SlideShare a Scribd company logo
1 of 29
Chapter 3 Fourier Series Representation of
Periodic Signals
Sec. 3.1 A Historical Perspective
Sec. 3.2 The Response of LTI Systems to Complex Exponential
Signals
Sec. 3.3 Fourier Series Representation of Continuous-Time
Periodic Signals
Sec. 3.4 Convergence of the Fourier Series
Sec. 3.5 Properties of Continuous-Time Fourier Series
Sec. 3.6 Fourier Series Representation of Discrete-time Periodic
Signals
Sec. 3.7 Properties of Discrete-Time Fourier Series
Fourier Series
Discrete-Time
Fourier Series
Preliminary
Sec. 3.8 Fourier Series and LTI Systems
Sec. 3.9 Filtering
Sec. 3.10 Examples of Continuous-time Filters Described by
Differential Equations
Sec. 3.11 Examples of Discrete-time Filters Described by
Difference Equations
Sec. 3.12 Summary
Chapter 3 Fourier Series Representation of
Periodic Signals
LTI System
Analysis by
Discrete /
Continuous Time
Fourier Series
This section can be divided into 4 parts.
Fourier
Family
Continuous
Discrete
Periodic
Non-periodic Fourier Transform (Chap. 4)
Fourier Series (Chap. 3)
Periodic
Non-periodic Discrete-Time Fourier
Transform (Chap. 5)
Discrete-time Fourier
Series (Discrete Fourier
Transform) (Sec. 3.6)
Sec. 3.1 A Historical Perspective
L. Euler’s study
on the motion of a
vibrating string in
1748
P.203
In 1807, Jean Baptiste Joseph Fourier
Submitted a paper of using trigonometric series to represent “any” periodic signal
D. Bernoulli argued (in 1753)
All physical motions of a string could be represented by linear combinations of
normal modes
J.L. Lagrange strongly criticized (in 1759)
The use of trigonometric series in examination of vibrating strings
In 1822, Fourier published a book , “Theorie analytique de la chaleur”
“The Analytical Theory of Heat”
P.203
Fourier’s main contributions:
Studied vibration, heat diffusion, etc.
Found series of harmonically related sinusoids to be useful in
representing the temperature distribution through a body
Claimed that “any” periodic signal could be represented by such a
series (i.e., Fourier series discussed in Chap 3)
Obtained a representation for aperiodic signals (i.e., Fourier integral or
transform discussed in Chap 4 & 5)
(Fourier did not actually contribute to the mathematical theory of
Fourier series)
P.204
Impact from Fourier’s work:
Theory of integration, point-set topology, eigenfunction expansions,
etc.
Motion of planets, periodic behavior of the earth’s climate, wave in
the ocean, radio & television stations
Harmonic time series in the 18th & 19th centuries
Gauss etc. on discrete-time signals and systems
Faster Fourier transform (FFT) in the mid-1960s
Cooley (IBM) & Tukey (Princeton) reinvented in 1965
Can be found in Gauss’s notebooks (in 1805)
Sec. 3.2 The Response of LTI Systems to Complex Exponential
Signals
Key concept
The functions exp(st) and zn are the eigenfunctions of continuous-time and discrete-
time LTI systems, respectively
The basic signals exp(st) and zn has the following properties
1. The set of basic signals can be used to construct a broad and useful class of signals.
2. The response of an LTI system to each signal should be simple enough in structure to
provide us with a convenient representation for the response of the system to any signal
constructed as a linear combination of the basic signals.
P.206
Theorem 3.1 Eigenfunctions of LTI Systems
The functions exp(st) and zn are the eigenfunctions of continuous-time and discrete-
time LTI systems, respectively.
continuous time: est → H(s)est
discrete time: zn → H(z)zn
H(s) and H(z) are eigenvalues (may be complex)
P.206
with x(t) = est
(Proof):
( )
( ) ( ) ( ) ( ) .
s t
y t h x t d h e d

    
 

 
  
 
 
( ) ( )
st s st
y t e h e d H s e

 



 

  ( ) s
H s h e d

 



 
where
(Linear Combination):
1 1
2 2
3 3
1 1 1
2 2 2
3 3 3
( ) ,
( ) ,
( ) ,
s t s t
s t s t
s t s t
a e a H s e
a e a H s e
a e a H s e



3 3
1 2 1 2
1 2 3 1 1 2 2 3 3
( ) ( ) ( )
s t s t
s t s t s t s t
a e a e a e a H s e a H s e a H s e
    
P.207-208
[Example 3.1]
( ) ( 3)
y t x t
 
(1) When x(t) = ej2t
2( 3) 6 2
( ) j t j j t
y t e e e
 
 
3
( ) ( 3) s s
H s e d e

  

 

  

eigenvalue: 6
j
e
eigenvalue for est
is an LTI system with the impulse response  (t-3).
P.209
6
( 2) j
H j e

so that
[Example 3.1]
( ) ( 3)
y t x t
  is an LTI system with the impulse response  (t-3).
3
( ) ( 3) s s
H s e d e

  

 

  

eigenvalue for est
(2) When x(t) = cos(4t) + cos(7t).
4 4 7 7
1 1 1 1
2 2 2 2
( ) j t j t j t j t
x t e e e e
 
   
12 4 12 4 21 7 21 7
1 1 1 1
2 2 2 2
( ) j j t j j t j j t j j t
y t e e e e e e e e
   
   
( ) cos(4( 3)) cos(7( 3))
y t t t
   
P.209-210
4( 3) 4( 3) 7( 3) 7( 3)
1 1 1 1
2 2 2 2
( ) j t j t j t j t
y t e e e e
     
   
Sec. 3.3 Fourier Series Representation of Continuous-Time
Periodic Signals
Key concepts
(i) definition of the Fourier series;
(ii) how to apply the Fourier series to periodic signals
P.210
3.3.1 Linear Combinations of Harmonically Related Complex Exponential
Signals
exp(st): eigenfunctions of continuous-time LTI systems
s can be complex.
If
( ) ( )
x t x t T
 
express it as
0 (2 / )
( ) jk t jk T t
k k
k k
x t a e a e
 
 
 
 
 
(2 / )
jk T t
e 
are eigenfunctions of continuous-time LTI systems
P.210-211
P.211
[Example 3.2]
P.211-212
[Example 3.2]
P.212
0
( ) jk t
k
k
x t a e 


 
If x(t) is real
0 0
* *
( ) ( ) jk t jk t
k k
k k
x t x t a e a e
 
 



 
  
 
*
k k
a a

0 0
*
0
1
( ) [ ]
jk t jk t
k k
k
x t a a e a e
 



  

Therefore,
0
0
1
( ) 2 { }
jk t
k
k
x t a e a e 


  

P.213
0 0
0
1
( ) 2 { }
jk t jk t
k k
k k
x t a e a e a e
 
 
 
   
 
(1) If
(2) If
P.214
k
j
k k
a A e 

0
0
1
0 0
1
( ) 2 { }
2 cos( )
k
j jk t
k
k
k k
k
x t a e A e e
a A k t
 
 




  
  


k k k
a B jC
 
 
0 0 0
1
( ) 2 cos sin
k k
k
x t a B k t C k t
 


  

3.3.2 Determination of the Fourier Series Representation of a Continuous-
Time Periodic Signal
0 (2 / )
( ) jk t jk T t
k k
k k
x t a e a e
 
 
 
 
  How do we find ak?
0 0 0
( ) jn t jk t jn t
k
k
x t e a e e
  

 

 
0 0 0 0
( )
0 0 0
( )
T T T
jn t jk t jn t j k n t
k k
k k
x t e dt a e e dt a e dt
   
 
  
 
 
 
 
 
 
  
P.214
0 0
( ) ( )
0
0
0
1
0
( )
T T
j k n t j k n t
e dt e
j k n
 

 
 

 0
2
T

 
Therefore,
When k  n
0
( )
0
,
0,
T
j k n t T k n
e dt
k n

 

 



0 0
( )
0 0
( )
T T
jn t j k n t
k n
k
x t e dt a e dt Ta
 

 

 
 
 
 

 
0
0
1
( )
T
jn t
n
a x t e dt
T


 
P.215
Definition 3.1 Fourier Series
for a continuous and periodic signal x(t) = x(t+T)
synthesis: 0 (2 / )
( ) jk t jk T t
k k
k k
x t a e a e
 
 
 
 
 
analysis: 0 (2 / )
1 1
( ) ( )
jk t jk T t
k
T T
a x t e dt x t e dt
T T
 
 
 
 
T
 is the integration from t0 to t0+T and t0 can be any value
Specially, if t0 = 0,
analysis: 0 (2 / )
0 0
1 1
( ) ( )
T T
jk t jk T t
k
a x t e dt x t e dt
T T
 
 
 
 
P.216
analysis: 0 (2 / )
1 1
( ) ( )
jk t jk T t
k
T T
a x t e dt x t e dt
T T
 
 
 
 
{ak} are often called the Fourier series coefficients or the spectral coefficients of x(t).
Specially, when k = 0,
0
1
( )
T
a x t dt
T
 
P.216
Supplement: Alternative Forms of the Fourier Series
0
2
( ) j k f t
k
k
x t a e 


 
synthesis:
analysis:
0
2
1
( ) j k f t
k
T
a x t e dt
T


  where f0 = 1/T.
synthesis:
analysis:
0
1
( ) jk t
k
k
x t a e
T




 
0
1 ( ) jk t
k
T
a x t e dt
T

 
[Example 3.3]
0 0
0
1 1
( ) sin .
2 2
j t j t
x t t e e
j j
 
 
  
0
( ) jk t
k
k
x t a e 


 
1 1
1 1
, , 0. 1 1.
2 2
k
a a a k or
j j

      
P.217
[Example 3.4]
0
( ) jk t
k
k
x t a e 


 
 
0 0 0 0 0 0
0 0 0 0
0 0 0
(2 /4) (2 /4)
2 2
( /4) ( /4)
( ) 1 sin 2cos cos 2 / 4 ,
1 1
( ) 1 [ ] [ ] [ ].
2 2
1 1 1 1
1 1 1 .
2 2 2 2
j t j t j t j t j t j t
j t j t j t j t
j j
x t t t t
x t e e e e e e
j
e e e e e e
j j
       
   
 
   
    
 

    
      
       
      
   
   
   
   
0
1
1
1
1 1
1 1
2 2
1 1
1 1
2 2
a
a j
j
a j
j


 
   
 
 
 
   
 
 
( /4)
2
( /4)
2
2
1 (1 )
2 4
2
1 (1 )
2 4
0, 2
j
j
k
a e j
a e j
a k




  
  
 
P.217-218
0
1
1
1
1 1
1 1
2 2
1 1
1 1
2 2
a
a j
j
a j
j


 
   
 
 
 
   
 
 
( /4)
2
( /4)
2
2
1 (1 )
2 4
2
1 (1 )
2 4
0, 2
j
j
k
a e j
a e j
a k




  
  
 
P.218
[Example 3.5]
0
( ) jk t
k
k
x t a e 


 
1
1
1,
( )
0, / 2
t T
x t
T t T
 

 
 


1
1
1
0
2
1 T
T
T
a dt
T T

 

1
0 0 1
1
1
0 1 0 1
0
0 1
0
1 1
sin( )
2
, 0
2
T
jk t jk t T
k T
T
jk T jk T
a e dt e
T jk T
k T
e e
k
k T j k
 
 


 
 



  
 

  
 
 

P.218-219
1
0
2T
a
T
 0 1
sin( )
k
k T
a
k



T = 4T1
T = 8T1
T = 16T1
P.220

More Related Content

Similar to CH3-1.pdf

International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI) International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI) inventionjournals
 
ENGI5671Matcont
ENGI5671MatcontENGI5671Matcont
ENGI5671MatcontYu Zhang
 
Fourier_Series_april.pdf
Fourier_Series_april.pdfFourier_Series_april.pdf
Fourier_Series_april.pdfXaviAltamirano1
 
Clase 02-modelado-de-sistemas-de-control (1)
Clase 02-modelado-de-sistemas-de-control (1)Clase 02-modelado-de-sistemas-de-control (1)
Clase 02-modelado-de-sistemas-de-control (1)ronald sanchez
 
An Exponential Observer Design for a Class of Chaotic Systems with Exponentia...
An Exponential Observer Design for a Class of Chaotic Systems with Exponentia...An Exponential Observer Design for a Class of Chaotic Systems with Exponentia...
An Exponential Observer Design for a Class of Chaotic Systems with Exponentia...ijtsrd
 
Exponential State Observer Design for a Class of Uncertain Chaotic and Non-Ch...
Exponential State Observer Design for a Class of Uncertain Chaotic and Non-Ch...Exponential State Observer Design for a Class of Uncertain Chaotic and Non-Ch...
Exponential State Observer Design for a Class of Uncertain Chaotic and Non-Ch...ijtsrd
 
Chapter3 - Fourier Series Representation of Periodic Signals
Chapter3 - Fourier Series Representation of Periodic SignalsChapter3 - Fourier Series Representation of Periodic Signals
Chapter3 - Fourier Series Representation of Periodic SignalsAttaporn Ninsuwan
 
20120214 optical pulse_measurement_wei-yi
20120214 optical pulse_measurement_wei-yi20120214 optical pulse_measurement_wei-yi
20120214 optical pulse_measurement_wei-yi奕勳 陳
 
Signal and Systems part i
Signal and Systems part iSignal and Systems part i
Signal and Systems part iPatrickMumba7
 
8fbf4451c622e6efbcf7452222d21ea5_MITRES_6_007S11_hw02.pdf
8fbf4451c622e6efbcf7452222d21ea5_MITRES_6_007S11_hw02.pdf8fbf4451c622e6efbcf7452222d21ea5_MITRES_6_007S11_hw02.pdf
8fbf4451c622e6efbcf7452222d21ea5_MITRES_6_007S11_hw02.pdfTsegaTeklewold1
 
Controllability of Linear Dynamical System
Controllability of  Linear Dynamical SystemControllability of  Linear Dynamical System
Controllability of Linear Dynamical SystemPurnima Pandit
 
02_signals.pdf
02_signals.pdf02_signals.pdf
02_signals.pdfMituBaral2
 
5. fourier properties
5. fourier properties5. fourier properties
5. fourier propertiesskysunilyadav
 
MATHEMATICAL MODELING OF COMPLEX REDUNDANT SYSTEM UNDER HEAD-OF-LINE REPAIR
MATHEMATICAL MODELING OF COMPLEX REDUNDANT SYSTEM UNDER HEAD-OF-LINE REPAIRMATHEMATICAL MODELING OF COMPLEX REDUNDANT SYSTEM UNDER HEAD-OF-LINE REPAIR
MATHEMATICAL MODELING OF COMPLEX REDUNDANT SYSTEM UNDER HEAD-OF-LINE REPAIREditor IJMTER
 
Fourier Analysis Review for engineering.
Fourier Analysis Review for engineering.Fourier Analysis Review for engineering.
Fourier Analysis Review for engineering.AbdelRahmanMohamedNe
 

Similar to CH3-1.pdf (20)

International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI) International Journal of Mathematics and Statistics Invention (IJMSI)
International Journal of Mathematics and Statistics Invention (IJMSI)
 
ENGI5671Matcont
ENGI5671MatcontENGI5671Matcont
ENGI5671Matcont
 
Fourier_Series_april.pdf
Fourier_Series_april.pdfFourier_Series_april.pdf
Fourier_Series_april.pdf
 
Clase 02-modelado-de-sistemas-de-control (1)
Clase 02-modelado-de-sistemas-de-control (1)Clase 02-modelado-de-sistemas-de-control (1)
Clase 02-modelado-de-sistemas-de-control (1)
 
An Exponential Observer Design for a Class of Chaotic Systems with Exponentia...
An Exponential Observer Design for a Class of Chaotic Systems with Exponentia...An Exponential Observer Design for a Class of Chaotic Systems with Exponentia...
An Exponential Observer Design for a Class of Chaotic Systems with Exponentia...
 
rcg-ch4a.pdf
rcg-ch4a.pdfrcg-ch4a.pdf
rcg-ch4a.pdf
 
Exponential State Observer Design for a Class of Uncertain Chaotic and Non-Ch...
Exponential State Observer Design for a Class of Uncertain Chaotic and Non-Ch...Exponential State Observer Design for a Class of Uncertain Chaotic and Non-Ch...
Exponential State Observer Design for a Class of Uncertain Chaotic and Non-Ch...
 
D028036046
D028036046D028036046
D028036046
 
Chapter3 - Fourier Series Representation of Periodic Signals
Chapter3 - Fourier Series Representation of Periodic SignalsChapter3 - Fourier Series Representation of Periodic Signals
Chapter3 - Fourier Series Representation of Periodic Signals
 
20120214 optical pulse_measurement_wei-yi
20120214 optical pulse_measurement_wei-yi20120214 optical pulse_measurement_wei-yi
20120214 optical pulse_measurement_wei-yi
 
Signal and Systems part i
Signal and Systems part iSignal and Systems part i
Signal and Systems part i
 
8fbf4451c622e6efbcf7452222d21ea5_MITRES_6_007S11_hw02.pdf
8fbf4451c622e6efbcf7452222d21ea5_MITRES_6_007S11_hw02.pdf8fbf4451c622e6efbcf7452222d21ea5_MITRES_6_007S11_hw02.pdf
8fbf4451c622e6efbcf7452222d21ea5_MITRES_6_007S11_hw02.pdf
 
Controllability of Linear Dynamical System
Controllability of  Linear Dynamical SystemControllability of  Linear Dynamical System
Controllability of Linear Dynamical System
 
02_signals.pdf
02_signals.pdf02_signals.pdf
02_signals.pdf
 
5. fourier properties
5. fourier properties5. fourier properties
5. fourier properties
 
MATHEMATICAL MODELING OF COMPLEX REDUNDANT SYSTEM UNDER HEAD-OF-LINE REPAIR
MATHEMATICAL MODELING OF COMPLEX REDUNDANT SYSTEM UNDER HEAD-OF-LINE REPAIRMATHEMATICAL MODELING OF COMPLEX REDUNDANT SYSTEM UNDER HEAD-OF-LINE REPAIR
MATHEMATICAL MODELING OF COMPLEX REDUNDANT SYSTEM UNDER HEAD-OF-LINE REPAIR
 
signal.pdf
signal.pdfsignal.pdf
signal.pdf
 
Fourier Analysis Review for engineering.
Fourier Analysis Review for engineering.Fourier Analysis Review for engineering.
Fourier Analysis Review for engineering.
 
4. cft
4. cft4. cft
4. cft
 
4945427.ppt
4945427.ppt4945427.ppt
4945427.ppt
 

Recently uploaded

SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )Tsuyoshi Horigome
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxupamatechverse
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxupamatechverse
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxupamatechverse
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...Soham Mondal
 
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...RajaP95
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxJoão Esperancinha
 
High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...
High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...
High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...Call Girls in Nagpur High Profile
 
Analog to Digital and Digital to Analog Converter
Analog to Digital and Digital to Analog ConverterAnalog to Digital and Digital to Analog Converter
Analog to Digital and Digital to Analog ConverterAbhinavSharma374939
 
Current Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLCurrent Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLDeelipZope
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSCAESB
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escortsranjana rawat
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).pptssuser5c9d4b1
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...ranjana rawat
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxAsutosh Ranjan
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerAnamika Sarkar
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxwendy cai
 

Recently uploaded (20)

SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )SPICE PARK APR2024 ( 6,793 SPICE Models )
SPICE PARK APR2024 ( 6,793 SPICE Models )
 
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINEDJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
DJARUM4D - SLOT GACOR ONLINE | SLOT DEMO ONLINE
 
Introduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptxIntroduction to IEEE STANDARDS and its different types.pptx
Introduction to IEEE STANDARDS and its different types.pptx
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptx
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptx
 
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
OSVC_Meta-Data based Simulation Automation to overcome Verification Challenge...
 
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
IMPLICATIONS OF THE ABOVE HOLISTIC UNDERSTANDING OF HARMONY ON PROFESSIONAL E...
 
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptxDecoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
Decoding Kotlin - Your guide to solving the mysterious in Kotlin.pptx
 
High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...
High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...
High Profile Call Girls Nashik Megha 7001305949 Independent Escort Service Na...
 
Analog to Digital and Digital to Analog Converter
Analog to Digital and Digital to Analog ConverterAnalog to Digital and Digital to Analog Converter
Analog to Digital and Digital to Analog Converter
 
Current Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCLCurrent Transformer Drawing and GTP for MSETCL
Current Transformer Drawing and GTP for MSETCL
 
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCRCall Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
Call Us -/9953056974- Call Girls In Vikaspuri-/- Delhi NCR
 
GDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentationGDSC ASEB Gen AI study jams presentation
GDSC ASEB Gen AI study jams presentation
 
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Isha Call 7001035870 Meet With Nagpur Escorts
 
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
247267395-1-Symmetric-and-distributed-shared-memory-architectures-ppt (1).ppt
 
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
(PRIYA) Rajgurunagar Call Girls Just Call 7001035870 [ Cash on Delivery ] Pun...
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptx
 
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube ExchangerStudy on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
Study on Air-Water & Water-Water Heat Exchange in a Finned Tube Exchanger
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
 
What are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptxWhat are the advantages and disadvantages of membrane structures.pptx
What are the advantages and disadvantages of membrane structures.pptx
 

CH3-1.pdf

  • 1. Chapter 3 Fourier Series Representation of Periodic Signals Sec. 3.1 A Historical Perspective Sec. 3.2 The Response of LTI Systems to Complex Exponential Signals Sec. 3.3 Fourier Series Representation of Continuous-Time Periodic Signals Sec. 3.4 Convergence of the Fourier Series Sec. 3.5 Properties of Continuous-Time Fourier Series Sec. 3.6 Fourier Series Representation of Discrete-time Periodic Signals Sec. 3.7 Properties of Discrete-Time Fourier Series Fourier Series Discrete-Time Fourier Series Preliminary
  • 2. Sec. 3.8 Fourier Series and LTI Systems Sec. 3.9 Filtering Sec. 3.10 Examples of Continuous-time Filters Described by Differential Equations Sec. 3.11 Examples of Discrete-time Filters Described by Difference Equations Sec. 3.12 Summary Chapter 3 Fourier Series Representation of Periodic Signals LTI System Analysis by Discrete / Continuous Time Fourier Series This section can be divided into 4 parts.
  • 3. Fourier Family Continuous Discrete Periodic Non-periodic Fourier Transform (Chap. 4) Fourier Series (Chap. 3) Periodic Non-periodic Discrete-Time Fourier Transform (Chap. 5) Discrete-time Fourier Series (Discrete Fourier Transform) (Sec. 3.6)
  • 4. Sec. 3.1 A Historical Perspective L. Euler’s study on the motion of a vibrating string in 1748 P.203
  • 5. In 1807, Jean Baptiste Joseph Fourier Submitted a paper of using trigonometric series to represent “any” periodic signal D. Bernoulli argued (in 1753) All physical motions of a string could be represented by linear combinations of normal modes J.L. Lagrange strongly criticized (in 1759) The use of trigonometric series in examination of vibrating strings In 1822, Fourier published a book , “Theorie analytique de la chaleur” “The Analytical Theory of Heat” P.203
  • 6. Fourier’s main contributions: Studied vibration, heat diffusion, etc. Found series of harmonically related sinusoids to be useful in representing the temperature distribution through a body Claimed that “any” periodic signal could be represented by such a series (i.e., Fourier series discussed in Chap 3) Obtained a representation for aperiodic signals (i.e., Fourier integral or transform discussed in Chap 4 & 5) (Fourier did not actually contribute to the mathematical theory of Fourier series) P.204
  • 7. Impact from Fourier’s work: Theory of integration, point-set topology, eigenfunction expansions, etc. Motion of planets, periodic behavior of the earth’s climate, wave in the ocean, radio & television stations Harmonic time series in the 18th & 19th centuries Gauss etc. on discrete-time signals and systems Faster Fourier transform (FFT) in the mid-1960s Cooley (IBM) & Tukey (Princeton) reinvented in 1965 Can be found in Gauss’s notebooks (in 1805)
  • 8. Sec. 3.2 The Response of LTI Systems to Complex Exponential Signals Key concept The functions exp(st) and zn are the eigenfunctions of continuous-time and discrete- time LTI systems, respectively The basic signals exp(st) and zn has the following properties 1. The set of basic signals can be used to construct a broad and useful class of signals. 2. The response of an LTI system to each signal should be simple enough in structure to provide us with a convenient representation for the response of the system to any signal constructed as a linear combination of the basic signals. P.206
  • 9. Theorem 3.1 Eigenfunctions of LTI Systems The functions exp(st) and zn are the eigenfunctions of continuous-time and discrete- time LTI systems, respectively. continuous time: est → H(s)est discrete time: zn → H(z)zn H(s) and H(z) are eigenvalues (may be complex) P.206
  • 10. with x(t) = est (Proof): ( ) ( ) ( ) ( ) ( ) . s t y t h x t d h e d                   ( ) ( ) st s st y t e h e d H s e            ( ) s H s h e d         where (Linear Combination): 1 1 2 2 3 3 1 1 1 2 2 2 3 3 3 ( ) , ( ) , ( ) , s t s t s t s t s t s t a e a H s e a e a H s e a e a H s e    3 3 1 2 1 2 1 2 3 1 1 2 2 3 3 ( ) ( ) ( ) s t s t s t s t s t s t a e a e a e a H s e a H s e a H s e      P.207-208
  • 11. [Example 3.1] ( ) ( 3) y t x t   (1) When x(t) = ej2t 2( 3) 6 2 ( ) j t j j t y t e e e     3 ( ) ( 3) s s H s e d e             eigenvalue: 6 j e eigenvalue for est is an LTI system with the impulse response  (t-3). P.209 6 ( 2) j H j e  so that
  • 12. [Example 3.1] ( ) ( 3) y t x t   is an LTI system with the impulse response  (t-3). 3 ( ) ( 3) s s H s e d e             eigenvalue for est (2) When x(t) = cos(4t) + cos(7t). 4 4 7 7 1 1 1 1 2 2 2 2 ( ) j t j t j t j t x t e e e e       12 4 12 4 21 7 21 7 1 1 1 1 2 2 2 2 ( ) j j t j j t j j t j j t y t e e e e e e e e         ( ) cos(4( 3)) cos(7( 3)) y t t t     P.209-210 4( 3) 4( 3) 7( 3) 7( 3) 1 1 1 1 2 2 2 2 ( ) j t j t j t j t y t e e e e          
  • 13. Sec. 3.3 Fourier Series Representation of Continuous-Time Periodic Signals Key concepts (i) definition of the Fourier series; (ii) how to apply the Fourier series to periodic signals P.210
  • 14. 3.3.1 Linear Combinations of Harmonically Related Complex Exponential Signals exp(st): eigenfunctions of continuous-time LTI systems s can be complex. If ( ) ( ) x t x t T   express it as 0 (2 / ) ( ) jk t jk T t k k k k x t a e a e           (2 / ) jk T t e  are eigenfunctions of continuous-time LTI systems P.210-211
  • 15. P.211
  • 18. 0 ( ) jk t k k x t a e      If x(t) is real 0 0 * * ( ) ( ) jk t jk t k k k k x t x t a e a e               * k k a a  0 0 * 0 1 ( ) [ ] jk t jk t k k k x t a a e a e          Therefore, 0 0 1 ( ) 2 { } jk t k k x t a e a e        P.213
  • 19. 0 0 0 1 ( ) 2 { } jk t jk t k k k k x t a e a e a e             (1) If (2) If P.214 k j k k a A e   0 0 1 0 0 1 ( ) 2 { } 2 cos( ) k j jk t k k k k k x t a e A e e a A k t                 k k k a B jC     0 0 0 1 ( ) 2 cos sin k k k x t a B k t C k t        
  • 20. 3.3.2 Determination of the Fourier Series Representation of a Continuous- Time Periodic Signal 0 (2 / ) ( ) jk t jk T t k k k k x t a e a e           How do we find ak? 0 0 0 ( ) jn t jk t jn t k k x t e a e e          0 0 0 0 ( ) 0 0 0 ( ) T T T jn t jk t jn t j k n t k k k k x t e dt a e e dt a e dt                         P.214
  • 21. 0 0 ( ) ( ) 0 0 0 1 0 ( ) T T j k n t j k n t e dt e j k n          0 2 T    Therefore, When k  n 0 ( ) 0 , 0, T j k n t T k n e dt k n          0 0 ( ) 0 0 ( ) T T jn t j k n t k n k x t e dt a e dt Ta                  0 0 1 ( ) T jn t n a x t e dt T     P.215
  • 22. Definition 3.1 Fourier Series for a continuous and periodic signal x(t) = x(t+T) synthesis: 0 (2 / ) ( ) jk t jk T t k k k k x t a e a e           analysis: 0 (2 / ) 1 1 ( ) ( ) jk t jk T t k T T a x t e dt x t e dt T T         T  is the integration from t0 to t0+T and t0 can be any value Specially, if t0 = 0, analysis: 0 (2 / ) 0 0 1 1 ( ) ( ) T T jk t jk T t k a x t e dt x t e dt T T         P.216
  • 23. analysis: 0 (2 / ) 1 1 ( ) ( ) jk t jk T t k T T a x t e dt x t e dt T T         {ak} are often called the Fourier series coefficients or the spectral coefficients of x(t). Specially, when k = 0, 0 1 ( ) T a x t dt T   P.216
  • 24. Supplement: Alternative Forms of the Fourier Series 0 2 ( ) j k f t k k x t a e      synthesis: analysis: 0 2 1 ( ) j k f t k T a x t e dt T     where f0 = 1/T. synthesis: analysis: 0 1 ( ) jk t k k x t a e T       0 1 ( ) jk t k T a x t e dt T   
  • 25. [Example 3.3] 0 0 0 1 1 ( ) sin . 2 2 j t j t x t t e e j j        0 ( ) jk t k k x t a e      1 1 1 1 , , 0. 1 1. 2 2 k a a a k or j j         P.217
  • 26. [Example 3.4] 0 ( ) jk t k k x t a e        0 0 0 0 0 0 0 0 0 0 0 0 0 (2 /4) (2 /4) 2 2 ( /4) ( /4) ( ) 1 sin 2cos cos 2 / 4 , 1 1 ( ) 1 [ ] [ ] [ ]. 2 2 1 1 1 1 1 1 1 . 2 2 2 2 j t j t j t j t j t j t j t j t j t j t j j x t t t t x t e e e e e e j e e e e e e j j                                                                      0 1 1 1 1 1 1 1 2 2 1 1 1 1 2 2 a a j j a j j                       ( /4) 2 ( /4) 2 2 1 (1 ) 2 4 2 1 (1 ) 2 4 0, 2 j j k a e j a e j a k             P.217-218
  • 27. 0 1 1 1 1 1 1 1 2 2 1 1 1 1 2 2 a a j j a j j                       ( /4) 2 ( /4) 2 2 1 (1 ) 2 4 2 1 (1 ) 2 4 0, 2 j j k a e j a e j a k             P.218
  • 28. [Example 3.5] 0 ( ) jk t k k x t a e      1 1 1, ( ) 0, / 2 t T x t T t T          1 1 1 0 2 1 T T T a dt T T     1 0 0 1 1 1 0 1 0 1 0 0 1 0 1 1 sin( ) 2 , 0 2 T jk t jk t T k T T jk T jk T a e dt e T jk T k T e e k k T j k                            P.218-219
  • 29. 1 0 2T a T  0 1 sin( ) k k T a k    T = 4T1 T = 8T1 T = 16T1 P.220