SlideShare a Scribd company logo
1 of 30
Download to read offline
Chapter 34 Solutions

34.1         Since the light from this star travels at 3.00 × 108 m/s, the last bit of light will hit the Earth i n
               6.44 × 1018 m
                              = 2.15 × 1010 s = 680 years. Therefore, it will disappear from the sky in the year
             3.00 × 108 m / s
             1999 + 680 = 2.68 × 10 3 A.D.




                    1         1
34.2         v=            =      c = 0.750c = 2.25 × 108 m/s
                   kµ 0 e0   1.78



             E                              220
                                             B = 3.00 × 10 ;
34.3         B =c           or                            8
                                                                          so           B = 7.33 × 10–7 T = 733 nT




             Emax
34.4         Bmax = v is the generalized version of Equation 34.13.

                      Emax      7.60 × 10 −3 V / m  N ⋅ m   T ⋅ C ⋅ m 
             Bmax =        =                                               = 3.80 × 10–11 T = 38.0 pT
                       v     (2 / 3)(3.00 × 108 m / s)  V ⋅ C   N ⋅ s 




34.5   (a)   fλ = c         or              f (50.0 m) = 3.00 × 108 m/s         so       f = 6.00 × 106 Hz = 6.00 MHz

             E                              22.0
                                            Bmax = 3.00 × 10
                                                             8
       (b)
             B =c
                            or                                                  so       Bmax = (73.3 nT)(–k)

                2π    2π
       (c)   k=    = 50.0 = 0.126 m–1                       and           ω = 2π f = 2π (6.00 × 106 s–1) = 3.77 × 107
                 λ
             rad/s

             B = Bmax cos(kx – ω t) = (73.3 nT) cos (0.126x – 3.77 × 107 t)(–k)




34.6         ω = 2π f = 6.00π × 109 s–1 = 1.88 × 1010 s-1

                  2π  ω   6.00π × 109 s–1                                        E      300 V/m
             k=      =c =                 = 20.0π = 62.8 m–1              Bmax = c =                = 1.00 µT
                   λ      3.00 × 108 m/s                                             3.00 × 108 m/s

                 
              E = 300
                 
                      V
                      m
                                 (
                         cos 62.8x − 1.88 × 1010 t   )                    B = (1.00 µT) cos (62.8x – 1.88 × 1010 t)




                                     © 2000 by Harcourt, Inc. All rights reserved.
Chapter 34 Solutions 299




                    E      100 V/m
34.7     (a)   B=     =                 = 3.33 × 10–7 T = 0.333 µT
                    c   3.00 × 10 8 m/s

                  2π        2π
         (b)   λ= k =                   = 0.628 µm
                      1.00 × 10 7 m – 1

                    c       3.00 × 108 m/s
         (c)   f=       =                  = 4.77 × 1014 Hz
                    λ       6.28 × 10–7 m




34.8           E = Emax cos(kx – ω t)

               ∂E                                         ∂E
                  = –Emax sin(kx – ω t)(k)                   = –Emax sin(kx – ω t)(–ω)
               ∂x                                         ∂t
               ∂ 2E                                       ∂ 2E
                    = –Emax cos(kx – ω t)(k 2)                 = –Emax cos(kx – ω t)(–ω)2
               ∂x2                                        ∂t2
                                                              ∂E          ∂ 2E
               We must show:                                       = µ 0e0 2
                                                              ∂x 2
                                                                          ∂t
               That is,                                        ( )
                                                           − k 2 Emax cos( kx − ω t ) = − µ 0e0 ( −ω ) Emax cos( kx − ω t )
                                                                                                     2


                                                                         2
                                                              k2  1       1
               But this is true, because                          =   = 2 = µ 0 e0
                                                              ω 2
                                                                     fλ  c
               The proof for the wave of magnetic field is precisely similar.




*34.9          In the fundamental mode, there is a single loop in the standing wave between the plates.
               Therefore, the distance between the plates is equal to half a wavelength.

               λ = 2L = 2(2.00 m) = 4.00 m

                              c   3.00 × 108 m/s
               Thus, f =        =                = 7.50 × 10 7 Hz = 75.0 MHz
                              λ       4.00 m




                                          λ
*34.10         dA to A = 6 cm ± 5% =
                                          2

               λ = 12 cm ± 5%




                                      © 2000 by Harcourt, Inc. All rights reserved.
300 Chapter 34 Solutions



                                     (              )
           v = λ f = (0.12 m ± 5%) 2.45 × 10 9 s −1 =      2.9 × 108 m s ± 5%

                   U     Uc
           S=I=
                   A t = V = uc
34.11


             Energy       I   1000 W/m2
                       =u= =                = 3.33 µ J/m3
           Unit Volume    c  3.00 × 108 m/s




                    P          4.00 × 10 3 W
34.12      Sav =          =                     = 7.68 µW/m 2
                   4π r 2   4π (4.00 × 1609 m)2

           Emax = 2µ 0 cSav = 0.0761 V / m

           ∆Vmax = Emax · L = (76.1 mV/m)(0.650 m) = 49.5 mV (amplitude)        or   35.0 mV (rms)




34.13      r = ( 5.00 mi )(1609 m / mi ) = 8.04 × 10 3 m

                 P          250 × 10 3 W
           S=          =                      = 307 µW/m 2
                4π r 2   4π (8.04 × 10 3 m) 2
Chapter 34 Solutions 301


Goal Solution
What is the average magnitude of the Poynting vector 5.00 miles from a radio transmitter broadcasting
isotropically with an average power of 250 kW?

G: As the distance from the source is increased, the power per unit area will decrease, so at a distance of
   5 miles from the source, the power per unit area will be a small fraction of the Poynting vector near
   the source.

O: The Poynting vector is the power per unit area, where A is the surface area of a sphere with a 5-mile
   radius.

A : The Poynting vector is


    In meters,                        r = ( 5.00 mi )(1609 m / mi ) = 8045 m


                                   250 × 10 3 W
    and the magnitude is S =                     = 3.07 × 10 −4 W / m 2
                                   (4 π )(8045)2

                                                                                          2
L : The magnitude of the Poynting vector ten meters from the source is 199 W/m , on the order of a
    million times larger than it is 5 miles away! It is surprising to realize how little power is actually
    received by a radio (at the 5-mile distance, the signal would only be about 30 nW, assuming a
                                2
    receiving area of about 1 cm ).

                      100 W
34.14         I=                = 7.96 W/m2
                   4π (1.00 m)2

                  I
              u = c = 2.65 × 10 – 8 J/m3 = 26.5 n J/m3

                     1
        (a)   uE = 2 u = 13.3 n J/m3

                     1
        (b)   uB = 2 u = 13.3 n J/m3


        (c)   I = 7.96 W/m2




34.15         Power output = (power input)(efficiency)

                                          power out   1.00 × 106 W
              Thus,      Power input =              =              = 3.33 × 106 W
                                             eff          0.300

                              P      3.33 × 10 6 W
              and        A=     =                   = 3.33 × 10 3 m 2
                              I   1.00 × 10 3 W/m 2




                                     © 2000 by Harcourt, Inc. All rights reserved.
302 Chapter 34 Solutions


                     2
                    Bmax c    P
*34.16         I=          =
                     2µ 0    4π r 2

                         P   2µ 0         (10.0 × 10 )(2)(4π × 10 ) =
                                                       3             −7
               Bmax =    4π r 2   c  =                                     5.16 × 10–10 T
                                           4 π ( 5.00 × 10 ) ( 3.00 × 10 )
                                                           3 2            8



               Since the magnetic field of the Earth is approximately 5 × 10 –5 T, the Earth's field is some
               100,000 times stronger.




34.17    (a)   P = I 2R = 150 W; A = 2π rL = 2π (0.900 × 10–3 m)(0.0800 m) = 4.52 × 10 –4 m2
                    P
               S=     = 332 kW/m2 (points radially inward)
                    A
                        I         µ0(1.00)
         (b)   B = µ 0 2π r =                    = 222 µT
                              2π (0.900 × 10 –3)

                    ∆V   IR    150 V
               E=      = L = 0.0800 m = 1.88 kV/m
                    ∆x
                         EB
               Note: S = µ = 332 kW/m2
                          0
Chapter 34 Solutions 303


34.18   (a)   E · B = (80.0 i + 32.0 j – 64.0 k)(N/C) · (0.200 i + 0.0800 j + 0.290 k)µT

              E · B= (16.0 + 2.56 – 18.56)N 2 · s/C 2 · m = 0



                   1          (80.0 i + 32.0 j – 64.0 k)(N/C) × (0.200 i + 0.0800 j + 0.290 k)µT
                   µ 0 E × B=
        (b)   S=
                                                       4π × 10 –7 T · m/A

                   (6.40 k – 23.2 j – 6.40 k + 9.28 i – 12.8 j + 5.12 i)10 – 6 W/m 2
              S=
                                              4π × 10–7

              S = (11.5 i – 28.6 j) W/m 2      = 30.9 W/m2 at – 68.2° from the +x axis




34.19         We call the current I rms and the intensity I . The power radiated at this frequency is

                                             0.0100(∆Vrms)2
              P = (0.0100)(∆Vrms)Irms =                     = 1.31 W
                                                   R

              If it is isotropic, the intensity one meter away is

                   P     1.31 W                           c   2
              I=     =              = 0.104 W/m2 = Sav = 2µ Bmax
                   A   4π (1.00 m)2                         0




              Bmax =
                          2µ 0 I
                                 =
                                      (                      )(
                                     2 4 π × 10 −7 T ⋅ m / A 0.104 W / m 2   )=   29.5 nΤ
                           c                   3.00 × 10 m / s
                                                         8




                               useful power output           700 W 
*34.20 (a)    efficiency =                         × 100% =            × 100% = 50.0%
                                total power input            1400 W 

                      P        700 W
        (b)   Sav =     =                      = 2.69 × 10 5 W m 2
                      A (0.0683 m )(0.0381 m )

              Sav = 269 kW m 2 toward the oven chamber

                       2
                      Emax
        (c)   Sav =
                      2µ 0 c

                                  T ⋅ m            m              W                 V
              Emax = 2 4 π × 10 −7         3.00 × 108      2.69 × 10 5      = 1.42 × 10 4   = 14.2 kV m
                                   A               s              m 2
                                                                                          m




                                      © 2000 by Harcourt, Inc. All rights reserved.
304 Chapter 34 Solutions


                         Emax   7.00 × 105 N/C
34.21   (a)   Bmax =          =                = 2.33 mT
                          c     3.00 × 108 m/s
                    2
                  Emax        (7.00 × 10 5)2
        (b)   I = 2µ c =                            = 650 MW/m 2
                    0    2(4π × 10 –7 )(3.00 × 108)

                   P                               π
        (c)   I=     : P = I A = (6.50 × 108 W/m2) 4 (1.00 × 10 – 3 m) 2 = 510 W
                   A



                                     2
                                    Emax                                       Pµ 0 c         (100 W)µ 0 c
34.22         Power = SA =                 (4 π r 2 ); solving for r ,   r=            =                     = 5.16 m
                                    2µ 0 c                                    Emax 2 π
                                                                               2
                                                                                           2 π (15.0 V / m)2



                      (10.0 × 10 − 3 )W
34.23   (a)   I=                         = 4.97 kW/m2
                   π (0.800 × 10 − 3 m)2

                        I 4.97 × 10 3 J / m 2 ⋅ s
        (b)   uav =       =                       = 16.6 µ J/m3
                        c   3.00 × 108 m / s



34.24   (a)   E = cB = ( 3.00 × 10 8 m/s)(1.80 × 10 − 6 T) = 540 V/m

                        B2 (1.80 × 10 − 6 )2
        (b)   uav =        =                 = 2.58 µ J/m3
                        µ0   4 π × 10 − 7

        (c)   Sav = cuav = (3.00 × 108 )(2.58 × 10 − 6 ) = 773 W/m2

        (d) This is 77.3% of the flux in Example 34.5 . It may be cloudy, or the Sun may be setting.




                                           S      25.0
34.25         For complete absorption, P = c =            = 83.3 nPa
                                               3.00 × 108



*34.26 (a)                      (                 )(                 )
              P = (Sav )( A) = 6.00 W / m 2 40.0 × 10 −4 m 2 = 2.40 × 10 −2 J / s

              In one second, the total energy U impinging on the mirror is 2.40 × 10–2 J. The momentum p
              transferred each second for total reflection is

                 2U  2(2.40 × 10–2 J)                 kg · m
              p= c =                  = 1.60 × 10 –10        (each second)
                     3.00 × 10 m/s
                              8                         s

                  dp   1.60 × 10–10 kg · m/s
        (b)   F = dt =                       = 1.60 × 10–10 N
                                1s
Chapter 34 Solutions 305


                                                      (2)(1340 W / m 2 )
34.27   (a)   The radiation pressure is                                  = 8.93 × 10 −6 N / m 2
                                                      3.00 × 108 m / s 2

              Multiplying by the total area,          A = 6.00 × 105 m2 gives: F = 5.36 N

                                                          F   5.36 N
        (b)   The acceleration is:                    a = m = 6000 kg = 8.93 × 10– 4 m/s2

                                                           1
        (c)   It will take a time t where:            d = 2 at 2



                                                      t=
                                                           2d
                                                              =
                                                                      (
                                                                     2 3.84 × 108 m    )           = 9.27 × 10 5 s = 10.7 days
                                                                   (8.93 × 10                  )
              or                                                                −4         2
                                                            a                        m/s




                                                                                                   2Sav
34.28         The pressure P upon the mirror is                                        P=
                                                                                                    c

                                                                                                    P
              where A is the cross-sectional area of the beam and                      Sav =
                                                                                                    A

                                                                                                           2P     2P
              The force on the mirror is then                                          F = PA =               A =
                                                                                                           c  A    c

                                                                                                   2(100 × 10 −3 )
              Therefore,                                                               F=                          = 6.67 × 10–10 N
                                                                                                     (3 × 108 )




                    P    E2
34.29         I=        = max
                   π r 2 2µ 0 c

                        P ( 2µ 0 c )
        (a)   Emax =                   = 1.90 kN/C
                           π r2

               15 × 10–3 J/s
        (b)                       (1.00 m) = 50.0 pJ
              3.00 × 108 m/s

                 U   5 × 10–11
        (c)   p= c =            = 1.67 × 10–19 kg · m/s
                     3.00 × 108




                                        © 2000 by Harcourt, Inc. All rights reserved.
306 Chapter 34 Solutions


34.30   (a)   If P S is the total power radiated by the Sun, and rE and r M are the radii of the orbits of the
              planets Earth and Mars, then the intensities of the solar radiation at these planets are:

                                                   PS                                                     PS
                                         IE =                              and                    IM =
                                                  4 π rE
                                                       2
                                                                                                         4π rM
                                                                                                             2


                                                      2                                                  2
                                            r                 1.496 × 1011 m 
              Thus,
                                             rM 
                                                              (
                                   I M = IE  E  = 1340 W m 2                )
                                                                2.28 × 1011 m 
                                                                                 = 577 W/m
                                                                                            2



        (b)   Mars intercepts the power falling on its circular face:


                         (         ) (                        )(                   )
                                                                                       2
              P M = I M π RM = 577 W m 2 π 3.37 × 106 m
                           2
                                                                                           = 2.06 × 1016 W

                                                                                                         SM I M
        (c)   If Mars behaves as a perfect absorber, it feels pressure P =                                  =
                                                                                                          c   c


              and force F = PA =
                                         IM
                                          c
                                              (2  P
                                            π RM = M =
                                                   c
                                                          )
                                                       2.06 × 1016 W
                                                       3.00 × 108 m s
                                                                      = 6.87 × 107 N


        (d) The attractive gravitational force exerted on Mars by the Sun is


              Fg =
                   GMS M M
                           =
                                     (                                    )(
                             6.67 × 10 −11 N ⋅ m 2 kg 2 1.991 × 10 30 kg 6.42 × 10 23 kg            )(
                                                                                         = 1.64 × 10 21 N
                                                                                                                      )
                                                                      (                       )
                      2                                            2
                     rM                            2.28 × 10 m
                                                            11



              which is ~1013 times stronger                        than the repulsive force of (c).




34.31   (a)   The total energy absorbed by the surface is

                  1
                   ( )     1 
                            
                                  W 
                                                      (
              U = 2 I At =  2 750 2  0.500 × 1.00 m 2 (60.0 s) = 11.3 kJ
                                  m 
                                                                               )
        (b)   The total energy incident on the surface in this time is 2U = 22.5 kJ, with U = 11.3 kJ being
              absorbed and U = 11.3 kJ being reflected. The total momentum transferred to the surface is

              p = (momentum from absorption ) + (momentum from reflection )


              p=
                    U   2U  3U 3 11.3 × 10 J
                        +      =   =
                                                3
                                                  (                   )
                                                    = 1.13 × 10 −4 kg ⋅ m s
                    c  c     c   3.00 × 108 m s


                      µ 0 Jmax c
                           2
                                                                   (4 π × 10 −7 )Jmax (3.00 × 108 )
                                                                                  2
34.32         Sav =                      or               570 =                                                  so       Jmax = 3.48 A/m2
                           8                                                       8
Chapter 34 Solutions 307


                            µ J 2 c
34.33    (a)   P = Sav A =  0 max  A
                               8   

                   4 π × 10 −7 (10.0)2 (3.00 × 108 ) 
               P=                                     (1.20 × 0.400) = 2.26 kW
                                   8                 

                       µ 0 Jmax c (4 π × 10 −7 (10.0)2 (3.00 × 108 )
                            2
         (b)   Sav =             =                                   = 4.71 kW/m2
                            8                      8




*34.34         P=
                    ( ∆V )2   or P ∝ ( ∆V )
                                               2
                       R                                                                                   eceiving
                                                                                             ∆y       l    ntenna
                                                                                                  θ
               ∆V = ( − )Ey ⋅ ∆y = Ey ⋅ l cos θ

               ∆V ∝ cos θ       so         P ∝ cos 2 θ

         (a)   θ = 15.0°:     P = P max cos 2 (15.0°) = 0.933P max = 93.3%

         (b)   θ = 45.0°:      P = P max cos 2 ( 45.0°) = 0.500P max = 50.0%

         (c)   θ = 90.0°:      P = P max cos 2 (90.0°) = 0




34.35    (a)   Constructive interference occurs when d cos θ = n λ for
               some integer n.

                           λ     λ 
               cos θ = n     = n       = 2n n = 0, ± 1, ± 2, . . .
                           d     λ / 2

               ∴ strong signal @ θ = cos–1 0 = 90°, 270°


         (b)   Destructive interference occurs when

                            2n + 1
               d cos θ =             λ:                  cos θ = 2n + 1
                            2 

               ∴ weak signal @ θ = cos–1 (±1) = 0°, 180°




                                          © 2000 by Harcourt, Inc. All rights reserved.
308 Chapter 34 Solutions


Goal Solution
Two radio-transmitting antennas are separated by half the broadcast wavelength and are driven in phase
with each other. In which directions are (a) the strongest and (b) the weakest signals radiated?
G: The strength of the radiated signal will be a function of the location around the two antennas and
   will depend on the interference of the waves.
O: A diagram helps to visualize this situation. The two antennas are driven in phase, which means
   that they both create maximum electric field strength at the same time, as shown in the diagram. The
   radio EM waves travel radially outwards from the antennas, and the received signal will be the vector
   sum of the two waves.
A : (a) Along the perpendicular bisector of the line joining the antennas, the distance is the same to
    both transmitting antennas. The transmitters oscillate in phase, so along this line the two signals will
    be received in phase, constructively interfering to produce a maximum signal strength that is twice
    the amplitude of one transmitter.
    (b) Along the extended line joining the sources, the wave from the more distant antenna must
    travel one-half wavelength farther, so the waves are received 180° out of phase. They interfere
    destructively to produce the weakest signal with zero amplitude.
L : Radio stations may use an antenna array to direct the radiated signal toward a highly-populated
    region and reduce the signal strength delivered to a sparsely-populated area.

                  c                                λ
34.36        λ=     = 536 m          so       h=     = 134 m
                  f                                4

                  c                                λ
             λ=     = 188 m          so       h=     = 46.9 m
                  f                                4



34.37        For the proton:         ΣF = ma ⇒ qvB sin 90.0° = mv 2 R

             The period and frequency of the proton’s circular motion are therefore:


             T=
                  2 πR 2 π m
                      =      =
                                          (
                                 2 π 1.67 × 10 −27 kg    )= 1.87 × 10 −7 s   f = 5.34 × 106 Hz .
                    v   qB       (                  )
                               1.60 × 10 −19 C (0.350 T )

                                                                                  c   3.00 × 108 m s
             The charge will radiate at this same frequency, with            λ=     =                = 56.2 m
                                                                                  f   5.34 × 106 Hz



                                                                                                           mv 2
34.38        For the proton, ΣF = ma yields                                              qvB sin 90.0° =
                                                                                                            R
                                                                                              2 πR 2 π m
             The period of the proton’s circular motion is therefore:                    T=       =
                                                                                                v   qB
             The frequency of the proton's motion is                                     f = 1/ T

                                                                                              c        2 π mc
             The charge will radiate electromagnetic waves at this frequency, with       λ=     = cT =
                                                                                              f          qB
Chapter 34 Solutions 309


*34.39         From the electromagnetic spectrum chart and accompanying text discussion, the following
               identifications are made:

                        Frequency             Wavelength,              Classification
                            f                   λ=c f
                 2 Hz = 2 × 100 Hz               150 Mm                  Radio
                 2 kHz = 2 × 10 3 Hz             150 km                  Radio
                 2 MHz = 2 × 106 Hz              150 m                   Radio
                 2 GHz = 2 × 10 9 Hz              15 cm                Microwave
                 2 THz = 2 × 1012 Hz             150 µ m                Infrared
                 2 PHz = 2 × 1015 Hz             150 nm                Ultraviolet
                 2 EHz = 2 × 1018 Hz             150 pm                   x-ray
                 2 ZHz = 2 × 10 21 Hz            150 fm                Gamma ray
                 2 YHz = 2 × 10 24 Hz            150 am                Gamma Ray

                      Wavelength,               Frequency              Classification
                            λ                     f =c λ
                    2 km = 2 × 10 3 m          1.5 × 10 5 Hz               Radio
                    2 m = 2 × 100 m            1.5 × 108 Hz                Radio
                    2 mm = 2 × 10 −3 m         1.5 × 1011 Hz            Microwave
                    2 µ m = 2 × 10 −6 m        1.5 × 1014 Hz              Infrared
                    2 nm = 2 × 10 −9 m         1.5 × 1017 Hz         Ultraviolet/x-ray
                    2 pm = 2 × 10 −12 m        1.5 × 10 20 Hz        x-ray/Gamma ray
                    2 fm = 2 × 10 −15 m        1.5 × 10 23 Hz           Gamma ray
                    2 am = 2 × 10 −18 m        1.5 × 10 26 Hz           Gamma ray




                    c       3 × 108 m/s
*34.40 (a)     f=       =               ~ 108 Hz radio wave
                    λ          1.7 m

         (b)   1000 pages, 500 sheets, is about 3 cm thick so one sheet is about 6 × 10 – 5 m thick

                    3 × 108 m/s
               f=                 ~ 1013 Hz infrared
                    6 × 10–5 m



                    c   3.00 × 108 m/s
*34.41         f=     =                = 5.45 × 1014 Hz
                    λ   5.50 × 10–7 m



                  c   3.00 × 108 m/s                                  180 m
34.42    (a)   λ= f =                = 261 m               so
                                                                      261 m = 0.690 wavelengths
                       1150 × 103/s

                  c   3.00 × 108 m/s                                  180 m
         (b)   λ= f =                = 3.06 m              so
                                                                      3.06 m = 58.9 wavelengths
                       98.1 × 106/s




                                    © 2000 by Harcourt, Inc. All rights reserved.
310 Chapter 34 Solutions


34.43    (a)   fλ = c         gives             (5.00 × 1019 Hz)λ = 3.00 × 108 m/s:                λ = 6.00 × 10 –12 m = 6.00 pm


         (b)   fλ = c         gives             (4.00 × 109 Hz)λ = 3.00 × 108 m/s: λ = 0.075 m = 7.50 cm



                                         1                                 1
*34.44         Time to reach object = 2 (total time of flight) = 2 (4.00 × 10 – 4 s) = 2.00 × 10 – 4 s


               Thus, d = vt = (3.00 × 10 8 m/s)(2.00 × 10 – 4 s) = 6.00 × 10 4 m = 60.0 km




                                                                                                   100 × 10 3 m
34.45          The time for the radio signal to travel 100 km is:                        tr =                     = 3.33 × 10 – 4 s
                                                                                                 3.00 × 108 m / s

                                                                                                 3.00 m
                                                                                                 343 m/s = 8.75 × 10
                                                                                                                     –3
               The sound wave to travel 3.00 m across the room in:                       ts =                           s


               Therefore, listeners 100 km away will receive the news before the people in the newsroom
               by a total time difference of

               ∆t = 8.75 × 10– 3 s – 3.33 × 10– 4 s = 8.41 × 10– 3 s



                                                                                                c 3.00 × 108 m s
*34.46         The wavelength of an ELF wave of frequency 75.0 Hz is                    λ=        =              = 4.00 × 106 m
                                                                                                f    75.0 Hz

               The length of a quarter-wavelength antenna would be                      L = 1.00 × 106 m = 1.00 × 10 3 km

                                                                                                        0.621 mi 
               or                                                                        L = (1000 km )             = 621 mi
                                                                                                        1.00 km 

               Thus, while the project may be theoretically possible, it is not very practical.



                                                  c          3.00 × 108 m / s
34.47    (a)   For the AM band, λ max =                  =                    = 556 m
                                                 f min        540 × 10 3 Hz

                                                  c          3.00 × 108 m / s
                                      λ min =            =                    = 187 m
                                                f max         1600 × 10 3 Hz

                                                  c          3.00 × 108 m / s
         (b)   For the FM band,       λ max =            =                    = 3.41 m
                                                 f min        88.0 × 106 Hz

                                                  c          3.00 × 108 m / s
                                      λ min =            =                    = 2.78 m
                                                f max         108 × 106 Hz
Chapter 34 Solutions 311


34.48           CH 4 : fmin = 66 MHz               λ max = 4.55 m

                                  fmax = 72 MHz             λ min = 4.17 m

                CH 6 : fmin = 82 MHz               λ max = 3.66 m

                                  fmax = 88 MHz             λ min = 3.41 m

                CH 8 : fmin = 180 MHz              λ max = 1.67 m

                                  fmax = 186 MHz            λ min = 1.61 m




34.49    (a)    P = SA = (1340 W/m2)4π (1.496 × 1011 m)2 = 3.77 × 1026 W

                       2
                     cBmax                                    2 µ 0S     2(4 π × 10 −7 N / A 2 )(1340 W / m 2 )
         (b)    S=                     so          Bmax =            =                                          = 3.35 µT
                      2µ 0                                       c                  3.00 × 108 m / s


                                                                          (         )(           )
                      2
                     Emax
                S=                     so          Emax = 2µ 0 cS = 2 4 π × 10 −7 3.00 × 108 (1340) = 1.01 kV/m
                     2µ 0 c




*34.50          Suppose you cover a 1.7 m-by-0.3 m section of beach blanket. Suppose the elevation angle of
                the Sun is 60°. Then the target area you fill in the Sun's field of view is

                (1.7 m )( 0.3 m )( cos 30° ) = 0.4 m2

                              P   E                                 W
                Now I =         =   :              E = IAt = 1340      (0.6)(0.5)(0.4 m2) 3600 s ~ 106 J
                              A At                                  m2




34.51    (a)   ε = − dΦB = − d (BA cos θ ) = −A         d
                                                           (Bmax cos ω t cos θ ) = ABmax ω (sin ω t cos θ )
                        dt        dt                    dt

                ε (t) = 2π f Bmax A sin 2π f t cos θ = 2π 2r 2 f Bmax cos θ sin 2π f t

                Thus,        ε max = 2π 2r 2 f Bmax cos θ    , where θ is the angle between the magnetic field and the
                normal to the loop.

         (b)    If E is vertical, then B is horizontal, so the plane of the loop should be vertical and the
                plane should contain the line of sight to the transmitter .




                                            © 2000 by Harcourt, Inc. All rights reserved.
312 Chapter 34 Solutions


                           GMs m  GMs 
34.52   (a)   F grav =          =        ρ ( 4 / 3)π r 3
                            R2     R2 

              where M s = mass of Sun, r = radius of particle and R = distance from Sun to particle.

                                Sπ r 2            Frad  1  3SR 2  1
              Since Frad =             ,                =                 ∝
                                 c                F grav  r   4cGMsρ  r
                                                                       

                                                                                                      3SR 2
        (b)   From the result found in part (a), when Fgrav = Frad, we have                  r=
                                                                                                  4cGM s ρ


                                              (             )(                 )
                                                                                   2
                                             3 214 W / m 2 3.75 × 1011 m
              r=                                                                                              = 3.78 × 10–7 m
                      (                            )(               )(                 )(
                   4 6.67 × 10 −11 N ⋅ m 2 kg 2 1.991 × 10 30 kg 1500 kg m 3 3.00 × 108 m s               )


                          Emax
                           c = 6.67 × 10 T
                                        –16
34.53   (a)   Bmax =

                            2
                          Emax
        (b)   Sav =              = 5.31 × 10–17 W/m 2
                          2 µ0 c

        (c)   P = Sav A = 1.67 × 10–14 W

                              Sav 
        (d)   F = PA =               A = 5.56 × 10–23 N (≈ weight of 3000 H atoms!)
                              c 




*34.54 (a)    The electric field between the plates is E = ∆V l, directed
                                                                                                                           i
              downward in the figure. The magnetic field between the plate's
              edges is B = µ 0 i 2 π r counterclockwise.                                                           + +
                                                                                                              + ++ +
                                                                                                                           + +
                                                                                                                            + ++
                                                                                                      B               +    + +
                                                                                                              E       -    - -
                                                                                                  S            - - - - -
                                                                 ( ∆V ) i                                          -        - - -
                                                     1                                                                --   - -
              The Poynting vector is:             S=    E×B=                (radially outward)
                                                     µ0          2 π rl                                                    i

        (b)   The lateral surface area surrounding the electric field volume is

                                                           ( ∆V ) i 
              A = 2 π rl, so the power output is P = SA =            ( 2 π rl) = (∆V)i
                                                           2 π rl 

        (c)   As the capacitor charges, the polarity of the plates and hence the direction of the electric field
              is unchanged.     Reversing the current reverses the direction of the magnetic field, and
              therefore the Poynting vector.

               The Poynting vector is now directed radially inward.
Chapter 34 Solutions 313


*34.55 (a)   The magnetic field in the enclosed volume is directed upward,
                                                                                                                                   B
                                                                   dB        di
             with magnitude B = µ 0 ni and increasing at the rate      = µ 0n .
                                                                    dt       dt
             The changing magnetic field induces an electric field around any
             circle of radius r , according to Faraday’s Law:
                                                                                                                    E

             E( 2 π r ) = − µ 0n     ( )
                                 di 
                                 dt 
                                       π r2
                                                                 µ nr  di 
                                                              E=− 0
                                                                  2  dt 
                                                                                                                S


                                                                   µ 0nr  di 
             or                                               E=                (clockwise)
                                                                     2  dt                                            i


                                                            1       1  µ 0nr  di  
             Then,                                    S=
                                                           µ0
                                                              E×B=
                                                                   µ 0  2  dt  
                                                                                       (µ 0ni) inward,
                                                                                    

                                                                     µ 0n2 r i  di 
             or the Poynting vector is                        S=                      (radially inward)
                                                                        2  dt 

       (b)   The power flowing into the volume is P = SAlat where Alat is the lateral area perpendicular to
             S . Therefore,
                                                µ n2 r i  di                     2 2  di 
                                            P= 0                ( 2 π rl) = µ 0 π n r li  
                                                  2  dt                                 dt

       (c)   Taking Across to be the cross-sectional area perpendicular to B, the induced voltage between
             the ends of the inductor, which has N = nl turns, is

                                                              ∆V =    ε   =N
                                                                                dB 
                                                                                      A
                                                                                dt  cross
                                                                                                
                                                                                            = nl µ 0n
                                                                                                
                                                                                                      di 
                                                                                                      dt   ( )
                                                                                                           π r 2 = µ 0 π n2 r 2l
                                                                                                                                  di 
                                                                                                                                  dt 

             and it is observed that                           P = ( ∆V ) i




*34.56 (a)   The power incident on the mirror is:
                                                                                              
                                                                                              
                                                                                                   W
                                                                                                   m 
                                                                                                            [   2
                                                                                                                            ]
                                                                                    P I = IA = 1340 2 π (100 m ) = 4.21 × 107 W


                                                                                                (
             The power reflected through the atmosphere is P R = 0.746 4.21 × 107 W = 3.14 × 107 W                  )
                  PR     3.14 × 107 W
       (b)   S=      =                                = 0.625 W/m2
                           (                  )
                                                  2
                  A    π 4.00 × 10 3 m

       (c)   Noon sunshine in Saint Petersburg produces this power-per-area on a horizontal surface:

                           (                  )
             P N = 0.746 1340 W / m 2 sin 7.00° = 122 W / m 2

             The radiation intensity received from the mirror is

              0.625 W m 2 
              122 W m 2  100% = 0.513%                     of that from the noon Sun in January.
                          




                                     © 2000 by Harcourt, Inc. All rights reserved.
314 Chapter 34 Solutions


                    1   2
34.57          u = 2 e0Emax                                                              (Equation 34.21)

                          2u
               Emax =        = 95.1 mV/m
                          e0




*34.58         The area over which we model the antenna as radiating is the lateral surface of a cylinder,


                                                            (              )
                                            A = 2 π r l = 2 π 4.00 × 10 −2 m (0.100 m ) = 2.51 × 10 −2 m 2

                                                 P    0.600 W
         (a)   The intensity is then:       S=     =                = 23.9 W m 2
                                                 A 2.51 × 10 −2 m 2

                                                                                   −3
                                                                  mW   1.00 × 10 W   1.00 × 10 cm 
                                                                                                   4  2
                                                    mW                                                          W
         (b)   The standard is:             0.570        = 0.570                                         = 5.70 2
                                                    cm 2          cm 2   1.00 mW  
                                                                                          1.00 m 2          m

                                                                                  23.9 W m 2
               While it is on, the telephone is over the standard by                         = 4.19 times
                                                                                  5.70 W m 2




                        Emax    175 V/m
                         c = 3.00 × 108 m/s = 5.83 × 10 T
                                                       –7
34.59    (a)   Bmax =


                    2π       2π
               k=      = (0.0150 m) = 419 rad/m
                     λ


               ω = kc = 1.26 × 1011 rad/s


               Since S is along x, and E is along y, B must be in the z direction .              (That is S ∝ E × B.)

                        EmaxBmax
         (b)   Sav =
                          2µ 0   = 40.6 W/m2

                   2S
         (c)   Pr = c = 2.71 × 10–7 N/m2



         (d)   a=
                    ΣF PA
                      =   =
                               (                    )(
                            2.71 × 10 −7 N / m 2 0.750 m 2      )
                                                           = 4.06 × 10 −7 m / s 2
                    m   m               0.500 kg
Chapter 34 Solutions 315


*34.60 (a)    At steady-state, P in = P out and the power radiated out is P out = eσAT 4 .


                                     W                          W 
              Thus,         0.900 1000 2 A = (0.700) 5.67 × 10 −8          AT 4
                                     m                         m ⋅ K4 
                                                                   2



                                                                         14
                                        900 W m 2                   
                            T=                                              = 388 K = 115°C
                                         (                       )
              or
                               0.700 5.67 × 10 −8 W m 2 ⋅ K 4       
                                                                    

        (b)   The box of horizontal area A , presents projected area A sin 50.0° perpendicular to the
              sunlight. Then by the same reasoning,


                                     W                                    W 
                            0.900 1000 2 A sin 50.0° = (0.700) 5.67 × 10 −8          AT 4
                                     m                                   m ⋅ K4 
                                                                             2




                                     (             )
                                                                         14
                                    900 W m 2 sin 50.0°             
                            T=                                              = 363 K = 90.0 °C
                                         (                       )
              or
                               0.700 5.67 × 10 −8 W m 2 ⋅ K 4       
                                                                    




                 F   I
34.61   (a)   P= A = c


                                          = 3.33 × 10 −7 N = (110 kg )a
                   IA P      100 J / s
              F=      = =
                    c  c 3.00 × 108 m / s

                                                             1
              a = 3.03 × 10–9 m/s2           and        x = 2 at 2


                   2x
              t=      = 8.12 × 10 4 s = 22.6 h
                    a

        (b)   0 = (107 kg)v – (3.00 kg)(12.0 m/s – v) = (107 kg)v – 36.0 kg · m/s + (3.00 kg)v


                  36.0
              v = 110 = 0.327 m/s


              t = 30.6 s




                                  © 2000 by Harcourt, Inc. All rights reserved.
316 Chapter 34 Solutions


Goal Solution
An astronaut, stranded in space 10.0 m from his spacecraft and at rest relative to it, has a mass (including
equipment) of 110 kg. Since he has a 100-W light source that forms a directed beam, he decides to use the
beam as a photon rocket to propel himself continuously toward the spacecraft. (a) Calculate how long it
takes him to reach the spacecraft by this method. (b) Suppose, instead, he decides to throw the light
source away in a direction opposite the spacecraft. If the mass of the light source has a mass of 3.00 kg and,
after being thrown, moves at 12.0 m/s relative to the recoiling astronaut , how long does it take for the
astronaut to reach the spacecraft?

G: Based on our everyday experience, the force exerted by photons is too small to feel, so it may take a
   very long time (maybe days!) for the astronaut to travel 10 m with his “photon rocket.” Using the
   momentum of the thrown light seems like a better solution, but it will still take a while (maybe a few
   minutes) for the astronaut to reach the spacecraft because his mass is so much larger than the mass of
   the light source.

O: In part (a), the radiation pressure can be used to find the force that accelerates the astronaut toward
   the spacecraft. In part (b), the principle of conservation of momentum can be applied to find the time
   required to travel the 10 m.

A : (a) Light exerts on the astronaut a pressure       P = F A = S c , and a force of

                                                            SA               100 J / s
                                                       F=      =     =                    = 3.33 × 10 −7 N
                                                             c           3.00 × 108 m / s

                                                            F 3.33 × 10 −7 N
    By Newton’s 2nd law,                               a=     =              = 3.03 × 10 −9 m / s 2
                                                            m    110 kg

    This acceleration is constant, so the distance traveled is x = 2 at 2 , and the amount of time it travels is
                                                                   1



                                                             2x         2(10.0 m )
                                                       t=       =                        = 8.12 × 10 4 s = 22.6 h
                                                              a     3.03 × 10 −9 m / s 2

    (b) Because there are no external forces, the momentum of the astronaut before throwing the light
    is the same as afterwards when the now 107-kg astronaut is moving at speed v towards the spacecraft
    and the light is moving away from the spacecraft at (12.0 m / s − v ) . Thus, pi = p f gives

                                                       0 = (107 kg )v − ( 3.00 kg )(12.0 m / s − v )

                                                       0 = (107 kg )v − ( 36.0 kg ⋅ m / s) + ( 3.00 kg )v

                                                            36.0
                                                       v=        = 0.327 m / s
                                                            110

                                                            x   10.0 m
                                                       t=     =           = 30.6 s
                                                            v 0.327 m / s

L : Throwing the light away is certainly a more expedient way to reach the spacecraft, but there is not
    much chance of retrieving the lamp unless it has a very long cord. How long would the cord need to
    be, and does its length depend on how hard the astronaut throws the lamp? (You should verify that
    the minimum cord length is 367 m, independent of the speed that the lamp is thrown.)
Chapter 34 Solutions 317


                                                           W                                          2S   2(0.380)S
34.62         The 38.0% of the intensity S = 1340             that is reflected exerts a pressure P1 = r =
                                                           m2                                          c       c

                                                                                                                              Sa (0.620)S
              The absorbed light exerts pressure                                                                       P2 =      =
                                                                                                                               c     c

              Altogether the pressure at the subsolar point on Earth is

                                   1.38S   1.38(1340 W/m2)
        (a)   Ptot = P1 + P2 =           =                 = 6.16 × 10– 6 Pa
                                     c      3.00 × 108 m/s

              Pa    1.01 × 10 5 N / m 2
        (b)       =                     = 1.64 × 1010 times smaller than atmospheric pressure
              Ptot 6.16 × 10 −6 N / m 2




                                                                                                                                     2
34.63         Think of light going up and being absorbed by the bead which presents a face area π r b .

                                        S  I
              The light pressure is P = c = .
                                           c

                         2                                                                    1/3
                  Iπ r b          4     3                                      4ρ gc  3m 
        (a)   Fl = c     = mg = ρ 3 π r b g            and                I=                      = 8.32 × 10 7 W/m 2
                                                                                 3  4 πρ 

        (b)   P = IA = (8.32 × 10 7 W/m2)π (2.00 × 10–3 m)2 = 1.05 kW




                                                                                                                                 2
34.64         Think of light going up and being absorbed by the bead which presents face area π r b .

                                                                                                           Sav I Fl
              If we take the bead to be perfectly absorbing, the light pressure is P =                        = =
                                                                                                            c  c A

                                             Flc F g c m gc
        (a)   Fl = F g          so      I=      =     =
                                              A   A     π rb 2


                                                                                                    (              )
                                                             m       m                   1              4          1/3
              From the definition of density, ρ =              =   4
                                                                                 so         =             πρ   m
                                                             V       π rb 3              rb             3
                                                                   3


                                                                                                               1/3
                                             m gc  4 πρ  2/3            2/3
                                                                     4ρ   m 
                                                                                 1/3
                                                                                       4ρ gc  3m 
              Substituting for rb , I =                        = gc                  =
                                              π    3m              3  π           3  4π ρ 
                                                                                                 


                             π r 24ρgc  3m  1/3
        (b)   P = IA =                       
                                  3     4π ρ 




                                       © 2000 by Harcourt, Inc. All rights reserved.
318 Chapter 34 Solutions


34.65         The mirror intercepts power

              P = I1A1 = (1.00 × 10 3 W/m2)π (0.500 m)2 = 785 W

              In the image,

                     P      785 W
        (a)   I2 =     =               = 625 kW/m2
                     A2 π (0.0200 m )2

                       2
                    E max
        (b)   I 2 = 2µ c       so     Emax = (2µ0c I 2 )1/2 = [2(4π × 10–7)(3.00 × 108)(6.25 × 105)]1/2= 21.7 kN/C
                       0

                       Emax
              Bmax =
                        c = 72.4 µT

        (c)   0.400 P t = mc ∆T

                                                  J
              0.400(785 W)t = (1.00 kg)  4186 kg · C° (100°C – 20.0°C)
                                                     

                   3.35 × 105 J
              t=     314 W      = 1.07 × 103 s = 17.8 min




                     c 3.00 × 108 m s
34.66   (a)   λ=       =                  = 1.50 cm
                     f   20.0 × 10 9 s −1


        (b)
                            
              U = P ( ∆t ) = 25.0 × 10 3
                            
                                         J
                                         s
                                            (               )
                                            1.00 × 10 −9 s = 25.0 × 10 −6 J = 25.0 µJ


                      U    U           U                        25.0 × 10 −6 J
              uav =     =        =             =
                            ( ) ( )                                  (            )(             )
        (c)
                      V   π r 2 l π r 2 c( ∆t ) π (0.0600 m )2 3.00 × 108 m s 1.00 × 10 −9 s


              uav = 7.37 × 10 −3 J m 3 = 7.37 mJ m 3



        (d)   Emax =
                           2uav
                                =
                                      (
                                     2 7.37 × 10 −3 J m 3   )    = 4.08 × 10 4 V m = 40.8 kV/m
                                                −12
                            e0      8.85 × 10         C N ⋅ m2
                                                       2



                        Emax 4.08 × 10 4 V m
              Bmax =        =                = 1.36 × 10 −4 T = 136 µT
                         c    3.00 × 108 m s

                            S     c uav                           J 
        (e)   F = PA =          A=           A = uav A = 7.37 × 10 −3      π (0.0600 m )2 = 8.33 × 10 −5 N = 83.3 µN
                            c     c                              m3 
Chapter 34 Solutions 319



                                                                                    (               )
                                                                                                        2
                                                                                  C2 m s2                               N ⋅ m 2 ⋅ C2 ⋅ m 2 ⋅ s3 N ⋅ m J
         (a)   On the right side of the equation,                                                                   =                          =     = =W
                                                                   (C N ⋅ m )(m s)
34.67
                                                                              2                 2               3
                                                                                                                            C2 ⋅ s 4 ⋅ m 3        s   s


                                                                qE (1.60 × 10 C)(100 N C)       −19
         (b)   F = ma = qE                 or                a=   =                       =                                         1.76 × 1013 m s 2
                                                                  m                 9.11 × 10 −31 kg


               The radiated power is then:                   P=
                                                                  q2 a2
                                                                           =
                                                                                    (
                                                                               1.60 × 10      1.76 × 10     −19 2
                                                                                                                    )(              13 2
                                                                                                                                        )        = 1.75 × 10 − 27 W
                                                                6 π e0 c
                                                                                            (                         )(                 )
                                                                         3                                                                   3
                                                                             6 π 8.85 × 10 −12 3.00 × 108

                          v    2
                                                                  qBr
         (c)   F = mar = m  = qvB             so           v=
                           r                                     m

                                                                                            (                           )
                                                                                                                            2
                                                                              1.60 × 10 −19 (0.350) (0.500)
                                                                                                                                    2
                                                                v 2 q 2B2 r
               The proton accelerates at                     a=    =        =                               = 5.62 × 1014 m s 2
                                                                 r    m2              1.67 × 10 −27 2
                                                                                                            (                   )
               The proton then radiates                      P=
                                                                  q2 a2
                                                                          =
                                                                                    (
                                                                            1.60 × 10       5.62 × 10       −19 2
                                                                                                                    )(              14 2
                                                                                                                                        )        = 1.80 × 10
                                                                                                                                                             −24
                                                                                                                                                                 W
                                                                                            (
                                                                6 π e0 c 3 6 π 8.85 × 10 −12 3.00 × 108
                                                                                                                      )(                 )
                                                                                                                                             3




                    S Power      P                     60.0 W
34.68          P=     =     =        =                                         = 6.37 × 10–7 Pa
                    c   Ac    2 π rlc 2 π (0.0500 m)(1.00 m)(3.00 × 108 m  s)




                          SA ( P / A)A P
                                                            τ = F  =
                                                                   l   Pl
34.69          F = PA =      =        = ,                                 ,                 and             τ = κθ
                           c      c    c                          2  2c


                               θ=
                                     Pl
                                         =
                                                    (
                                             3.00 × 10 −3 (0.0600)    )
                                                                     = 3.00 × 10– 2 deg
                                                (                )(                     )
               Therefore,
                                     2c κ 2 3.00 × 108 1.00 × 10 −11




*34.70         We take R to be the planet’s distance from its star.                                                 The planet, of radius r , presents a
                projected area π r   2
                                           perpendicular to the starlight.                              It radiates over area 4 π r 2 .


                                                            ( )           (
               At steady-state, P in = P out : e I in π r 2 = eσ 4 π r 2 T 4        )
                 6.00 × 10 23 W 
               e
                     4π R2      
                                     ( )
                                  π r = eσ 4 π r T
                                      2          2  4
                                                        (    )            so that                       6.00 × 10 23 W = 16 π σ R 2 T 4


                      6.00 × 10 23 W               6.00 × 10 23 W
               R=                    =                                           = 4.77 × 10 9 m = 4.77 Gm
                         16 π σ T 4
                                                    (
                                       16 π 5.67 × 10 −8 W m 2 ⋅ K 4 ( 310 K )
                                                                               4
                                                                                                )


                                         © 2000 by Harcourt, Inc. All rights reserved.
320 Chapter 34 Solutions


                                                           E2
34.71         The light intensity is          I = Sav =
                                                          2 µ 0c

                                                   S   E2
              The light pressure is           P=     =       = 1 e0 E 2
                                                   c 2 µ 0c 2 2


                                                                                         e0E 2 A
              For the asteroid,              PA = m a               and            a=
                                                                                          2m




34.72         f = 90.0 MHz,       Emax = 2.00 × 10 − 3 V / m = 200 mV/m

                   c
        (a)   λ=     = 3.33 m
                   f

                   1
              T=     = 1.11 × 10 −8 s = 11.1 ns
                   f

                         Emax
              Bmax =          = 6.67 × 10 −12 T = 6.67 pT
                          c

                                          x         t                                          x         t 
               E = (2.00 mV / m) cos 2 π        −                    B = (6.67 pT )k cos 2 π           −
                                           3.33 m 11.1 ns 
        (b)                                                 j
                                                                                               3.33 m 11.1 ns 

                    2
                   Emax         (2.00 × 10 − 3 )2
        (c)   I=         =                              = 5.31 × 10 − 9 W / m 2
                   2µ 0 c 2(4 π × 10 − 7 )(3.00 × 108 )

        (d)   I = cuav            so          uav = 1.77 × 10 −17 J / m 3


                   2I (2)(5.31 × 10 − 9 )
        (e)   P=     =                    = 3.54 × 10 −17 Pa
                   c     3.00 × 108

More Related Content

What's hot

Introducción a las Ecuaciones Diferenciales ccesa007
Introducción a las Ecuaciones Diferenciales  ccesa007Introducción a las Ecuaciones Diferenciales  ccesa007
Introducción a las Ecuaciones Diferenciales ccesa007Demetrio Ccesa Rayme
 
Chapter 14 solutions_to_exercises(engineering circuit analysis 7th)
Chapter 14 solutions_to_exercises(engineering circuit analysis 7th)Chapter 14 solutions_to_exercises(engineering circuit analysis 7th)
Chapter 14 solutions_to_exercises(engineering circuit analysis 7th)Maamoun Hennache
 
Solucionario Tercera Práctica Calificada de Matemática V - FIEE UNI
Solucionario Tercera Práctica Calificada de Matemática V - FIEE UNISolucionario Tercera Práctica Calificada de Matemática V - FIEE UNI
Solucionario Tercera Práctica Calificada de Matemática V - FIEE UNIAndy Juan Sarango Veliz
 
Ejercicios resueltos 2011
Ejercicios resueltos 2011Ejercicios resueltos 2011
Ejercicios resueltos 2011Deyvid Atens
 
Dinamica ii 2009 cuartos
Dinamica ii 2009 cuartosDinamica ii 2009 cuartos
Dinamica ii 2009 cuartoscarvajal1670
 
Tippens fisica 7e_diapositivas_03a
Tippens fisica 7e_diapositivas_03aTippens fisica 7e_diapositivas_03a
Tippens fisica 7e_diapositivas_03aRobert
 
Ejercicios derivadas funciones trigonometricas
Ejercicios derivadas   funciones trigonometricasEjercicios derivadas   funciones trigonometricas
Ejercicios derivadas funciones trigonometricasRoberto Pradenas
 
Resolucion de problema 27 6
Resolucion de problema 27 6Resolucion de problema 27 6
Resolucion de problema 27 6Zulma Medrano
 
Pds 2011 3-balotario de preguntas pc1
Pds 2011 3-balotario de preguntas pc1Pds 2011 3-balotario de preguntas pc1
Pds 2011 3-balotario de preguntas pc1jcbenitezp
 
Problemas resueltos separata 3. cap 3
Problemas resueltos separata 3. cap 3Problemas resueltos separata 3. cap 3
Problemas resueltos separata 3. cap 3uni
 
Transformada de-laplace
Transformada de-laplaceTransformada de-laplace
Transformada de-laplaceSabena29
 
Solucionquiz4 Cvusta2009 02
Solucionquiz4 Cvusta2009 02Solucionquiz4 Cvusta2009 02
Solucionquiz4 Cvusta2009 02guest4ea1e4
 
Problemas complementarios potencial electrico clase 6a
Problemas complementarios potencial electrico clase 6aProblemas complementarios potencial electrico clase 6a
Problemas complementarios potencial electrico clase 6aTensor
 
ELECTRONICA INDUSTRIAL -EJERCICIOS RESUELTOS : EJERCICIOS DE EXPRESION EN S...
ELECTRONICA INDUSTRIAL -EJERCICIOS RESUELTOS  : EJERCICIOS DE EXPRESION EN  S...ELECTRONICA INDUSTRIAL -EJERCICIOS RESUELTOS  : EJERCICIOS DE EXPRESION EN  S...
ELECTRONICA INDUSTRIAL -EJERCICIOS RESUELTOS : EJERCICIOS DE EXPRESION EN S...AVINADAD MENDEZ
 
Problemario de Series de Fourier
Problemario de Series de FourierProblemario de Series de Fourier
Problemario de Series de FourierKike Prieto
 

What's hot (20)

Introducción a las Ecuaciones Diferenciales ccesa007
Introducción a las Ecuaciones Diferenciales  ccesa007Introducción a las Ecuaciones Diferenciales  ccesa007
Introducción a las Ecuaciones Diferenciales ccesa007
 
Chapter 14 solutions_to_exercises(engineering circuit analysis 7th)
Chapter 14 solutions_to_exercises(engineering circuit analysis 7th)Chapter 14 solutions_to_exercises(engineering circuit analysis 7th)
Chapter 14 solutions_to_exercises(engineering circuit analysis 7th)
 
Solucionario Tercera Práctica Calificada de Matemática V - FIEE UNI
Solucionario Tercera Práctica Calificada de Matemática V - FIEE UNISolucionario Tercera Práctica Calificada de Matemática V - FIEE UNI
Solucionario Tercera Práctica Calificada de Matemática V - FIEE UNI
 
Ejercicios resueltos 2011
Ejercicios resueltos 2011Ejercicios resueltos 2011
Ejercicios resueltos 2011
 
Dinamica ii 2009 cuartos
Dinamica ii 2009 cuartosDinamica ii 2009 cuartos
Dinamica ii 2009 cuartos
 
Ondas Sonoras
Ondas SonorasOndas Sonoras
Ondas Sonoras
 
Serie de fourier
Serie de fourierSerie de fourier
Serie de fourier
 
Tippens fisica 7e_diapositivas_03a
Tippens fisica 7e_diapositivas_03aTippens fisica 7e_diapositivas_03a
Tippens fisica 7e_diapositivas_03a
 
Ejercicios derivadas funciones trigonometricas
Ejercicios derivadas   funciones trigonometricasEjercicios derivadas   funciones trigonometricas
Ejercicios derivadas funciones trigonometricas
 
Resolucion de problema 27 6
Resolucion de problema 27 6Resolucion de problema 27 6
Resolucion de problema 27 6
 
Pds 2011 3-balotario de preguntas pc1
Pds 2011 3-balotario de preguntas pc1Pds 2011 3-balotario de preguntas pc1
Pds 2011 3-balotario de preguntas pc1
 
Problemas resueltos separata 3. cap 3
Problemas resueltos separata 3. cap 3Problemas resueltos separata 3. cap 3
Problemas resueltos separata 3. cap 3
 
corripio
corripio corripio
corripio
 
Transformada de-laplace
Transformada de-laplaceTransformada de-laplace
Transformada de-laplace
 
Solucionquiz4 Cvusta2009 02
Solucionquiz4 Cvusta2009 02Solucionquiz4 Cvusta2009 02
Solucionquiz4 Cvusta2009 02
 
94825930 cap-12-trifasicos
94825930 cap-12-trifasicos94825930 cap-12-trifasicos
94825930 cap-12-trifasicos
 
Problemas complementarios potencial electrico clase 6a
Problemas complementarios potencial electrico clase 6aProblemas complementarios potencial electrico clase 6a
Problemas complementarios potencial electrico clase 6a
 
ELECTRONICA INDUSTRIAL -EJERCICIOS RESUELTOS : EJERCICIOS DE EXPRESION EN S...
ELECTRONICA INDUSTRIAL -EJERCICIOS RESUELTOS  : EJERCICIOS DE EXPRESION EN  S...ELECTRONICA INDUSTRIAL -EJERCICIOS RESUELTOS  : EJERCICIOS DE EXPRESION EN  S...
ELECTRONICA INDUSTRIAL -EJERCICIOS RESUELTOS : EJERCICIOS DE EXPRESION EN S...
 
Magnetostatica en el vacío
Magnetostatica en el vacíoMagnetostatica en el vacío
Magnetostatica en el vacío
 
Problemario de Series de Fourier
Problemario de Series de FourierProblemario de Series de Fourier
Problemario de Series de Fourier
 

Viewers also liked

Viewers also liked (9)

Biophysics Basics in Electrotherapy
Biophysics Basics in ElectrotherapyBiophysics Basics in Electrotherapy
Biophysics Basics in Electrotherapy
 
Physics 101
Physics 101Physics 101
Physics 101
 
Physics 102
Physics 102Physics 102
Physics 102
 
(Solucionario) fisica serway vol 2
(Solucionario) fisica serway vol 2(Solucionario) fisica serway vol 2
(Solucionario) fisica serway vol 2
 
Tippens fisica 7e_diapositivas_34b
Tippens fisica 7e_diapositivas_34bTippens fisica 7e_diapositivas_34b
Tippens fisica 7e_diapositivas_34b
 
Teknik Menjawab Soalan Fizik Kertas 2
Teknik Menjawab Soalan Fizik Kertas 2Teknik Menjawab Soalan Fizik Kertas 2
Teknik Menjawab Soalan Fizik Kertas 2
 
Alternating current circuits
Alternating current circuitsAlternating current circuits
Alternating current circuits
 
1 hibbeler statics-ism_ch02
1 hibbeler statics-ism_ch021 hibbeler statics-ism_ch02
1 hibbeler statics-ism_ch02
 
Serway vol 2 - fisica
Serway   vol 2 - fisicaSerway   vol 2 - fisica
Serway vol 2 - fisica
 

Similar to Capítulo 34 (5th edition) con soluciones ondas electromagneticas serway

Capítulo 38 (5th edition)con soluciones difraccion y polarizacion
Capítulo 38 (5th edition)con soluciones difraccion y polarizacionCapítulo 38 (5th edition)con soluciones difraccion y polarizacion
Capítulo 38 (5th edition)con soluciones difraccion y polarizacion.. ..
 
Capitulo 10, 7ma edición
Capitulo 10, 7ma ediciónCapitulo 10, 7ma edición
Capitulo 10, 7ma ediciónSohar Carr
 
Solutions Manual for Foundations Of MEMS 2nd Edition by Chang Liu
Solutions Manual for Foundations Of MEMS 2nd Edition by Chang LiuSolutions Manual for Foundations Of MEMS 2nd Edition by Chang Liu
Solutions Manual for Foundations Of MEMS 2nd Edition by Chang LiuHildaLa
 
626 pages
626 pages626 pages
626 pagesJFG407
 
Tutorial solutions 2010
Tutorial solutions 2010Tutorial solutions 2010
Tutorial solutions 2010Sufi Sulaiman
 
PROBLEMAS RESUELTOS (87) DEL CAPÍTULO I DE LABORATORIO DE FÍSICA II - SEARS
PROBLEMAS RESUELTOS (87) DEL CAPÍTULO I DE LABORATORIO DE FÍSICA II - SEARSPROBLEMAS RESUELTOS (87) DEL CAPÍTULO I DE LABORATORIO DE FÍSICA II - SEARS
PROBLEMAS RESUELTOS (87) DEL CAPÍTULO I DE LABORATORIO DE FÍSICA II - SEARSLUIS POWELL
 
Fox And Mcdonald's Introduction To Fluid Mechanics 8th Edition Pritchard Solu...
Fox And Mcdonald's Introduction To Fluid Mechanics 8th Edition Pritchard Solu...Fox And Mcdonald's Introduction To Fluid Mechanics 8th Edition Pritchard Solu...
Fox And Mcdonald's Introduction To Fluid Mechanics 8th Edition Pritchard Solu...qedobose
 
Dynamic response to harmonic excitation
Dynamic response to harmonic excitationDynamic response to harmonic excitation
Dynamic response to harmonic excitationUniversity of Glasgow
 
Amth250 octave matlab some solutions (2)
Amth250 octave matlab some solutions (2)Amth250 octave matlab some solutions (2)
Amth250 octave matlab some solutions (2)asghar123456
 
ClassExamplesPeriodicMotionWaves.pdf
ClassExamplesPeriodicMotionWaves.pdfClassExamplesPeriodicMotionWaves.pdf
ClassExamplesPeriodicMotionWaves.pdfPatrickSibanda3
 
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...Ansal Valappil
 
Amth250 octave matlab some solutions (1)
Amth250 octave matlab some solutions (1)Amth250 octave matlab some solutions (1)
Amth250 octave matlab some solutions (1)asghar123456
 
Capítulo 35 (5th edition) con soluciones la naturaleza de la luz y las leyes ...
Capítulo 35 (5th edition) con soluciones la naturaleza de la luz y las leyes ...Capítulo 35 (5th edition) con soluciones la naturaleza de la luz y las leyes ...
Capítulo 35 (5th edition) con soluciones la naturaleza de la luz y las leyes ..... ..
 
Get bebas redaman_2014
Get bebas redaman_2014Get bebas redaman_2014
Get bebas redaman_2014Abdul Rahman
 

Similar to Capítulo 34 (5th edition) con soluciones ondas electromagneticas serway (20)

Capítulo 38 (5th edition)con soluciones difraccion y polarizacion
Capítulo 38 (5th edition)con soluciones difraccion y polarizacionCapítulo 38 (5th edition)con soluciones difraccion y polarizacion
Capítulo 38 (5th edition)con soluciones difraccion y polarizacion
 
Capitulo 10, 7ma edición
Capitulo 10, 7ma ediciónCapitulo 10, 7ma edición
Capitulo 10, 7ma edición
 
Capitulo 10 7 ed
Capitulo 10 7 edCapitulo 10 7 ed
Capitulo 10 7 ed
 
Solutions Manual for Foundations Of MEMS 2nd Edition by Chang Liu
Solutions Manual for Foundations Of MEMS 2nd Edition by Chang LiuSolutions Manual for Foundations Of MEMS 2nd Edition by Chang Liu
Solutions Manual for Foundations Of MEMS 2nd Edition by Chang Liu
 
626 pages
626 pages626 pages
626 pages
 
Base excitation of dynamic systems
Base excitation of dynamic systemsBase excitation of dynamic systems
Base excitation of dynamic systems
 
Tutorial solutions 2010
Tutorial solutions 2010Tutorial solutions 2010
Tutorial solutions 2010
 
PROBLEMAS RESUELTOS (87) DEL CAPÍTULO I DE LABORATORIO DE FÍSICA II - SEARS
PROBLEMAS RESUELTOS (87) DEL CAPÍTULO I DE LABORATORIO DE FÍSICA II - SEARSPROBLEMAS RESUELTOS (87) DEL CAPÍTULO I DE LABORATORIO DE FÍSICA II - SEARS
PROBLEMAS RESUELTOS (87) DEL CAPÍTULO I DE LABORATORIO DE FÍSICA II - SEARS
 
Fox And Mcdonald's Introduction To Fluid Mechanics 8th Edition Pritchard Solu...
Fox And Mcdonald's Introduction To Fluid Mechanics 8th Edition Pritchard Solu...Fox And Mcdonald's Introduction To Fluid Mechanics 8th Edition Pritchard Solu...
Fox And Mcdonald's Introduction To Fluid Mechanics 8th Edition Pritchard Solu...
 
Dynamic response to harmonic excitation
Dynamic response to harmonic excitationDynamic response to harmonic excitation
Dynamic response to harmonic excitation
 
Amth250 octave matlab some solutions (2)
Amth250 octave matlab some solutions (2)Amth250 octave matlab some solutions (2)
Amth250 octave matlab some solutions (2)
 
ClassExamplesPeriodicMotionWaves.pdf
ClassExamplesPeriodicMotionWaves.pdfClassExamplesPeriodicMotionWaves.pdf
ClassExamplesPeriodicMotionWaves.pdf
 
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
Linear circuit analysis - solution manuel (R. A. DeCarlo and P. Lin) (z-lib.o...
 
Trigonometry [QEE-R 2012]
Trigonometry [QEE-R 2012]Trigonometry [QEE-R 2012]
Trigonometry [QEE-R 2012]
 
Amth250 octave matlab some solutions (1)
Amth250 octave matlab some solutions (1)Amth250 octave matlab some solutions (1)
Amth250 octave matlab some solutions (1)
 
Topic 4 kft 131
Topic 4 kft 131Topic 4 kft 131
Topic 4 kft 131
 
Capítulo 35 (5th edition) con soluciones la naturaleza de la luz y las leyes ...
Capítulo 35 (5th edition) con soluciones la naturaleza de la luz y las leyes ...Capítulo 35 (5th edition) con soluciones la naturaleza de la luz y las leyes ...
Capítulo 35 (5th edition) con soluciones la naturaleza de la luz y las leyes ...
 
Topic 3 kft 131
Topic 3 kft 131Topic 3 kft 131
Topic 3 kft 131
 
Sect5 4
Sect5 4Sect5 4
Sect5 4
 
Get bebas redaman_2014
Get bebas redaman_2014Get bebas redaman_2014
Get bebas redaman_2014
 

More from .. ..

EL FANTASMA PROVECHOSO.docx
EL FANTASMA PROVECHOSO.docxEL FANTASMA PROVECHOSO.docx
EL FANTASMA PROVECHOSO.docx.. ..
 
Regimenes y o sistema politico de peru y ecuador 2021 09-14 hora 5_23 pm
Regimenes y o sistema politico de peru y ecuador 2021 09-14 hora 5_23 pmRegimenes y o sistema politico de peru y ecuador 2021 09-14 hora 5_23 pm
Regimenes y o sistema politico de peru y ecuador 2021 09-14 hora 5_23 pm.. ..
 
Reunión de apertura auditoria ejemplo
Reunión de apertura auditoria ejemploReunión de apertura auditoria ejemplo
Reunión de apertura auditoria ejemplo.. ..
 
Determinismo escuelas filosoficas
Determinismo escuelas filosoficasDeterminismo escuelas filosoficas
Determinismo escuelas filosoficas.. ..
 
Mantenimiento de Equipos de Computo
Mantenimiento de Equipos de  Computo Mantenimiento de Equipos de  Computo
Mantenimiento de Equipos de Computo .. ..
 
induccion febrero 2019 sena articulacion media tecnica sistemas
induccion febrero 2019 sena articulacion media tecnica sistemasinduccion febrero 2019 sena articulacion media tecnica sistemas
induccion febrero 2019 sena articulacion media tecnica sistemas.. ..
 
diplomado innovatic . Diplomado para docentes innovadores en el uso pedagogic...
diplomado innovatic . Diplomado para docentes innovadores en el uso pedagogic...diplomado innovatic . Diplomado para docentes innovadores en el uso pedagogic...
diplomado innovatic . Diplomado para docentes innovadores en el uso pedagogic..... ..
 
ACTIVAR EL EXCEL, WORD, Y POWER POINT en los portátiles de CPE computadores p...
ACTIVAR EL EXCEL, WORD, Y POWER POINT en los portátiles de CPE computadores p...ACTIVAR EL EXCEL, WORD, Y POWER POINT en los portátiles de CPE computadores p...
ACTIVAR EL EXCEL, WORD, Y POWER POINT en los portátiles de CPE computadores p..... ..
 
resumen prendo y aprendo cpe 2018 junio 27
resumen prendo y aprendo cpe 2018 junio 27resumen prendo y aprendo cpe 2018 junio 27
resumen prendo y aprendo cpe 2018 junio 27.. ..
 
LIDER REGIONAL requisitos como tomar fotos y productos 2018
LIDER REGIONAL requisitos como tomar fotos y productos 2018LIDER REGIONAL requisitos como tomar fotos y productos 2018
LIDER REGIONAL requisitos como tomar fotos y productos 2018.. ..
 
LIDER REGIONAL requisitos como tomar fotos y productos
LIDER REGIONAL requisitos como tomar fotos y productosLIDER REGIONAL requisitos como tomar fotos y productos
LIDER REGIONAL requisitos como tomar fotos y productos.. ..
 
Visitas a sedes para revisar requisitos de estabilizadores y charla
Visitas a sedes para revisar requisitos de estabilizadores y charlaVisitas a sedes para revisar requisitos de estabilizadores y charla
Visitas a sedes para revisar requisitos de estabilizadores y charla.. ..
 
Contenidos para aprender - ulite presentacion power point
Contenidos para aprender - ulite presentacion power pointContenidos para aprender - ulite presentacion power point
Contenidos para aprender - ulite presentacion power point.. ..
 
taller prendo y aprendo 2018 CPE
taller prendo y aprendo 2018 CPEtaller prendo y aprendo 2018 CPE
taller prendo y aprendo 2018 CPE.. ..
 
requisitos que necesito para cada sede
requisitos que necesito para cada sederequisitos que necesito para cada sede
requisitos que necesito para cada sede.. ..
 
LIDER REGIONAL requisitos como tomar fotos y productos
LIDER REGIONAL requisitos como tomar fotos y productosLIDER REGIONAL requisitos como tomar fotos y productos
LIDER REGIONAL requisitos como tomar fotos y productos.. ..
 
kiosco vive digital Ejemplos de caso de exito 2016 y 2017
kiosco vive digital Ejemplos de caso de exito 2016 y 2017kiosco vive digital Ejemplos de caso de exito 2016 y 2017
kiosco vive digital Ejemplos de caso de exito 2016 y 2017.. ..
 
DOS Esquemas de rotacion cuando se entrega 110 terminales y 45 terminales
DOS Esquemas de rotacion cuando se entrega 110 terminales y 45 terminalesDOS Esquemas de rotacion cuando se entrega 110 terminales y 45 terminales
DOS Esquemas de rotacion cuando se entrega 110 terminales y 45 terminales.. ..
 
Scrum manager
Scrum manager Scrum manager
Scrum manager .. ..
 
la guía oficial de Scrum en español
la guía oficial de Scrum en españolla guía oficial de Scrum en español
la guía oficial de Scrum en español.. ..
 

More from .. .. (20)

EL FANTASMA PROVECHOSO.docx
EL FANTASMA PROVECHOSO.docxEL FANTASMA PROVECHOSO.docx
EL FANTASMA PROVECHOSO.docx
 
Regimenes y o sistema politico de peru y ecuador 2021 09-14 hora 5_23 pm
Regimenes y o sistema politico de peru y ecuador 2021 09-14 hora 5_23 pmRegimenes y o sistema politico de peru y ecuador 2021 09-14 hora 5_23 pm
Regimenes y o sistema politico de peru y ecuador 2021 09-14 hora 5_23 pm
 
Reunión de apertura auditoria ejemplo
Reunión de apertura auditoria ejemploReunión de apertura auditoria ejemplo
Reunión de apertura auditoria ejemplo
 
Determinismo escuelas filosoficas
Determinismo escuelas filosoficasDeterminismo escuelas filosoficas
Determinismo escuelas filosoficas
 
Mantenimiento de Equipos de Computo
Mantenimiento de Equipos de  Computo Mantenimiento de Equipos de  Computo
Mantenimiento de Equipos de Computo
 
induccion febrero 2019 sena articulacion media tecnica sistemas
induccion febrero 2019 sena articulacion media tecnica sistemasinduccion febrero 2019 sena articulacion media tecnica sistemas
induccion febrero 2019 sena articulacion media tecnica sistemas
 
diplomado innovatic . Diplomado para docentes innovadores en el uso pedagogic...
diplomado innovatic . Diplomado para docentes innovadores en el uso pedagogic...diplomado innovatic . Diplomado para docentes innovadores en el uso pedagogic...
diplomado innovatic . Diplomado para docentes innovadores en el uso pedagogic...
 
ACTIVAR EL EXCEL, WORD, Y POWER POINT en los portátiles de CPE computadores p...
ACTIVAR EL EXCEL, WORD, Y POWER POINT en los portátiles de CPE computadores p...ACTIVAR EL EXCEL, WORD, Y POWER POINT en los portátiles de CPE computadores p...
ACTIVAR EL EXCEL, WORD, Y POWER POINT en los portátiles de CPE computadores p...
 
resumen prendo y aprendo cpe 2018 junio 27
resumen prendo y aprendo cpe 2018 junio 27resumen prendo y aprendo cpe 2018 junio 27
resumen prendo y aprendo cpe 2018 junio 27
 
LIDER REGIONAL requisitos como tomar fotos y productos 2018
LIDER REGIONAL requisitos como tomar fotos y productos 2018LIDER REGIONAL requisitos como tomar fotos y productos 2018
LIDER REGIONAL requisitos como tomar fotos y productos 2018
 
LIDER REGIONAL requisitos como tomar fotos y productos
LIDER REGIONAL requisitos como tomar fotos y productosLIDER REGIONAL requisitos como tomar fotos y productos
LIDER REGIONAL requisitos como tomar fotos y productos
 
Visitas a sedes para revisar requisitos de estabilizadores y charla
Visitas a sedes para revisar requisitos de estabilizadores y charlaVisitas a sedes para revisar requisitos de estabilizadores y charla
Visitas a sedes para revisar requisitos de estabilizadores y charla
 
Contenidos para aprender - ulite presentacion power point
Contenidos para aprender - ulite presentacion power pointContenidos para aprender - ulite presentacion power point
Contenidos para aprender - ulite presentacion power point
 
taller prendo y aprendo 2018 CPE
taller prendo y aprendo 2018 CPEtaller prendo y aprendo 2018 CPE
taller prendo y aprendo 2018 CPE
 
requisitos que necesito para cada sede
requisitos que necesito para cada sederequisitos que necesito para cada sede
requisitos que necesito para cada sede
 
LIDER REGIONAL requisitos como tomar fotos y productos
LIDER REGIONAL requisitos como tomar fotos y productosLIDER REGIONAL requisitos como tomar fotos y productos
LIDER REGIONAL requisitos como tomar fotos y productos
 
kiosco vive digital Ejemplos de caso de exito 2016 y 2017
kiosco vive digital Ejemplos de caso de exito 2016 y 2017kiosco vive digital Ejemplos de caso de exito 2016 y 2017
kiosco vive digital Ejemplos de caso de exito 2016 y 2017
 
DOS Esquemas de rotacion cuando se entrega 110 terminales y 45 terminales
DOS Esquemas de rotacion cuando se entrega 110 terminales y 45 terminalesDOS Esquemas de rotacion cuando se entrega 110 terminales y 45 terminales
DOS Esquemas de rotacion cuando se entrega 110 terminales y 45 terminales
 
Scrum manager
Scrum manager Scrum manager
Scrum manager
 
la guía oficial de Scrum en español
la guía oficial de Scrum en españolla guía oficial de Scrum en español
la guía oficial de Scrum en español
 

Recently uploaded

ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...JhezDiaz1
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTiammrhaywood
 
Grade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxGrade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxChelloAnnAsuncion2
 
4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptxmary850239
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Celine George
 
Keynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designKeynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designMIPLM
 
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSJoshuaGantuangco2
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxAnupkumar Sharma
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Celine George
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)lakshayb543
 
ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4MiaBumagat1
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatYousafMalik24
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONHumphrey A Beña
 
Roles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceRoles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceSamikshaHamane
 
Gas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxGas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxDr.Ibrahim Hassaan
 
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxBarangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxCarlos105
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPCeline George
 

Recently uploaded (20)

OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...OS-operating systems- ch04 (Threads) ...
OS-operating systems- ch04 (Threads) ...
 
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
ENGLISH 7_Q4_LESSON 2_ Employing a Variety of Strategies for Effective Interp...
 
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPTECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
ECONOMIC CONTEXT - LONG FORM TV DRAMA - PPT
 
Grade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptxGrade 9 Q4-MELC1-Active and Passive Voice.pptx
Grade 9 Q4-MELC1-Active and Passive Voice.pptx
 
4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx4.18.24 Movement Legacies, Reflection, and Review.pptx
4.18.24 Movement Legacies, Reflection, and Review.pptx
 
Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17Difference Between Search & Browse Methods in Odoo 17
Difference Between Search & Browse Methods in Odoo 17
 
Keynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-designKeynote by Prof. Wurzer at Nordex about IP-design
Keynote by Prof. Wurzer at Nordex about IP-design
 
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTSGRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
GRADE 4 - SUMMATIVE TEST QUARTER 4 ALL SUBJECTS
 
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptxMULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
MULTIDISCIPLINRY NATURE OF THE ENVIRONMENTAL STUDIES.pptx
 
Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17Field Attribute Index Feature in Odoo 17
Field Attribute Index Feature in Odoo 17
 
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
Visit to a blind student's school🧑‍🦯🧑‍🦯(community medicine)
 
ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4ANG SEKTOR NG agrikultura.pptx QUARTER 4
ANG SEKTOR NG agrikultura.pptx QUARTER 4
 
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptxLEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
LEFT_ON_C'N_ PRELIMS_EL_DORADO_2024.pptx
 
Earth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice greatEarth Day Presentation wow hello nice great
Earth Day Presentation wow hello nice great
 
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptxYOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
YOUVE_GOT_EMAIL_PRELIMS_EL_DORADO_2024.pptx
 
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATIONTHEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
THEORIES OF ORGANIZATION-PUBLIC ADMINISTRATION
 
Roles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in PharmacovigilanceRoles & Responsibilities in Pharmacovigilance
Roles & Responsibilities in Pharmacovigilance
 
Gas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptxGas measurement O2,Co2,& ph) 04/2024.pptx
Gas measurement O2,Co2,& ph) 04/2024.pptx
 
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptxBarangay Council for the Protection of Children (BCPC) Orientation.pptx
Barangay Council for the Protection of Children (BCPC) Orientation.pptx
 
What is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERPWhat is Model Inheritance in Odoo 17 ERP
What is Model Inheritance in Odoo 17 ERP
 

Capítulo 34 (5th edition) con soluciones ondas electromagneticas serway

  • 1.
  • 2.
  • 3.
  • 4.
  • 5.
  • 6.
  • 7.
  • 8. Chapter 34 Solutions 34.1 Since the light from this star travels at 3.00 × 108 m/s, the last bit of light will hit the Earth i n 6.44 × 1018 m = 2.15 × 1010 s = 680 years. Therefore, it will disappear from the sky in the year 3.00 × 108 m / s 1999 + 680 = 2.68 × 10 3 A.D. 1 1 34.2 v= = c = 0.750c = 2.25 × 108 m/s kµ 0 e0 1.78 E 220 B = 3.00 × 10 ; 34.3 B =c or 8 so B = 7.33 × 10–7 T = 733 nT Emax 34.4 Bmax = v is the generalized version of Equation 34.13. Emax 7.60 × 10 −3 V / m  N ⋅ m   T ⋅ C ⋅ m  Bmax = = = 3.80 × 10–11 T = 38.0 pT v (2 / 3)(3.00 × 108 m / s)  V ⋅ C   N ⋅ s  34.5 (a) fλ = c or f (50.0 m) = 3.00 × 108 m/s so f = 6.00 × 106 Hz = 6.00 MHz E 22.0 Bmax = 3.00 × 10 8 (b) B =c or so Bmax = (73.3 nT)(–k) 2π 2π (c) k= = 50.0 = 0.126 m–1 and ω = 2π f = 2π (6.00 × 106 s–1) = 3.77 × 107 λ rad/s B = Bmax cos(kx – ω t) = (73.3 nT) cos (0.126x – 3.77 × 107 t)(–k) 34.6 ω = 2π f = 6.00π × 109 s–1 = 1.88 × 1010 s-1 2π ω 6.00π × 109 s–1 E 300 V/m k= =c = = 20.0π = 62.8 m–1 Bmax = c = = 1.00 µT λ 3.00 × 108 m/s 3.00 × 108 m/s  E = 300  V m ( cos 62.8x − 1.88 × 1010 t ) B = (1.00 µT) cos (62.8x – 1.88 × 1010 t) © 2000 by Harcourt, Inc. All rights reserved.
  • 9. Chapter 34 Solutions 299 E 100 V/m 34.7 (a) B= = = 3.33 × 10–7 T = 0.333 µT c 3.00 × 10 8 m/s 2π 2π (b) λ= k = = 0.628 µm 1.00 × 10 7 m – 1 c 3.00 × 108 m/s (c) f= = = 4.77 × 1014 Hz λ 6.28 × 10–7 m 34.8 E = Emax cos(kx – ω t) ∂E ∂E = –Emax sin(kx – ω t)(k) = –Emax sin(kx – ω t)(–ω) ∂x ∂t ∂ 2E ∂ 2E = –Emax cos(kx – ω t)(k 2) = –Emax cos(kx – ω t)(–ω)2 ∂x2 ∂t2 ∂E ∂ 2E We must show: = µ 0e0 2 ∂x 2 ∂t That is, ( ) − k 2 Emax cos( kx − ω t ) = − µ 0e0 ( −ω ) Emax cos( kx − ω t ) 2 2 k2  1  1 But this is true, because =   = 2 = µ 0 e0 ω 2  fλ  c The proof for the wave of magnetic field is precisely similar. *34.9 In the fundamental mode, there is a single loop in the standing wave between the plates. Therefore, the distance between the plates is equal to half a wavelength. λ = 2L = 2(2.00 m) = 4.00 m c 3.00 × 108 m/s Thus, f = = = 7.50 × 10 7 Hz = 75.0 MHz λ 4.00 m λ *34.10 dA to A = 6 cm ± 5% = 2 λ = 12 cm ± 5% © 2000 by Harcourt, Inc. All rights reserved.
  • 10. 300 Chapter 34 Solutions ( ) v = λ f = (0.12 m ± 5%) 2.45 × 10 9 s −1 = 2.9 × 108 m s ± 5% U Uc S=I= A t = V = uc 34.11 Energy I 1000 W/m2 =u= = = 3.33 µ J/m3 Unit Volume c 3.00 × 108 m/s P 4.00 × 10 3 W 34.12 Sav = = = 7.68 µW/m 2 4π r 2 4π (4.00 × 1609 m)2 Emax = 2µ 0 cSav = 0.0761 V / m ∆Vmax = Emax · L = (76.1 mV/m)(0.650 m) = 49.5 mV (amplitude) or 35.0 mV (rms) 34.13 r = ( 5.00 mi )(1609 m / mi ) = 8.04 × 10 3 m P 250 × 10 3 W S= = = 307 µW/m 2 4π r 2 4π (8.04 × 10 3 m) 2
  • 11. Chapter 34 Solutions 301 Goal Solution What is the average magnitude of the Poynting vector 5.00 miles from a radio transmitter broadcasting isotropically with an average power of 250 kW? G: As the distance from the source is increased, the power per unit area will decrease, so at a distance of 5 miles from the source, the power per unit area will be a small fraction of the Poynting vector near the source. O: The Poynting vector is the power per unit area, where A is the surface area of a sphere with a 5-mile radius. A : The Poynting vector is In meters, r = ( 5.00 mi )(1609 m / mi ) = 8045 m 250 × 10 3 W and the magnitude is S = = 3.07 × 10 −4 W / m 2 (4 π )(8045)2 2 L : The magnitude of the Poynting vector ten meters from the source is 199 W/m , on the order of a million times larger than it is 5 miles away! It is surprising to realize how little power is actually received by a radio (at the 5-mile distance, the signal would only be about 30 nW, assuming a 2 receiving area of about 1 cm ). 100 W 34.14 I= = 7.96 W/m2 4π (1.00 m)2 I u = c = 2.65 × 10 – 8 J/m3 = 26.5 n J/m3 1 (a) uE = 2 u = 13.3 n J/m3 1 (b) uB = 2 u = 13.3 n J/m3 (c) I = 7.96 W/m2 34.15 Power output = (power input)(efficiency) power out 1.00 × 106 W Thus, Power input = = = 3.33 × 106 W eff 0.300 P 3.33 × 10 6 W and A= = = 3.33 × 10 3 m 2 I 1.00 × 10 3 W/m 2 © 2000 by Harcourt, Inc. All rights reserved.
  • 12. 302 Chapter 34 Solutions 2 Bmax c P *34.16 I= = 2µ 0 4π r 2  P   2µ 0  (10.0 × 10 )(2)(4π × 10 ) = 3 −7 Bmax =  4π r 2   c  = 5.16 × 10–10 T   4 π ( 5.00 × 10 ) ( 3.00 × 10 ) 3 2 8 Since the magnetic field of the Earth is approximately 5 × 10 –5 T, the Earth's field is some 100,000 times stronger. 34.17 (a) P = I 2R = 150 W; A = 2π rL = 2π (0.900 × 10–3 m)(0.0800 m) = 4.52 × 10 –4 m2 P S= = 332 kW/m2 (points radially inward) A I µ0(1.00) (b) B = µ 0 2π r = = 222 µT 2π (0.900 × 10 –3) ∆V IR 150 V E= = L = 0.0800 m = 1.88 kV/m ∆x EB Note: S = µ = 332 kW/m2 0
  • 13. Chapter 34 Solutions 303 34.18 (a) E · B = (80.0 i + 32.0 j – 64.0 k)(N/C) · (0.200 i + 0.0800 j + 0.290 k)µT E · B= (16.0 + 2.56 – 18.56)N 2 · s/C 2 · m = 0 1 (80.0 i + 32.0 j – 64.0 k)(N/C) × (0.200 i + 0.0800 j + 0.290 k)µT µ 0 E × B= (b) S= 4π × 10 –7 T · m/A (6.40 k – 23.2 j – 6.40 k + 9.28 i – 12.8 j + 5.12 i)10 – 6 W/m 2 S= 4π × 10–7 S = (11.5 i – 28.6 j) W/m 2 = 30.9 W/m2 at – 68.2° from the +x axis 34.19 We call the current I rms and the intensity I . The power radiated at this frequency is 0.0100(∆Vrms)2 P = (0.0100)(∆Vrms)Irms = = 1.31 W R If it is isotropic, the intensity one meter away is P 1.31 W c 2 I= = = 0.104 W/m2 = Sav = 2µ Bmax A 4π (1.00 m)2 0 Bmax = 2µ 0 I = ( )( 2 4 π × 10 −7 T ⋅ m / A 0.104 W / m 2 )= 29.5 nΤ c 3.00 × 10 m / s 8 useful power output  700 W  *34.20 (a) efficiency = × 100% = × 100% = 50.0% total power input  1400 W  P 700 W (b) Sav = = = 2.69 × 10 5 W m 2 A (0.0683 m )(0.0381 m ) Sav = 269 kW m 2 toward the oven chamber 2 Emax (c) Sav = 2µ 0 c  T ⋅ m m W V Emax = 2 4 π × 10 −7 3.00 × 108 2.69 × 10 5 = 1.42 × 10 4 = 14.2 kV m  A  s  m 2 m © 2000 by Harcourt, Inc. All rights reserved.
  • 14. 304 Chapter 34 Solutions Emax 7.00 × 105 N/C 34.21 (a) Bmax = = = 2.33 mT c 3.00 × 108 m/s 2 Emax (7.00 × 10 5)2 (b) I = 2µ c = = 650 MW/m 2 0 2(4π × 10 –7 )(3.00 × 108) P π (c) I= : P = I A = (6.50 × 108 W/m2) 4 (1.00 × 10 – 3 m) 2 = 510 W A 2 Emax Pµ 0 c (100 W)µ 0 c 34.22 Power = SA = (4 π r 2 ); solving for r , r= = = 5.16 m 2µ 0 c Emax 2 π 2 2 π (15.0 V / m)2 (10.0 × 10 − 3 )W 34.23 (a) I= = 4.97 kW/m2 π (0.800 × 10 − 3 m)2 I 4.97 × 10 3 J / m 2 ⋅ s (b) uav = = = 16.6 µ J/m3 c 3.00 × 108 m / s 34.24 (a) E = cB = ( 3.00 × 10 8 m/s)(1.80 × 10 − 6 T) = 540 V/m B2 (1.80 × 10 − 6 )2 (b) uav = = = 2.58 µ J/m3 µ0 4 π × 10 − 7 (c) Sav = cuav = (3.00 × 108 )(2.58 × 10 − 6 ) = 773 W/m2 (d) This is 77.3% of the flux in Example 34.5 . It may be cloudy, or the Sun may be setting. S 25.0 34.25 For complete absorption, P = c = = 83.3 nPa 3.00 × 108 *34.26 (a) ( )( ) P = (Sav )( A) = 6.00 W / m 2 40.0 × 10 −4 m 2 = 2.40 × 10 −2 J / s In one second, the total energy U impinging on the mirror is 2.40 × 10–2 J. The momentum p transferred each second for total reflection is 2U 2(2.40 × 10–2 J) kg · m p= c = = 1.60 × 10 –10 (each second) 3.00 × 10 m/s 8 s dp 1.60 × 10–10 kg · m/s (b) F = dt = = 1.60 × 10–10 N 1s
  • 15. Chapter 34 Solutions 305 (2)(1340 W / m 2 ) 34.27 (a) The radiation pressure is = 8.93 × 10 −6 N / m 2 3.00 × 108 m / s 2 Multiplying by the total area, A = 6.00 × 105 m2 gives: F = 5.36 N F 5.36 N (b) The acceleration is: a = m = 6000 kg = 8.93 × 10– 4 m/s2 1 (c) It will take a time t where: d = 2 at 2 t= 2d = ( 2 3.84 × 108 m ) = 9.27 × 10 5 s = 10.7 days (8.93 × 10 ) or −4 2 a m/s 2Sav 34.28 The pressure P upon the mirror is P= c P where A is the cross-sectional area of the beam and Sav = A 2P 2P The force on the mirror is then F = PA =  A = c  A c 2(100 × 10 −3 ) Therefore, F= = 6.67 × 10–10 N (3 × 108 ) P E2 34.29 I= = max π r 2 2µ 0 c P ( 2µ 0 c ) (a) Emax = = 1.90 kN/C π r2 15 × 10–3 J/s (b) (1.00 m) = 50.0 pJ 3.00 × 108 m/s U 5 × 10–11 (c) p= c = = 1.67 × 10–19 kg · m/s 3.00 × 108 © 2000 by Harcourt, Inc. All rights reserved.
  • 16. 306 Chapter 34 Solutions 34.30 (a) If P S is the total power radiated by the Sun, and rE and r M are the radii of the orbits of the planets Earth and Mars, then the intensities of the solar radiation at these planets are: PS PS IE = and IM = 4 π rE 2 4π rM 2 2 2 r   1.496 × 1011 m  Thus,  rM  ( I M = IE  E  = 1340 W m 2  )  2.28 × 1011 m   = 577 W/m 2 (b) Mars intercepts the power falling on its circular face: ( ) ( )( ) 2 P M = I M π RM = 577 W m 2 π 3.37 × 106 m 2 = 2.06 × 1016 W SM I M (c) If Mars behaves as a perfect absorber, it feels pressure P = = c c and force F = PA = IM c (2 P π RM = M = c ) 2.06 × 1016 W 3.00 × 108 m s = 6.87 × 107 N (d) The attractive gravitational force exerted on Mars by the Sun is Fg = GMS M M = ( )( 6.67 × 10 −11 N ⋅ m 2 kg 2 1.991 × 10 30 kg 6.42 × 10 23 kg )( = 1.64 × 10 21 N ) ( ) 2 2 rM 2.28 × 10 m 11 which is ~1013 times stronger than the repulsive force of (c). 34.31 (a) The total energy absorbed by the surface is 1 ( ) 1    W  ( U = 2 I At =  2 750 2  0.500 × 1.00 m 2 (60.0 s) = 11.3 kJ m  ) (b) The total energy incident on the surface in this time is 2U = 22.5 kJ, with U = 11.3 kJ being absorbed and U = 11.3 kJ being reflected. The total momentum transferred to the surface is p = (momentum from absorption ) + (momentum from reflection ) p=  U   2U  3U 3 11.3 × 10 J + = = 3 ( ) = 1.13 × 10 −4 kg ⋅ m s  c  c  c 3.00 × 108 m s µ 0 Jmax c 2 (4 π × 10 −7 )Jmax (3.00 × 108 ) 2 34.32 Sav = or 570 = so Jmax = 3.48 A/m2 8 8
  • 17. Chapter 34 Solutions 307  µ J 2 c 34.33 (a) P = Sav A =  0 max  A  8   4 π × 10 −7 (10.0)2 (3.00 × 108 )  P=   (1.20 × 0.400) = 2.26 kW  8  µ 0 Jmax c (4 π × 10 −7 (10.0)2 (3.00 × 108 ) 2 (b) Sav = = = 4.71 kW/m2 8 8 *34.34 P= ( ∆V )2 or P ∝ ( ∆V ) 2 R eceiving ∆y l ntenna θ ∆V = ( − )Ey ⋅ ∆y = Ey ⋅ l cos θ ∆V ∝ cos θ so P ∝ cos 2 θ (a) θ = 15.0°: P = P max cos 2 (15.0°) = 0.933P max = 93.3% (b) θ = 45.0°: P = P max cos 2 ( 45.0°) = 0.500P max = 50.0% (c) θ = 90.0°: P = P max cos 2 (90.0°) = 0 34.35 (a) Constructive interference occurs when d cos θ = n λ for some integer n. λ  λ  cos θ = n = n  = 2n n = 0, ± 1, ± 2, . . . d  λ / 2 ∴ strong signal @ θ = cos–1 0 = 90°, 270° (b) Destructive interference occurs when  2n + 1 d cos θ = λ: cos θ = 2n + 1  2  ∴ weak signal @ θ = cos–1 (±1) = 0°, 180° © 2000 by Harcourt, Inc. All rights reserved.
  • 18. 308 Chapter 34 Solutions Goal Solution Two radio-transmitting antennas are separated by half the broadcast wavelength and are driven in phase with each other. In which directions are (a) the strongest and (b) the weakest signals radiated? G: The strength of the radiated signal will be a function of the location around the two antennas and will depend on the interference of the waves. O: A diagram helps to visualize this situation. The two antennas are driven in phase, which means that they both create maximum electric field strength at the same time, as shown in the diagram. The radio EM waves travel radially outwards from the antennas, and the received signal will be the vector sum of the two waves. A : (a) Along the perpendicular bisector of the line joining the antennas, the distance is the same to both transmitting antennas. The transmitters oscillate in phase, so along this line the two signals will be received in phase, constructively interfering to produce a maximum signal strength that is twice the amplitude of one transmitter. (b) Along the extended line joining the sources, the wave from the more distant antenna must travel one-half wavelength farther, so the waves are received 180° out of phase. They interfere destructively to produce the weakest signal with zero amplitude. L : Radio stations may use an antenna array to direct the radiated signal toward a highly-populated region and reduce the signal strength delivered to a sparsely-populated area. c λ 34.36 λ= = 536 m so h= = 134 m f 4 c λ λ= = 188 m so h= = 46.9 m f 4 34.37 For the proton: ΣF = ma ⇒ qvB sin 90.0° = mv 2 R The period and frequency of the proton’s circular motion are therefore: T= 2 πR 2 π m = = ( 2 π 1.67 × 10 −27 kg )= 1.87 × 10 −7 s f = 5.34 × 106 Hz . v qB ( ) 1.60 × 10 −19 C (0.350 T ) c 3.00 × 108 m s The charge will radiate at this same frequency, with λ= = = 56.2 m f 5.34 × 106 Hz mv 2 34.38 For the proton, ΣF = ma yields qvB sin 90.0° = R 2 πR 2 π m The period of the proton’s circular motion is therefore: T= = v qB The frequency of the proton's motion is f = 1/ T c 2 π mc The charge will radiate electromagnetic waves at this frequency, with λ= = cT = f qB
  • 19. Chapter 34 Solutions 309 *34.39 From the electromagnetic spectrum chart and accompanying text discussion, the following identifications are made: Frequency Wavelength, Classification f λ=c f 2 Hz = 2 × 100 Hz 150 Mm Radio 2 kHz = 2 × 10 3 Hz 150 km Radio 2 MHz = 2 × 106 Hz 150 m Radio 2 GHz = 2 × 10 9 Hz 15 cm Microwave 2 THz = 2 × 1012 Hz 150 µ m Infrared 2 PHz = 2 × 1015 Hz 150 nm Ultraviolet 2 EHz = 2 × 1018 Hz 150 pm x-ray 2 ZHz = 2 × 10 21 Hz 150 fm Gamma ray 2 YHz = 2 × 10 24 Hz 150 am Gamma Ray Wavelength, Frequency Classification λ f =c λ 2 km = 2 × 10 3 m 1.5 × 10 5 Hz Radio 2 m = 2 × 100 m 1.5 × 108 Hz Radio 2 mm = 2 × 10 −3 m 1.5 × 1011 Hz Microwave 2 µ m = 2 × 10 −6 m 1.5 × 1014 Hz Infrared 2 nm = 2 × 10 −9 m 1.5 × 1017 Hz Ultraviolet/x-ray 2 pm = 2 × 10 −12 m 1.5 × 10 20 Hz x-ray/Gamma ray 2 fm = 2 × 10 −15 m 1.5 × 10 23 Hz Gamma ray 2 am = 2 × 10 −18 m 1.5 × 10 26 Hz Gamma ray c 3 × 108 m/s *34.40 (a) f= = ~ 108 Hz radio wave λ 1.7 m (b) 1000 pages, 500 sheets, is about 3 cm thick so one sheet is about 6 × 10 – 5 m thick 3 × 108 m/s f= ~ 1013 Hz infrared 6 × 10–5 m c 3.00 × 108 m/s *34.41 f= = = 5.45 × 1014 Hz λ 5.50 × 10–7 m c 3.00 × 108 m/s 180 m 34.42 (a) λ= f = = 261 m so 261 m = 0.690 wavelengths 1150 × 103/s c 3.00 × 108 m/s 180 m (b) λ= f = = 3.06 m so 3.06 m = 58.9 wavelengths 98.1 × 106/s © 2000 by Harcourt, Inc. All rights reserved.
  • 20. 310 Chapter 34 Solutions 34.43 (a) fλ = c gives (5.00 × 1019 Hz)λ = 3.00 × 108 m/s: λ = 6.00 × 10 –12 m = 6.00 pm (b) fλ = c gives (4.00 × 109 Hz)λ = 3.00 × 108 m/s: λ = 0.075 m = 7.50 cm 1 1 *34.44 Time to reach object = 2 (total time of flight) = 2 (4.00 × 10 – 4 s) = 2.00 × 10 – 4 s Thus, d = vt = (3.00 × 10 8 m/s)(2.00 × 10 – 4 s) = 6.00 × 10 4 m = 60.0 km 100 × 10 3 m 34.45 The time for the radio signal to travel 100 km is: tr = = 3.33 × 10 – 4 s 3.00 × 108 m / s 3.00 m 343 m/s = 8.75 × 10 –3 The sound wave to travel 3.00 m across the room in: ts = s Therefore, listeners 100 km away will receive the news before the people in the newsroom by a total time difference of ∆t = 8.75 × 10– 3 s – 3.33 × 10– 4 s = 8.41 × 10– 3 s c 3.00 × 108 m s *34.46 The wavelength of an ELF wave of frequency 75.0 Hz is λ= = = 4.00 × 106 m f 75.0 Hz The length of a quarter-wavelength antenna would be L = 1.00 × 106 m = 1.00 × 10 3 km  0.621 mi  or L = (1000 km ) = 621 mi  1.00 km  Thus, while the project may be theoretically possible, it is not very practical. c 3.00 × 108 m / s 34.47 (a) For the AM band, λ max = = = 556 m f min 540 × 10 3 Hz c 3.00 × 108 m / s λ min = = = 187 m f max 1600 × 10 3 Hz c 3.00 × 108 m / s (b) For the FM band, λ max = = = 3.41 m f min 88.0 × 106 Hz c 3.00 × 108 m / s λ min = = = 2.78 m f max 108 × 106 Hz
  • 21. Chapter 34 Solutions 311 34.48 CH 4 : fmin = 66 MHz λ max = 4.55 m fmax = 72 MHz λ min = 4.17 m CH 6 : fmin = 82 MHz λ max = 3.66 m fmax = 88 MHz λ min = 3.41 m CH 8 : fmin = 180 MHz λ max = 1.67 m fmax = 186 MHz λ min = 1.61 m 34.49 (a) P = SA = (1340 W/m2)4π (1.496 × 1011 m)2 = 3.77 × 1026 W 2 cBmax 2 µ 0S 2(4 π × 10 −7 N / A 2 )(1340 W / m 2 ) (b) S= so Bmax = = = 3.35 µT 2µ 0 c 3.00 × 108 m / s ( )( ) 2 Emax S= so Emax = 2µ 0 cS = 2 4 π × 10 −7 3.00 × 108 (1340) = 1.01 kV/m 2µ 0 c *34.50 Suppose you cover a 1.7 m-by-0.3 m section of beach blanket. Suppose the elevation angle of the Sun is 60°. Then the target area you fill in the Sun's field of view is (1.7 m )( 0.3 m )( cos 30° ) = 0.4 m2 P E W Now I = = : E = IAt = 1340 (0.6)(0.5)(0.4 m2) 3600 s ~ 106 J A At m2 34.51 (a) ε = − dΦB = − d (BA cos θ ) = −A d (Bmax cos ω t cos θ ) = ABmax ω (sin ω t cos θ ) dt dt dt ε (t) = 2π f Bmax A sin 2π f t cos θ = 2π 2r 2 f Bmax cos θ sin 2π f t Thus, ε max = 2π 2r 2 f Bmax cos θ , where θ is the angle between the magnetic field and the normal to the loop. (b) If E is vertical, then B is horizontal, so the plane of the loop should be vertical and the plane should contain the line of sight to the transmitter . © 2000 by Harcourt, Inc. All rights reserved.
  • 22. 312 Chapter 34 Solutions GMs m  GMs  34.52 (a) F grav = = ρ ( 4 / 3)π r 3 R2  R2  where M s = mass of Sun, r = radius of particle and R = distance from Sun to particle. Sπ r 2 Frad  1  3SR 2  1 Since Frad = , = ∝ c F grav  r   4cGMsρ  r   3SR 2 (b) From the result found in part (a), when Fgrav = Frad, we have r= 4cGM s ρ ( )( ) 2 3 214 W / m 2 3.75 × 1011 m r= = 3.78 × 10–7 m ( )( )( )( 4 6.67 × 10 −11 N ⋅ m 2 kg 2 1.991 × 10 30 kg 1500 kg m 3 3.00 × 108 m s ) Emax c = 6.67 × 10 T –16 34.53 (a) Bmax = 2 Emax (b) Sav = = 5.31 × 10–17 W/m 2 2 µ0 c (c) P = Sav A = 1.67 × 10–14 W  Sav  (d) F = PA = A = 5.56 × 10–23 N (≈ weight of 3000 H atoms!)  c  *34.54 (a) The electric field between the plates is E = ∆V l, directed i downward in the figure. The magnetic field between the plate's edges is B = µ 0 i 2 π r counterclockwise. + + + ++ + + + + ++ B + + + E - - - S - - - - - ( ∆V ) i - - - - 1 -- - - The Poynting vector is: S= E×B= (radially outward) µ0 2 π rl i (b) The lateral surface area surrounding the electric field volume is  ( ∆V ) i  A = 2 π rl, so the power output is P = SA =   ( 2 π rl) = (∆V)i  2 π rl  (c) As the capacitor charges, the polarity of the plates and hence the direction of the electric field is unchanged. Reversing the current reverses the direction of the magnetic field, and therefore the Poynting vector. The Poynting vector is now directed radially inward.
  • 23. Chapter 34 Solutions 313 *34.55 (a) The magnetic field in the enclosed volume is directed upward, B dB di with magnitude B = µ 0 ni and increasing at the rate = µ 0n . dt dt The changing magnetic field induces an electric field around any circle of radius r , according to Faraday’s Law: E E( 2 π r ) = − µ 0n ( )  di   dt  π r2 µ nr  di  E=− 0 2  dt  S µ 0nr  di  or E= (clockwise) 2  dt  i 1 1  µ 0nr  di   Then, S= µ0 E×B= µ 0  2  dt   (µ 0ni) inward,   µ 0n2 r i  di  or the Poynting vector is S= (radially inward) 2  dt  (b) The power flowing into the volume is P = SAlat where Alat is the lateral area perpendicular to S . Therefore,  µ n2 r i  di   2 2  di  P= 0 ( 2 π rl) = µ 0 π n r li    2  dt   dt (c) Taking Across to be the cross-sectional area perpendicular to B, the induced voltage between the ends of the inductor, which has N = nl turns, is ∆V = ε =N  dB  A  dt  cross  = nl µ 0n  di  dt  ( ) π r 2 = µ 0 π n2 r 2l  di   dt  and it is observed that P = ( ∆V ) i *34.56 (a) The power incident on the mirror is:   W m  [ 2 ] P I = IA = 1340 2 π (100 m ) = 4.21 × 107 W ( The power reflected through the atmosphere is P R = 0.746 4.21 × 107 W = 3.14 × 107 W ) PR 3.14 × 107 W (b) S= = = 0.625 W/m2 ( ) 2 A π 4.00 × 10 3 m (c) Noon sunshine in Saint Petersburg produces this power-per-area on a horizontal surface: ( ) P N = 0.746 1340 W / m 2 sin 7.00° = 122 W / m 2 The radiation intensity received from the mirror is  0.625 W m 2   122 W m 2  100% = 0.513% of that from the noon Sun in January.   © 2000 by Harcourt, Inc. All rights reserved.
  • 24. 314 Chapter 34 Solutions 1 2 34.57 u = 2 e0Emax (Equation 34.21) 2u Emax = = 95.1 mV/m e0 *34.58 The area over which we model the antenna as radiating is the lateral surface of a cylinder, ( ) A = 2 π r l = 2 π 4.00 × 10 −2 m (0.100 m ) = 2.51 × 10 −2 m 2 P 0.600 W (a) The intensity is then: S= = = 23.9 W m 2 A 2.51 × 10 −2 m 2 −3  mW   1.00 × 10 W   1.00 × 10 cm  4 2 mW W (b) The standard is: 0.570 = 0.570  = 5.70 2 cm 2  cm 2   1.00 mW     1.00 m 2  m 23.9 W m 2 While it is on, the telephone is over the standard by = 4.19 times 5.70 W m 2 Emax 175 V/m c = 3.00 × 108 m/s = 5.83 × 10 T –7 34.59 (a) Bmax = 2π 2π k= = (0.0150 m) = 419 rad/m λ ω = kc = 1.26 × 1011 rad/s Since S is along x, and E is along y, B must be in the z direction . (That is S ∝ E × B.) EmaxBmax (b) Sav = 2µ 0 = 40.6 W/m2 2S (c) Pr = c = 2.71 × 10–7 N/m2 (d) a= ΣF PA = = ( )( 2.71 × 10 −7 N / m 2 0.750 m 2 ) = 4.06 × 10 −7 m / s 2 m m 0.500 kg
  • 25. Chapter 34 Solutions 315 *34.60 (a) At steady-state, P in = P out and the power radiated out is P out = eσAT 4 .  W  W  Thus, 0.900 1000 2 A = (0.700) 5.67 × 10 −8 AT 4  m   m ⋅ K4  2 14  900 W m 2  T=  = 388 K = 115°C ( ) or  0.700 5.67 × 10 −8 W m 2 ⋅ K 4    (b) The box of horizontal area A , presents projected area A sin 50.0° perpendicular to the sunlight. Then by the same reasoning,  W  W  0.900 1000 2 A sin 50.0° = (0.700) 5.67 × 10 −8 AT 4  m   m ⋅ K4  2 ( ) 14  900 W m 2 sin 50.0°  T=  = 363 K = 90.0 °C ( ) or  0.700 5.67 × 10 −8 W m 2 ⋅ K 4    F I 34.61 (a) P= A = c = 3.33 × 10 −7 N = (110 kg )a IA P 100 J / s F= = = c c 3.00 × 108 m / s 1 a = 3.03 × 10–9 m/s2 and x = 2 at 2 2x t= = 8.12 × 10 4 s = 22.6 h a (b) 0 = (107 kg)v – (3.00 kg)(12.0 m/s – v) = (107 kg)v – 36.0 kg · m/s + (3.00 kg)v 36.0 v = 110 = 0.327 m/s t = 30.6 s © 2000 by Harcourt, Inc. All rights reserved.
  • 26. 316 Chapter 34 Solutions Goal Solution An astronaut, stranded in space 10.0 m from his spacecraft and at rest relative to it, has a mass (including equipment) of 110 kg. Since he has a 100-W light source that forms a directed beam, he decides to use the beam as a photon rocket to propel himself continuously toward the spacecraft. (a) Calculate how long it takes him to reach the spacecraft by this method. (b) Suppose, instead, he decides to throw the light source away in a direction opposite the spacecraft. If the mass of the light source has a mass of 3.00 kg and, after being thrown, moves at 12.0 m/s relative to the recoiling astronaut , how long does it take for the astronaut to reach the spacecraft? G: Based on our everyday experience, the force exerted by photons is too small to feel, so it may take a very long time (maybe days!) for the astronaut to travel 10 m with his “photon rocket.” Using the momentum of the thrown light seems like a better solution, but it will still take a while (maybe a few minutes) for the astronaut to reach the spacecraft because his mass is so much larger than the mass of the light source. O: In part (a), the radiation pressure can be used to find the force that accelerates the astronaut toward the spacecraft. In part (b), the principle of conservation of momentum can be applied to find the time required to travel the 10 m. A : (a) Light exerts on the astronaut a pressure P = F A = S c , and a force of SA 100 J / s F= = = = 3.33 × 10 −7 N c 3.00 × 108 m / s F 3.33 × 10 −7 N By Newton’s 2nd law, a= = = 3.03 × 10 −9 m / s 2 m 110 kg This acceleration is constant, so the distance traveled is x = 2 at 2 , and the amount of time it travels is 1 2x 2(10.0 m ) t= = = 8.12 × 10 4 s = 22.6 h a 3.03 × 10 −9 m / s 2 (b) Because there are no external forces, the momentum of the astronaut before throwing the light is the same as afterwards when the now 107-kg astronaut is moving at speed v towards the spacecraft and the light is moving away from the spacecraft at (12.0 m / s − v ) . Thus, pi = p f gives 0 = (107 kg )v − ( 3.00 kg )(12.0 m / s − v ) 0 = (107 kg )v − ( 36.0 kg ⋅ m / s) + ( 3.00 kg )v 36.0 v= = 0.327 m / s 110 x 10.0 m t= = = 30.6 s v 0.327 m / s L : Throwing the light away is certainly a more expedient way to reach the spacecraft, but there is not much chance of retrieving the lamp unless it has a very long cord. How long would the cord need to be, and does its length depend on how hard the astronaut throws the lamp? (You should verify that the minimum cord length is 367 m, independent of the speed that the lamp is thrown.)
  • 27. Chapter 34 Solutions 317 W 2S 2(0.380)S 34.62 The 38.0% of the intensity S = 1340 that is reflected exerts a pressure P1 = r = m2 c c Sa (0.620)S The absorbed light exerts pressure P2 = = c c Altogether the pressure at the subsolar point on Earth is 1.38S 1.38(1340 W/m2) (a) Ptot = P1 + P2 = = = 6.16 × 10– 6 Pa c 3.00 × 108 m/s Pa 1.01 × 10 5 N / m 2 (b) = = 1.64 × 1010 times smaller than atmospheric pressure Ptot 6.16 × 10 −6 N / m 2 2 34.63 Think of light going up and being absorbed by the bead which presents a face area π r b . S I The light pressure is P = c = . c 2 1/3 Iπ r b 4 3 4ρ gc  3m  (a) Fl = c = mg = ρ 3 π r b g and I=   = 8.32 × 10 7 W/m 2 3  4 πρ  (b) P = IA = (8.32 × 10 7 W/m2)π (2.00 × 10–3 m)2 = 1.05 kW 2 34.64 Think of light going up and being absorbed by the bead which presents face area π r b . Sav I Fl If we take the bead to be perfectly absorbing, the light pressure is P = = = c c A Flc F g c m gc (a) Fl = F g so I= = = A A π rb 2 ( ) m m 1 4 1/3 From the definition of density, ρ = = 4 so = πρ m V π rb 3 rb 3 3 1/3 m gc  4 πρ  2/3 2/3  4ρ   m  1/3 4ρ gc  3m  Substituting for rb , I = = gc = π  3m   3  π 3  4π ρ    π r 24ρgc  3m  1/3 (b) P = IA =   3  4π ρ  © 2000 by Harcourt, Inc. All rights reserved.
  • 28. 318 Chapter 34 Solutions 34.65 The mirror intercepts power P = I1A1 = (1.00 × 10 3 W/m2)π (0.500 m)2 = 785 W In the image, P 785 W (a) I2 = = = 625 kW/m2 A2 π (0.0200 m )2 2 E max (b) I 2 = 2µ c so Emax = (2µ0c I 2 )1/2 = [2(4π × 10–7)(3.00 × 108)(6.25 × 105)]1/2= 21.7 kN/C 0 Emax Bmax = c = 72.4 µT (c) 0.400 P t = mc ∆T J 0.400(785 W)t = (1.00 kg)  4186 kg · C° (100°C – 20.0°C)   3.35 × 105 J t= 314 W = 1.07 × 103 s = 17.8 min c 3.00 × 108 m s 34.66 (a) λ= = = 1.50 cm f 20.0 × 10 9 s −1 (b)  U = P ( ∆t ) = 25.0 × 10 3  J s ( ) 1.00 × 10 −9 s = 25.0 × 10 −6 J = 25.0 µJ U U U 25.0 × 10 −6 J uav = = = = ( ) ( ) ( )( ) (c) V π r 2 l π r 2 c( ∆t ) π (0.0600 m )2 3.00 × 108 m s 1.00 × 10 −9 s uav = 7.37 × 10 −3 J m 3 = 7.37 mJ m 3 (d) Emax = 2uav = ( 2 7.37 × 10 −3 J m 3 ) = 4.08 × 10 4 V m = 40.8 kV/m −12 e0 8.85 × 10 C N ⋅ m2 2 Emax 4.08 × 10 4 V m Bmax = = = 1.36 × 10 −4 T = 136 µT c 3.00 × 108 m s  S  c uav   J  (e) F = PA = A= A = uav A = 7.37 × 10 −3 π (0.0600 m )2 = 8.33 × 10 −5 N = 83.3 µN  c  c   m3 
  • 29. Chapter 34 Solutions 319 ( ) 2 C2 m s2 N ⋅ m 2 ⋅ C2 ⋅ m 2 ⋅ s3 N ⋅ m J (a) On the right side of the equation, = = = =W (C N ⋅ m )(m s) 34.67 2 2 3 C2 ⋅ s 4 ⋅ m 3 s s qE (1.60 × 10 C)(100 N C) −19 (b) F = ma = qE or a= = = 1.76 × 1013 m s 2 m 9.11 × 10 −31 kg The radiated power is then: P= q2 a2 = ( 1.60 × 10 1.76 × 10 −19 2 )( 13 2 ) = 1.75 × 10 − 27 W 6 π e0 c ( )( ) 3 3 6 π 8.85 × 10 −12 3.00 × 108 v 2 qBr (c) F = mar = m  = qvB so v=  r  m ( ) 2 1.60 × 10 −19 (0.350) (0.500) 2 v 2 q 2B2 r The proton accelerates at a= = = = 5.62 × 1014 m s 2 r m2 1.67 × 10 −27 2 ( ) The proton then radiates P= q2 a2 = ( 1.60 × 10 5.62 × 10 −19 2 )( 14 2 ) = 1.80 × 10 −24 W ( 6 π e0 c 3 6 π 8.85 × 10 −12 3.00 × 108 )( ) 3 S Power P 60.0 W 34.68 P= = = = = 6.37 × 10–7 Pa c Ac 2 π rlc 2 π (0.0500 m)(1.00 m)(3.00 × 108 m s) SA ( P / A)A P τ = F  = l Pl 34.69 F = PA = = = , , and τ = κθ c c c  2  2c θ= Pl = ( 3.00 × 10 −3 (0.0600) ) = 3.00 × 10– 2 deg ( )( ) Therefore, 2c κ 2 3.00 × 108 1.00 × 10 −11 *34.70 We take R to be the planet’s distance from its star. The planet, of radius r , presents a projected area π r 2 perpendicular to the starlight. It radiates over area 4 π r 2 . ( ) ( At steady-state, P in = P out : e I in π r 2 = eσ 4 π r 2 T 4 )  6.00 × 10 23 W  e  4π R2  ( )  π r = eσ 4 π r T 2 2 4 ( ) so that 6.00 × 10 23 W = 16 π σ R 2 T 4 6.00 × 10 23 W 6.00 × 10 23 W R= = = 4.77 × 10 9 m = 4.77 Gm 16 π σ T 4 ( 16 π 5.67 × 10 −8 W m 2 ⋅ K 4 ( 310 K ) 4 ) © 2000 by Harcourt, Inc. All rights reserved.
  • 30. 320 Chapter 34 Solutions E2 34.71 The light intensity is I = Sav = 2 µ 0c S E2 The light pressure is P= = = 1 e0 E 2 c 2 µ 0c 2 2 e0E 2 A For the asteroid, PA = m a and a= 2m 34.72 f = 90.0 MHz, Emax = 2.00 × 10 − 3 V / m = 200 mV/m c (a) λ= = 3.33 m f 1 T= = 1.11 × 10 −8 s = 11.1 ns f Emax Bmax = = 6.67 × 10 −12 T = 6.67 pT c  x t   x t  E = (2.00 mV / m) cos 2 π  − B = (6.67 pT )k cos 2 π − 3.33 m 11.1 ns  (b) j    3.33 m 11.1 ns  2 Emax (2.00 × 10 − 3 )2 (c) I= = = 5.31 × 10 − 9 W / m 2 2µ 0 c 2(4 π × 10 − 7 )(3.00 × 108 ) (d) I = cuav so uav = 1.77 × 10 −17 J / m 3 2I (2)(5.31 × 10 − 9 ) (e) P= = = 3.54 × 10 −17 Pa c 3.00 × 108