SlideShare a Scribd company logo
1 of 57
Download to read offline
Semester :III
Mr. Tushar J Bhatt
Subject : NT
Code :18SAHMT301
Unit No. :3
1
Numerical Techniques
Unit- 3: Numerical Integration and Numerical Solution of Ordinary Differential Equations
1. Introduction
Table of contents
5. Euler’s Method
6. Runge- Kutta Method of second order
7. Runge- Kutta Method of forth order
2. Trapezoidal Rule
3. Simpson’s 1/3 Rule
4. Simpson’s 3/8 Rule
Part - I : The methods for solving Numerical Integration
Part - II : The methods for solving ODE numerically
Mr. Tushar J Bhatt
2
Numerical Techniques
1. Introduction
0
T h e p ro c e ss o f c o m p u tin g th e v a lu e o f a d e fin ite in te g ra l ( )
w h e re ( ) fo rm a se t o f ta b u la te d v a lu e s , , 0 ,1, 2 , ...
is c a lle d n u m e ric a l in te g ra tio n .
S in c e ( ) is a sin g le v a lu e d
nx
x
i i
f x d x
y f x x y i n
y f x
  
 


fu n c tio n , th e p ro c e ss in g e n e ra l c a lle d
q u a d ra tu re .
Mr. Tushar J Bhatt
3
Numerical Techniques
2. Trapezoidal rule
0 1 0 2 0 1 0 0
0 1 2 1
C o n sid er th e fo llo w in g tab u lar valu es o f x an d y :
2 .... ( 1)
.
....
A cco rd in g to ab o ve tab u lar valu es o f x a n d y, if w e w an t to calcu late th e valu es
o f
n n
n n
x x a x x h x x h x x n h x x n h b
y y y y y y


          
0
0
d efin ite in teg ral ( ) th en w e u sed th e trap ezo id al ru le d efin ed as fo llo w s:
b x n h
a x
f x d x
 

   
0
0
0 1 2 1
( ) = 2 ...
2
b x n h
n n
a x
h
f x d x y y y y y
 


     
 
   
0
0
( ) = 2
2
b x n h
a x
h
f x d x S E R
 

   
How to
remember
w h e r e h = , n = n o ' o f p a r t i t i o n s o f a n i n t e r v a l.
b a
n

Part - I : The methods for solving Numerical Integration
Mr. Tushar J Bhatt
4
Numerical Techniques
1
3 . S im p s o n 's ru le :
3
r d
 
 
 
   
0
0
( ) = 4 2 ( )
3
b x n h
a x
h
f x d x S E O E
 

    
How to
remember
     
0
0
0 1 3 1 2 4 2
( ) = 4 ... 2 ...
3
b x nh
n n n
a x
h
f x dx y y y y y y y y
 
 

         
 
w h e re h = , n = n o ' o f p a rtitio n s o f a n i n te rv a l.
b a
n

Part - I : The methods for solving Numerical Integration
Mr. Tushar J Bhatt
5
Numerical Techniques
3
4 . S im p s o n 's ru le :
8
th
 
 
 
   
0
0
3
( ) = 3 not a m ultiple of 3 2(m ultiple of 3)
8
b x nh
a x
h
f x dx S E
 

    
How to
remember
     
0
0
0 1 2 4 5 1 3 6 3
3
( ) = 3 ... 2 ...
8
b x nh
n n n
a x
h
f x dx y y y y y y y y y y
 
 

          
 
w h e re h = , n = n o ' o f p a rtitio n s o f a n i n te rv a l.
b a
n

Part - I : The methods for solving Numerical Integration
Mr. Tushar J Bhatt
6
Numerical Techniques
6
20
E x -1 : E valu ate b y u sin g T rap ezo id al ru le tak in g 1 .
1
d x
h
x



Solution:
2
1
H e re ( ) a n d lim it o f is 0 to 6 .
1
f x y x
x
 

N o w w e m ak e a tab le o f x an d y as fo llo w s :
0 1 2 3 4 5 6
0 1 2 3 4 5 62
0 1 2 3 4 5 6
1
1 0.5 0.2 0.1 0.0588 0.0385 0.027
1
n
x x x x x x x x
y y y y y y y y y
x
      
        

N o w w e k n o w th at th e T rap ezo id al ru le is g iven b y
Part - I : The methods for solving Numerical Integration
Mr. Tushar J Bhatt
7
Numerical Techniques
Solution:
   
0
0
0 1 2 1
( ) = 2 ...
2
b x n h
n n
a x
h
f x d x y y y y y
 


     
 
   0
6
0 6 1 2 3 4 520
1 1
= 2
21
nx
x
d x y y y y y y y
x


 
           

   
0
6
20
1 1
= 1 0.027 2 0.5 0.2 0.1 0.0588 0.0385
21
nx
x
dx
x


 
          
 

   
0
6
20
1 1
= 1.027 2 0.8973
21
nx
x
dx
x


 
     
 

0
6
20
1
= 1.4108
1
nx
x
dx
x


 
  
 

ANSWER
Part - I : The methods for solving Numerical Integration
Mr. Tushar J Bhatt
8
Numerical Techniques
0
E x -2 : D ivid in g th e ran g e in to 1 0 eq u al p arts, fin d an ap p ro x im ate valu e o f
sin b y u sin g T rap ezo id al ru le.x d x


Solution: H ere ( ) sin an d lim it o f is 0 to .f x x y x  
0
T h e ran g e (0 , ) is d ivid ed in to 1 0 eq u al p arts. so h = .
1 0 1 0
 



N o w w e k n o w th at th e T rap ezo id al ru le is g iven b y
Part - I : The methods for solving Numerical Integration
Mr. Tushar J Bhatt
9
Numerical Techniques
Solution:
   
0
0
0 1 2 1
( ) = 2 ...
2
b x n h
n n
a x
h
f x d x y y y y y
 


     
 
     0
0 10 1 2 3 4 5 6 7 8 9
0
sin = 2
10 2
nx
x
x dx y y y y y y y y y y y
 

           
 

   0 0 2 0.3090 0.5878 0.8090 0.9511 1.0000 0.9511 0.8090 0.5878 0.3090
10 2

            

 
22
0 12.6276 ( )
20 7
T ake

  
1.9843
ANSWER
 
2 2
0 12.6276
7 20
 

Part - I : The methods for solving Numerical Integration
Mr. Tushar J Bhatt
10
Numerical Techniques
0
E x -3 : D ivid in g th e ran g e in to 1 0 eq u al p arts, fin d an ap p ro x im ate valu e o f
1
sin b y u sin g S im so n 's ru le.
3
rd
x d x
  
 
 

Solution: H ere ( ) sin an d lim it o f is 0 to .f x x y x  
0
T h e ran g e (0 , ) is d ivid ed in to 1 0 eq u al p arts. so h = .
1 0 1 0
 



1
N o w w e k n o w th a t th e S im so n 's ru le is g iv e n b y
3
r d
 
 
 
Part - I : The methods for solving Numerical Integration
Mr. Tushar J Bhatt
11
Numerical Techniques
Solution:
       0
0 10 1 3 5 7 9 2 4 6 8
0
sin = 4 2
1 0 3
nx
x
x d x y y y y y y y y y y y
 

           
 

     0 0 4 0.3090 0.8090 1.0000 0.8090 0.3090 2 0.5878 0.9511 0.9511 0.5878
10 3

            

 
22
0 12.944 6.4720 ( )
30 7
T ake

   
1.9342
ANSWER
     
0
0
0 1 3 1 2 4 2
( ) = 4 ... 2 ...
3
b x nh
n n n
a x
h
f x dx y y y y y y y y
 
 

         
 
 
22
0 12.3068 6.1556
7 30
  

Part - I : The methods for solving Numerical Integration
Mr. Tushar J Bhatt
12
Numerical Techniques
5
1 0
1
E x -4 : D ivid in g th e ran g e in to 8 eq u al p a rts, fin d an ap p ro x im ate valu e o f
1
lo g b y u sin g S im so n 's ru le.
3
rd
x d x
 
 
 

Solution: 1 0
H ere ( ) lo g an d lim it o f is 1 to 5 .f x x y x 
5 1 4 1
T h e ran g e (1 , 5 ) is d ivid ed in to 8 eq u al p arts. so h = .
8 8 2

 
1
N o w w e k n o w th a t th e S im so n 's ru le is g iv e n b y
3
r d
 
 
 
Part - I : The methods for solving Numerical Integration
Mr. Tushar J Bhatt
13
Numerical Techniques
Solution:
       0
5
1 0 0 8 1 3 5 7 2 4 6
1
1
lo g = 4 2
2 3
nx
x
x d x y y y y y y y y y


         
 

     
1
0 0.6990 4 0.1761 0.3979 0.5441 0.6532 2 0.3010 0 .4771 0.6021
6
          
 
1
0 .6 9 9 0 7 .0 8 5 2 2 .7 6 0 4
6
  
ANSWER
     
0
0
0 1 3 1 2 4 2
( ) = 4 ... 2 ...
3
b x nh
n n n
a x
h
f x dx y y y y y y y y
 
 

         
 
1.7574
Part - I : The methods for solving Numerical Integration
Mr. Tushar J Bhatt
14
Numerical Techniques
6
20
E x -5 : D ivid in g th e ran g e in to 6 eq u al p a rts, fin d an ap p ro x im ate valu e o f
3
b y u sin g S im so n 's ru le.
81
th
d x
x
 
 
  

Solution:
6 0 6
T h e ran g e (0 , 6 ) is d ivid ed in to 6 eq u al p arts. so h = 1 .
6 6

 
2
1
H e re ( ) a n d lim it o f is 0 to 6 .
1
f x y x
x
 

0 1 2 3 4 5 6
0 1 2 3 4 5 62
0 1 2 3 4 5 6
1
1 0.5 0.2 0.1 0.0588 0.0385 0.027
1
n
x x x x x x x x
y y y y y y y y y
x
      
        

3
N o w w e k n o w th a t th e S im so n 's ru le is g iv e n b y
8
th
 
 
 
Part - I : The methods for solving Numerical Integration
Mr. Tushar J Bhatt
15
Numerical Techniques
Solution:
     0
6
0 6 1 2 4 5 32
0
1 3
= 3 2
1 8
nx
x
d x y y y y y y y
x


 
           

     
3
1 0 .0 2 7 3 0 .5 0 .2 0 .0 5 8 8 0 .0 3 8 5 2 0 .1
8
        
 
3
1.027 2.3919 0.2
8
  
ANSWER
1.3571
     
0
0
0 1 2 4 5 1 3 6 3
3
( ) = 3 ... 2 ...
8
b x nh
n n n
a x
h
f x dx y y y y y y y y y y
 
 

          
 
Part - I : The methods for solving Numerical Integration
Mr. Tushar J Bhatt
16
Numerical Techniques
 
1.4
0.2
3
E x-6: C om pute the value of sin log by us ing S im son's rule,
8
taking 6.
th
x
x x e dx
n
 
   
 


Solution:
1.4 0.2 1.2
T he range (0.2, 1.4) is divided into 6 equal parts. so h = 0.2
6 6

 
H ere ( ) sin log and lim it of is 0.2 to 1.4 and w e have 6.
x
f x x x e y x n    
3
N o w w e k n o w th a t th e S im so n 's ru le is g iv e n b y
8
th
 
 
 
Part - I : The methods for solving Numerical Integration
Mr. Tushar J Bhatt
17
Numerical Techniques
Solution:
       0
1.4
0 6 1 2 4 5 3
0.2
3 0.2
sin log = 3 2
8
nx
x
x
x x e dx y y y y y y y



         
 
     
0 .6
3 .0 2 9 5 4 .4 0 4 2 3 2 .7 9 7 5 2 .8 9 7 6 3 .5 5 9 7 4 .0 6 9 8 2 3 .1 6 6 0
8
        
 
0 .6
7 .4 3 3 7 3 9 .9 7 3 8 6 .3 3 2 0
8
  
ANSWER
4.0305
     
0
0
0 1 2 4 5 1 3 6 3
3
( ) = 3 ... 2 ...
8
b x nh
n n n
a x
h
f x dx y y y y y y y y y y
 
 

          
 
Part - I : The methods for solving Numerical Integration
Mr. Tushar J Bhatt
18
Numerical TechniquesPart - II : The methods for solving ODE numerically
T h ere are m an y D E ’s w h o se elem en tary so lu tio n s d o n o t ex ists. F o r ex am p le
' , even th ey ex ists so m etim es w e d o n 't k n o w th e m eth o d o f g ettin g its ex act so lu tio n .
In th is case th e n u m erical m eth o d s
x
y x
0 0
h elp u s to g et th e ap p ro x im ate so lu tio n s .
H ere w e are stu d y so m e o f th e n u m erical m eth o d s to g et th e ap p ro x im ate so lu tio n o f
first o rd er D E ( , ) w ith th e in itial co n d itio n ( ) .
d y
f x y y x y
d x
 
Mr. Tushar J Bhatt
19
Numerical TechniquesPart - II : The methods for solving ODE numerically
0 0
0 0 0
1 0 0 0
2 1 0
C o n sid er th e first o rd er D E ( , ) w ith th e in itial co n d itio n ( ) .
A cco rd in g to T aylo r's series m eth o d w e g et ( ) ( ) ( ) '( ) (1)
( ) ( , ) (2 )
( ) (
d y
f x y y x a y b
d x
y x y x x x y x
y x y h f x y
y x y h f x
   
      
          
  1
3 2 0 2
1 0
, ) (3)
( ) ( 2 , ) (4 )
C o n tin u in g th is w ay w e o b tain ,
( ) ( , ) (5)n n n
h y
y x y h f x h y
y x y h f x n h y
        
         
         
0
W h e re ( ),
,
,
n u m b e r o f s te p s ,
1, 2 , 3, 4 , ...
n n
n
y y x
x x n h
b a
h
n
n
n

 




5. Euler’s Method
20
Numerical TechniquesPart - II : The methods for solving ODE numerically
E x -1 : U s in g E u le r's m e th o d fin d a n a p p ro x im a te v a lu e o f y a t x = 1 fo r
w ith y (0 )= 1 , fo llo w s te n s te p s a n d ta k e h = 0 .1 .
d y
x y
d x
 
Solution:
0 0
1 0
H ere 0, 1, ( , ) , 1 0, 0 .1
1 0
b a
x y f x y x y n h
n
 
       
T o fin d : 1y a t x 
21
Numerical TechniquesPart - II : The methods for solving ODE numerically
1
1
0 1 1 0 0 0
0 0 0 0
0 0 1
0 0
1
1 0 1 1 1 1
1 1
1
( , )
(step size) ( , )
(0 .1) ( , )
(0 .1) ( , )
( , )
0 0 1 1 (0 .1) 1
( , ) 0 1 1
1 .1
( , )
1 0 0 .1 1 .1 (
0 .1
n n n n
n n n n n n
n n n n
y y h f x y
n x y f x y x y
y y f x y
y y y f x y
f x y x y
x y y
f x y
y
x x h f x y x y
x y f x
x



 
 
  
  
  
     
   
 
   
    
 
2 1 1 1
1 1 2
1 1 2
(0 .1) ( , )
, ) 0 .1 1 .1 1 .1 (0 .1) 1 .2
( , ) 1 .2 1 .2 2
y y f x y
y y
f x y y
 
     
   
22
Numerical TechniquesPart - II : The methods for solving ODE numerically
1
1
( , )
(step size) ( , )
(0 .1) ( , )
n n n n
n n n n n n
n n n n
y y h f x y
n h x y f x y x y
y y f x y


 
 
  
0 0.1 0 1.0000 1.0000 1.1000
1 0.1 0.1 1.1000 1.2000 1.2200
2 0.1 0.2 1.2200 1.4200 1.3620
3 0.1 0.3 1.3620 1.6620 1.5282
23
Numerical TechniquesPart - II : The methods for solving ODE numerically
4 0.1 0.4 1.5282 1.9282 1.7210
5 0.1 0.5 1.7210 2.2210 1.9431
6 0.1 0.6 1.9431 2.5431 2.1974
7 0.1 0.7 2.1974 2.8974 2.4872
8 0.1 0.8 2.4872 3.2872 2.8159
9 0.1 0.9 2.8159 3.7159 3.1875
10 0.1 1 3.1875
1
1
( , )
(step size) ( , )
(0 .1) ( , )
n n n n
n n n n n n
n n n n
y y h f x y
n h x y f x y x y
y y f x y


 
 
  
24
Numerical TechniquesPart - II : The methods for solving ODE numerically
E x -2 : U s in g E u le r's m e th o d fin d a n a p p ro x im a te v a lu e o f y a t x = 0 .0 4 fo r
w ith y(0 )= 1 , fo llo w s te n s te p s a n d ta k e h = 0 .0 1 .
d y
y
d x

Solution:
0 0
H ere 0, 1, ( , ) , 0 .0 1x y f x y y h   
T o fin d : 0 .0 4y a t x 
25
Numerical TechniquesPart - II : The methods for solving ODE numerically
1
1
( , )
(step size) ( , )
(0 .0 1) ( , )
n n n n
n n n n n
n n n n
y y h f x y
n h x y f x y y
y y f x y


 

  
0 0.01 0 1 1 1.01
1 0.01 0.01 1.01 1.01 1.0201
2 0.01 0.02 1.0201 1.0201 1.0303
3 0.01 0.03 1.0303 1.0303 1.0406
.
4 0.01 0.04 1.0406
26
Numerical TechniquesPart - II : The methods for solving ODE numerically
6. Runge- Kutta Method of second order
0 0
1 0
2 1
1
C o n sid er th e first o rd er D E ( , ) w ith th e in itial co n d itio n ( ) .
( )
( )
.................................................
( )n n
d y
f x y y x a y b
d x
y x y k
y x y k
y x y k
   
 
 
 
 1 2
1
W h e re
2
k k k 
1 0 0
In w h ic h ( , )k h f x y 2 0 0 1
a n d ( , )k h f x h y k  
0
W h e re (if it is n o t g iv e n in th e in s tru c tio n )h s te p s iz e x x  
27
Numerical TechniquesPart - II : The methods for solving ODE numerically
E x -1 : S o lv e lo g ( ), ( 0 ) 2 a t 0 .4 w ith 0 .2 ,
u s in g R -K m e th o d o f s e c o n d o rd e r.
    
d y
x y y x h
d x
Solution: 0 0
H e re 0 , 2 , ( , ) lo g ( ) , 0 .2x y f x y x y h    
T o fin d : 0 .2y a t x
1 2
N o w h ere first w e fin d , an d .k k k
1 0 0
0 0
1
1
1
( , ) 0 , 2 , 0 .2
0 .2 (0 , 2 ) ( , ) lo g ( ) ,
(0 , 2 ) lo g (0 2 )0 .2 0 .3 0 1 0
(0 , 2 ) lo g 2 0 .3 0 1 00 .0 6 0 2
k h f x y x y h
k f f x y x y
fk
fk
   
    
    
   
0 1 2
0 1 2
0 0 0 .2 0 .2 0 .2 0 .2 0 .4
2 ? ?
      
  
x x x x
y y y y
28
Numerical TechniquesPart - II : The methods for solving ODE numerically
2 0 0 1
0 0 1
2
2
2
2
( , )
0 , 2 , 0 .2 , 0 .0 6 0 2
0 .2 (0 0 .2 , 2 0 .0 6 0 2 )
( , ) lo g ( ) ,
0 .2 (0 .2 , 2 .0 6 0 2 )
(0 .2 , 2 .0 6 0 2 ) lo g (0 .2 2 .0 6 0 2 )
0 .2 0 .3 5 4 1
(0 .2 , 2 .0 6 0 2 ) lo g 2 .2 6 0 2 0 .3 5 4 1
0 .0 7 0 8
k h f x h y k
x y h k
k f
f x y x y
k f
f
k
f
k
  
   
    
 
  
  
  
  
 
 
 
1 2
1
2
1
2
1
0 .0 6 0 2 0 .0 7 0 8 0 .0 6 0 2
2
0 .0 7 0 8
1
(0 .1 3 1 0 )
2
0 .0 6 5 5
k k k
k k
k
k
k
 
    

  
 
29
Numerical TechniquesPart - II : The methods for solving ODE numerically
0 0
1 1
1 1 0 1
0 0.2 2 0.0655
, 1, 2... 0.2 , 1, 2... 0.0655
0 0.2 0.2 0.2 2.0000 0.0655 2.0655
 
   
       
        
n n n n
x h y k
x x h n h y y k n k
x h y y k y
1
N o w w e k n o w th at ( )n n
y x y k
 
T o fin d : 0 .4y a t x
1 2
N o w h ere first w e fin d , an d .k k k
1 1 1
1 1
1
1
1
( , ) 0 .2 , 2 .0 6 5 5 , 0 .2
0 .2 ( 0 .2 , 2 .0 6 5 5 ) ( , ) lo g ( ) ,
( 0 .2 , 2 .0 6 5 5 ) lo g ( 0 .2 2 .0 6 5 5 )0 .2 0 .3 5 5 2
( 0 .2 , 2 .0 6 5 5 ) lo g 2 .2 6 5 5 0 .3 5 5 20 .0 7 1 0
   
    
    
   
k h f x y x y h
k f f x y x y
fk
fk
30
Numerical TechniquesPart - II : The methods for solving ODE numerically
2 1 1 1
1 1 1
2
2
2
2
( , )
0 .2, 2 .0 6 5 5, 0 .2, 0 .0 7 1 0
0 .2 (0 .2 0 .2, 2 .0 6 5 5 0 .0 7 1 0 )
( , ) lo g ( ) ,
0 .2 (0 .4, 2 .1 3 6 5)
(0 .4, 2 .1 3 6 5) lo g (0 .4 2 .1 3 6 5)
0 .2 0 .4 0 4 2
(0 .4, 2 .1 3 6 5) lo g 2 .5 3 6 5 0 .4
0 .0 8 0 8
  
   
    
 
  
  
  
  
 
k h f x h y k
x y h k
k f
f x y x y
k f
f
k
f
k
0 4 2
 
 
1 2
1
2
1
2
1
0 .0 7 1 0 0 .0 8 0 8 0 .0 7 1 0
2
0 .0 8 0 8
1
(0 .1 5 1 8)
2
0 .0 7 5 9
 
    

  
 
k k k
k k
k
k
k
31
Numerical TechniquesPart - II : The methods for solving ODE numerically
1 1
1 1
2 2 1 2
0.2 0.2 2.0655 0.0759
, 1, 2... 0.2 , 1, 2... 0.0759
0.2 0.2 0.4 0.2 2.0655 0.0759 2.1414
 
   
       
        
n n n n
x h y k
x x h n h y y k n k
x h y y k y
1
N o w w e k n o w th at ( )n n
y x y k
 
32
Numerical TechniquesPart - II : The methods for solving ODE numerically
2
E x -2 : S o lv e , ( 0 ) 1 a t 0 .2 w ith 0 .2 ,
u s in g R -K m e th o d o f s e c o n d o r d e r .
d y
x y y x h
d x
    
Solution:
2
0 0
H ere 0, 1, ( , ) , 0 .2x y f x y x y h    
T o fin d : 0 .2y a t x 
1 2
N o w h ere first w e fin d , an d .k k k
1 0 0 0 0
2
1
2
1
1
( , ) 0 , 1, 0 .2
0 .2 (0 ,1) ( , ) ,
0 .2 ( 1) (0 ,1) 0 (1) 0 1 1
(0 ,1) 10 .2
k h f x y x y h
k f f x y x y
k f
fk
   
    
          
    
33
Numerical TechniquesPart - II : The methods for solving ODE numerically
2 0 0 1
0 0 1
2
2
2
2
2
2
( , )
0, 1, 0 .2, 0 .2
0 .2 (0 0 .2, 1 0 .2 )
( , ) ,
0 .2 (0 .2, 0 .8)
(0 .2, 0 .8) 0 .2 (0 .8)
0 .2 ( 0 .4 4 )
(0 .2, 0 .8) 0 .2 0 .6 4 0 .4 4
0 .0 8 8
k h f x h y k
x y h k
k f
f x y x y
k f
f
k
f
k
  
    
    
 
  
  
   
    
  
 
 
1 2
1
2
1
2
1
0 .2 0 .0 8 8 0 .2
2
0 .0 8 8
1
( 0 .2 8 8)
2
0 .1 4 4
k k k
k k
k
k
k
 
      
 
   
  
34
Numerical TechniquesPart - II : The methods for solving ODE numerically
0 0
1 1
1 1 0 1
0 0 .2 1 0 .1 4 4
, 1, 2 ... 0 .2 , 1, 2 ... 0 .1 4 4
0 0 .2 0 .2 0 .2 1 0 .1 4 4 0 .8 5 6
n n n n
x h y k
x x h n h y y k n k
x h y y k y
 
    
        
        
1
N o w w e k n o w th at ( )n n
y x y k
 
35
Numerical TechniquesPart - II : The methods for solving ODE numerically
7. Runge- Kutta Method of forth order
0 0
1 0
2 1
1
C o n s id e r th e firs t o rd e r D E ( , ) w ith th e in itia l c o n d itio n ( ) .
( )
( )
.................................................
( )n n
d y
f x y y x a y b
d x
y x y k
y x y k
y x y k
   
 
 
 
 1 2 3 4
1
W h e re 2 2
6
k k k k k   
1 0 0
In w h ic h ( , )k h f x y
1
2 0 0
,
2 2
kh
k h f x y
 
   
 
0
W h ere (if it is n o t g iven in th e in stru c tio n )h step size x x  
2
3 0 0
,
2 2
kh
k h f x y
 
   
 
4 0 0 3
( , )k h f x h y k  
36
Numerical TechniquesPart - II : The methods for solving ODE numerically
2
E x -1 : S o lv e 3 , (1) 1 .2 a t 1 .1 w ith 0 .1,
u s in g R -K m e th o d o f f o r th o r d e r .
d y
x y y x h
d x
    
Solution:
2
0 0
H ere 1, 1 .2, ( , ) 3 , 0 .1x y f x y x y h    
T o fin d : 1 .1y a t x 
1 2 3 4
N o w h ere first w e fin d , , , an d .k k k k k
1 0 0 0 0
2
1
2
1
1
( , ) 1, 1 .2 , 0 .1
0 .1 (1,1 .2 ) ( , ) 3 ,
0 .1 ( 4 .4 4 ) (1,1 .2 ) 3 (1) (1 .2 ) 3 1 .4 4 4 .4 4
(1,1 .2 ) 4 .4 40 .4 4 4
k h f x y x y h
k f f x y x y
k f
fk
   
    
        
  
37
Numerical TechniquesPart - II : The methods for solving ODE numerically
 
 
1
2 0 0
0 0 1
2
2
2
2
2
2
2
,
2 2
0 .1 0 .4 4 4 1, 1 .2, 0 .1, 0 .4 4 4
0 .1 1 ,1 .2
2 2 ( , ) 3 ,
0 .1 1 0 .0 5,1 .2 0 .2 2 2
(1 .0 5,1 .4 2 2 ) 3(1 .0 5) (1 .4 2 2 )
0 .1 1 .0 5,1 .4 2 2 (1,1 .
0 .1 5 .1 7 2 1
0 .5 1 7 2
kh
k h f x y
x y h k
k f
f x y x y
k f
f
k f f
k
k
 
   
 
    
     
   
    
  
   
  
 
2 ) 3 .1 5 2 .0 2 2 1 5 .1 7 2 1  
38
Numerical TechniquesPart - II : The methods for solving ODE numerically
 
 
2
3 0 0
0 0 2
3
2
2
3
3
3
3
,
2 2
0 .1 0 .5 1 7 2 1, 1 .2, 0 .1, 0 .5 1 7 2
0 .1 1 ,1 .2
2 2 ( , ) 3 ,
0 .1 1 0 .0 5,1 .2 0 .2 5 8 6
(1.0 5,1 .4 5 8 6 ) 3(1.0 5) (1.4 5 8 6 )
0 .1 1 .0 5,1 .4 5 8 6
0 .1 5 .2 7 7 5
0 .5 2 7 8
kh
k h f x y
x y h k
k f
f x y x y
k f
f
k f
k
k
 
   
 
     
     
   
    
  
   
  
 
(1.0 5,1 .4 5 8 6 ) 3 .1 5 2 .1 2 7 5 5 .2 7 7 5f   
39
Numerical TechniquesPart - II : The methods for solving ODE numerically
 
 
 
4 0 0 3
0 0 3
4
2
4
2
4
4
,
1, 1 .2, 0 .1, 0 .5 2 7 8
0 .1 1 0 .1,1 .2 0 .5 2 7 8
( , ) 3 ,
0 .1 1 .1,1 .7 2 7 8
(1 .1,1 .7 2 7 8) 3(1 .1) (1 .7 2 7 8)
0 .1 6 .2 8 5 3
(1 .1,1 .4 5 8 6 ) 3 .3 2 .9 8 5 3 6 .2 8 5 3
0 .6 2 8 5
k h f x h y k
x y h k
k f
f x y x y
k f
f
k
f
k
  
   
    
 
  
  
  
   
 
 
 
 
 
1 2 3 4
1
N o w 2 2
6
1
0 .4 4 4 2 ( 0 .5 1 7 2 ) 2 ( 0 .5 2 7 8 ) 0 .6 2 8 5
6
1
0 .4 4 4 1 .0 3 4 4 1 .0 5 5 6 0 .6 2 8 5
6
1
3 .1 6 2 5
6
0 .5 2 7 1
k k k k k
k
k
k
k
   
    
    
 
 
40
Numerical TechniquesPart - II : The methods for solving ODE numerically
0 0
1 1
1 1 0 1
1 0 .1 1 .2 0 .5 2 7 1
, 1, 2 ... 0 .2 , 1, 2 ... 0 .5 2 7 1
1 0 .1 1 .1 0 .2 1 .2 0 .5 2 7 1 1 .7 2 7 1
n n n n
x h y k
x x h n h y y k n k
x h y y k y
 
   
       
        
1
N o w w e k n o w th at ( )n n
y x y k
 
41
Numerical TechniquesPart - II : The methods for solving ODE numerically
2 2
E x -2 : S o lv e , ( 0 ) 1 a t 0 .1 w ith 0 .1,
u s in g R -K m e th o d o f f o r th o r d e r .
d y
x y y x h
d x
    
Solution:
2 2
0 0
H ere 0, 1, ( , ) , 0 .1x y f x y x y h    
T o fin d : 0 .1y a t x 
1 2 3 4
N o w h ere first w e fin d , , , an d .k k k k k
1 0 0
0 0
1 2 2
1 2 2
1
( , )
0 , 1, 0 .1
0 .1 ( 0 ,1)
( , ) ,
0 .1 (1)
( 0 ,1) ( 0 ) (1) 1
0 .1
k h f x y
x y h
k f
f x y x y
k
f
k

  
  
 
  
   
 
42
Numerical TechniquesPart - II : The methods for solving ODE numerically
 
 
1
2 0 0
0 0 1
2
2 2
2 2
2
2
2
2
,
2 2
0 .1 0 .1 0, 1, 0 .1, 0 .1
0 .1 0 ,1
2 2 ( , ) ,
0 .1 0 0 .0 5,1 0 .0 5
(0 .0 5,1 .0 5) (0 .0 5) (1 .0 5)
0 .1 0 .0 5,1 .0 5 (1 .0 5,1 .5 5) 0 .0 0 2 5
0 .1 1 .1 0 5 0
1 .1 1 0 5
kh
k h f x y
x y h k
k f
f x y x y
k f
f
k f f
k
k
 
   
 
    
     
   
    
  
     
  
 
1 .1 0 2 5 1 .1 0 5 0
43
Numerical TechniquesPart - II : The methods for solving ODE numerically
 
 
2
3 0 0
0 0 2
3
2 2
2 2
3
3
3
3
,
2 2
0 .1 0 .1 1 0 5 0, 1, 0 .1, 0 .1 1 0 5
0 .1 0 ,1
2 2 ( , ) ,
0 .1 0 .0 5,1 0 .0 5 5 3
(0 .0 5,1 .0 5 5 3) (0 .0 5) (1.0 5 5 3)
0 .1 0 .0 5,1 .0 5 5 3 (1.0 5,1
0 .1 1 .1 1 6 2
0 .1 1 1 6
kh
k h f x y
x y h k
k f
f x y x y
k f
f
k f f
k
k
 
   
 
     
     
   
   
  
   
  
 
.5 5) 0 .0 0 2 5 1 .1 1 3 7 1 .1 1 6 2  
44
Numerical TechniquesPart - II : The methods for solving ODE numerically
 
 
 
4 0 0 3
0 0 2
4
2 2
4
2 2
4
4
,
0, 1, 0 .1, 0 .1 1 0 5
0 .1 0 0 .1,1 0 .1 1 1 6
( , ) ,
0 .1 0 .1,1 .1 1 1 6
(0 .1,1 .1 1 1 6 ) (0 .1) (1 .1 1 1 6 )
0 .1 1 .2 4 5 7
(0 .1,1 .1 1 1 6 ) 0 .0 1 1 .2 3 5 7 1 .2 4 5 7
0 .1 2 4 6
k h f x h y k
x y h k
k f
f x y x y
k f
f
k
f
k
  
   
    
 
  
  
  
   
 
 
 
 
 
1 2 3 4
1
N o w 2 2
6
1
0 .1 2 ( 0 .1 1 0 5 ) 2 ( 0 .1 1 1 6 ) 0 .1 2 4 6
6
1
0 .1 0 .2 2 1 0 0 .2 2 3 2 0 .1 2 4 6
6
1
0 .6 6 8 8
6
0 .1 1 1 5
k k k k k
k
k
k
k
   
    
    
 
 
45
Numerical TechniquesPart - II : The methods for solving ODE numerically
0 0
1 1
1 1 0 1
0 0 .1 1 0 .1 1 1 5
, 1, 2 ... 0 .1 , 1, 2 ... 0 .1 1 1 5
0 0 .1 0 .1 0 .1 1 0 .1 1 1 5 1 .1 1 1 5
n n n n
x h y k
x x h n h y y k n k
x h y y k y
 
   
       
        
1
N o w w e k n o w th at ( )n n
y x y k
 
46
Numerical TechniquesPart - II : The methods for solving ODE numerically
2
2
E x -3 : S o lv e , (1) 0 a t 1 .2 1 .4 w ith 0 .2 ,
u s in g R -K m e th o d o f fo rth o rd e r.
x
x
d y x y e
y x a n d x h
d x x x e

    

Solution:
0 0 2
2
H ere 1, 0, ( , ) , 0 .2
x
x
xy e
x y f x y h
x xe

   

T o fin d : (i) 1 .2y a t x 
1 2 3 4
N o w h ere first w e fin d , , , an d .k k k k k
1 0 0 0 0
1
2
1
1
1
1
( , ) 1, 0 , 0 .2
0 .2 (1, 0 ) 2
( , ) ,
0 .2 (0 .7 3 1 1)
0 2 .7 1 8 3 2 .7 1 8 30 .1 4 6 2 (1, 0 ) 0 .7 3 1 1
1 1 2 .7 1 8 3 3 .7 1 8 3
x
x
k h f x y x y h
k f x y e
f x y
x x ek
ek f
e
   
   

  
      
 
47
Numerical TechniquesPart - II : The methods for solving ODE numerically
 
 
1
0 0
2 0 0
2
2
1 .1
2
2
2
2
2
1, 0, 0 .2,
2 2
2
( , ) ,
0 .2 0 .1 4 6 2
0 .2 1 , 0
2 2 2 (1 .1)(0 .0 7 3 1)
(1 .1, 0 .0 7 3 1)
0 .2 1 0 .1, 0 0 .0 7 3 1 (1 .1) (1 .1
0 .2 1 .1, 0 .0 7 3 1
0 .2 0 .7 0 1 1
0 .1 4 0 2
x
x
kh
x y hk h f x y
xy e
f x y
x xek f
e
f
k f
k f
k
k
 
     
 


       
  
 
     
  
  
 
1 .1
)
0 .1 6 0 8 3 .0 0 4 2
(1 .1, 0 .0 7 3 1)
1 .2 1 3 .3 0 4 6
3 .1 6 5 0
(1 .1, 0 .0 7 3 1) 0 .7 0 1 1
4 .5 1 4 6
e
f
f

 

  
48
Numerical TechniquesPart - II : The methods for solving ODE numerically
 
 
2
0 0
3 0 0
2
3
1 .1
2
3
3
3
3
1, 0, 0 .2,
2 2
2
( , ) ,
0 .2 0 .1 4 0 2
0 .2 1 , 0
2 2 2 (1 .1)(0 .0 7 0 1)
(1 .1, 0 .0 7 0 1)
0 .2 1 0 .1, 0 0 .0 7 0 1 (1 .1) (1 .1)
0 .2 1 .1, 0 .0 7 0 1
0 . 0 .6 9 9 6
0 .1 3 9 9
x
x
kh
x y hk h f x y
xy e
f x y
x xek f
e
f
k f
k f
k
k
 
     
 


       
  
 
     
  
  
 
1 .1
0 .1 5 4 2 3 .0 0 4 2
(1 .1, 0 .0 7 3 1)
1 .2 1 3 .3 0 4 6
3 .1 5 8 4
(1 .1, 0 .0 7 3 1) 0 .6 9 9 6
4 .5 1 4 6
e
f
f

 

  
49
Numerical TechniquesPart - II : The methods for solving ODE numerically
 
 
 
0 0
4 0 0 3
2
4
1 .2
4 2 1 .2
4
4
1, 0, 0 .2
, 2
( , ) ,
0 .2 1 0 .2, 0 0 .1 3 9 9
2 (1 .2 )(0 .1 3 9 9 )
0 .2 1 .2, 0 .1 3 9 9 (1 .2, 0 .1 3 9 9 )
(1 .2 ) (1 .2 )
0 .2 0 .6 7 4 0
0 .3 3 5 8 3 .3 2 0 1
(1 .1, 0 .0 7 3 1)
0 .1 3 4 8 1 .4 4 3
x
x
x y h
k h f x h y k xy e
f x y
x xek f
e
k f f
e
k
f
k
  
   

    

    

  

 
   .9 8 4 1
3 .6 5 5 9
(1 .1, 0 .0 7 3 1) 0 .6 7 4 0
5 .4 2 4 1
f  
50
Numerical TechniquesPart - II : The methods for solving ODE numerically
 
 
 
 
1 2 3 4
1
N o w 2 2
6
1
0 .1 4 6 2 2 ( 0 .1 4 0 2 ) 2 ( 0 .1 3 9 9 ) 0 .1 3 4 8
6
1
0 .1 4 6 2 0 .2 8 0 4 0 .2 7 9 8 0 .1 3 4 8
6
1
0 .8 4 1 2
6
0 .1 4 0 2
k k k k k
k
k
k
k
   
    
    
 
 
51
Numerical TechniquesPart - II : The methods for solving ODE numerically
0 0
1 1
1 1 0 1
1 0 .2 0 0 .1 4 0 2
, 1, 2 ... 0 .2 , 1, 2 ... 0 .1 4 0 2
1 0 .2 1 .2 0 .2 0 0 .1 4 0 2 0 .1 4 0 2
n n n n
x h y k
x x h n h y y k n k
x h y y k y
 
   
       
        
1
N o w w e k n o w th at ( )n n
y x y k
 
52
Numerical TechniquesPart - II : The methods for solving ODE numerically
1 1
w e know that 1.2 0.2 0.1402x h y  
T o fin d : (ii) 1 .4y a t x 
1 2 3 4
N o w h ere first w e fin d , , , an d .k k k k k
 
1 1
2
1 1 1
1 .2
1
2 1 .2
1
1
1 .2 , 0 .1 4 0 2 , 0 .2
2
( , ) ,
( , )
0 .2 (1 .2 , 0 .1 4 0 2 ) 2 (1 .2 )(0 .1 4 0 2 )
(1 .2 , 0 .1 4 0 2 )
0 .2 (0 .6 7 4 1) 1 .2 (1 .2 )
0 .3 3 6 5 3 .3 2 0 10 .1 3 4 8
(1 .2 , 0 .1 4 0 2 )
1 .4 4 3 .9 8 4 1
(1 .2 , 0 .1 4 0
x
x
x y h
x y e
f x y
k h f x y x x e
k f e
f
k e
k
f
f
  


 
   
 
   
 
 


3 .6 5 6 6
2 ) 0 .6 7 4 1
5 .4 2 4 1
 
53
Numerical TechniquesPart - II : The methods for solving ODE numerically
 
 
1
1 1
2 1 1
2
2
2
2
2
2
1.2, 0.1402, 0.2,
2 2
2
( , ) ,
0.2 0.1348
0.2 1.2 , 0.1402
2 2 2(1.3)(0.
(1.3, 0.2076)
0.2 1.2 0.1, 0.1402 0.0674
0.2 1.3, 0.2076
0.2 0.6516
0.1303
x
x
kh
x y hk hf x y
xy e
f x y
x xek f
f
k f
k f
k
k
 
     
 


       
 
 
    
  
  
 
 
1.3
2 1.3
2076)
1.3 (1.3)
0.5398 3.6693
(1.2, 0.1402)
1.69 4.7701
4.2091
(1.2, 0.1402) 0.6516
6.4601
e
e
f
f



 

  
54
Numerical TechniquesPart - II : The methods for solving ODE numerically
 
 
2
1 1
3 1 1
2
3
3
3
3
3
1.2, 0.1402, 0.2,
2 2
2
( , ) ,
0.2 0.1303
0.2 1.2 , 0.1402
2 2 2(1.3)(0.
(1.3, 0.2054)
0.2 1.2 0.1, 0.1402 0.0652
0.2 1.3, 0.2054
0.2 0.6507
0.1301
x
x
kh
x y hk hf x y
xy e
f x y
x xek f
f
k f
k f
k
k
 
     
 


       
 
 
    
  
  
 
 
1.3
2 1.3
2054)
1.3 (1.3)
0.5340 3.6693
(1.2, 0.1402)
1.69 4.7701
4.2033
(1.2, 0.1402) 0.6507
6.4601
e
e
f
f



 

  
55
Numerical TechniquesPart - II : The methods for solving ODE numerically
 
 
 
 
1 1
4 1 1 3
2
4
1 .4
4 2 1 .4
4
4
1 .2, 0 .1 4 0 2, 0 .2
, 2
( , ) ,
0 .2 1 .2 0 .2, 0 .1 4 0 2 0 .1 3 0 1
2 (1 .4 )(0 .2 7 0 3)
0 .2 1 .4, 0 .2 7 0 3 (1 .4, 0 .2 7 0 3)
1 .4 (1 .4 )
0 .2 0 .6 3 0 1
0 .7 5 6 8
(1 .4, 0 .2 7 0 3)0 .1 2 6 0
x
x
x y h
k h f x h y k xy e
f x y
x xek f
e
k f f
e
k
fk
  
   

    

    

  

  
4 .0 5 5 2
1 .9 6 5 .6 7 7 3
4 .8 1 2 0
(1 .4, 0 .2 7 0 3) 0 .6 3 0 1
7 .6 3 7 3
f

  
56
Numerical TechniquesPart - II : The methods for solving ODE numerically
 
 
 
 
1 2 3 4
1
N o w 2 2
6
1
0 .1 3 4 8 2 ( 0 .1 3 0 3 ) 2 ( 0 .1 3 0 1) 0 .1 2 6 0
6
1
0 .1 3 4 8 0 .2 6 0 6 0 .2 6 0 2 0 .1 2 6 0
6
1
0 .7 8 1 6
6
0 .1 3 0 3
k k k k k
k
k
k
k
   
    
    
 
 
57
Numerical TechniquesPart - II : The methods for solving ODE numerically
1 1
1 1
2 2 1 2
1.2 0.2 0.1402 0.1303
, 1, 2... 0.2 , 1, 2... 0.1303
1.2 0.2 1.4 0.2 0.1402 0.1303 0.2705
n n n n
x h y k
x x h n h y y k n k
x h y y k y
 
   
       
        
1
N o w w e k n o w th at ( )n n
y x y k
 

More Related Content

What's hot

Arithmetic Progressions and the Construction of Doubly Even Magic Squares
Arithmetic Progressions and the Construction of Doubly Even Magic SquaresArithmetic Progressions and the Construction of Doubly Even Magic Squares
Arithmetic Progressions and the Construction of Doubly Even Magic SquaresLossian Barbosa Bacelar Miranda
 
Basic%20 jeopardy[1]
Basic%20 jeopardy[1]Basic%20 jeopardy[1]
Basic%20 jeopardy[1]cpb310
 
Observations on Triacontagonal number
Observations on Triacontagonal numberObservations on Triacontagonal number
Observations on Triacontagonal numberIJESM JOURNAL
 
X2 t01 01 arithmetic of complex numbers (2013)
X2 t01 01 arithmetic of complex numbers (2013)X2 t01 01 arithmetic of complex numbers (2013)
X2 t01 01 arithmetic of complex numbers (2013)Nigel Simmons
 
Grafik tugas 20des2012
Grafik tugas 20des2012Grafik tugas 20des2012
Grafik tugas 20des2012Pujiati Puu
 
Coordinate Geometry
Coordinate GeometryCoordinate Geometry
Coordinate Geometryhiratufail
 
Discrete mathematics counting and logic relation
Discrete mathematics counting and logic relationDiscrete mathematics counting and logic relation
Discrete mathematics counting and logic relationSelf-Employed
 
The mathematics of perfect shuffles,perci diaconis, r,l,graham,william m.kant...
The mathematics of perfect shuffles,perci diaconis, r,l,graham,william m.kant...The mathematics of perfect shuffles,perci diaconis, r,l,graham,william m.kant...
The mathematics of perfect shuffles,perci diaconis, r,l,graham,william m.kant...Θανάσης Δρούγας
 
เลขยกกำลังชุด 2
เลขยกกำลังชุด 2เลขยกกำลังชุด 2
เลขยกกำลังชุด 2kanjana2536
 
Coordinate Geometry
Coordinate GeometryCoordinate Geometry
Coordinate GeometryManisha Keim
 
A Boundary Value Problem and Expansion Formula of I - Function and General Cl...
A Boundary Value Problem and Expansion Formula of I - Function and General Cl...A Boundary Value Problem and Expansion Formula of I - Function and General Cl...
A Boundary Value Problem and Expansion Formula of I - Function and General Cl...IJERA Editor
 
ENGI5671Matcont
ENGI5671MatcontENGI5671Matcont
ENGI5671MatcontYu Zhang
 
Solvable models on noncommutative spaces with minimal length uncertainty rela...
Solvable models on noncommutative spaces with minimal length uncertainty rela...Solvable models on noncommutative spaces with minimal length uncertainty rela...
Solvable models on noncommutative spaces with minimal length uncertainty rela...Sanjib Dey
 

What's hot (19)

E1 f6 bộ binh
E1 f6 bộ binhE1 f6 bộ binh
E1 f6 bộ binh
 
E1 f4 bộ binh
E1 f4 bộ binhE1 f4 bộ binh
E1 f4 bộ binh
 
Arithmetic Progressions and the Construction of Doubly Even Magic Squares
Arithmetic Progressions and the Construction of Doubly Even Magic SquaresArithmetic Progressions and the Construction of Doubly Even Magic Squares
Arithmetic Progressions and the Construction of Doubly Even Magic Squares
 
Basic%20 jeopardy[1]
Basic%20 jeopardy[1]Basic%20 jeopardy[1]
Basic%20 jeopardy[1]
 
E2 f6 bộ binh
E2 f6 bộ binhE2 f6 bộ binh
E2 f6 bộ binh
 
Observations on Triacontagonal number
Observations on Triacontagonal numberObservations on Triacontagonal number
Observations on Triacontagonal number
 
X2 t01 01 arithmetic of complex numbers (2013)
X2 t01 01 arithmetic of complex numbers (2013)X2 t01 01 arithmetic of complex numbers (2013)
X2 t01 01 arithmetic of complex numbers (2013)
 
Grafik tugas 20des2012
Grafik tugas 20des2012Grafik tugas 20des2012
Grafik tugas 20des2012
 
Sub1567
Sub1567Sub1567
Sub1567
 
Coordinate Geometry
Coordinate GeometryCoordinate Geometry
Coordinate Geometry
 
Discrete mathematics counting and logic relation
Discrete mathematics counting and logic relationDiscrete mathematics counting and logic relation
Discrete mathematics counting and logic relation
 
The mathematics of perfect shuffles,perci diaconis, r,l,graham,william m.kant...
The mathematics of perfect shuffles,perci diaconis, r,l,graham,william m.kant...The mathematics of perfect shuffles,perci diaconis, r,l,graham,william m.kant...
The mathematics of perfect shuffles,perci diaconis, r,l,graham,william m.kant...
 
เลขยกกำลังชุด 2
เลขยกกำลังชุด 2เลขยกกำลังชุด 2
เลขยกกำลังชุด 2
 
Coordinate Geometry
Coordinate GeometryCoordinate Geometry
Coordinate Geometry
 
A Boundary Value Problem and Expansion Formula of I - Function and General Cl...
A Boundary Value Problem and Expansion Formula of I - Function and General Cl...A Boundary Value Problem and Expansion Formula of I - Function and General Cl...
A Boundary Value Problem and Expansion Formula of I - Function and General Cl...
 
Algebra 6
Algebra 6Algebra 6
Algebra 6
 
ENGI5671Matcont
ENGI5671MatcontENGI5671Matcont
ENGI5671Matcont
 
Solvable models on noncommutative spaces with minimal length uncertainty rela...
Solvable models on noncommutative spaces with minimal length uncertainty rela...Solvable models on noncommutative spaces with minimal length uncertainty rela...
Solvable models on noncommutative spaces with minimal length uncertainty rela...
 
Ahlfors sol1
Ahlfors sol1Ahlfors sol1
Ahlfors sol1
 

Similar to Numerical Integration and Numerical Solution of Ordinary Differential Equations(Numerical Methods - Unit- III)

A computational method for system of linear fredholm integral equations
A computational method for system of linear fredholm integral equationsA computational method for system of linear fredholm integral equations
A computational method for system of linear fredholm integral equationsAlexander Decker
 
lagrange and newton divided differences.ppt
lagrange and newton divided differences.pptlagrange and newton divided differences.ppt
lagrange and newton divided differences.pptThirumoorthy64
 
FUZZY ARITHMETIC OPERATIONS ON DIFFERENT FUZZY NUMBERS AND THEIR VARIOUS FUZZ...
FUZZY ARITHMETIC OPERATIONS ON DIFFERENT FUZZY NUMBERS AND THEIR VARIOUS FUZZ...FUZZY ARITHMETIC OPERATIONS ON DIFFERENT FUZZY NUMBERS AND THEIR VARIOUS FUZZ...
FUZZY ARITHMETIC OPERATIONS ON DIFFERENT FUZZY NUMBERS AND THEIR VARIOUS FUZZ...IAEME Publication
 
Numerical Methods: curve fitting and interpolation
Numerical Methods: curve fitting and interpolationNumerical Methods: curve fitting and interpolation
Numerical Methods: curve fitting and interpolationNikolai Priezjev
 
On the construction and comparison of an explicit iterative
On the construction and comparison of an explicit iterativeOn the construction and comparison of an explicit iterative
On the construction and comparison of an explicit iterativeAlexander Decker
 
mathematics o level book
mathematics o level bookmathematics o level book
mathematics o level booksaadanashraf
 
Numerical treatments to nonlocal Fredholm –Volterra integral equation with co...
Numerical treatments to nonlocal Fredholm –Volterra integral equation with co...Numerical treatments to nonlocal Fredholm –Volterra integral equation with co...
Numerical treatments to nonlocal Fredholm –Volterra integral equation with co...iosrjce
 
13200836 solution-manual-process-dynamics-and-control-donald-r-coughanowr-130...
13200836 solution-manual-process-dynamics-and-control-donald-r-coughanowr-130...13200836 solution-manual-process-dynamics-and-control-donald-r-coughanowr-130...
13200836 solution-manual-process-dynamics-and-control-donald-r-coughanowr-130...nutkoon
 
D0366025029
D0366025029D0366025029
D0366025029theijes
 
Block Hybrid Method for the Solution of General Second Order Ordinary Differe...
Block Hybrid Method for the Solution of General Second Order Ordinary Differe...Block Hybrid Method for the Solution of General Second Order Ordinary Differe...
Block Hybrid Method for the Solution of General Second Order Ordinary Differe...QUESTJOURNAL
 
Numerical Solution Of Delay Differential Equations Using The Adomian Decompos...
Numerical Solution Of Delay Differential Equations Using The Adomian Decompos...Numerical Solution Of Delay Differential Equations Using The Adomian Decompos...
Numerical Solution Of Delay Differential Equations Using The Adomian Decompos...theijes
 
Material unidad ii metodos
Material unidad ii metodosMaterial unidad ii metodos
Material unidad ii metodosFaint Aitnyc
 
Numerical Solution of Nth - Order Fuzzy Initial Value Problems by Fourth Orde...
Numerical Solution of Nth - Order Fuzzy Initial Value Problems by Fourth Orde...Numerical Solution of Nth - Order Fuzzy Initial Value Problems by Fourth Orde...
Numerical Solution of Nth - Order Fuzzy Initial Value Problems by Fourth Orde...IOSR Journals
 

Similar to Numerical Integration and Numerical Solution of Ordinary Differential Equations(Numerical Methods - Unit- III) (20)

A computational method for system of linear fredholm integral equations
A computational method for system of linear fredholm integral equationsA computational method for system of linear fredholm integral equations
A computational method for system of linear fredholm integral equations
 
lagrange and newton divided differences.ppt
lagrange and newton divided differences.pptlagrange and newton divided differences.ppt
lagrange and newton divided differences.ppt
 
numerical methods
numerical methodsnumerical methods
numerical methods
 
Dielectric wave guide
Dielectric wave guideDielectric wave guide
Dielectric wave guide
 
FUZZY ARITHMETIC OPERATIONS ON DIFFERENT FUZZY NUMBERS AND THEIR VARIOUS FUZZ...
FUZZY ARITHMETIC OPERATIONS ON DIFFERENT FUZZY NUMBERS AND THEIR VARIOUS FUZZ...FUZZY ARITHMETIC OPERATIONS ON DIFFERENT FUZZY NUMBERS AND THEIR VARIOUS FUZZ...
FUZZY ARITHMETIC OPERATIONS ON DIFFERENT FUZZY NUMBERS AND THEIR VARIOUS FUZZ...
 
Numerical Methods: curve fitting and interpolation
Numerical Methods: curve fitting and interpolationNumerical Methods: curve fitting and interpolation
Numerical Methods: curve fitting and interpolation
 
QMC: Transition Workshop - Probability Models for Discretization Uncertainty ...
QMC: Transition Workshop - Probability Models for Discretization Uncertainty ...QMC: Transition Workshop - Probability Models for Discretization Uncertainty ...
QMC: Transition Workshop - Probability Models for Discretization Uncertainty ...
 
On the construction and comparison of an explicit iterative
On the construction and comparison of an explicit iterativeOn the construction and comparison of an explicit iterative
On the construction and comparison of an explicit iterative
 
mathematics o level book
mathematics o level bookmathematics o level book
mathematics o level book
 
2.pptx
2.pptx2.pptx
2.pptx
 
Numerical treatments to nonlocal Fredholm –Volterra integral equation with co...
Numerical treatments to nonlocal Fredholm –Volterra integral equation with co...Numerical treatments to nonlocal Fredholm –Volterra integral equation with co...
Numerical treatments to nonlocal Fredholm –Volterra integral equation with co...
 
02 Notes Divide and Conquer
02 Notes Divide and Conquer02 Notes Divide and Conquer
02 Notes Divide and Conquer
 
13200836 solution-manual-process-dynamics-and-control-donald-r-coughanowr-130...
13200836 solution-manual-process-dynamics-and-control-donald-r-coughanowr-130...13200836 solution-manual-process-dynamics-and-control-donald-r-coughanowr-130...
13200836 solution-manual-process-dynamics-and-control-donald-r-coughanowr-130...
 
D0366025029
D0366025029D0366025029
D0366025029
 
D028036046
D028036046D028036046
D028036046
 
Block Hybrid Method for the Solution of General Second Order Ordinary Differe...
Block Hybrid Method for the Solution of General Second Order Ordinary Differe...Block Hybrid Method for the Solution of General Second Order Ordinary Differe...
Block Hybrid Method for the Solution of General Second Order Ordinary Differe...
 
Numerical Solution Of Delay Differential Equations Using The Adomian Decompos...
Numerical Solution Of Delay Differential Equations Using The Adomian Decompos...Numerical Solution Of Delay Differential Equations Using The Adomian Decompos...
Numerical Solution Of Delay Differential Equations Using The Adomian Decompos...
 
Material unidad ii metodos
Material unidad ii metodosMaterial unidad ii metodos
Material unidad ii metodos
 
Bitwise
BitwiseBitwise
Bitwise
 
Numerical Solution of Nth - Order Fuzzy Initial Value Problems by Fourth Orde...
Numerical Solution of Nth - Order Fuzzy Initial Value Problems by Fourth Orde...Numerical Solution of Nth - Order Fuzzy Initial Value Problems by Fourth Orde...
Numerical Solution of Nth - Order Fuzzy Initial Value Problems by Fourth Orde...
 

More from Dr. Tushar J Bhatt

SAMPLING THEORY AND TECHNIQUES.pdf
SAMPLING THEORY AND TECHNIQUES.pdfSAMPLING THEORY AND TECHNIQUES.pdf
SAMPLING THEORY AND TECHNIQUES.pdfDr. Tushar J Bhatt
 
Statistical Quality Control Lecture Notes.pdf
Statistical Quality Control Lecture Notes.pdfStatistical Quality Control Lecture Notes.pdf
Statistical Quality Control Lecture Notes.pdfDr. Tushar J Bhatt
 
Statistical Estimation and Testing Lecture Notes.pdf
Statistical Estimation and Testing Lecture Notes.pdfStatistical Estimation and Testing Lecture Notes.pdf
Statistical Estimation and Testing Lecture Notes.pdfDr. Tushar J Bhatt
 
Decision Theory Lecture Notes.pdf
Decision Theory Lecture Notes.pdfDecision Theory Lecture Notes.pdf
Decision Theory Lecture Notes.pdfDr. Tushar J Bhatt
 
OPERATION RESEARCH FOR BEGINNERS.pdf
OPERATION RESEARCH FOR BEGINNERS.pdfOPERATION RESEARCH FOR BEGINNERS.pdf
OPERATION RESEARCH FOR BEGINNERS.pdfDr. Tushar J Bhatt
 
Random Variable and Probability Distribution
Random Variable and Probability Distribution Random Variable and Probability Distribution
Random Variable and Probability Distribution Dr. Tushar J Bhatt
 
Measure of Dispersion (statistics)
Measure of Dispersion (statistics)Measure of Dispersion (statistics)
Measure of Dispersion (statistics)Dr. Tushar J Bhatt
 

More from Dr. Tushar J Bhatt (16)

Network_Analysis.pdf
Network_Analysis.pdfNetwork_Analysis.pdf
Network_Analysis.pdf
 
Linear_Programming.pdf
Linear_Programming.pdfLinear_Programming.pdf
Linear_Programming.pdf
 
Theory_of_Probability .pdf
Theory_of_Probability .pdfTheory_of_Probability .pdf
Theory_of_Probability .pdf
 
Number_System .pdf
Number_System .pdfNumber_System .pdf
Number_System .pdf
 
Error_Analysis.pdf
Error_Analysis.pdfError_Analysis.pdf
Error_Analysis.pdf
 
SAMPLING THEORY AND TECHNIQUES.pdf
SAMPLING THEORY AND TECHNIQUES.pdfSAMPLING THEORY AND TECHNIQUES.pdf
SAMPLING THEORY AND TECHNIQUES.pdf
 
Statistical Quality Control Lecture Notes.pdf
Statistical Quality Control Lecture Notes.pdfStatistical Quality Control Lecture Notes.pdf
Statistical Quality Control Lecture Notes.pdf
 
Statistical Estimation and Testing Lecture Notes.pdf
Statistical Estimation and Testing Lecture Notes.pdfStatistical Estimation and Testing Lecture Notes.pdf
Statistical Estimation and Testing Lecture Notes.pdf
 
Decision Theory Lecture Notes.pdf
Decision Theory Lecture Notes.pdfDecision Theory Lecture Notes.pdf
Decision Theory Lecture Notes.pdf
 
OPERATION RESEARCH FOR BEGINNERS.pdf
OPERATION RESEARCH FOR BEGINNERS.pdfOPERATION RESEARCH FOR BEGINNERS.pdf
OPERATION RESEARCH FOR BEGINNERS.pdf
 
Statistical Methods
Statistical Methods Statistical Methods
Statistical Methods
 
Random Variable and Probability Distribution
Random Variable and Probability Distribution Random Variable and Probability Distribution
Random Variable and Probability Distribution
 
Correlation and Regression
Correlation and Regression Correlation and Regression
Correlation and Regression
 
Measure of Dispersion (statistics)
Measure of Dispersion (statistics)Measure of Dispersion (statistics)
Measure of Dispersion (statistics)
 
Measure of Central Tendancy
Measure of Central TendancyMeasure of Central Tendancy
Measure of Central Tendancy
 
Introduction to Statistics
Introduction to StatisticsIntroduction to Statistics
Introduction to Statistics
 

Recently uploaded

KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlysanyuktamishra911
 
University management System project report..pdf
University management System project report..pdfUniversity management System project report..pdf
University management System project report..pdfKamal Acharya
 
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Christo Ananth
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...Call Girls in Nagpur High Profile
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxupamatechverse
 
Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)simmis5
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdfankushspencer015
 
MANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTING
MANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTINGMANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTING
MANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTINGSIVASHANKAR N
 
Russian Call Girls in Nagpur Grishma Call 7001035870 Meet With Nagpur Escorts
Russian Call Girls in Nagpur Grishma Call 7001035870 Meet With Nagpur EscortsRussian Call Girls in Nagpur Grishma Call 7001035870 Meet With Nagpur Escorts
Russian Call Girls in Nagpur Grishma Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxAsutosh Ranjan
 
result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college projectTonystark477637
 
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...ranjana rawat
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSSIVASHANKAR N
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingrakeshbaidya232001
 
Online banking management system project.pdf
Online banking management system project.pdfOnline banking management system project.pdf
Online banking management system project.pdfKamal Acharya
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Bookingdharasingh5698
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxpranjaldaimarysona
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsCall Girls in Nagpur High Profile
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxupamatechverse
 

Recently uploaded (20)

KubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghlyKubeKraft presentation @CloudNativeHooghly
KubeKraft presentation @CloudNativeHooghly
 
University management System project report..pdf
University management System project report..pdfUniversity management System project report..pdf
University management System project report..pdf
 
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
Call for Papers - Educational Administration: Theory and Practice, E-ISSN: 21...
 
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...Booking open Available Pune Call Girls Koregaon Park  6297143586 Call Hot Ind...
Booking open Available Pune Call Girls Koregaon Park 6297143586 Call Hot Ind...
 
Introduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptxIntroduction to Multiple Access Protocol.pptx
Introduction to Multiple Access Protocol.pptx
 
Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)Java Programming :Event Handling(Types of Events)
Java Programming :Event Handling(Types of Events)
 
AKTU Computer Networks notes --- Unit 3.pdf
AKTU Computer Networks notes ---  Unit 3.pdfAKTU Computer Networks notes ---  Unit 3.pdf
AKTU Computer Networks notes --- Unit 3.pdf
 
MANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTING
MANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTINGMANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTING
MANUFACTURING PROCESS-II UNIT-1 THEORY OF METAL CUTTING
 
Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024Water Industry Process Automation & Control Monthly - April 2024
Water Industry Process Automation & Control Monthly - April 2024
 
Russian Call Girls in Nagpur Grishma Call 7001035870 Meet With Nagpur Escorts
Russian Call Girls in Nagpur Grishma Call 7001035870 Meet With Nagpur EscortsRussian Call Girls in Nagpur Grishma Call 7001035870 Meet With Nagpur Escorts
Russian Call Girls in Nagpur Grishma Call 7001035870 Meet With Nagpur Escorts
 
Coefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptxCoefficient of Thermal Expansion and their Importance.pptx
Coefficient of Thermal Expansion and their Importance.pptx
 
result management system report for college project
result management system report for college projectresult management system report for college project
result management system report for college project
 
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
The Most Attractive Pune Call Girls Manchar 8250192130 Will You Miss This Cha...
 
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLSMANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
MANUFACTURING PROCESS-II UNIT-5 NC MACHINE TOOLS
 
Porous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writingPorous Ceramics seminar and technical writing
Porous Ceramics seminar and technical writing
 
Online banking management system project.pdf
Online banking management system project.pdfOnline banking management system project.pdf
Online banking management system project.pdf
 
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 BookingVIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
VIP Call Girls Ankleshwar 7001035870 Whatsapp Number, 24/07 Booking
 
Processing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptxProcessing & Properties of Floor and Wall Tiles.pptx
Processing & Properties of Floor and Wall Tiles.pptx
 
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur EscortsHigh Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
High Profile Call Girls Nagpur Meera Call 7001035870 Meet With Nagpur Escorts
 
Introduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptxIntroduction and different types of Ethernet.pptx
Introduction and different types of Ethernet.pptx
 

Numerical Integration and Numerical Solution of Ordinary Differential Equations(Numerical Methods - Unit- III)

  • 1. Semester :III Mr. Tushar J Bhatt Subject : NT Code :18SAHMT301 Unit No. :3 1 Numerical Techniques Unit- 3: Numerical Integration and Numerical Solution of Ordinary Differential Equations 1. Introduction Table of contents 5. Euler’s Method 6. Runge- Kutta Method of second order 7. Runge- Kutta Method of forth order 2. Trapezoidal Rule 3. Simpson’s 1/3 Rule 4. Simpson’s 3/8 Rule Part - I : The methods for solving Numerical Integration Part - II : The methods for solving ODE numerically
  • 2. Mr. Tushar J Bhatt 2 Numerical Techniques 1. Introduction 0 T h e p ro c e ss o f c o m p u tin g th e v a lu e o f a d e fin ite in te g ra l ( ) w h e re ( ) fo rm a se t o f ta b u la te d v a lu e s , , 0 ,1, 2 , ... is c a lle d n u m e ric a l in te g ra tio n . S in c e ( ) is a sin g le v a lu e d nx x i i f x d x y f x x y i n y f x        fu n c tio n , th e p ro c e ss in g e n e ra l c a lle d q u a d ra tu re .
  • 3. Mr. Tushar J Bhatt 3 Numerical Techniques 2. Trapezoidal rule 0 1 0 2 0 1 0 0 0 1 2 1 C o n sid er th e fo llo w in g tab u lar valu es o f x an d y : 2 .... ( 1) . .... A cco rd in g to ab o ve tab u lar valu es o f x a n d y, if w e w an t to calcu late th e valu es o f n n n n x x a x x h x x h x x n h x x n h b y y y y y y              0 0 d efin ite in teg ral ( ) th en w e u sed th e trap ezo id al ru le d efin ed as fo llo w s: b x n h a x f x d x        0 0 0 1 2 1 ( ) = 2 ... 2 b x n h n n a x h f x d x y y y y y                 0 0 ( ) = 2 2 b x n h a x h f x d x S E R        How to remember w h e r e h = , n = n o ' o f p a r t i t i o n s o f a n i n t e r v a l. b a n  Part - I : The methods for solving Numerical Integration
  • 4. Mr. Tushar J Bhatt 4 Numerical Techniques 1 3 . S im p s o n 's ru le : 3 r d           0 0 ( ) = 4 2 ( ) 3 b x n h a x h f x d x S E O E         How to remember       0 0 0 1 3 1 2 4 2 ( ) = 4 ... 2 ... 3 b x nh n n n a x h f x dx y y y y y y y y                  w h e re h = , n = n o ' o f p a rtitio n s o f a n i n te rv a l. b a n  Part - I : The methods for solving Numerical Integration
  • 5. Mr. Tushar J Bhatt 5 Numerical Techniques 3 4 . S im p s o n 's ru le : 8 th           0 0 3 ( ) = 3 not a m ultiple of 3 2(m ultiple of 3) 8 b x nh a x h f x dx S E         How to remember       0 0 0 1 2 4 5 1 3 6 3 3 ( ) = 3 ... 2 ... 8 b x nh n n n a x h f x dx y y y y y y y y y y                   w h e re h = , n = n o ' o f p a rtitio n s o f a n i n te rv a l. b a n  Part - I : The methods for solving Numerical Integration
  • 6. Mr. Tushar J Bhatt 6 Numerical Techniques 6 20 E x -1 : E valu ate b y u sin g T rap ezo id al ru le tak in g 1 . 1 d x h x    Solution: 2 1 H e re ( ) a n d lim it o f is 0 to 6 . 1 f x y x x    N o w w e m ak e a tab le o f x an d y as fo llo w s : 0 1 2 3 4 5 6 0 1 2 3 4 5 62 0 1 2 3 4 5 6 1 1 0.5 0.2 0.1 0.0588 0.0385 0.027 1 n x x x x x x x x y y y y y y y y y x                  N o w w e k n o w th at th e T rap ezo id al ru le is g iven b y Part - I : The methods for solving Numerical Integration
  • 7. Mr. Tushar J Bhatt 7 Numerical Techniques Solution:     0 0 0 1 2 1 ( ) = 2 ... 2 b x n h n n a x h f x d x y y y y y                0 6 0 6 1 2 3 4 520 1 1 = 2 21 nx x d x y y y y y y y x                      0 6 20 1 1 = 1 0.027 2 0.5 0.2 0.1 0.0588 0.0385 21 nx x dx x                       0 6 20 1 1 = 1.027 2 0.8973 21 nx x dx x              0 6 20 1 = 1.4108 1 nx x dx x           ANSWER Part - I : The methods for solving Numerical Integration
  • 8. Mr. Tushar J Bhatt 8 Numerical Techniques 0 E x -2 : D ivid in g th e ran g e in to 1 0 eq u al p arts, fin d an ap p ro x im ate valu e o f sin b y u sin g T rap ezo id al ru le.x d x   Solution: H ere ( ) sin an d lim it o f is 0 to .f x x y x   0 T h e ran g e (0 , ) is d ivid ed in to 1 0 eq u al p arts. so h = . 1 0 1 0      N o w w e k n o w th at th e T rap ezo id al ru le is g iven b y Part - I : The methods for solving Numerical Integration
  • 9. Mr. Tushar J Bhatt 9 Numerical Techniques Solution:     0 0 0 1 2 1 ( ) = 2 ... 2 b x n h n n a x h f x d x y y y y y                  0 0 10 1 2 3 4 5 6 7 8 9 0 sin = 2 10 2 nx x x dx y y y y y y y y y y y                      0 0 2 0.3090 0.5878 0.8090 0.9511 1.0000 0.9511 0.8090 0.5878 0.3090 10 2                  22 0 12.6276 ( ) 20 7 T ake     1.9843 ANSWER   2 2 0 12.6276 7 20    Part - I : The methods for solving Numerical Integration
  • 10. Mr. Tushar J Bhatt 10 Numerical Techniques 0 E x -3 : D ivid in g th e ran g e in to 1 0 eq u al p arts, fin d an ap p ro x im ate valu e o f 1 sin b y u sin g S im so n 's ru le. 3 rd x d x         Solution: H ere ( ) sin an d lim it o f is 0 to .f x x y x   0 T h e ran g e (0 , ) is d ivid ed in to 1 0 eq u al p arts. so h = . 1 0 1 0      1 N o w w e k n o w th a t th e S im so n 's ru le is g iv e n b y 3 r d       Part - I : The methods for solving Numerical Integration
  • 11. Mr. Tushar J Bhatt 11 Numerical Techniques Solution:        0 0 10 1 3 5 7 9 2 4 6 8 0 sin = 4 2 1 0 3 nx x x d x y y y y y y y y y y y                        0 0 4 0.3090 0.8090 1.0000 0.8090 0.3090 2 0.5878 0.9511 0.9511 0.5878 10 3                  22 0 12.944 6.4720 ( ) 30 7 T ake      1.9342 ANSWER       0 0 0 1 3 1 2 4 2 ( ) = 4 ... 2 ... 3 b x nh n n n a x h f x dx y y y y y y y y                    22 0 12.3068 6.1556 7 30     Part - I : The methods for solving Numerical Integration
  • 12. Mr. Tushar J Bhatt 12 Numerical Techniques 5 1 0 1 E x -4 : D ivid in g th e ran g e in to 8 eq u al p a rts, fin d an ap p ro x im ate valu e o f 1 lo g b y u sin g S im so n 's ru le. 3 rd x d x        Solution: 1 0 H ere ( ) lo g an d lim it o f is 1 to 5 .f x x y x  5 1 4 1 T h e ran g e (1 , 5 ) is d ivid ed in to 8 eq u al p arts. so h = . 8 8 2    1 N o w w e k n o w th a t th e S im so n 's ru le is g iv e n b y 3 r d       Part - I : The methods for solving Numerical Integration
  • 13. Mr. Tushar J Bhatt 13 Numerical Techniques Solution:        0 5 1 0 0 8 1 3 5 7 2 4 6 1 1 lo g = 4 2 2 3 nx x x d x y y y y y y y y y                      1 0 0.6990 4 0.1761 0.3979 0.5441 0.6532 2 0.3010 0 .4771 0.6021 6              1 0 .6 9 9 0 7 .0 8 5 2 2 .7 6 0 4 6    ANSWER       0 0 0 1 3 1 2 4 2 ( ) = 4 ... 2 ... 3 b x nh n n n a x h f x dx y y y y y y y y                  1.7574 Part - I : The methods for solving Numerical Integration
  • 14. Mr. Tushar J Bhatt 14 Numerical Techniques 6 20 E x -5 : D ivid in g th e ran g e in to 6 eq u al p a rts, fin d an ap p ro x im ate valu e o f 3 b y u sin g S im so n 's ru le. 81 th d x x         Solution: 6 0 6 T h e ran g e (0 , 6 ) is d ivid ed in to 6 eq u al p arts. so h = 1 . 6 6    2 1 H e re ( ) a n d lim it o f is 0 to 6 . 1 f x y x x    0 1 2 3 4 5 6 0 1 2 3 4 5 62 0 1 2 3 4 5 6 1 1 0.5 0.2 0.1 0.0588 0.0385 0.027 1 n x x x x x x x x y y y y y y y y y x                  3 N o w w e k n o w th a t th e S im so n 's ru le is g iv e n b y 8 th       Part - I : The methods for solving Numerical Integration
  • 15. Mr. Tushar J Bhatt 15 Numerical Techniques Solution:      0 6 0 6 1 2 4 5 32 0 1 3 = 3 2 1 8 nx x d x y y y y y y y x                        3 1 0 .0 2 7 3 0 .5 0 .2 0 .0 5 8 8 0 .0 3 8 5 2 0 .1 8            3 1.027 2.3919 0.2 8    ANSWER 1.3571       0 0 0 1 2 4 5 1 3 6 3 3 ( ) = 3 ... 2 ... 8 b x nh n n n a x h f x dx y y y y y y y y y y                   Part - I : The methods for solving Numerical Integration
  • 16. Mr. Tushar J Bhatt 16 Numerical Techniques   1.4 0.2 3 E x-6: C om pute the value of sin log by us ing S im son's rule, 8 taking 6. th x x x e dx n           Solution: 1.4 0.2 1.2 T he range (0.2, 1.4) is divided into 6 equal parts. so h = 0.2 6 6    H ere ( ) sin log and lim it of is 0.2 to 1.4 and w e have 6. x f x x x e y x n     3 N o w w e k n o w th a t th e S im so n 's ru le is g iv e n b y 8 th       Part - I : The methods for solving Numerical Integration
  • 17. Mr. Tushar J Bhatt 17 Numerical Techniques Solution:        0 1.4 0 6 1 2 4 5 3 0.2 3 0.2 sin log = 3 2 8 nx x x x x e dx y y y y y y y                      0 .6 3 .0 2 9 5 4 .4 0 4 2 3 2 .7 9 7 5 2 .8 9 7 6 3 .5 5 9 7 4 .0 6 9 8 2 3 .1 6 6 0 8            0 .6 7 .4 3 3 7 3 9 .9 7 3 8 6 .3 3 2 0 8    ANSWER 4.0305       0 0 0 1 2 4 5 1 3 6 3 3 ( ) = 3 ... 2 ... 8 b x nh n n n a x h f x dx y y y y y y y y y y                   Part - I : The methods for solving Numerical Integration
  • 18. Mr. Tushar J Bhatt 18 Numerical TechniquesPart - II : The methods for solving ODE numerically T h ere are m an y D E ’s w h o se elem en tary so lu tio n s d o n o t ex ists. F o r ex am p le ' , even th ey ex ists so m etim es w e d o n 't k n o w th e m eth o d o f g ettin g its ex act so lu tio n . In th is case th e n u m erical m eth o d s x y x 0 0 h elp u s to g et th e ap p ro x im ate so lu tio n s . H ere w e are stu d y so m e o f th e n u m erical m eth o d s to g et th e ap p ro x im ate so lu tio n o f first o rd er D E ( , ) w ith th e in itial co n d itio n ( ) . d y f x y y x y d x  
  • 19. Mr. Tushar J Bhatt 19 Numerical TechniquesPart - II : The methods for solving ODE numerically 0 0 0 0 0 1 0 0 0 2 1 0 C o n sid er th e first o rd er D E ( , ) w ith th e in itial co n d itio n ( ) . A cco rd in g to T aylo r's series m eth o d w e g et ( ) ( ) ( ) '( ) (1) ( ) ( , ) (2 ) ( ) ( d y f x y y x a y b d x y x y x x x y x y x y h f x y y x y h f x                         1 3 2 0 2 1 0 , ) (3) ( ) ( 2 , ) (4 ) C o n tin u in g th is w ay w e o b tain , ( ) ( , ) (5)n n n h y y x y h f x h y y x y h f x n h y                              0 W h e re ( ), , , n u m b e r o f s te p s , 1, 2 , 3, 4 , ... n n n y y x x x n h b a h n n n        5. Euler’s Method
  • 20. 20 Numerical TechniquesPart - II : The methods for solving ODE numerically E x -1 : U s in g E u le r's m e th o d fin d a n a p p ro x im a te v a lu e o f y a t x = 1 fo r w ith y (0 )= 1 , fo llo w s te n s te p s a n d ta k e h = 0 .1 . d y x y d x   Solution: 0 0 1 0 H ere 0, 1, ( , ) , 1 0, 0 .1 1 0 b a x y f x y x y n h n           T o fin d : 1y a t x 
  • 21. 21 Numerical TechniquesPart - II : The methods for solving ODE numerically 1 1 0 1 1 0 0 0 0 0 0 0 0 0 1 0 0 1 1 0 1 1 1 1 1 1 1 ( , ) (step size) ( , ) (0 .1) ( , ) (0 .1) ( , ) ( , ) 0 0 1 1 (0 .1) 1 ( , ) 0 1 1 1 .1 ( , ) 1 0 0 .1 1 .1 ( 0 .1 n n n n n n n n n n n n n n y y h f x y n x y f x y x y y y f x y y y y f x y f x y x y x y y f x y y x x h f x y x y x y f x x                                        2 1 1 1 1 1 2 1 1 2 (0 .1) ( , ) , ) 0 .1 1 .1 1 .1 (0 .1) 1 .2 ( , ) 1 .2 1 .2 2 y y f x y y y f x y y            
  • 22. 22 Numerical TechniquesPart - II : The methods for solving ODE numerically 1 1 ( , ) (step size) ( , ) (0 .1) ( , ) n n n n n n n n n n n n n n y y h f x y n h x y f x y x y y y f x y          0 0.1 0 1.0000 1.0000 1.1000 1 0.1 0.1 1.1000 1.2000 1.2200 2 0.1 0.2 1.2200 1.4200 1.3620 3 0.1 0.3 1.3620 1.6620 1.5282
  • 23. 23 Numerical TechniquesPart - II : The methods for solving ODE numerically 4 0.1 0.4 1.5282 1.9282 1.7210 5 0.1 0.5 1.7210 2.2210 1.9431 6 0.1 0.6 1.9431 2.5431 2.1974 7 0.1 0.7 2.1974 2.8974 2.4872 8 0.1 0.8 2.4872 3.2872 2.8159 9 0.1 0.9 2.8159 3.7159 3.1875 10 0.1 1 3.1875 1 1 ( , ) (step size) ( , ) (0 .1) ( , ) n n n n n n n n n n n n n n y y h f x y n h x y f x y x y y y f x y         
  • 24. 24 Numerical TechniquesPart - II : The methods for solving ODE numerically E x -2 : U s in g E u le r's m e th o d fin d a n a p p ro x im a te v a lu e o f y a t x = 0 .0 4 fo r w ith y(0 )= 1 , fo llo w s te n s te p s a n d ta k e h = 0 .0 1 . d y y d x  Solution: 0 0 H ere 0, 1, ( , ) , 0 .0 1x y f x y y h    T o fin d : 0 .0 4y a t x 
  • 25. 25 Numerical TechniquesPart - II : The methods for solving ODE numerically 1 1 ( , ) (step size) ( , ) (0 .0 1) ( , ) n n n n n n n n n n n n n y y h f x y n h x y f x y y y y f x y         0 0.01 0 1 1 1.01 1 0.01 0.01 1.01 1.01 1.0201 2 0.01 0.02 1.0201 1.0201 1.0303 3 0.01 0.03 1.0303 1.0303 1.0406 . 4 0.01 0.04 1.0406
  • 26. 26 Numerical TechniquesPart - II : The methods for solving ODE numerically 6. Runge- Kutta Method of second order 0 0 1 0 2 1 1 C o n sid er th e first o rd er D E ( , ) w ith th e in itial co n d itio n ( ) . ( ) ( ) ................................................. ( )n n d y f x y y x a y b d x y x y k y x y k y x y k            1 2 1 W h e re 2 k k k  1 0 0 In w h ic h ( , )k h f x y 2 0 0 1 a n d ( , )k h f x h y k   0 W h e re (if it is n o t g iv e n in th e in s tru c tio n )h s te p s iz e x x  
  • 27. 27 Numerical TechniquesPart - II : The methods for solving ODE numerically E x -1 : S o lv e lo g ( ), ( 0 ) 2 a t 0 .4 w ith 0 .2 , u s in g R -K m e th o d o f s e c o n d o rd e r.      d y x y y x h d x Solution: 0 0 H e re 0 , 2 , ( , ) lo g ( ) , 0 .2x y f x y x y h     T o fin d : 0 .2y a t x 1 2 N o w h ere first w e fin d , an d .k k k 1 0 0 0 0 1 1 1 ( , ) 0 , 2 , 0 .2 0 .2 (0 , 2 ) ( , ) lo g ( ) , (0 , 2 ) lo g (0 2 )0 .2 0 .3 0 1 0 (0 , 2 ) lo g 2 0 .3 0 1 00 .0 6 0 2 k h f x y x y h k f f x y x y fk fk                   0 1 2 0 1 2 0 0 0 .2 0 .2 0 .2 0 .2 0 .4 2 ? ?           x x x x y y y y
  • 28. 28 Numerical TechniquesPart - II : The methods for solving ODE numerically 2 0 0 1 0 0 1 2 2 2 2 ( , ) 0 , 2 , 0 .2 , 0 .0 6 0 2 0 .2 (0 0 .2 , 2 0 .0 6 0 2 ) ( , ) lo g ( ) , 0 .2 (0 .2 , 2 .0 6 0 2 ) (0 .2 , 2 .0 6 0 2 ) lo g (0 .2 2 .0 6 0 2 ) 0 .2 0 .3 5 4 1 (0 .2 , 2 .0 6 0 2 ) lo g 2 .2 6 0 2 0 .3 5 4 1 0 .0 7 0 8 k h f x h y k x y h k k f f x y x y k f f k f k                                 1 2 1 2 1 2 1 0 .0 6 0 2 0 .0 7 0 8 0 .0 6 0 2 2 0 .0 7 0 8 1 (0 .1 3 1 0 ) 2 0 .0 6 5 5 k k k k k k k k             
  • 29. 29 Numerical TechniquesPart - II : The methods for solving ODE numerically 0 0 1 1 1 1 0 1 0 0.2 2 0.0655 , 1, 2... 0.2 , 1, 2... 0.0655 0 0.2 0.2 0.2 2.0000 0.0655 2.0655                        n n n n x h y k x x h n h y y k n k x h y y k y 1 N o w w e k n o w th at ( )n n y x y k   T o fin d : 0 .4y a t x 1 2 N o w h ere first w e fin d , an d .k k k 1 1 1 1 1 1 1 1 ( , ) 0 .2 , 2 .0 6 5 5 , 0 .2 0 .2 ( 0 .2 , 2 .0 6 5 5 ) ( , ) lo g ( ) , ( 0 .2 , 2 .0 6 5 5 ) lo g ( 0 .2 2 .0 6 5 5 )0 .2 0 .3 5 5 2 ( 0 .2 , 2 .0 6 5 5 ) lo g 2 .2 6 5 5 0 .3 5 5 20 .0 7 1 0                   k h f x y x y h k f f x y x y fk fk
  • 30. 30 Numerical TechniquesPart - II : The methods for solving ODE numerically 2 1 1 1 1 1 1 2 2 2 2 ( , ) 0 .2, 2 .0 6 5 5, 0 .2, 0 .0 7 1 0 0 .2 (0 .2 0 .2, 2 .0 6 5 5 0 .0 7 1 0 ) ( , ) lo g ( ) , 0 .2 (0 .4, 2 .1 3 6 5) (0 .4, 2 .1 3 6 5) lo g (0 .4 2 .1 3 6 5) 0 .2 0 .4 0 4 2 (0 .4, 2 .1 3 6 5) lo g 2 .5 3 6 5 0 .4 0 .0 8 0 8                             k h f x h y k x y h k k f f x y x y k f f k f k 0 4 2     1 2 1 2 1 2 1 0 .0 7 1 0 0 .0 8 0 8 0 .0 7 1 0 2 0 .0 8 0 8 1 (0 .1 5 1 8) 2 0 .0 7 5 9              k k k k k k k k
  • 31. 31 Numerical TechniquesPart - II : The methods for solving ODE numerically 1 1 1 1 2 2 1 2 0.2 0.2 2.0655 0.0759 , 1, 2... 0.2 , 1, 2... 0.0759 0.2 0.2 0.4 0.2 2.0655 0.0759 2.1414                        n n n n x h y k x x h n h y y k n k x h y y k y 1 N o w w e k n o w th at ( )n n y x y k  
  • 32. 32 Numerical TechniquesPart - II : The methods for solving ODE numerically 2 E x -2 : S o lv e , ( 0 ) 1 a t 0 .2 w ith 0 .2 , u s in g R -K m e th o d o f s e c o n d o r d e r . d y x y y x h d x      Solution: 2 0 0 H ere 0, 1, ( , ) , 0 .2x y f x y x y h     T o fin d : 0 .2y a t x  1 2 N o w h ere first w e fin d , an d .k k k 1 0 0 0 0 2 1 2 1 1 ( , ) 0 , 1, 0 .2 0 .2 (0 ,1) ( , ) , 0 .2 ( 1) (0 ,1) 0 (1) 0 1 1 (0 ,1) 10 .2 k h f x y x y h k f f x y x y k f fk                         
  • 33. 33 Numerical TechniquesPart - II : The methods for solving ODE numerically 2 0 0 1 0 0 1 2 2 2 2 2 2 ( , ) 0, 1, 0 .2, 0 .2 0 .2 (0 0 .2, 1 0 .2 ) ( , ) , 0 .2 (0 .2, 0 .8) (0 .2, 0 .8) 0 .2 (0 .8) 0 .2 ( 0 .4 4 ) (0 .2, 0 .8) 0 .2 0 .6 4 0 .4 4 0 .0 8 8 k h f x h y k x y h k k f f x y x y k f f k f k                                      1 2 1 2 1 2 1 0 .2 0 .0 8 8 0 .2 2 0 .0 8 8 1 ( 0 .2 8 8) 2 0 .1 4 4 k k k k k k k k                  
  • 34. 34 Numerical TechniquesPart - II : The methods for solving ODE numerically 0 0 1 1 1 1 0 1 0 0 .2 1 0 .1 4 4 , 1, 2 ... 0 .2 , 1, 2 ... 0 .1 4 4 0 0 .2 0 .2 0 .2 1 0 .1 4 4 0 .8 5 6 n n n n x h y k x x h n h y y k n k x h y y k y                          1 N o w w e k n o w th at ( )n n y x y k  
  • 35. 35 Numerical TechniquesPart - II : The methods for solving ODE numerically 7. Runge- Kutta Method of forth order 0 0 1 0 2 1 1 C o n s id e r th e firs t o rd e r D E ( , ) w ith th e in itia l c o n d itio n ( ) . ( ) ( ) ................................................. ( )n n d y f x y y x a y b d x y x y k y x y k y x y k            1 2 3 4 1 W h e re 2 2 6 k k k k k    1 0 0 In w h ic h ( , )k h f x y 1 2 0 0 , 2 2 kh k h f x y         0 W h ere (if it is n o t g iven in th e in stru c tio n )h step size x x   2 3 0 0 , 2 2 kh k h f x y         4 0 0 3 ( , )k h f x h y k  
  • 36. 36 Numerical TechniquesPart - II : The methods for solving ODE numerically 2 E x -1 : S o lv e 3 , (1) 1 .2 a t 1 .1 w ith 0 .1, u s in g R -K m e th o d o f f o r th o r d e r . d y x y y x h d x      Solution: 2 0 0 H ere 1, 1 .2, ( , ) 3 , 0 .1x y f x y x y h     T o fin d : 1 .1y a t x  1 2 3 4 N o w h ere first w e fin d , , , an d .k k k k k 1 0 0 0 0 2 1 2 1 1 ( , ) 1, 1 .2 , 0 .1 0 .1 (1,1 .2 ) ( , ) 3 , 0 .1 ( 4 .4 4 ) (1,1 .2 ) 3 (1) (1 .2 ) 3 1 .4 4 4 .4 4 (1,1 .2 ) 4 .4 40 .4 4 4 k h f x y x y h k f f x y x y k f fk                     
  • 37. 37 Numerical TechniquesPart - II : The methods for solving ODE numerically     1 2 0 0 0 0 1 2 2 2 2 2 2 2 , 2 2 0 .1 0 .4 4 4 1, 1 .2, 0 .1, 0 .4 4 4 0 .1 1 ,1 .2 2 2 ( , ) 3 , 0 .1 1 0 .0 5,1 .2 0 .2 2 2 (1 .0 5,1 .4 2 2 ) 3(1 .0 5) (1 .4 2 2 ) 0 .1 1 .0 5,1 .4 2 2 (1,1 . 0 .1 5 .1 7 2 1 0 .5 1 7 2 kh k h f x y x y h k k f f x y x y k f f k f f k k                                         2 ) 3 .1 5 2 .0 2 2 1 5 .1 7 2 1  
  • 38. 38 Numerical TechniquesPart - II : The methods for solving ODE numerically     2 3 0 0 0 0 2 3 2 2 3 3 3 3 , 2 2 0 .1 0 .5 1 7 2 1, 1 .2, 0 .1, 0 .5 1 7 2 0 .1 1 ,1 .2 2 2 ( , ) 3 , 0 .1 1 0 .0 5,1 .2 0 .2 5 8 6 (1.0 5,1 .4 5 8 6 ) 3(1.0 5) (1.4 5 8 6 ) 0 .1 1 .0 5,1 .4 5 8 6 0 .1 5 .2 7 7 5 0 .5 2 7 8 kh k h f x y x y h k k f f x y x y k f f k f k k                                          (1.0 5,1 .4 5 8 6 ) 3 .1 5 2 .1 2 7 5 5 .2 7 7 5f   
  • 39. 39 Numerical TechniquesPart - II : The methods for solving ODE numerically       4 0 0 3 0 0 3 4 2 4 2 4 4 , 1, 1 .2, 0 .1, 0 .5 2 7 8 0 .1 1 0 .1,1 .2 0 .5 2 7 8 ( , ) 3 , 0 .1 1 .1,1 .7 2 7 8 (1 .1,1 .7 2 7 8) 3(1 .1) (1 .7 2 7 8) 0 .1 6 .2 8 5 3 (1 .1,1 .4 5 8 6 ) 3 .3 2 .9 8 5 3 6 .2 8 5 3 0 .6 2 8 5 k h f x h y k x y h k k f f x y x y k f f k f k                                      1 2 3 4 1 N o w 2 2 6 1 0 .4 4 4 2 ( 0 .5 1 7 2 ) 2 ( 0 .5 2 7 8 ) 0 .6 2 8 5 6 1 0 .4 4 4 1 .0 3 4 4 1 .0 5 5 6 0 .6 2 8 5 6 1 3 .1 6 2 5 6 0 .5 2 7 1 k k k k k k k k k                  
  • 40. 40 Numerical TechniquesPart - II : The methods for solving ODE numerically 0 0 1 1 1 1 0 1 1 0 .1 1 .2 0 .5 2 7 1 , 1, 2 ... 0 .2 , 1, 2 ... 0 .5 2 7 1 1 0 .1 1 .1 0 .2 1 .2 0 .5 2 7 1 1 .7 2 7 1 n n n n x h y k x x h n h y y k n k x h y y k y                        1 N o w w e k n o w th at ( )n n y x y k  
  • 41. 41 Numerical TechniquesPart - II : The methods for solving ODE numerically 2 2 E x -2 : S o lv e , ( 0 ) 1 a t 0 .1 w ith 0 .1, u s in g R -K m e th o d o f f o r th o r d e r . d y x y y x h d x      Solution: 2 2 0 0 H ere 0, 1, ( , ) , 0 .1x y f x y x y h     T o fin d : 0 .1y a t x  1 2 3 4 N o w h ere first w e fin d , , , an d .k k k k k 1 0 0 0 0 1 2 2 1 2 2 1 ( , ) 0 , 1, 0 .1 0 .1 ( 0 ,1) ( , ) , 0 .1 (1) ( 0 ,1) ( 0 ) (1) 1 0 .1 k h f x y x y h k f f x y x y k f k                  
  • 42. 42 Numerical TechniquesPart - II : The methods for solving ODE numerically     1 2 0 0 0 0 1 2 2 2 2 2 2 2 2 2 , 2 2 0 .1 0 .1 0, 1, 0 .1, 0 .1 0 .1 0 ,1 2 2 ( , ) , 0 .1 0 0 .0 5,1 0 .0 5 (0 .0 5,1 .0 5) (0 .0 5) (1 .0 5) 0 .1 0 .0 5,1 .0 5 (1 .0 5,1 .5 5) 0 .0 0 2 5 0 .1 1 .1 0 5 0 1 .1 1 0 5 kh k h f x y x y h k k f f x y x y k f f k f f k k                                           1 .1 0 2 5 1 .1 0 5 0
  • 43. 43 Numerical TechniquesPart - II : The methods for solving ODE numerically     2 3 0 0 0 0 2 3 2 2 2 2 3 3 3 3 , 2 2 0 .1 0 .1 1 0 5 0, 1, 0 .1, 0 .1 1 0 5 0 .1 0 ,1 2 2 ( , ) , 0 .1 0 .0 5,1 0 .0 5 5 3 (0 .0 5,1 .0 5 5 3) (0 .0 5) (1.0 5 5 3) 0 .1 0 .0 5,1 .0 5 5 3 (1.0 5,1 0 .1 1 .1 1 6 2 0 .1 1 1 6 kh k h f x y x y h k k f f x y x y k f f k f f k k                                         .5 5) 0 .0 0 2 5 1 .1 1 3 7 1 .1 1 6 2  
  • 44. 44 Numerical TechniquesPart - II : The methods for solving ODE numerically       4 0 0 3 0 0 2 4 2 2 4 2 2 4 4 , 0, 1, 0 .1, 0 .1 1 0 5 0 .1 0 0 .1,1 0 .1 1 1 6 ( , ) , 0 .1 0 .1,1 .1 1 1 6 (0 .1,1 .1 1 1 6 ) (0 .1) (1 .1 1 1 6 ) 0 .1 1 .2 4 5 7 (0 .1,1 .1 1 1 6 ) 0 .0 1 1 .2 3 5 7 1 .2 4 5 7 0 .1 2 4 6 k h f x h y k x y h k k f f x y x y k f f k f k                                      1 2 3 4 1 N o w 2 2 6 1 0 .1 2 ( 0 .1 1 0 5 ) 2 ( 0 .1 1 1 6 ) 0 .1 2 4 6 6 1 0 .1 0 .2 2 1 0 0 .2 2 3 2 0 .1 2 4 6 6 1 0 .6 6 8 8 6 0 .1 1 1 5 k k k k k k k k k                  
  • 45. 45 Numerical TechniquesPart - II : The methods for solving ODE numerically 0 0 1 1 1 1 0 1 0 0 .1 1 0 .1 1 1 5 , 1, 2 ... 0 .1 , 1, 2 ... 0 .1 1 1 5 0 0 .1 0 .1 0 .1 1 0 .1 1 1 5 1 .1 1 1 5 n n n n x h y k x x h n h y y k n k x h y y k y                        1 N o w w e k n o w th at ( )n n y x y k  
  • 46. 46 Numerical TechniquesPart - II : The methods for solving ODE numerically 2 2 E x -3 : S o lv e , (1) 0 a t 1 .2 1 .4 w ith 0 .2 , u s in g R -K m e th o d o f fo rth o rd e r. x x d y x y e y x a n d x h d x x x e        Solution: 0 0 2 2 H ere 1, 0, ( , ) , 0 .2 x x xy e x y f x y h x xe       T o fin d : (i) 1 .2y a t x  1 2 3 4 N o w h ere first w e fin d , , , an d .k k k k k 1 0 0 0 0 1 2 1 1 1 1 ( , ) 1, 0 , 0 .2 0 .2 (1, 0 ) 2 ( , ) , 0 .2 (0 .7 3 1 1) 0 2 .7 1 8 3 2 .7 1 8 30 .1 4 6 2 (1, 0 ) 0 .7 3 1 1 1 1 2 .7 1 8 3 3 .7 1 8 3 x x k h f x y x y h k f x y e f x y x x ek ek f e                     
  • 47. 47 Numerical TechniquesPart - II : The methods for solving ODE numerically     1 0 0 2 0 0 2 2 1 .1 2 2 2 2 2 1, 0, 0 .2, 2 2 2 ( , ) , 0 .2 0 .1 4 6 2 0 .2 1 , 0 2 2 2 (1 .1)(0 .0 7 3 1) (1 .1, 0 .0 7 3 1) 0 .2 1 0 .1, 0 0 .0 7 3 1 (1 .1) (1 .1 0 .2 1 .1, 0 .0 7 3 1 0 .2 0 .7 0 1 1 0 .1 4 0 2 x x kh x y hk h f x y xy e f x y x xek f e f k f k f k k                                        1 .1 ) 0 .1 6 0 8 3 .0 0 4 2 (1 .1, 0 .0 7 3 1) 1 .2 1 3 .3 0 4 6 3 .1 6 5 0 (1 .1, 0 .0 7 3 1) 0 .7 0 1 1 4 .5 1 4 6 e f f       
  • 48. 48 Numerical TechniquesPart - II : The methods for solving ODE numerically     2 0 0 3 0 0 2 3 1 .1 2 3 3 3 3 1, 0, 0 .2, 2 2 2 ( , ) , 0 .2 0 .1 4 0 2 0 .2 1 , 0 2 2 2 (1 .1)(0 .0 7 0 1) (1 .1, 0 .0 7 0 1) 0 .2 1 0 .1, 0 0 .0 7 0 1 (1 .1) (1 .1) 0 .2 1 .1, 0 .0 7 0 1 0 . 0 .6 9 9 6 0 .1 3 9 9 x x kh x y hk h f x y xy e f x y x xek f e f k f k f k k                                        1 .1 0 .1 5 4 2 3 .0 0 4 2 (1 .1, 0 .0 7 3 1) 1 .2 1 3 .3 0 4 6 3 .1 5 8 4 (1 .1, 0 .0 7 3 1) 0 .6 9 9 6 4 .5 1 4 6 e f f       
  • 49. 49 Numerical TechniquesPart - II : The methods for solving ODE numerically       0 0 4 0 0 3 2 4 1 .2 4 2 1 .2 4 4 1, 0, 0 .2 , 2 ( , ) , 0 .2 1 0 .2, 0 0 .1 3 9 9 2 (1 .2 )(0 .1 3 9 9 ) 0 .2 1 .2, 0 .1 3 9 9 (1 .2, 0 .1 3 9 9 ) (1 .2 ) (1 .2 ) 0 .2 0 .6 7 4 0 0 .3 3 5 8 3 .3 2 0 1 (1 .1, 0 .0 7 3 1) 0 .1 3 4 8 1 .4 4 3 x x x y h k h f x h y k xy e f x y x xek f e k f f e k f k                              .9 8 4 1 3 .6 5 5 9 (1 .1, 0 .0 7 3 1) 0 .6 7 4 0 5 .4 2 4 1 f  
  • 50. 50 Numerical TechniquesPart - II : The methods for solving ODE numerically         1 2 3 4 1 N o w 2 2 6 1 0 .1 4 6 2 2 ( 0 .1 4 0 2 ) 2 ( 0 .1 3 9 9 ) 0 .1 3 4 8 6 1 0 .1 4 6 2 0 .2 8 0 4 0 .2 7 9 8 0 .1 3 4 8 6 1 0 .8 4 1 2 6 0 .1 4 0 2 k k k k k k k k k                  
  • 51. 51 Numerical TechniquesPart - II : The methods for solving ODE numerically 0 0 1 1 1 1 0 1 1 0 .2 0 0 .1 4 0 2 , 1, 2 ... 0 .2 , 1, 2 ... 0 .1 4 0 2 1 0 .2 1 .2 0 .2 0 0 .1 4 0 2 0 .1 4 0 2 n n n n x h y k x x h n h y y k n k x h y y k y                        1 N o w w e k n o w th at ( )n n y x y k  
  • 52. 52 Numerical TechniquesPart - II : The methods for solving ODE numerically 1 1 w e know that 1.2 0.2 0.1402x h y   T o fin d : (ii) 1 .4y a t x  1 2 3 4 N o w h ere first w e fin d , , , an d .k k k k k   1 1 2 1 1 1 1 .2 1 2 1 .2 1 1 1 .2 , 0 .1 4 0 2 , 0 .2 2 ( , ) , ( , ) 0 .2 (1 .2 , 0 .1 4 0 2 ) 2 (1 .2 )(0 .1 4 0 2 ) (1 .2 , 0 .1 4 0 2 ) 0 .2 (0 .6 7 4 1) 1 .2 (1 .2 ) 0 .3 3 6 5 3 .3 2 0 10 .1 3 4 8 (1 .2 , 0 .1 4 0 2 ) 1 .4 4 3 .9 8 4 1 (1 .2 , 0 .1 4 0 x x x y h x y e f x y k h f x y x x e k f e f k e k f f                        3 .6 5 6 6 2 ) 0 .6 7 4 1 5 .4 2 4 1  
  • 53. 53 Numerical TechniquesPart - II : The methods for solving ODE numerically     1 1 1 2 1 1 2 2 2 2 2 2 1.2, 0.1402, 0.2, 2 2 2 ( , ) , 0.2 0.1348 0.2 1.2 , 0.1402 2 2 2(1.3)(0. (1.3, 0.2076) 0.2 1.2 0.1, 0.1402 0.0674 0.2 1.3, 0.2076 0.2 0.6516 0.1303 x x kh x y hk hf x y xy e f x y x xek f f k f k f k k                                        1.3 2 1.3 2076) 1.3 (1.3) 0.5398 3.6693 (1.2, 0.1402) 1.69 4.7701 4.2091 (1.2, 0.1402) 0.6516 6.4601 e e f f         
  • 54. 54 Numerical TechniquesPart - II : The methods for solving ODE numerically     2 1 1 3 1 1 2 3 3 3 3 3 1.2, 0.1402, 0.2, 2 2 2 ( , ) , 0.2 0.1303 0.2 1.2 , 0.1402 2 2 2(1.3)(0. (1.3, 0.2054) 0.2 1.2 0.1, 0.1402 0.0652 0.2 1.3, 0.2054 0.2 0.6507 0.1301 x x kh x y hk hf x y xy e f x y x xek f f k f k f k k                                        1.3 2 1.3 2054) 1.3 (1.3) 0.5340 3.6693 (1.2, 0.1402) 1.69 4.7701 4.2033 (1.2, 0.1402) 0.6507 6.4601 e e f f         
  • 55. 55 Numerical TechniquesPart - II : The methods for solving ODE numerically         1 1 4 1 1 3 2 4 1 .4 4 2 1 .4 4 4 1 .2, 0 .1 4 0 2, 0 .2 , 2 ( , ) , 0 .2 1 .2 0 .2, 0 .1 4 0 2 0 .1 3 0 1 2 (1 .4 )(0 .2 7 0 3) 0 .2 1 .4, 0 .2 7 0 3 (1 .4, 0 .2 7 0 3) 1 .4 (1 .4 ) 0 .2 0 .6 3 0 1 0 .7 5 6 8 (1 .4, 0 .2 7 0 3)0 .1 2 6 0 x x x y h k h f x h y k xy e f x y x xek f e k f f e k fk                            4 .0 5 5 2 1 .9 6 5 .6 7 7 3 4 .8 1 2 0 (1 .4, 0 .2 7 0 3) 0 .6 3 0 1 7 .6 3 7 3 f    
  • 56. 56 Numerical TechniquesPart - II : The methods for solving ODE numerically         1 2 3 4 1 N o w 2 2 6 1 0 .1 3 4 8 2 ( 0 .1 3 0 3 ) 2 ( 0 .1 3 0 1) 0 .1 2 6 0 6 1 0 .1 3 4 8 0 .2 6 0 6 0 .2 6 0 2 0 .1 2 6 0 6 1 0 .7 8 1 6 6 0 .1 3 0 3 k k k k k k k k k                  
  • 57. 57 Numerical TechniquesPart - II : The methods for solving ODE numerically 1 1 1 1 2 2 1 2 1.2 0.2 0.1402 0.1303 , 1, 2... 0.2 , 1, 2... 0.1303 1.2 0.2 1.4 0.2 0.1402 0.1303 0.2705 n n n n x h y k x x h n h y y k n k x h y y k y                        1 N o w w e k n o w th at ( )n n y x y k  