 111 code Number of counts reduced by 1
  • 7. RESOLUTION FORMULAS Lesson 8_et438b.pptx Percent Resolution- Based on the number of transitions (2n-1) % 100 1 2 1 resolution % n    Where n = number of bits in digital representation Example 1: An 8-bit digital system is used to convert an analog signal to digital signal for a data acquisition system. The voltage range for the conversion is 0-10 V. Find the resolution of the system and the value of the least significant bit n=8 so signal converted to 256 different levels. Vfs=10 Vdc n fs LSB 2 V V  V 0390625 . 0 256 10 2 V 10 2 V V 8 n fs LSB     % 100 1 2 1 resolution % n    % 392 . 0 resolution % % 100 1 2 1 resolution % 8    
  • 8. Lesson 8_et438b.pptx 8 Example 2: The 8-bit converter of the previous example is replaced with a 12 bit system. Compute the resolution and the value of the least significant bit. Signal converted to 4096 different levels n = 12 n fs LSB 2 V V  Vfs = 10 Vdc n = 12 bits V V LSB fs n     2 10 2 10 4096 0 002441 12 V V . % 0244 . 0 resolution % % 100 1 2 1 resolution % 12     0 0.005 0.01 0.01 0.02 5 0 5 Digital Reconstruction time amplitude Difference between analog value and digital reconstruction is quantizing error
  • 9. Lesson 8_et438b.pptx 9 Digital-to-Analog Conversion Digital-to-Analog Converter (DAC) Transfer Function Analog Output Signal 000 001 010 011 100 101 110 111 FS Full scale Digital Code Digital Input Code (7/8)FS (3/4)FS (5/8)FS (1/2)FS (3/8)FS (1/4)FS (1/8)FS 0 DAC produces discrete voltage values for each digital code Infinite resolution line Maximum Voltage Output, Vomax 1 n max o LSB 2 V V resolution    Max output approaches FS as n goes to infinity
  • 10. TYPE OF DIGITAL-TO-ANALOG CONVERTERS 10 Lesson 8_et438b,pptx Binary-Weighted Resistor DAC Summing amplifier with digitally controlled inputs Rules of Ideal OP AMPs Iin = 0, Zin = infinity B0, B(n-3), B(n-2), ....B(n-1) take on values of 1 or 0 depending of the digital output controlling switch           n 1 i 1 i F 0 F F 0 R 2 V ) i n ( B R V R I V In I3 I2 I1 Iin IA IF B0 B(n-3) B(n-2) B(n-1) R MSB LSB R ) 2 ( V I ... , R 4 V I , R 2 V I , R V I 1 n n 3 2 1      n 3 2 1 A I .... I I I I                                           R ) 2 ( V 0 B ... R 4 V ) 3 n ( B R 2 V ) 2 n ( B R V ) 1 n ( B I 1 n A Formula for output V
  • 11. BINARY WEIGHTED DAC EXAMPLE 11 Lesson 8_et438b.pptx Example: For the binary-weighted resistor DAC below find the output when the input word is 11012 V = 10 Vdc, Rf = R       n 1 i 1 i F 0 R 2 V ) i n ( B R V n=4 B=11012 B(4-1)=B3=1 MSB B(4-2)=B2=1 B(4-3)=B1=0 B(4-4)=B0=1 LSB B3 B2 B1 B0 Since Rf = R                     R 2 V 0 B R 2 V 1 B R 2 V 2 B R 2 V 3 B R V 1 4 1 3 1 2 1 1 o                 3 2 1 0 o 2 V 1 2 V 0 2 V 1 2 V 1 R R V                 3 2 1 0 o 2 10 1 2 10 0 2 10 1 2 10 1 1 V   25 . 16 25 . 1 5 10 8 10 0 2 10 10 Vo                 
  • 12. R-2R BINARY LADDER DAC 12 Lesson 8_et438b.pptx R-2R Ladder produces binary weighted current values from only 2 resistance values. R= 10k 2R = 20k Req3 Req2 Req1 Vref = 10 Vdc Circuit Analysis Currents through each 2R value resistor directed to OP AMP or ground by digital switch Find Req3 by assuming all switches are closed to ground                    k 10 R k 10 k 20 R R k 20 k 10 k 20 R R k 20 k 10 k 20 k 20 R 3 eq 2 eq 3 eq 1 eq 2 eq 1 eq Network equivalent resistance is R Virtual Ground
  • 13. R-2R LADDER ANALYSIS (CONTINUED) 13 10k 10k V=10 Vdc 20k 20k 20k 20k V1 V2 V3 I1 I2 I3 I4 I I’ Iin Find Iin from Req3 and V V 5 5 10 k 10 mA 5 . 0 10 V R I V V mA 0.5 mA 0.5 - mA 1 I I I mA 5 . 0 k 20 V 10 R V I 2 2 1 2 1 in 1 1 1                    V 5 . 2 5 . 2 5 k 10 mA 25 . 0 5 V R ' I V V mA 0.25 mA 0.25 - mA 5 . 0 I I I' mA 25 . 0 k 20 V 5 R V I 3 4 2 3 2 1 3 2 2                    R1 R2 R3 R4 R5 R6 mA 125 . 0 k 20 V 5 . 2 R V I mA 125 . 0 k 20 V 5 . 2 R V I 6 3 4 5 3 3         mA 0 . 1 k 10 V 0 1 R V I 3 eq in     Current Values I1 = 0.5 mA MSB I2 = 0.25 mA I3 = 0.125 mA LSB Current values directed to OP AMP summing junction or ground. At summing junction: Vo =-Rf∙IT Lesson 8_et438b.pptx
  • 14. R-2R EXAMPLE 14 Find the output voltage for the R-2R DAC shown below. The digital input is 1102. R=15k, 2R=30k and Rf=15k , Vref=5 Vdc IT I0 I1 I2 Req Find currents I0, I1, I2 and use formula V0 = - ITRf All other currents reduced by factor of 2. Lesson 8_et438b.pptx
  • 15. COMMERCIAL DACS: DAC0800 FAMILY 15 Devices used in practical designs use integrated R-2R networks and transistor switching. They have TTL compatible inputs. 4 2 14 Iref 8-bit binary code converted to 256 levels of I0. Full scale value set by reference current. 1 bit change produces change of 1/256 in I0 Design Equations I V R ref ref ref  I I D ref 0 256        I V R fs ref ref        255 256 D = decimal equivalent of binary input Full scale output Lesson 8_et438b.pptx
  • 16. DAC0800 EXAMPLE 16 Use OP AMP to convert current to voltage. The reference voltage is +10 V dc and the reference resistance is 5k. The value of Rf = 2.5k a.) Digital input 000011012 b.) Digital input 100011012 mA 0 . 2 k 5 V 10 R V I ref ref ref     a.) convert binary to decimal Io 13 D 13 1 4 8 1101 ) 1 ( 2 ) 0 ( 2 ) 1 ( 2 ) 1 ( 2 1101 2 0 1 2 3 2          I I D ref 0 256        A 101.5625 mA 1015625 . 0 256 13 mA) 0 . 2 ( I0           Io enters so negative Find I0 V 253906 . 0 ) k mA)(2.5 1015625 . 0 ( R ) I ( V f 0 0          Lesson 8_et438b.pptx
  • 17. DAC0800 EXAMPLE (CONTINUED) 17 b.) Digital input 100011012 Io mA 0 . 2 k 5 V 10 R V I ref ref ref     b.) convert binary to decimal 141 D 141 1 4 8 128 1101 ) 1 ( 2 ) 0 ( 2 ) 1 ( 2 ) 1 ( 2 ) 0 ( 2 ) 0 ( 2 ) 0 ( 2 ) 1 ( 2 10001101 2 0 1 2 3 4 5 6 7 2               mA 1015626 . 1 256 141 ) 0 . 2 ( 256 D I I ref 0                 Io enters so negative V 753906 . 2 ) k mA)(2.5 1015625 . 1 ( R ) I ( V f 0 0          I0 mA 0.8984375 mA 1015625 . 1 0 . 2 I I I 0 ref 0      Lesson 8_et438b.pptx
  • 18. ANALOG-TO-DIGITAL CONVERSION (ADC) 18 Converting continuous signals to digital values requires 3 steps 1 Sample analog signal. Nyquist rate or above Need a minimum of 2x highest frequency Higher rates ease signal reconstruction 2 Hold analog sample while conversion is in progress 3 Convert analog value to digital value (binary) Lesson 8_et438b.pptx
  • 19. TYPES OF ANALOG-TO-DIGITAL CONVERTERS 19 Integrating • High Accuracy • Low Speed • Low Cost • Not commonly used in DAQ Tracking (Counter Type) • High Speed in tracking mode • Slow Conversion times (Some Sub-types) • Noise Sensitive Successive Approximation • Conversion time independent of input value • Most commonly used in DAQ applications Lesson 8_et438b.pptx
  • 20. 20 TYPES OF ANALOG-TO-DIGITAL CONVERTERS “Flash” or Parallel • Multi- Comparators • Highest Speed • High Cost Delta/Sigma • One bit Conversion • High Resolution • Ratio of 1-to-0 represent input • Uses digital filtering Lesson 8_et438b.pptx
  • 21. COUNTER-TYPE ANALOG-TO-DIGITAL CONVERTER OPERATION 21 Clock AND C O U N T E R D A C + - V+ V- A B V Digital output V When V+ = V- 1.) Input a constant value. Requires a sample and hold circuit. (Not Shown) 2.) AND gate passes clock signal when point A logic high 3.) Counter incremented by signal B 4.) DAC output increases as counter output increases Lesson 8_et438b.pptx
  • 22. 22 COUNTER-TYPE ANALOG-TO-DIGITAL CONVERTER OPERATION Clock AND C O U N T E R D A C + - V+ V- A B V Digital output Input V Time Input Value DAC Output Value 5.) Counter stops when DAC V exceeds input V Tracking A/D converters use up/down counters to minimize conversion times Conversion time depends on the input level Lesson 8_et438b.pptx
  • 23. SUCCESSIVE APPROXIMATION ADC 23 Counter A/D converters conversion time proportional to the input level. Improve conversion speed using a binary search technique. Procedure 1. Set MSB to 1 2. Test input, Vin, against DAC output, VDAC 3. If VDAC > Vin, reset bit to 0, else bit = 1 (VDAC < Vin) 4. Move to next bit and repeat steps 1 - 3 The input is converted to digital value in n steps, where n = the number of bits in digital representation Lesson 8_et438b.pptx
  • 24. SUCCESSIVE APPROXIMATION ADCS 24 Successive Approx. Register Lesson 8_et438b.pptx
  • 25. SUCCESSIVE APPROXIMATION ADC 25 Example: An 8-bit successive approximation ADC has an input voltage of 13.478 V. The ADC full scale input voltage is 20 V. Use the successive approximation algorithm given previously to determine the binary value. Assuming that each bit test takes a single clock cycle, determine the maximum conversion time for the ADC if it is clocked at 4.77 MHz. Lesson 8_et438b.pptx
  • 26. 0 26 Voltage Weight 10.0 5.0 2.5 1.25 0.625 0.3125 0.15625 0.078125 Cycle Bit D7 D6 D5 D4 D3 D2 D1 D0 1 2 3 4 5 6 7 8 Example Solution 1. 10<13.478 bit remains set 1 1 0 0 0 0 0 0 0 Set D7 0 Set D6 2. 10+5>13.478 reset bit 0 0 0 0 0 0 1 0 0 0 0 0 0 0 1 0 Set D5 1 3. 10+2.5<13.478 bit remains set 1 0 0 0 0 0 1 0 Set D4 4. 10+2.5+1.25>13.478 reset bit 1 1 0 0 0 0 0 1 0 Set D3 1 5. 10+2.5+0.625<13.478 bit remains set 1 0 1 0 0 0 1 0 Set D2 1 6. 10+2.5+0.625+0.3125<13.478 bit remains set 1 0 1 1 0 0 1 0 Set D1 1 7. 10+2.5+0.625+0.3125+.15625>13.478 bit reset 1 0 1 1 0 0 1 0 Set D0 8. 10+2.5+0.625+0.3125+.15625+0.078125>13.478 bit reset 1 Lesson 8_et438b.pptx
  • 27. 27 Example Solution (Continued) Final binary value: B=101011002 Final voltage: 10+2.5+0.625+0.3125 = 13.4375 V Quantization Error voltage: VQE=13.478 V-13.4375 V = 0.0405 V or 40.5 mV Determine conversion time Define Tc as clock period = 1/fc Where fc = ADC Clock = 4.77 MHz Summary Results S 2096 . 0 S 10 096 . 2 Hz 10 77 . 4 1 f 1 T 7 6 c c         All conversions take 8 clock cycles so maximum conversion time is 8∙Tc Tcon = 8∙Tc = 8 ∙(0.2096 S) = 1.667 S Ans Lesson 8_et438b.pptx
  • 28. Lesson 8_et438b.pptx 28 Example Solution (Continued) What is the highest frequency that the system can convert without folding or aliasing. Assume that the sample and hold time is zero. Define the maximum conversion rate frequency, fcon(max) Hz 250 , 596 S 10 677 . 1 1 T 1 f 6 con (max) con      Signals must be sampled at least twice per period (Nyquist rate) Hz 125 , 298 2 Hz 250 , 596 2 f f f f 2 (max) con in (max) con in      Ans
  • 29. END LESSON 8: ANALOG SIGNAL CONVERSION ET 438b Sequential Control and Data Acquisition Department of Technology Lesson 8_et438b.pptx 29