SlideShare a Scribd company logo
1 of 27
Download to read offline
From moments to sparse representations,
a geometric, algebraic and algorithmic viewpoint
Bernard Mourrain
Inria M´editerran´ee, Sophia Antipolis
Bernard.Mourrain@inria.fr
Part I
Sparse representation problems
1 Sparse representation problems
2 Duality
3 Artinian algebra
B. Mourrain From moments to sparse representations 2 / 27
Sparse representation problems
Sparse representation of signals
Given a function or signal f (t):
decompose it as
f (t) =
r
i=1
(ai cos(µi t) + bi sin(µi t))eνi t
=
r
i=1
ωieζit
B. Mourrain From moments to sparse representations 3 / 27
Sparse representation problems
Prony’s method (1795)
For the signal f (t) = r
i=1 ωieζit, (ωi , ζi ∈ C),
Evaluate f at 2 r regularly spaced points: σ0 := f (0), σ1 := f (1), . . .
Compute a non-zero element p = [p0, . . . , pr] in the kernel:





σ0 σ1 . . . σr
σ1 σr+1
...
...
σr−1 . . . σ2r−1 σ2r−1










p0
p1
...
pr





= 0
Compute the roots ξ1 = eζ1 , . . . , ξr = eζr of p(x) := r
i=0 pi xi .
Solve the system





1 . . . . . . 1
ξ1 ξr
...
...
ξr−1
1 . . . . . . ξr−1
r










ω1
ω2
...
ωr





=





σ0
σ1
...
σr−1





.
B. Mourrain From moments to sparse representations 4 / 27
Sparse representation problems
Symmetric tensor decomposition
and Waring problem (1770)
Symmetric tensor decomposition problem:
Given a homogeneous polynomial ψ of degree d in the variables
x = (x0, x1, . . . , xn) with coefficients ∈ K:
ψ(x) =
|α|=d
σα
d
α
xα
,
find a minimal decomposition of ψ of the form
ψ(x) =
r
i=1
ωi (ξi,0x0 + ξi,1x1 + · · · + ξi,nxn)d
with ξi = (ξi,0, ξi,1, . . . , ξi,n) ∈ K
n+1
spanning disctint lines, ωi ∈ K.
The minimal r in such a decomposition is called the rank of ψ.
B. Mourrain From moments to sparse representations 5 / 27
Sparse representation problems
Sylvester approach (1851)
Theorem
The binary form ψ(x0, x1) = d
i=0 σi
d
i xd−i
0 xi
1 can be decomposed as a
sum of r distinct powers of linear forms
ψ =
r
k=1
ωk (αkx0 + βkx1)d
iff there exists a polynomial p(x0, x1) := p0xr
0 + p1xr−1
0 x1 + · · · + pr xr
1 s.t.





σ0 σ1 . . . σr
σ1 σr+1
...
...
σd−r . . . σd−1 σd










p0
p1
...
pr





= 0
and of the form p = c r
k=1(βkx0 − αkx1) with (αk : βk) distinct.
B. Mourrain From moments to sparse representations 6 / 27
Sparse representation problems
Sparse interpolation
Given a black-box polynomial function f (x)
find what are the terms inside from output values.
Find r ∈ N, ωi ∈ C, αi ∈ N such that f (x) = r
i=1 ωi xαi .
B. Mourrain From moments to sparse representations 7 / 27
Sparse representation problems
Choose ϕ ∈ C
Compute the sequence of terms σ0 = f (1), . . . , σ2r−1 = f (ϕ2r−1);
Construct the matrix H = [σi+j ] and its kernel p = [p0, . . . , pr ] s.t.





σ0 σ1 . . . σr
σ1 σr+1
...
...
σr−1 . . . σ2r−1 σ2r−1










p0
p1
...
pr





= 0
Compute the roots ξ1 = ϕα1 , . . . , ξr = ϕαr of p(x) := r
i=0 pi xi and
deduce the exponents αi = logϕ(ξi).
Deduce the weights W = [ωi ] by solving VΞ W = [σ0, . . . , σr−1]
where VΞ is the Vandermonde system of the roots ξ1, . . . , ξr .
B. Mourrain From moments to sparse representations 8 / 27
Sparse representation problems
Decoding
− − − − − − − − − − →
An algebraic code:
E = {c(f ) = [f (ξ1), . . . , f (ξm)] | f ∈ K[x]; deg(f ) ≤ d}.
Encoding messages using the dual code:
C = E⊥
= {c | c · [f (ξ1), . . . , f (ξl )] = 0 ∀f ∈ V = xa
⊂ F[x]}
Message received: r = m + e for m ∈ C where e = [ω1, . . . , ωm] is an
error with ωj = 0 for j = i1, . . . , ir and ωj = 0 otherwise.
Find the error e.
B. Mourrain From moments to sparse representations 9 / 27
Sparse representation problems
Berlekamp-Massey method (1969)
Compute the syndrome σk = c(xk) · r = c(xk) · e = r
j=1 ωij
ξk
ij
.
Compute the matrix





σ0 σ1 . . . σr
σ1 σr+1
...
...
σr−1 . . . σ2r−1 σ2r−1










p0
p1
...
pr





= 0
and its kernel p = [p0, . . . , pr ].
Compute the roots of the error locator polynomial
p(x) = r
i=0 pi xi = pr
r
j=1(x − ξij
).
Deduce the errors ωij
.
B. Mourrain From moments to sparse representations 10 / 27
Sparse representation problems
Simultaneous decomposition
Simultaneous decomposition problem
Given symmetric tensors ψ1, . . . , ψm of order d1, . . . , dm, find a
simultaneous decomposition of the form
ψl =
r
i=1
ωl,i (ξi,0x0 + ξi,1x1 + · · · + ξi,nxn)dl
where ξi = (ξi,0, . . . , ξi,n) span distinct lines in K
n+1
and ωl,i ∈ K for
l = 1, . . . , m.
B. Mourrain From moments to sparse representations 11 / 27
Sparse representation problems
Proposition (One dimensional decomposition)
Let ψl = dl
i=0 σ1,i
dl
i xdl −i
0 xi
1 ∈ K[x0, x1]dl
for l = 1, . . . , m.
If there exists a polynomial p(x0, x1) := p0xr
0 + p1xr−1
0 x1 + · · · + pr xr
1 s.t.

















σ1,0 σ1,1 . . . σ1,r
σ1,1 σ1,r+1
...
...
σ1,d1−r . . . σ1,d1−1 σ1,d1
...
...
σm,0 σm,1 . . . σm,r
σm,1 σr+1
...
...
σm,dm−r . . . σm,dm−1 σm,dm






















p0
p1
...
pr





= 0
of the form p = c r
k=1(βkx0 − αkx1) with [αk : βk] distinct, then
ψl =
r
i=1
ωi,l (αl x0 + βl x1)dl
for ωi,l ∈ K and l = 1, . . . , m.
B. Mourrain From moments to sparse representations 12 / 27
Duality
1 Sparse representation problems
2 Duality
3 Artinian algebra
B. Mourrain From moments to sparse representations 13 / 27
Duality
Sequences, series, duality (1D)
Sequences: σ = (σk)k∈N ∈ KN indexed by k ∈ N.
Formal power series:
σ(y) = ∞
k=0 σk
yk
k! ∈ K[[y]] σ(z) = ∞
k=0 σk zk ∈ K[[z]]
Linear functionals: K[x]∗ = {Λ : K[x] → K linear}.
Example:
p → coefficient of xi in p = 1
i! ∂i (p)(0)
eζ : p → p(ζ).
B. Mourrain From moments to sparse representations 14 / 27
Duality
Series as linear functionals: For σ(y) = ∞
k=0 σk
yk
k! ∈ K[[y]] or
σ(z) = ∞
k=0 σk zk ∈ K[[z]],
σ : p =
k
pkxk
→ σ|p =
k
σkpk
(yk
k! ) (resp. (zk)) is the dual basis of the monomial basis (xk)k∈N.
Example:
eζ(y) = ∞
k=0 ζk yk
k! = eζy ∈ K[[y]] eζ(z) = ∞
k=0 ζk zk = 1
1−ζz ∈ K[[z]]
Structure of K[x]-module: p Λ : q → Λ(p q).
x σ(y) =
∞
k=1 σk
yk−1
(k−1)! = ∂(σ(y))
p(x) σ(y) = p(∂)(σ(y)) p(x) σ(z) = π+(p(z−1
)(σ(z)))
B. Mourrain From moments to sparse representations 15 / 27
Duality
Sequences, series, duality (nD)
Multi-index sequences: σ = (σα)α∈Nn ∈ KNn
indexed by
α = (α1, . . . , αn) ∈ Nn.
Taylor series:
σ(y) = α∈Nn σα
yα
α! ∈ K[[y1, . . . , yn]] σ(z) = α∈Nn σαzα
∈ K[[z1, . . . , zn]]
where α! = αi ! for α = (α1, . . . , αn) ∈ N.
Linear functionals: σ ∈ R∗ = {σ : R → K, linear}
σ : p =
α
pαxα
→ σ|p =
α
σαpα
The coefficients σ|xα = σα ∈ K, α ∈ Nn are called the moments of σ.
Structure of R-module: ∀p ∈ R, σ ∈ R∗, p σ : q → σ|p q :
p σ = p(∂1, . . . , ∂n)(σ)(y) p σ = π+(p(z−1
1 , . . . , z−1
n )σ(z))
B. Mourrain From moments to sparse representations 16 / 27
Duality
Symmetric tensor and apolarity
Apolar product: For f = |α|=d fα
d
α xα
, g = |α|=d gα
d
α xα
∈ K[x]d ,
f , g d =
|α|=d
fα gα
d
α
.
Property: f , (ξ0x0 + · · · + ξnxn)d = f (ξ0, . . . , ξn)
Duality: For ψ ∈ Sd , we define ψ∗ ∈ S∗
d = HomK(Sd , K) as
ψ∗ : Sd → K
p → ψ, p d
Example: ((ξ0x0 + · · · + ξnxn)d )∗ = eξ : p ∈ Sd → p(ξ) (evaluation at ξ)
Dual symmetric tensor decomposition problem:
Given ψ∗
∈ S∗
d , find a decomposition of the form ψ∗
=
r
i=1 ωi eξi
where
ξi = (ξi,0, ξi,1, . . . , ξi,n) span distinct lines in K
n+1
, ωi ∈ K (ωi = 0).
B. Mourrain From moments to sparse representations 17 / 27
Duality
Symmetric tensors and secants
The evaluation eξ ∈ S∗
d at ξ ∈ K
n+1
represented by the vector (ξα)|α|=d
defines a point of the Veronese variety Vn
d ⊂ P(S∗
d ).
ψ∗ = r
i=1 ωi eξi
iff the corresponding point [ψ∗] in P(S∗
d ) is in the linear
span of the evaluations [eξi
] ∈ Vn
d .
Let So
r (Vn
d ) = {[ψ∗] ∈ P(S∗
d ) | ψ∗ = r
i=1 ωi ei with [ei ] ∈ Vn
d , ωi ∈ K}.
The closure Sr (Vn
d ) = So
r (Vn
d ) is the rth-secant of Vn
d .
B. Mourrain From moments to sparse representations 18 / 27
Duality
Dehomogeneization (apart´e)
S = K[x0, . . . , xn] R = K[x1, . . . , xn]
ι0 : p(x0, . . . , xn) → p(1, x1, . . . , xn)
x
deg(p)
0 p(x1
x0
, . . . , xn
x0
) → p(x1, . . . , xn) : h0
Dual action
h∗
0 : σ ∈ S∗
d → σ ◦ h0 ∈ R∗
≤d
ι∗
0 : σ ∈ R∗
≤d → σ ◦ ι ∈ S∗
d
ι∗
0(σ(y) + O(y)d
) = [e0 σ(y)]d
where e0 = i
yk
0
k! .
For I ⊂ R, let [e0 I⊥]∗ be the vector space of homogeneous components of
e0 σ(y) for σ ∈ I⊥ ⊂ R∗, then
[e0 I⊥
]∗ = (J : x∗
0 )⊥
for any J such that ι0(J) = I (e.g. J = (Ih0 )).
B. Mourrain From moments to sparse representations 19 / 27
Duality
Inverse systems
For I an ideal in R = K[x],
I⊥
= {σ ∈ R∗
| ∀p ∈ I, σ|p = 0}.
In K[[y]], I⊥ is stable by derivations with respect to yi .
In K[[z]], I⊥ is stable by “division” by variables zi .
Inverse system generated by ω1, . . . , ωr ∈ K[y]
ω1, . . . , ωr = ∂α
y (ωi ), α ∈ Nn
resp. π+(z−α
ωi(z)), α ∈ Nn
Example: I = (x2
1 , x2
2 ) ⊂ K[x1, x2]
I⊥
= 1, y1, y2, y1y2 = y1y2 resp. 1, z1, z2, z1z2 = z1z2
Dual of quotient algebra: for A = R/I, A∗ = I⊥.
B. Mourrain From moments to sparse representations 20 / 27
Duality
Hankel operators
Hankel operator: For σ = (σ1, . . . , σm) ∈ (R∗)m,
Hσ : R → (R∗
)m
p → (p σ1, . . . , p σm)
σ is the symbol of Hσ.
Truncated Hankel operator: V , W1, . . . , Wm ⊂ R,
HW ,V
σ : p ∈ V → ((p σi )|Wi
)
Example: V = xα, α ∈ A = xA , W = xβ, β ∈ B = xB ⊂ R,
σ ∈ R∗,
HA,B
σ = [ σ|xα
xβ
]α∈A,β∈B = [σα+β]α∈A,β∈B.
Ideal:
Iσ = ker Hσ = {p ∈ K[x] | p σ = 0},
= {p =
α
pαxα
| ∀β ∈ Nn
α
pασα+β = 0}
Linear recurrence relations on the sequence σ = (σα)α∈Nn .
Quotient algebra: Aσ = R/Iσ
Studied case: dim Aσ < ∞
B. Mourrain From moments to sparse representations 21 / 27
Artinian algebra
1 Sparse representation problems
2 Duality
3 Artinian algebra
B. Mourrain From moments to sparse representations 22 / 27
Artinian algebra
Structure of an Artinian algebra A
Definition: A = K[x]/I is Artinian if dimK A < ∞.
Hilbert nullstellensatz: A = K[x]/I Artinian ⇔ VK(I) = {ξ1, . . . , ξr } is
finite.
Assuming K = K is algebraically closed, we have
I = Q1 ∩· · ·∩Qr where Qi is mξi
-primary where VK(I) = {ξ1, . . . , ξr }.
A = K[x]/I = A1 ⊕ · · · ⊕ Ar , with
Ai = ui A ∼ K[x1, . . . , xn]/Qi ,
u2
i = ui , ui uj = 0 if i = j, u1 + · · · + ur = 1.
dim R/Qi = µi is the multiplicity of ξi .
B. Mourrain From moments to sparse representations 23 / 27
Artinian algebra
Structure of the dual A∗
Sparse series:
PolExp = σ(y) =
r
i=1
ωi (y) eξi
(y) | ωi (y) ∈ K[y],
where eξi
(y) = ey·ξi = ey1ξ1,i +···+ynξn,i with ξi,j ∈ K.
Inverse system generated by ω1, . . . , ωr ∈ K[y]
ω1, . . . , ωr = ∂α
y (ωi ), α ∈ Nn
Theorem
For K = K algebraically closed,
A∗
= ⊕r
i=1 Di eξi
(y) ⊂ PolExp
VK(I) = {ξ1, . . . , ξr }
Di = ωi,1, . . . , ωi,li
with ωi,j ∈ K[y], Q⊥
i = Di eξ where I = Q1 ∩ · · · ∩ Qr
µ(ωi,1, . . . , ωi,li
) := dimK(Di ) = µi multiplicity of ξi .
B. Mourrain From moments to sparse representations 24 / 27

More Related Content

What's hot

Linear approximations and_differentials
Linear approximations and_differentialsLinear approximations and_differentials
Linear approximations and_differentialsTarun Gehlot
 
Lesson 2: A Catalog of Essential Functions (slides)
Lesson 2: A Catalog of Essential Functions (slides)Lesson 2: A Catalog of Essential Functions (slides)
Lesson 2: A Catalog of Essential Functions (slides)Matthew Leingang
 
15 multi variable functions
15 multi variable functions15 multi variable functions
15 multi variable functionsmath267
 
Deep generative model.pdf
Deep generative model.pdfDeep generative model.pdf
Deep generative model.pdfHyungjoo Cho
 
Newton-Raphson Method
Newton-Raphson MethodNewton-Raphson Method
Newton-Raphson MethodJigisha Dabhi
 
limits and continuity
limits and continuity limits and continuity
limits and continuity imran khan
 
Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)
Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)
Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)Matthew Leingang
 
5.4 Saddle-point interpretation, 5.5 Optimality conditions, 5.6 Perturbation ...
5.4 Saddle-point interpretation, 5.5 Optimality conditions, 5.6 Perturbation ...5.4 Saddle-point interpretation, 5.5 Optimality conditions, 5.6 Perturbation ...
5.4 Saddle-point interpretation, 5.5 Optimality conditions, 5.6 Perturbation ...RyotaroTsukada
 
Lesson 19: Maximum and Minimum Values
Lesson 19: Maximum and Minimum ValuesLesson 19: Maximum and Minimum Values
Lesson 19: Maximum and Minimum ValuesMatthew Leingang
 
2.3 Operations that preserve convexity & 2.4 Generalized inequalities
2.3 Operations that preserve convexity & 2.4 Generalized inequalities2.3 Operations that preserve convexity & 2.4 Generalized inequalities
2.3 Operations that preserve convexity & 2.4 Generalized inequalitiesRyotaroTsukada
 
Probability cheatsheet
Probability cheatsheetProbability cheatsheet
Probability cheatsheetSuvrat Mishra
 
Applications of maxima and minima
Applications of maxima and minimaApplications of maxima and minima
Applications of maxima and minimarouwejan
 
Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)Matthew Leingang
 
On the Jensen-Shannon symmetrization of distances relying on abstract means
On the Jensen-Shannon symmetrization of distances relying on abstract meansOn the Jensen-Shannon symmetrization of distances relying on abstract means
On the Jensen-Shannon symmetrization of distances relying on abstract meansFrank Nielsen
 

What's hot (17)

Linear approximations and_differentials
Linear approximations and_differentialsLinear approximations and_differentials
Linear approximations and_differentials
 
Lesson 2: A Catalog of Essential Functions (slides)
Lesson 2: A Catalog of Essential Functions (slides)Lesson 2: A Catalog of Essential Functions (slides)
Lesson 2: A Catalog of Essential Functions (slides)
 
15 multi variable functions
15 multi variable functions15 multi variable functions
15 multi variable functions
 
Number theory lecture (part 1)
Number theory lecture (part 1)Number theory lecture (part 1)
Number theory lecture (part 1)
 
Deep generative model.pdf
Deep generative model.pdfDeep generative model.pdf
Deep generative model.pdf
 
Newton-Raphson Method
Newton-Raphson MethodNewton-Raphson Method
Newton-Raphson Method
 
limits and continuity
limits and continuity limits and continuity
limits and continuity
 
Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)
Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)
Lesson 14: Derivatives of Logarithmic and Exponential Functions (slides)
 
Complex function
Complex functionComplex function
Complex function
 
5.4 Saddle-point interpretation, 5.5 Optimality conditions, 5.6 Perturbation ...
5.4 Saddle-point interpretation, 5.5 Optimality conditions, 5.6 Perturbation ...5.4 Saddle-point interpretation, 5.5 Optimality conditions, 5.6 Perturbation ...
5.4 Saddle-point interpretation, 5.5 Optimality conditions, 5.6 Perturbation ...
 
Lesson 19: Maximum and Minimum Values
Lesson 19: Maximum and Minimum ValuesLesson 19: Maximum and Minimum Values
Lesson 19: Maximum and Minimum Values
 
2.3 Operations that preserve convexity & 2.4 Generalized inequalities
2.3 Operations that preserve convexity & 2.4 Generalized inequalities2.3 Operations that preserve convexity & 2.4 Generalized inequalities
2.3 Operations that preserve convexity & 2.4 Generalized inequalities
 
Probability cheatsheet
Probability cheatsheetProbability cheatsheet
Probability cheatsheet
 
Applications of maxima and minima
Applications of maxima and minimaApplications of maxima and minima
Applications of maxima and minima
 
Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)Lesson 20: Derivatives and the Shapes of Curves (slides)
Lesson 20: Derivatives and the Shapes of Curves (slides)
 
On the Jensen-Shannon symmetrization of distances relying on abstract means
On the Jensen-Shannon symmetrization of distances relying on abstract meansOn the Jensen-Shannon symmetrization of distances relying on abstract means
On the Jensen-Shannon symmetrization of distances relying on abstract means
 
Numerical Methods 3
Numerical Methods 3Numerical Methods 3
Numerical Methods 3
 

Similar to From moments to sparse representations, a geometric, algebraic and algorithmic viewpoint. B. Mourrain.part 1

Andrei rusu-2013-amaa-workshop
Andrei rusu-2013-amaa-workshopAndrei rusu-2013-amaa-workshop
Andrei rusu-2013-amaa-workshopAndries Rusu
 
Multilinear Twisted Paraproducts
Multilinear Twisted ParaproductsMultilinear Twisted Paraproducts
Multilinear Twisted ParaproductsVjekoslavKovac1
 
Intuitionistic First-Order Logic: Categorical semantics via the Curry-Howard ...
Intuitionistic First-Order Logic: Categorical semantics via the Curry-Howard ...Intuitionistic First-Order Logic: Categorical semantics via the Curry-Howard ...
Intuitionistic First-Order Logic: Categorical semantics via the Curry-Howard ...Marco Benini
 
conference_poster_5_UCSB
conference_poster_5_UCSBconference_poster_5_UCSB
conference_poster_5_UCSBXining Li
 
Litvinenko_RWTH_UQ_Seminar_talk.pdf
Litvinenko_RWTH_UQ_Seminar_talk.pdfLitvinenko_RWTH_UQ_Seminar_talk.pdf
Litvinenko_RWTH_UQ_Seminar_talk.pdfAlexander Litvinenko
 
Density theorems for anisotropic point configurations
Density theorems for anisotropic point configurationsDensity theorems for anisotropic point configurations
Density theorems for anisotropic point configurationsVjekoslavKovac1
 
Interpolation techniques - Background and implementation
Interpolation techniques - Background and implementationInterpolation techniques - Background and implementation
Interpolation techniques - Background and implementationQuasar Chunawala
 
Slides: The dual Voronoi diagrams with respect to representational Bregman di...
Slides: The dual Voronoi diagrams with respect to representational Bregman di...Slides: The dual Voronoi diagrams with respect to representational Bregman di...
Slides: The dual Voronoi diagrams with respect to representational Bregman di...Frank Nielsen
 
Fourier 3
Fourier 3Fourier 3
Fourier 3nugon
 
Actuarial Science Reference Sheet
Actuarial Science Reference SheetActuarial Science Reference Sheet
Actuarial Science Reference SheetDaniel Nolan
 
Rational points on elliptic curves
Rational points on elliptic curvesRational points on elliptic curves
Rational points on elliptic curvesmmasdeu
 
Physical Chemistry Assignment Help
Physical Chemistry Assignment HelpPhysical Chemistry Assignment Help
Physical Chemistry Assignment HelpEdu Assignment Help
 
Class 10 Maths Ch Polynomial PPT
Class 10 Maths Ch Polynomial PPTClass 10 Maths Ch Polynomial PPT
Class 10 Maths Ch Polynomial PPTSanjayraj Balasara
 
Dynamical systems solved ex
Dynamical systems solved exDynamical systems solved ex
Dynamical systems solved exMaths Tutoring
 

Similar to From moments to sparse representations, a geometric, algebraic and algorithmic viewpoint. B. Mourrain.part 1 (20)

Andrei rusu-2013-amaa-workshop
Andrei rusu-2013-amaa-workshopAndrei rusu-2013-amaa-workshop
Andrei rusu-2013-amaa-workshop
 
Multilinear Twisted Paraproducts
Multilinear Twisted ParaproductsMultilinear Twisted Paraproducts
Multilinear Twisted Paraproducts
 
Intuitionistic First-Order Logic: Categorical semantics via the Curry-Howard ...
Intuitionistic First-Order Logic: Categorical semantics via the Curry-Howard ...Intuitionistic First-Order Logic: Categorical semantics via the Curry-Howard ...
Intuitionistic First-Order Logic: Categorical semantics via the Curry-Howard ...
 
conference_poster_5_UCSB
conference_poster_5_UCSBconference_poster_5_UCSB
conference_poster_5_UCSB
 
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
Program on Quasi-Monte Carlo and High-Dimensional Sampling Methods for Applie...
 
Cse41
Cse41Cse41
Cse41
 
Litvinenko_RWTH_UQ_Seminar_talk.pdf
Litvinenko_RWTH_UQ_Seminar_talk.pdfLitvinenko_RWTH_UQ_Seminar_talk.pdf
Litvinenko_RWTH_UQ_Seminar_talk.pdf
 
Density theorems for anisotropic point configurations
Density theorems for anisotropic point configurationsDensity theorems for anisotropic point configurations
Density theorems for anisotropic point configurations
 
Computing F-blowups
Computing F-blowupsComputing F-blowups
Computing F-blowups
 
polynomials_.pdf
polynomials_.pdfpolynomials_.pdf
polynomials_.pdf
 
Interpolation techniques - Background and implementation
Interpolation techniques - Background and implementationInterpolation techniques - Background and implementation
Interpolation techniques - Background and implementation
 
Slides: The dual Voronoi diagrams with respect to representational Bregman di...
Slides: The dual Voronoi diagrams with respect to representational Bregman di...Slides: The dual Voronoi diagrams with respect to representational Bregman di...
Slides: The dual Voronoi diagrams with respect to representational Bregman di...
 
Fourier 3
Fourier 3Fourier 3
Fourier 3
 
Actuarial Science Reference Sheet
Actuarial Science Reference SheetActuarial Science Reference Sheet
Actuarial Science Reference Sheet
 
Differentiation.pptx
Differentiation.pptxDifferentiation.pptx
Differentiation.pptx
 
Rational points on elliptic curves
Rational points on elliptic curvesRational points on elliptic curves
Rational points on elliptic curves
 
Physical Chemistry Assignment Help
Physical Chemistry Assignment HelpPhysical Chemistry Assignment Help
Physical Chemistry Assignment Help
 
Class 10 Maths Ch Polynomial PPT
Class 10 Maths Ch Polynomial PPTClass 10 Maths Ch Polynomial PPT
Class 10 Maths Ch Polynomial PPT
 
Imc2017 day2-solutions
Imc2017 day2-solutionsImc2017 day2-solutions
Imc2017 day2-solutions
 
Dynamical systems solved ex
Dynamical systems solved exDynamical systems solved ex
Dynamical systems solved ex
 

Recently uploaded

Microphone- characteristics,carbon microphone, dynamic microphone.pptx
Microphone- characteristics,carbon microphone, dynamic microphone.pptxMicrophone- characteristics,carbon microphone, dynamic microphone.pptx
Microphone- characteristics,carbon microphone, dynamic microphone.pptxpriyankatabhane
 
Evidences of Evolution General Biology 2
Evidences of Evolution General Biology 2Evidences of Evolution General Biology 2
Evidences of Evolution General Biology 2John Carlo Rollon
 
Pests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdfPests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdfPirithiRaju
 
Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Nistarini College, Purulia (W.B) India
 
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.PraveenaKalaiselvan1
 
Forest laws, Indian forest laws, why they are important
Forest laws, Indian forest laws, why they are importantForest laws, Indian forest laws, why they are important
Forest laws, Indian forest laws, why they are importantadityabhardwaj282
 
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptxRESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptxFarihaAbdulRasheed
 
TOPIC 8 Temperature and Heat.pdf physics
TOPIC 8 Temperature and Heat.pdf physicsTOPIC 8 Temperature and Heat.pdf physics
TOPIC 8 Temperature and Heat.pdf physicsssuserddc89b
 
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptxLIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptxmalonesandreagweneth
 
Manassas R - Parkside Middle School 🌎🏫
Manassas R - Parkside Middle School 🌎🏫Manassas R - Parkside Middle School 🌎🏫
Manassas R - Parkside Middle School 🌎🏫qfactory1
 
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxAnalytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxSwapnil Therkar
 
Solution chemistry, Moral and Normal solutions
Solution chemistry, Moral and Normal solutionsSolution chemistry, Moral and Normal solutions
Solution chemistry, Moral and Normal solutionsHajira Mahmood
 
Speech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxSpeech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxpriyankatabhane
 
BREEDING FOR RESISTANCE TO BIOTIC STRESS.pptx
BREEDING FOR RESISTANCE TO BIOTIC STRESS.pptxBREEDING FOR RESISTANCE TO BIOTIC STRESS.pptx
BREEDING FOR RESISTANCE TO BIOTIC STRESS.pptxPABOLU TEJASREE
 
BUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdf
BUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdfBUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdf
BUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdfWildaNurAmalia2
 
Transposable elements in prokaryotes.ppt
Transposable elements in prokaryotes.pptTransposable elements in prokaryotes.ppt
Transposable elements in prokaryotes.pptArshadWarsi13
 
Artificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PArtificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PPRINCE C P
 
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptxTHE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptxNandakishor Bhaurao Deshmukh
 

Recently uploaded (20)

Microphone- characteristics,carbon microphone, dynamic microphone.pptx
Microphone- characteristics,carbon microphone, dynamic microphone.pptxMicrophone- characteristics,carbon microphone, dynamic microphone.pptx
Microphone- characteristics,carbon microphone, dynamic microphone.pptx
 
Engler and Prantl system of classification in plant taxonomy
Engler and Prantl system of classification in plant taxonomyEngler and Prantl system of classification in plant taxonomy
Engler and Prantl system of classification in plant taxonomy
 
Evidences of Evolution General Biology 2
Evidences of Evolution General Biology 2Evidences of Evolution General Biology 2
Evidences of Evolution General Biology 2
 
Pests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdfPests of soyabean_Binomics_IdentificationDr.UPR.pdf
Pests of soyabean_Binomics_IdentificationDr.UPR.pdf
 
Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...Bentham & Hooker's Classification. along with the merits and demerits of the ...
Bentham & Hooker's Classification. along with the merits and demerits of the ...
 
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
BIOETHICS IN RECOMBINANT DNA TECHNOLOGY.
 
Forest laws, Indian forest laws, why they are important
Forest laws, Indian forest laws, why they are importantForest laws, Indian forest laws, why they are important
Forest laws, Indian forest laws, why they are important
 
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptxRESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
RESPIRATORY ADAPTATIONS TO HYPOXIA IN HUMNAS.pptx
 
TOPIC 8 Temperature and Heat.pdf physics
TOPIC 8 Temperature and Heat.pdf physicsTOPIC 8 Temperature and Heat.pdf physics
TOPIC 8 Temperature and Heat.pdf physics
 
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptxLIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
LIGHT-PHENOMENA-BY-CABUALDIONALDOPANOGANCADIENTE-CONDEZA (1).pptx
 
Manassas R - Parkside Middle School 🌎🏫
Manassas R - Parkside Middle School 🌎🏫Manassas R - Parkside Middle School 🌎🏫
Manassas R - Parkside Middle School 🌎🏫
 
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptxAnalytical Profile of Coleus Forskohlii | Forskolin .pptx
Analytical Profile of Coleus Forskohlii | Forskolin .pptx
 
Solution chemistry, Moral and Normal solutions
Solution chemistry, Moral and Normal solutionsSolution chemistry, Moral and Normal solutions
Solution chemistry, Moral and Normal solutions
 
Speech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptxSpeech, hearing, noise, intelligibility.pptx
Speech, hearing, noise, intelligibility.pptx
 
BREEDING FOR RESISTANCE TO BIOTIC STRESS.pptx
BREEDING FOR RESISTANCE TO BIOTIC STRESS.pptxBREEDING FOR RESISTANCE TO BIOTIC STRESS.pptx
BREEDING FOR RESISTANCE TO BIOTIC STRESS.pptx
 
BUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdf
BUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdfBUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdf
BUMI DAN ANTARIKSA PROJEK IPAS SMK KELAS X.pdf
 
Volatile Oils Pharmacognosy And Phytochemistry -I
Volatile Oils Pharmacognosy And Phytochemistry -IVolatile Oils Pharmacognosy And Phytochemistry -I
Volatile Oils Pharmacognosy And Phytochemistry -I
 
Transposable elements in prokaryotes.ppt
Transposable elements in prokaryotes.pptTransposable elements in prokaryotes.ppt
Transposable elements in prokaryotes.ppt
 
Artificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C PArtificial Intelligence In Microbiology by Dr. Prince C P
Artificial Intelligence In Microbiology by Dr. Prince C P
 
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptxTHE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
THE ROLE OF PHARMACOGNOSY IN TRADITIONAL AND MODERN SYSTEM OF MEDICINE.pptx
 

From moments to sparse representations, a geometric, algebraic and algorithmic viewpoint. B. Mourrain.part 1

  • 1. From moments to sparse representations, a geometric, algebraic and algorithmic viewpoint Bernard Mourrain Inria M´editerran´ee, Sophia Antipolis Bernard.Mourrain@inria.fr Part I
  • 2. Sparse representation problems 1 Sparse representation problems 2 Duality 3 Artinian algebra B. Mourrain From moments to sparse representations 2 / 27
  • 3. Sparse representation problems Sparse representation of signals Given a function or signal f (t): decompose it as f (t) = r i=1 (ai cos(µi t) + bi sin(µi t))eνi t = r i=1 ωieζit B. Mourrain From moments to sparse representations 3 / 27
  • 4. Sparse representation problems Prony’s method (1795) For the signal f (t) = r i=1 ωieζit, (ωi , ζi ∈ C), Evaluate f at 2 r regularly spaced points: σ0 := f (0), σ1 := f (1), . . . Compute a non-zero element p = [p0, . . . , pr] in the kernel:      σ0 σ1 . . . σr σ1 σr+1 ... ... σr−1 . . . σ2r−1 σ2r−1           p0 p1 ... pr      = 0 Compute the roots ξ1 = eζ1 , . . . , ξr = eζr of p(x) := r i=0 pi xi . Solve the system      1 . . . . . . 1 ξ1 ξr ... ... ξr−1 1 . . . . . . ξr−1 r           ω1 ω2 ... ωr      =      σ0 σ1 ... σr−1      . B. Mourrain From moments to sparse representations 4 / 27
  • 5. Sparse representation problems Symmetric tensor decomposition and Waring problem (1770) Symmetric tensor decomposition problem: Given a homogeneous polynomial ψ of degree d in the variables x = (x0, x1, . . . , xn) with coefficients ∈ K: ψ(x) = |α|=d σα d α xα , find a minimal decomposition of ψ of the form ψ(x) = r i=1 ωi (ξi,0x0 + ξi,1x1 + · · · + ξi,nxn)d with ξi = (ξi,0, ξi,1, . . . , ξi,n) ∈ K n+1 spanning disctint lines, ωi ∈ K. The minimal r in such a decomposition is called the rank of ψ. B. Mourrain From moments to sparse representations 5 / 27
  • 6. Sparse representation problems Sylvester approach (1851) Theorem The binary form ψ(x0, x1) = d i=0 σi d i xd−i 0 xi 1 can be decomposed as a sum of r distinct powers of linear forms ψ = r k=1 ωk (αkx0 + βkx1)d iff there exists a polynomial p(x0, x1) := p0xr 0 + p1xr−1 0 x1 + · · · + pr xr 1 s.t.      σ0 σ1 . . . σr σ1 σr+1 ... ... σd−r . . . σd−1 σd           p0 p1 ... pr      = 0 and of the form p = c r k=1(βkx0 − αkx1) with (αk : βk) distinct. B. Mourrain From moments to sparse representations 6 / 27
  • 7. Sparse representation problems Sparse interpolation Given a black-box polynomial function f (x) find what are the terms inside from output values.
  • 8. Find r ∈ N, ωi ∈ C, αi ∈ N such that f (x) = r i=1 ωi xαi . B. Mourrain From moments to sparse representations 7 / 27
  • 9. Sparse representation problems Choose ϕ ∈ C Compute the sequence of terms σ0 = f (1), . . . , σ2r−1 = f (ϕ2r−1); Construct the matrix H = [σi+j ] and its kernel p = [p0, . . . , pr ] s.t.      σ0 σ1 . . . σr σ1 σr+1 ... ... σr−1 . . . σ2r−1 σ2r−1           p0 p1 ... pr      = 0 Compute the roots ξ1 = ϕα1 , . . . , ξr = ϕαr of p(x) := r i=0 pi xi and deduce the exponents αi = logϕ(ξi). Deduce the weights W = [ωi ] by solving VΞ W = [σ0, . . . , σr−1] where VΞ is the Vandermonde system of the roots ξ1, . . . , ξr . B. Mourrain From moments to sparse representations 8 / 27
  • 10. Sparse representation problems Decoding − − − − − − − − − − → An algebraic code: E = {c(f ) = [f (ξ1), . . . , f (ξm)] | f ∈ K[x]; deg(f ) ≤ d}. Encoding messages using the dual code: C = E⊥ = {c | c · [f (ξ1), . . . , f (ξl )] = 0 ∀f ∈ V = xa ⊂ F[x]} Message received: r = m + e for m ∈ C where e = [ω1, . . . , ωm] is an error with ωj = 0 for j = i1, . . . , ir and ωj = 0 otherwise.
  • 11. Find the error e. B. Mourrain From moments to sparse representations 9 / 27
  • 12. Sparse representation problems Berlekamp-Massey method (1969) Compute the syndrome σk = c(xk) · r = c(xk) · e = r j=1 ωij ξk ij . Compute the matrix      σ0 σ1 . . . σr σ1 σr+1 ... ... σr−1 . . . σ2r−1 σ2r−1           p0 p1 ... pr      = 0 and its kernel p = [p0, . . . , pr ]. Compute the roots of the error locator polynomial p(x) = r i=0 pi xi = pr r j=1(x − ξij ). Deduce the errors ωij . B. Mourrain From moments to sparse representations 10 / 27
  • 13. Sparse representation problems Simultaneous decomposition Simultaneous decomposition problem Given symmetric tensors ψ1, . . . , ψm of order d1, . . . , dm, find a simultaneous decomposition of the form ψl = r i=1 ωl,i (ξi,0x0 + ξi,1x1 + · · · + ξi,nxn)dl where ξi = (ξi,0, . . . , ξi,n) span distinct lines in K n+1 and ωl,i ∈ K for l = 1, . . . , m. B. Mourrain From moments to sparse representations 11 / 27
  • 14. Sparse representation problems Proposition (One dimensional decomposition) Let ψl = dl i=0 σ1,i dl i xdl −i 0 xi 1 ∈ K[x0, x1]dl for l = 1, . . . , m. If there exists a polynomial p(x0, x1) := p0xr 0 + p1xr−1 0 x1 + · · · + pr xr 1 s.t.                  σ1,0 σ1,1 . . . σ1,r σ1,1 σ1,r+1 ... ... σ1,d1−r . . . σ1,d1−1 σ1,d1 ... ... σm,0 σm,1 . . . σm,r σm,1 σr+1 ... ... σm,dm−r . . . σm,dm−1 σm,dm                       p0 p1 ... pr      = 0 of the form p = c r k=1(βkx0 − αkx1) with [αk : βk] distinct, then ψl = r i=1 ωi,l (αl x0 + βl x1)dl for ωi,l ∈ K and l = 1, . . . , m. B. Mourrain From moments to sparse representations 12 / 27
  • 15. Duality 1 Sparse representation problems 2 Duality 3 Artinian algebra B. Mourrain From moments to sparse representations 13 / 27
  • 16. Duality Sequences, series, duality (1D) Sequences: σ = (σk)k∈N ∈ KN indexed by k ∈ N. Formal power series: σ(y) = ∞ k=0 σk yk k! ∈ K[[y]] σ(z) = ∞ k=0 σk zk ∈ K[[z]] Linear functionals: K[x]∗ = {Λ : K[x] → K linear}. Example: p → coefficient of xi in p = 1 i! ∂i (p)(0) eζ : p → p(ζ). B. Mourrain From moments to sparse representations 14 / 27
  • 17. Duality Series as linear functionals: For σ(y) = ∞ k=0 σk yk k! ∈ K[[y]] or σ(z) = ∞ k=0 σk zk ∈ K[[z]], σ : p = k pkxk → σ|p = k σkpk (yk k! ) (resp. (zk)) is the dual basis of the monomial basis (xk)k∈N. Example: eζ(y) = ∞ k=0 ζk yk k! = eζy ∈ K[[y]] eζ(z) = ∞ k=0 ζk zk = 1 1−ζz ∈ K[[z]] Structure of K[x]-module: p Λ : q → Λ(p q). x σ(y) = ∞ k=1 σk yk−1 (k−1)! = ∂(σ(y)) p(x) σ(y) = p(∂)(σ(y)) p(x) σ(z) = π+(p(z−1 )(σ(z))) B. Mourrain From moments to sparse representations 15 / 27
  • 18. Duality Sequences, series, duality (nD) Multi-index sequences: σ = (σα)α∈Nn ∈ KNn indexed by α = (α1, . . . , αn) ∈ Nn. Taylor series: σ(y) = α∈Nn σα yα α! ∈ K[[y1, . . . , yn]] σ(z) = α∈Nn σαzα ∈ K[[z1, . . . , zn]] where α! = αi ! for α = (α1, . . . , αn) ∈ N. Linear functionals: σ ∈ R∗ = {σ : R → K, linear} σ : p = α pαxα → σ|p = α σαpα The coefficients σ|xα = σα ∈ K, α ∈ Nn are called the moments of σ. Structure of R-module: ∀p ∈ R, σ ∈ R∗, p σ : q → σ|p q : p σ = p(∂1, . . . , ∂n)(σ)(y) p σ = π+(p(z−1 1 , . . . , z−1 n )σ(z)) B. Mourrain From moments to sparse representations 16 / 27
  • 19. Duality Symmetric tensor and apolarity Apolar product: For f = |α|=d fα d α xα , g = |α|=d gα d α xα ∈ K[x]d , f , g d = |α|=d fα gα d α . Property: f , (ξ0x0 + · · · + ξnxn)d = f (ξ0, . . . , ξn) Duality: For ψ ∈ Sd , we define ψ∗ ∈ S∗ d = HomK(Sd , K) as ψ∗ : Sd → K p → ψ, p d Example: ((ξ0x0 + · · · + ξnxn)d )∗ = eξ : p ∈ Sd → p(ξ) (evaluation at ξ) Dual symmetric tensor decomposition problem: Given ψ∗ ∈ S∗ d , find a decomposition of the form ψ∗ = r i=1 ωi eξi where ξi = (ξi,0, ξi,1, . . . , ξi,n) span distinct lines in K n+1 , ωi ∈ K (ωi = 0). B. Mourrain From moments to sparse representations 17 / 27
  • 20. Duality Symmetric tensors and secants The evaluation eξ ∈ S∗ d at ξ ∈ K n+1 represented by the vector (ξα)|α|=d defines a point of the Veronese variety Vn d ⊂ P(S∗ d ). ψ∗ = r i=1 ωi eξi iff the corresponding point [ψ∗] in P(S∗ d ) is in the linear span of the evaluations [eξi ] ∈ Vn d . Let So r (Vn d ) = {[ψ∗] ∈ P(S∗ d ) | ψ∗ = r i=1 ωi ei with [ei ] ∈ Vn d , ωi ∈ K}. The closure Sr (Vn d ) = So r (Vn d ) is the rth-secant of Vn d . B. Mourrain From moments to sparse representations 18 / 27
  • 21. Duality Dehomogeneization (apart´e) S = K[x0, . . . , xn] R = K[x1, . . . , xn] ι0 : p(x0, . . . , xn) → p(1, x1, . . . , xn) x deg(p) 0 p(x1 x0 , . . . , xn x0 ) → p(x1, . . . , xn) : h0 Dual action h∗ 0 : σ ∈ S∗ d → σ ◦ h0 ∈ R∗ ≤d ι∗ 0 : σ ∈ R∗ ≤d → σ ◦ ι ∈ S∗ d ι∗ 0(σ(y) + O(y)d ) = [e0 σ(y)]d where e0 = i yk 0 k! . For I ⊂ R, let [e0 I⊥]∗ be the vector space of homogeneous components of e0 σ(y) for σ ∈ I⊥ ⊂ R∗, then [e0 I⊥ ]∗ = (J : x∗ 0 )⊥ for any J such that ι0(J) = I (e.g. J = (Ih0 )). B. Mourrain From moments to sparse representations 19 / 27
  • 22. Duality Inverse systems For I an ideal in R = K[x], I⊥ = {σ ∈ R∗ | ∀p ∈ I, σ|p = 0}. In K[[y]], I⊥ is stable by derivations with respect to yi . In K[[z]], I⊥ is stable by “division” by variables zi . Inverse system generated by ω1, . . . , ωr ∈ K[y] ω1, . . . , ωr = ∂α y (ωi ), α ∈ Nn resp. π+(z−α ωi(z)), α ∈ Nn Example: I = (x2 1 , x2 2 ) ⊂ K[x1, x2] I⊥ = 1, y1, y2, y1y2 = y1y2 resp. 1, z1, z2, z1z2 = z1z2 Dual of quotient algebra: for A = R/I, A∗ = I⊥. B. Mourrain From moments to sparse representations 20 / 27
  • 23. Duality Hankel operators Hankel operator: For σ = (σ1, . . . , σm) ∈ (R∗)m, Hσ : R → (R∗ )m p → (p σ1, . . . , p σm) σ is the symbol of Hσ. Truncated Hankel operator: V , W1, . . . , Wm ⊂ R, HW ,V σ : p ∈ V → ((p σi )|Wi ) Example: V = xα, α ∈ A = xA , W = xβ, β ∈ B = xB ⊂ R, σ ∈ R∗, HA,B σ = [ σ|xα xβ ]α∈A,β∈B = [σα+β]α∈A,β∈B. Ideal: Iσ = ker Hσ = {p ∈ K[x] | p σ = 0}, = {p = α pαxα | ∀β ∈ Nn α pασα+β = 0} Linear recurrence relations on the sequence σ = (σα)α∈Nn . Quotient algebra: Aσ = R/Iσ
  • 24. Studied case: dim Aσ < ∞ B. Mourrain From moments to sparse representations 21 / 27
  • 25. Artinian algebra 1 Sparse representation problems 2 Duality 3 Artinian algebra B. Mourrain From moments to sparse representations 22 / 27
  • 26. Artinian algebra Structure of an Artinian algebra A Definition: A = K[x]/I is Artinian if dimK A < ∞. Hilbert nullstellensatz: A = K[x]/I Artinian ⇔ VK(I) = {ξ1, . . . , ξr } is finite. Assuming K = K is algebraically closed, we have I = Q1 ∩· · ·∩Qr where Qi is mξi -primary where VK(I) = {ξ1, . . . , ξr }. A = K[x]/I = A1 ⊕ · · · ⊕ Ar , with Ai = ui A ∼ K[x1, . . . , xn]/Qi , u2 i = ui , ui uj = 0 if i = j, u1 + · · · + ur = 1. dim R/Qi = µi is the multiplicity of ξi . B. Mourrain From moments to sparse representations 23 / 27
  • 27. Artinian algebra Structure of the dual A∗ Sparse series: PolExp = σ(y) = r i=1 ωi (y) eξi (y) | ωi (y) ∈ K[y], where eξi (y) = ey·ξi = ey1ξ1,i +···+ynξn,i with ξi,j ∈ K. Inverse system generated by ω1, . . . , ωr ∈ K[y] ω1, . . . , ωr = ∂α y (ωi ), α ∈ Nn Theorem For K = K algebraically closed, A∗ = ⊕r i=1 Di eξi (y) ⊂ PolExp VK(I) = {ξ1, . . . , ξr } Di = ωi,1, . . . , ωi,li with ωi,j ∈ K[y], Q⊥ i = Di eξ where I = Q1 ∩ · · · ∩ Qr µ(ωi,1, . . . , ωi,li ) := dimK(Di ) = µi multiplicity of ξi . B. Mourrain From moments to sparse representations 24 / 27
  • 28. Artinian algebra The roots by eigencomputation Hypothesis: VK(I) = {ξ1, . . . , ξr } ⇔ A = K[x]/I Artinian. Ma : A → A u → a u Mt a : A∗ → A∗ Λ → a Λ = Λ ◦ Ma Theorem The eigenvalues of Ma are {a(ξ1), . . . , a(ξr )}. The eigenvectors of all (Mt a)a∈A are (up to a scalar) eξi : p → p(ξi ). Proposition If the roots are simple, the operators Ma are diagonalizable. Their common eigenvectors are, up to a scalar, interpolation polynomials ui at the roots and idempotent in A. B. Mourrain From moments to sparse representations 25 / 27
  • 29. Artinian algebra Example Roots of polynomial systems f1 = x2 1 x2 − x2 1 I = (f1, f2) ⊂ C[x] f2 = x1x2 − x2 A = C[x]/I ≡ 1, x1, x2 I = (x2 1 − x2, x1x2 − x2, x2 2 − x2) M1 =   0 0 0 1 0 0 0 1 1   , M2 =   0 0 0 0 0 0 1 1 1   common eigvecs of Mt 1, Mt 2 =   1 0 0   ,   1 1 1   I = Q1 ∩ Q2 where Q1 = (x2 1 , x2), Q2 = m(1,1) = (x1 − 1, x2 − 1) I = Q⊥ 1 ⊕Q⊥ 2 Q⊥ 1 = 1, y1 = 1, y1 e(0,0)(y) Q⊥ 2 = 1 e(1,1)(y) = ey1+y2 Solution of partial differential equations (with constant coeff.) ∂2 y1 ∂y2 σ − ∂2 y1 σ = 0 f1 σ = 0 ⇒ σ ∈ I⊥ = Q⊥ 1 ⊕ Q⊥ 2 ∂y1 ∂y2 σ − ∂y2 σ = 0 f2 σ = 0 σ = a + b y1 + c ey1+y2 a, b, c ∈ C B. Mourrain From moments to sparse representations 26 / 27
  • 30. Artinian algebra References Gaspard Riche Baron de Prony. Essai exp´erimental et analytique: Sur les lois de la dilatabilit´e de fluides ´elastiques et sur celles de la force expansive de la vapeur de l’alcool, `a diff´erentes temp´eratures. J. Ecole Polyt., 1:24–76, 1795. Michael Ben-Or and Prasoon Tiwari. A deterministic algorithm for sparse multivariate polynomial interpolation. In Proceedings of the Twentieth Annual ACM Symposium on Theory of Computing, pages 301–309. ACM, 1988. Elwyn R. Berlekamp. Nonbinary BCH decoding. IEEE Transactions on Information Theory, 14(2):242–242, 1968. Leopold Kronecker. Zur Theorie der Elimination Einer Variabeln aus Zwei Algebraischen Gleichungen. Monatsber. K¨onigl. Preussischen Akad. Wies. (Berlin ), pages 535–600., 1881. James Massey. Shift-register synthesis and BCH decoding. IEEE transactions on Information Theory, 15(1):122–127, 1969. James Joseph Sylvester. Essay on Canonical Form. The collected mathematical papers of J. J. Sylvester, Vol. I, Paper 34, Cambridge University Press. 1909 (XV und 688). G. Bell, London, 1851. Richard Zippel. Probabilistic Algorithms for Sparse Polynomials. In Proceedings of the International Symposiumon on Symbolic and Algebraic Computation, EUROSAM ’79, pages 216–226, London, UK, 1979. Springer-Verlag. B. Mourrain From moments to sparse representations 27 / 27