SlideShare a Scribd company logo
1 of 45
Reducing Uncertainty of
Groundwater Contaminant Transport
Using
Markov Chains
Amro Elfeki
Dept. of Hydrology and Water Resources,
Faculty of Meteorology, Environment and Arid Land Agriculture,
KAU, Jeddah, KSA.
On leave of absence from:
Faculty of Civil Engineering,
Mansoura University, Egypt
Elfeki_amr@yahoo.co.uk
Outlines
• Definitions.
• Motivation of this research.
• Methodology:
• Markov Chain in One-dimension.
• Markov Chain in Multi-dimensions: Coupled Markov Chain (CMC).
• Application of CMC at the Schelluinen study area (Bierkens,
94).
• Comparison between:
CMC (Elfeki and Dekking, 2001) and
SIS (Sequential Indicator Simulation, Gomez-Hernandez and
Srivastava, 1990) .
• Flow and Transport Models in a Monte-Carlo Framework.
• Geostatistical Results.
• Transport Results.
• Conclusions.
Motivation and Issues
Motivation of this research:
• Test the applicability of CMC model on field data at many sites.
• Incorporating CMC model in flow and transport models to study
uncertainty in groundwater transport.
• Deviate from the literature:
- Non-Gaussian stochastic fields: (Markovian fields),
- Statistically heterogeneous fields, and
- Non-uniformity of the flow field (in the mean) due to
boundary conditions.
 
Figure 1. Huesca outcrop, Spain, Courtesy Kees Geel
(from Dept. of Geology, Faculty of Applied Earth Sciences, TU Delft,
The Netherlands).
 
Geological Structure
Typical Problem of Groundwater
Contamination
0 5 0 1 0 0 1 5 0 2 0 0 2 5 0
H o r iz o n t a l D is t a n c e b e t w e e n W e lls ( m )
- 5 0
0
Depth(m)
W e ll 1 W e ll 2
? K ( x ,y ,z ) ?
( x ,y ,z ) ?
C ( x ,y ,z ) ?
H = ?
H = ?
?
?
??
? ?
?
?
?
Classification of Uncertainty:
-Conceptual Model Uncertainty:
Darcy’s and Fick’s Laws.
-Geological Uncertainty:
Connectivity and dis-connectivity
of the layers, geological sequence,
boundaries between geological units.
-Parameter Uncertainty:
-K, porosity.
-Hydro-geological Uncertainty:
Constant head boundaries,
impermeable boundaries,
Plume boundaries, source area boundaries.
What is Uncertainty?
- The lack of information
about the subsurface
structure which is
known only at sparse
sampled locations.
- The erratic nature of
the subsurface
parameters observed
at field scale.
Why Addressing Uncertainty by
Stochastic Approach?
Courtesy lynn Gelhar
Geological and Parameter Uncertainties
Unconditional CMC
1 2 3 4
0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0
- 5 0
0
0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0
- 5 0
0
t i m e = 1 6 0 0 d a y s
0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0
- 5 0
0
0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0
- 5 0
0
0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0
- 5 0
0
0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0
- 4 0
- 2 0
0
0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0
- 4 0
- 2 0
0
G e o lo g y is C e r t a in a n d P a r a m e t e r s a r e U n c e r t a in
G e o lo g y is U n c e r t a in a n d P a r a m e t e r s a r e C e r t a in
0 0 . 0 1 0 . 1 1
C
C
actualC
σC
σC
Elfeki, Uffink and Barends, 1998
Geological Uncertainty:
Geological configuration.
Parameter Uncertainty:
Conductivity value of each unit.
Mg/l
Application of CMC at MADE Site
0 5 0 1 0 0 1 5 0 2 0 0 2 5 0
- 1 0
- 5
0
0 5 0 1 0 0 1 5 0 2 0 0 2 5 0
- 1 0
- 5
0
0 5 0 1 0 0 1 5 0 2 0 0 2 5 0
- 1 0
- 5
0
0
0 . 1
1
1 0
1 0 0
0 5 0 1 0 0 1 5 0 2 0 0 2 5 0
- 1 0
- 5
0
1
2
3
4
5
0 5 0 1 0 0 1 5 0 2 0 0 2 5 0
- 1 0
- 5
0
Elfeki, (2003 ) Journal of Hydraulic Reserac
Real field situation:
MAcro-Disperison
Experiment (MADE)
Columbus, Mississippi
Air Force Base Site in US
Data is in the form of
boreholes.
Geological prediction is
needed at unsampled
locations.
Boggs et al. (1990)
Application of CMC at MADE Site
( )
Markov property (One-Step transition probability)
Pr( )
Pr( ) : ,
Marginal Distribution
lim
Conditioning on the Fut
N
i i-1 i-2 i-3 0k l n pr
i i-1k l lk
N
klk
| , , S ,...,S S S SZ Z Z Z Z
| pS SZ Z
p w→∞
= = = = = =
= = =
=
( )
1 ( 1)
ure
Pr ( )
N i
kq lk
i i Nk l q N i
lq
p p
| ,S S SZ Z Z
p
−
− − +
= = = =
S S
o d
One-dimensional Markov Chain
(Elfeki and
Dekking, 2001)
1,...n=l2,...n,=kpUp
k
q
lq
k
q
lq ,
1
1
1
∑∑ =
−
=
≤<
11 12 1
21
1
. .
. . . .
. . . .
. . . . .
. . .
n
lk
n nn
p p p
p
pl
p p
 
 
 
 =
 
 
  
1 2 ... ... n
1
2
.
n
p
11 11 12 1
1
21
1
1
1
. .
1
2 . . . .
. . . .
. . . . .
. . .
n
i
i
k
li
i
n
n ni
i
p p p p
p
p
l
n
p p
=
=
=
 
+ 
 
 
 
 =
 
 
 
 
 
  
∑
∑
∑
1 2 ... ... n
P
A B C D
One-dimensional Markov Chain
(Cont.)
D a r k G r e y ( B o u n d a r y C e lls )
L ig h t G r e y ( P r e v io u s ly G e n e r a t e d C e lls )
W h it e ( U n k n o w n C e lls )
i - 1 ,j i ,j
i ,j - 1
1 ,1
N x ,N y
N x ,1
1 ,N y
N x ,j
, , 1, , 1
, 1, , 1 ,,
Unconditioinal Coupled Markov Chains
: Pr( | , ) . 1,...
Conditioinal Coupled Markov Chains
: Pr( | , , )x
h v
lk mk
lm k i j k i j l i j m h v
lf mf
f
i j k i j l i j m N j qlm k q
h
lk
.p p
p Z S Z S Z S k n
.p p
p Z S Z S Z S Z S
.p
− −
− −
= = = = = =
= = = = = =
∑
( )
( )
, 1,... .
x
x
h N i v
kq mk
h h N i v
lf fq mf
f
.p p
k n
. .p p p
−
−
=
∑
Coupled Markov Chain “CMC” in 2D
(Elfeki and Dekking, 2001)
Concept of Unconditional
Realizations (CMC)
Concept of Unconditional
Realizations (CMC)-Cont.
0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0
- 8 0
- 6 0
- 4 0
- 2 0
0
0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0
- 8 0
- 6 0
- 4 0
- 2 0
0
1 2 3 4 5 6 7 8
0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0
- 8 0
- 6 0
- 4 0
- 2 0
0
Concept of Conditional Realizations
(CMC)
1
2
3
4
5
6
7
8
0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0
- 8 0
- 6 0
- 4 0
- 2 0
0
0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0
- 8 0
- 6 0
- 4 0
- 2 0
0
0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0
- 8 0
- 6 0
- 4 0
- 2 0
0
0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0
- 8 0
- 6 0
- 4 0
- 2 0
0
0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0
- 8 0
- 6 0
- 4 0
- 2 0
0
0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0
- 8 0
- 6 0
- 4 0
- 2 0
0
CMC vs. Conventional Methods
CMC Conventional Methods
Based on conditional
probability (transition
matrix).
Based on variogram or
autocovariance.
Marginal Probability. Sill.
Asymmetry can be
described.
Asymmetry is
impossible to describe.
A model of spatial
dependence is not
necessary.
A model of spatial
dependence is needed
for implementation.
Compute only the one-
step transition and the
model takes care of the
n-step transition
probability.
Need to compute many
lags for the variogram
or auto-correlations.
(unreliable at large
lags)
Schelluinen study area, The Netherlands
S t u d y A r e a
(Bierkens, 94).
Schelluinen study area, The Netherlands
Soil
Coding
Soil description
1 Channel deposits (sand)
2
Natural levee deposits (fine sand, sandy clay, silty
clay)
3 Crevasse splay deposits (fine sand, sandy clay,
silty clay)
4 Flood basin deposits (clay, humic clay)
5 Organic deposits (peaty clay, peat)
6 Subsoil (sand)
0 8 0 1 6 0 2 4 0
- 1 0
- 5
0
0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0
- 1 0
- 5
0
1 2 3 4 5 6
Data from Bierkens, 1994
Parameter Estimation and Procedure
 
 
0 5 0 1 0 0 1 5 0 2 0 0
- 1 0
- 5
0
0 5 0 1 0 0 1 5 0 2 0 0
- 1 0
- 5
0
0 5 0 1 0 0 1 5 0 2 0 0
- 1 0
- 5
0
G e o l o g i c a l I m a g e
D o m a i n D i s c r e t i z a t i o n
G e n e r a t e d R e a l i z a t i o n
0 5 0 1 0 0 1 5 0 2 0 0
- 1 0
- 5
0
S u p e r p o s i t i o n o f t h e G r i d o v e r
t h e G e o l o g i c a l I m a g e a n d
E s t i m a t i o n o f T r a n s i t i o n P r o b a b i l i t y
B o r e h o l e s L o c a t i o n s
0 5 0 1 0 0 1 5 0 2 0 0
- 1 0
- 5
0
P a r a m e t e r s E s t i m a t i o n C o n d i t i o n a l S i m u l a t i o n
1
v
v lk
lk n
v
lq
q
T
p
T
=
=
∑
Horizontal transition probability matrix of 1650 m section
calculated over sampling intervals of 25 m.
Soil 1 2 3 4 5 6
1 0.979 0.004 0.001 0.006 0.009 0.001
2 0.020 0.965 0.001 0.008 0.006 0.000
3 0.003 0.002 0.966 0.013 0.016 0.000
4 0.000 0.001 0.009 0.983 0.007 0.000
5 0.001 0.001 0.006 0.007 0.984 0.001
6 0.000 0.000 0.001 0.000 0.002 0.997
Vertical transition probability matrix 1650 m section calculated
over sampling intervals of 0.25 m.
Soil 1 2 3 4 5 6
1 0.945 0.000 0.009 0.000 0.009 0.037
2 0.071 0.796 0.021 0.041 0.071 0.000
3 0.000 0.000 0.797 0.086 0.089 0.028
4
0.003 0.013 0.041 0.714 0.222 0.007
5 0.004 0.012 0.047 0.119 0.768 0.050
6 0.000 0.000 0.000 0.000 0.000 1.000
Transition Probabilities (1650 x10 m)
Transition Probabilities (240 x10 m)
Horizontal transition probability matrix Vertical transition probability matrix
State 3 4 5 6 State 3 4 5 6
3 0.979 0.010 0.011 0.000 3 0.969 0.027 0.004 0.000
4 0.011 0.974 0.015 0.000 4 0.008 0.724 0.268 0.000
5 0.008 0.120 0.977 0.003 5 0.025 0.139 0.791 0.045
6 0.010 0.000 0.007 0.983 6 0.000 0.000 0.000 1.000
0 8 0 1 6 0 2 4 0
- 1 0
- 5
0 3
4
5
6
Sampling intervals
Dx = 2 m
Dy= 0.25 m
0.966 0.013 0.016 0.000
0.009 0.983 0.007 0.000
0.006 0.007 0.984 0.001
0.001 0.000 0.002 0.997
0.797 0.086 0.089 0.028
0.041 0.714 0.222 0.007
0.047 0.119 0.768 0.050
0.000 0.000 0.000 1.000
Horizontal Transition Probability from 1650x10
Vertical Transition Probability from 1650x10
Parameter Numerical Value
Time step 5 [day]
Longitudinal dispersivity 0.1 [m]
Transverse dispersivity 0.01 [m]
Effective porosity 0.30 [-]
Injected tracer mass 1000 [grams]
Head difference at the site 1.0 [m]
Monte-Carlo Runs 50 MC
Number of particles 10,000 [particles]
Physical and Simulation Parameters
Soil Properties at the core scale from Bierkens, 1996 (Table 1).
Soil
Coding
Soil type Wi
6 Fine & loamy sand 0.12 0.60 1.76 4.40 0.09
5 Peat 0.39 -2.00 1.7 0.30 2.99
3 Sand & silty clay 0.19 -4.97 3.49 0.1 5.86
4 Clay & humic clay 0.30 -7.00 2.49 0.01 10.1
2
( )iLog Kσ( )iLog K ( / )iK m day 2
iKσ
Convergence:
~14000 Iterations
Accuracy 0.00001
( , ) ( , ) 0
( , )
( , )
x
y
K x y K x y
x x y y
K x yV
x
K x yV
y
  
 ÷ ÷
 ÷ ÷
   
∂ ∂Φ ∂ ∂Φ+ =
∂ ∂ ∂ ∂
∂Φ=−
∂
∂Φ=−
∂
ε
ε
Groundwater Flow Model













C o n t a m in a n t S o u r c e
P lu m e a t T im e , t
I m p e r m e a b le b o u n d a r y
I m p e r m e a b le b o u n d a r y
is the hydraulic head,
Vx and Vy are pore velocities,
is the hydraulic conductivity, and
is the effective porosity.
Φ
( , )K x y
ε
Hydrodynamic Condition:
Non-uniform Flow in the Mean
due to Boundary Conditions.
Transport Model
Governing equation of solute transport :
C is concentration
Vx and Vy are pore velocities, and
Dxx , Dyy , Dxy , Dyx are pore-scale dispersion coefficients
x y xx xy yx yy
C C C C C C CV V D D D D
t x y x x y y x y
   
 ÷  ÷
 ÷  ÷
 ÷  ÷
   
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂=− − + + + +
∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
* - i j
mij ijL L T
VV
D V D
V
   
 ÷  ÷ ÷   
= + +α δ α α
*mD
ijδ
L
α
T
α
is effective molecular diffusion,
is delta function,
is longitudinal dispersivity, and
is lateral dispersivity.
1 1
1 1
cos sin sin cos
. / . / . / . /
n n n n
p p x p p yL T L T
n n n n
p p x x y p p y y xL T L T
X X V t Z Z Y Y V t Z Z
X X V t Z V V Z V V Y Y V t Z V V Z V V
ϕ ϕ ϕ ϕ+ +
+ +
= + ∆ + − = + ∆ + +
= + ∆ + − = + ∆ + +
6444447444448678
dispersive termadvective term
( ) ( ) 1 22 2xy yxx x
p p x L T
D VD V
X t t X t V t Z V t Z V t
x y V V
α α
 
 ÷
 ÷
 
∂∂
+ ∆ = + + + ∆ + ∆ − ∆
∂ ∂
( ) ( ) 1 22 2yx yy y x
p p y L T
D D V V
Y t t Y t V t Z V t Z V t
x y V V
α α
 
 ÷
 ÷
 
∂ ∂
+ ∆ = + + + ∆ + ∆ + ∆
∂ ∂
The displacement is a normally distributed random variable, whose
mean is the advective movement and whose deviation from the mean
is the dispersive movement.
instantaneous injection
+ uniform flow
Random Walk Method
Application of SIS at the Site
Geological
Section
Deterministic
and
Stochastic
Zones
In
SIS Model
Bierkens, 1996
Comparison between CMC and SIS (1)
0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0
- 1 0
- 5
0
Conditioning on half of the drillings
SIS Model
Simulation
CMC Model
Simulation
Geological
Section
Bierkens, 1996
Comparison between CMC and SIS (2)
0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0
- 1 0
- 5
0
Conditioning on all drillings
SIS Model
Simulation
CMC Model
Simulation
Geological
Section
Bierkens, 1996
Monte-Carlo on CMC
0 . 0 0 5 0 0 . 0 0 1 0 0 0 . 0 0 1 5 0 0 . 0 0
- 1 0 . 0 0
- 5 . 0 0
0 . 0 0
1 2 3 4 5 6
0 . 0 0 5 0 0 . 0 0 1 0 0 0 . 0 0 1 5 0 0 . 0 0
- 1 0 . 0 0
- 5 . 0 0
0 . 0 0
0 . 0 0 5 0 0 . 0 0 1 0 0 0 . 0 0 1 5 0 0 . 0 0
- 1 0 . 0 0
- 5 . 0 0
0 . 0 0
0 . 0 0 5 0 0 . 0 0 1 0 0 0 . 0 0 1 5 0 0 . 0 0
- 1 0 . 0 0
- 5 . 0 0
0 . 0 0
0 . 0 0 5 0 0 . 0 0 1 0 0 0 . 0 0 1 5 0 0 . 0 0
- 1 0 . 0 0
- 5 . 0 0
0 . 0 0
0 . 0 0 5 0 0 . 0 0 1 0 0 0 . 0 0 1 5 0 0 . 0 0
- 1 0 . 0 0
- 5 . 0 0
0 . 0 0
0 . 0 0 5 0 0 . 0 0 1 0 0 0 . 0 0 1 5 0 0 . 0 0
- 1 0 . 0 0
- 5 . 0 0
0 . 0 0
0 . 0 0 5 0 0 . 0 0 1 0 0 0 . 0 0 1 5 0 0 . 0 0
- 1 0 . 0 0
- 5 . 0 0
0 . 0 0
0
0 . 2 5
0 . 5
0 . 7 5
1
0 . 0 0 5 0 0 . 0 0 1 0 0 0 . 0 0 1 5 0 0 . 0 0
- 1 0 . 0 0
- 5 . 0 0
0 . 0 0
S t a t e # 6
S t a t e # 1 S t a t e # 2
S t a t e # 3
S t a t e # 4
S t a t e # 5
C o d i n g o f t h e S t a t e s
S c h e m a t i c I m a g e o f t h e G e o l o g i c a l
C r o s s S e c t i o n
3 9 B o r e h o l e s f o r C o n d i t i o n i n g C o n d i t i o n e d S i n g l e R e a l i z a t i o n
Effect of Conditioning on 240 x10m Sec.
0 5 0 1 0 0 1 5 0 2 0 0
- 1 0
- 5
0
0 5 0 1 0 0 1 5 0 2 0 0
- 1 0
- 5
0
0 5 0 1 0 0 1 5 0 2 0 0
- 1 0
- 5
0
0 5 0 1 0 0 1 5 0 2 0 0
- 1 0
- 5
0
0 5 0 1 0 0 1 5 0 2 0 0
- 1 0
- 5
0
0 5 0 1 0 0 1 5 0 2 0 0
- 1 0
- 5
0
0 5 0 1 0 0 1 5 0 2 0 0
- 1 0
- 5
0
0 5 0 1 0 0 1 5 0 2 0 0
- 1 0
- 5
0
0 5 0 1 0 0 1 5 0 2 0 0
- 1 0
- 5
0
0 5 0 1 0 0 1 5 0 2 0 0
- 1 0
- 5
0
0 5 0 1 0 0 1 5 0 2 0 0
- 1 0
- 5
0
0 5 0 1 0 0 1 5 0 2 0 0
- 1 0
- 5
0
0 5 0 1 0 0 1 5 0 2 0 0
- 1 0
- 5
0
1 2 3 4
L it h o lo g y C o d in g
0 8 0 1 6 0 2 4 0
- 1 0
- 5
0
1
2
3
4
31 boreholes
25 boreholes
9 boreholes
2 boreholes
Effect of Conditioning on S. R. Plume
mg/lit
0 5 0 1 0 0 1 5 0 2 0 0
- 1 0
- 5
0
0 5 0 1 0 0 1 5 0 2 0 0
- 1 0
- 5
0
0 5 0 1 0 0 1 5 0 2 0 0
- 1 0
- 5
0
0 5 0 1 0 0 1 5 0 2 0 0
- 1 0
- 5
0
0 5 0 1 0 0 1 5 0 2 0 0
- 1 0
- 5
0
0 5 0 1 0 0 1 5 0 2 0 0
- 1 0
- 5
0
0 5 0 1 0 0 1 5 0 2 0 0
- 1 0
- 5
0
0 5 0 1 0 0 1 5 0 2 0 0
- 1 0
- 5
0
0 5 0 1 0 0 1 5 0 2 0 0
- 1 0
- 5
0
0 5 0 1 0 0 1 5 0 2 0 0
- 1 0
- 5
0
0 5 0 1 0 0 1 5 0 2 0 0
- 1 0
- 5
0
0 5 0 1 0 0 1 5 0 2 0 0
- 1 0
- 5
0
0 5 0 1 0 0 1 5 0 2 0 0
- 1 0
- 5
0
0 5 0 1 0 0 1 5 0 2 0 0
- 1 0
- 5
0
0 5 0 1 0 0 1 5 0 2 0 0
- 1 0
- 5
0
0 5 0 1 0 0 1 5 0 2 0 0
- 1 0
- 5
0
0 5 0 1 0 0 1 5 0 2 0 0
- 1 0
- 5
0
0 5 0 1 0 0 1 5 0 2 0 0
- 1 0
- 5
0
0 5 0 1 0 0 1 5 0 2 0 0
- 1 0
- 5
0
0 5 0 1 0 0 1 5 0 2 0 0
- 1 0
- 5
0
0
0 . 1
1
1 0
3 4
L it h o lo g y C o d in g
6 5
T= 82 years
# drillings
2
3
5
9
25
31
Effect of Conditioning Single Realiz. Cmax
0 4 8 1 2 1 6 2 0 2 4 2 8 3 2
N o . o f C o n d it io n in g B o r e h o le s
0
4 0
8 0
1 2 0
1 6 0
2 0 0
2 4 0
PeakConcentration(mg/lit)
S in g le R e a liz a t io n C m a x ( t = 3 4 .2 Y e a r s )
S in g le R e a liz a t io n C m a x ( t = 6 8 .4 Y e a r s )
S in g le R e a liz a t io n C m a x ( t = 9 5 .8 Y e a r s )
S in g le R e a liz a t io n C m a x ( t = 1 3 6 .9 Y e a r s )
O r ig in a l S e c t io n ( t = 3 4 . 2 Y e a r s )
O r ig in a l S e c t io n ( t = 6 8 . 4 Y e a r s )
O r ig in a l S e c t io n ( t = 9 5 . 8 Y e a r s )
O r ig in a l S e c t io n ( t = 1 3 6 . 9 Y e a r s )
Practical convergence
is reached after
about 21 boreholes
0 5 0 1 0 0 1 5 0 2 0 0
- 1 0
- 5
0
First Moment (Single Realization)
0 1 0 0 0 0 2 0 0 0 0 3 0 0 0 0 4 0 0 0 0
T im e ( d a y s )
0
2 0
4 0
6 0
8 0
1 0 0
1 2 0
X_CoordinateoftheCentroid(m)
O r ig in a l S e c t io n
C o n d it io n in g o n 2 b o r e h o le s
C o n d it io n in g o n 3 b o r e h o le s
C o n d it io n in g o n 5 b o r e h o le s
C o n d it io n in g o n 9 b o r e h o le s
C o n d it io n in g o n 2 5 b o r e h o le s
0 1 0 0 0 0 2 0 0 0 0 3 0 0 0 0 4 0 0 0 0
T im e ( d a y s )
- 1 0
- 8
- 6
- 4
- 2
0
Y_CoordinateoftheCentroid(m)
O r ig in a l S e c tio n
C o n d itio n in g o n 2 b o r e h o le s
C o n d itio n in g o n 3 b o r e h o le s
C o n d itio n in g o n 5 b o r e h o le s
C o n d itio n in g o n 9 b o r e h o le s
C o n d itio n in g o n 2 5 b o r e h o le s
Trend is reached at
3 boreholes
Convergence at
9 boreholes













C o n t a m in a n t S o u r c e
P lu m e a t T im e , t
I m p e r m e a b le b o u n d a r y
I m p e r m e a b le b o u n d a r y
Second Moment (Single Realization)
0 1 0 0 0 0 2 0 0 0 0 3 0 0 0 0 4 0 0 0 0
T im e ( d a y s )
0
0 . 5
1
1 . 5
2
2 . 5
VarianceinY_direction(m2)
O r ig in a l S e c t io n
C o n d it io n in g o n 2 b o r e h o le s
C o n d it io n in g o n 3 b o r e h o le s
C o n d it io n in g o n 5 b o r e h o le s
C o n d it io n in g o n 9 b o r e h o le s
C o n d it io n in g o n 2 5 b o r e h o le s
0 1 0 0 0 0 2 0 0 0 0 3 0 0 0 0 4 0 0 0 0
T im e ( d a y s )
0
1 0 0 0
2 0 0 0
3 0 0 0
4 0 0 0
VarianceinX_direction(m2
)
O r ig in a l S e c t io n
C o n d it io n in g o n 2 b o r e h o le s
C o n d it io n in g o n 3 b o r e h o le s
C o n d it io n in g o n 5 b o r e h o le s
C o n d it io n in g o n 9 b o r e h o le s
C o n d it io n in g o n 2 5 b o r e h o le s
Trend is reached at
3 boreholes
Convergence at
5 and 25 boreholes
Convergence at
9 boreholes













C o n t a m in a n t S o u r c e
P lu m e a t T im e , t
I m p e r m e a b le b o u n d a r y
I m p e r m e a b le b o u n d a r y
Breakthrough Curve (Single Realization)
0 1 0 0 0 0 2 0 0 0 0 3 0 0 0 0 4 0 0 0 0 5 0 0 0 0
T im e ( d a y s )
0
0 . 2
0 . 4
0 . 6
0 . 8
1
NormalizedMassDistribution
O r ig in a l S e c tio n
C o n d it io n in g o n 2 b o r e h o le s
C o n d it io n in g o n 3 b o r e h o le s
C o n d it io n in g o n 5 b o r e h o le s
C o n d it io n in g o n 9 b o r e h o le s
C o n d it io n in g o n 2 5 b o r e h o le s
0 5 0 1 0 0 1 5 0 2 0 0
- 1 0
- 5
0
Convergence at
25 boreholes
Conditioning on 2 boreholes (Ensemble )
0 5 0 1 0 0 1 5 0 2 0 0
- 1 0
- 5
0
0 5 0 1 0 0 1 5 0 2 0 0
- 1 0
- 5
0
0 5 0 1 0 0 1 5 0 2 0 0
- 1 0
- 5
0
0 5 0 1 0 0 1 5 0 2 0 0
- 1 0
- 5
0
0 5 0 1 0 0 1 5 0 2 0 0
- 1 0
- 5
0
0 0 . 1 1 1 0
0 5 0 1 0 0 1 5 0 2 0 0
- 1 0
- 5
0
0 5 0 1 0 0 1 5 0 2 0 0
- 1 0
- 5
0
0 5 0 1 0 0 1 5 0 2 0 0
- 1 0
- 5
0
0 5 0 1 0 0 1 5 0 2 0 0
- 1 0
- 5
0
0 5 0 1 0 0 1 5 0 2 0 0
- 1 0
- 5
0
0 5 0 1 0 0 1 5 0 2 0 0
- 1 0
- 5
0
CactualC σC
mg/lit
T = 4.1 years
T = 82.2 years
T = 136.9 years
Conditioning on 5 boreholes (Ensemble)
0 5 0 1 0 0 1 5 0 2 0 0
- 1 0
- 5
0
0 5 0 1 0 0 1 5 0 2 0 0
- 1 0
- 5
0
0 5 0 1 0 0 1 5 0 2 0 0
- 1 0
- 5
0
0 5 0 1 0 0 1 5 0 2 0 0
- 1 0
- 5
0
0 5 0 1 0 0 1 5 0 2 0 0
- 1 0
- 5
0
0 5 0 1 0 0 1 5 0 2 0 0
- 1 0
- 5
0
0 5 0 1 0 0 1 5 0 2 0 0
- 1 0
- 5
0
0 5 0 1 0 0 1 5 0 2 0 0
- 1 0
- 5
0
0 5 0 1 0 0 1 5 0 2 0 0
- 1 0
- 5
0
0 5 0 1 0 0 1 5 0 2 0 0
- 1 0
- 5
0
0 5 0 1 0 0 1 5 0 2 0 0
- 1 0
- 5
0
0 0 . 1 1 1 0
mg/lit
actualC C σC
Conditioning on 9 boreholes (Ensemble)
0 5 0 1 0 0 1 5 0 2 0 0
- 1 0
- 5
0
0 5 0 1 0 0 1 5 0 2 0 0
- 1 0
- 5
0
0 5 0 1 0 0 1 5 0 2 0 0
- 1 0
- 5
0
0 5 0 1 0 0 1 5 0 2 0 0
- 1 0
- 5
0
0 5 0 1 0 0 1 5 0 2 0 0
- 1 0
- 5
0
0 5 0 1 0 0 1 5 0 2 0 0
- 1 0
- 5
0
0 5 0 1 0 0 1 5 0 2 0 0
- 1 0
- 5
0
0 5 0 1 0 0 1 5 0 2 0 0
- 1 0
- 5
0
0 5 0 1 0 0 1 5 0 2 0 0
- 1 0
- 5
0
0 5 0 1 0 0 1 5 0 2 0 0
- 1 0
- 5
0
0 5 0 1 0 0 1 5 0 2 0 0
- 1 0
- 5
0
actualC C σC
Conditioning on 21 boreholes(Ensemble)
0 5 0 1 0 0 1 5 0 2 0 0
- 1 0
- 5
0
0 5 0 1 0 0 1 5 0 2 0 0
- 1 0
- 5
0
0 5 0 1 0 0 1 5 0 2 0 0
- 1 0
- 5
0
0 5 0 1 0 0 1 5 0 2 0 0
- 1 0
- 5
0
0 5 0 1 0 0 1 5 0 2 0 0
- 1 0
- 5
0
0 5 0 1 0 0 1 5 0 2 0 0
- 1 0
- 5
0
0 5 0 1 0 0 1 5 0 2 0 0
- 1 0
- 5
0
0 5 0 1 0 0 1 5 0 2 0 0
- 1 0
- 5
0
0 5 0 1 0 0 1 5 0 2 0 0
- 1 0
- 5
0
0 5 0 1 0 0 1 5 0 2 0 0
- 1 0
- 5
0
0 5 0 1 0 0 1 5 0 2 0 0
- 1 0
- 5
0
actualC C σC
Conditioning on 31 boreholes(Ensemble)
0 5 0 1 0 0 1 5 0 2 0 0
- 1 0
- 5
0
0 5 0 1 0 0 1 5 0 2 0 0
- 1 0
- 5
0
0 5 0 1 0 0 1 5 0 2 0 0
- 1 0
- 5
0
0 5 0 1 0 0 1 5 0 2 0 0
- 1 0
- 5
0
0 5 0 1 0 0 1 5 0 2 0 0
- 1 0
- 5
0
0 5 0 1 0 0 1 5 0 2 0 0
- 1 0
- 5
0
0 5 0 1 0 0 1 5 0 2 0 0
- 1 0
- 5
0
0 5 0 1 0 0 1 5 0 2 0 0
- 1 0
- 5
0
0 5 0 1 0 0 1 5 0 2 0 0
- 1 0
- 5
0
0 5 0 1 0 0 1 5 0 2 0 0
- 1 0
- 5
0
0 5 0 1 0 0 1 5 0 2 0 0
- 1 0
- 5
0
actualC C σC
Effect of Conditioning on Ensemble Cmax
0 4 8 1 2 1 6 2 0 2 4 2 8 3 2
N o . o f C o n d it io n in g B o r e h o le s
0
1 0
2 0
3 0
4 0
5 0
6 0
7 0
8 0
9 0
1 0 0
1 1 0
EnsemblePeakConcentration(mg/lit)
E n s e m b le C m a x ( t = 3 4 . 2 Y e a r s )
E n s e m b le C m a x ( t = 6 8 . 4 Y e a r s )
E n s e m b le C m a x ( t = 9 5 . 8 Y e a r s )
E n s e m b le C m a x ( t = 1 3 6 . 9 Y e a r s )
O r ig in a l S e c tio n ( t = 3 4 . 2 Y e a r s )
O r ig in a l S e c tio n ( t = 6 8 . 4 Y e a r s )
O r ig in a l S e c tio n ( t = 9 5 . 8 Y e a r s )
O r ig in a l S e c tio n ( t = 1 3 6 . 9 Y e a r s )
0 4 8 1 2 1 6 2 0 2 4 2 8 3 2
N o . o f C o n d it io n in g B o r e h o le s
0
1
2
3
4
5
6
CVofCmax
t = 3 4 .2 Y e a r s
t = 6 8 .4 Y e a r s
t = 9 5 .8 Y e a r s
t = 1 3 6 .9 Y e a r s
max actualC Cp
max
1 for #boreholes 5
σ
≤ ≥c
C
max
1 for #boreholes 5
σ
≥c
C
p
max
time
σ
↑ ↑c
C
Conclusions
1. CMC model proved to be a valuable tool in predicting heterogeneous
geological structures which lead to reducing uncertainty in
concentration distributions of contaminant plumes.
2. Convergence to actual concentration is of oscillatory type, due to
the fact that some layers are connected in one scenario and
disconnected in another scenario.
3. In non-Gaussian fields, single realization concentration fields and
the ensemble concentration fields are non-Gaussian in space with
peak skewed to the left.
4. Reproduction of peak concentration, plume spatial moments and
breakthrough curves in a single realization requires many
conditioning boreholes (20-31 boreholes). However, reproduction of
plume shapes require less boreholes (5 boreholes).
Conclusions
5. Ensemble concentration and ensemble variance have the same
pattern. Ensemble variance is peaked at the location of the peak
ensemble concentration and decreases when one goes far from the
peak concentration. This supports early work by Rubin (1991).
However, in Rubin’s case the maximum concentration was in the
center of the plume which is attributed to Gaussian fields. The non-
centered peak concentration, in this study, is attributed to the non-
Gaussian fields.
6. Coefficient of variation of max concentration [CV(Cmax)] decreases
significantly when conditioning is performed on more than 5
boreholes.
7. Reproduction of peak concentration, plume spatial moments and
breakthrough curves in a single realization requires many conditioning
boreholes (20-31 boreholes). However, reproduction of plume shapes
require less boreholes (5 boreholes).
Reducing Uncertainty of Groundwater Contaminant Transport Using  Markov Chains

More Related Content

Viewers also liked

Características de la situación actual de las relaciones entre docentes y est...
Características de la situación actual de las relaciones entre docentes y est...Características de la situación actual de las relaciones entre docentes y est...
Características de la situación actual de las relaciones entre docentes y est...Pamela Castellanos
 
ділення раціональних дробів, урок 5
ділення раціональних дробів, урок 5ділення раціональних дробів, урок 5
ділення раціональних дробів, урок 5Лєнчік Гаврильчик
 
презентация звичайні дроби і дії з ними
презентация звичайні дроби і дії з нимипрезентация звичайні дроби і дії з ними
презентация звичайні дроби і дії з нимиЛєнчік Гаврильчик
 
Villas con piscina privada
Villas con piscina privadaVillas con piscina privada
Villas con piscina privadavillasguzman
 
Biomechanical Approach to Footwear KZ
Biomechanical Approach to Footwear KZBiomechanical Approach to Footwear KZ
Biomechanical Approach to Footwear KZKelsey Daniels
 

Viewers also liked (10)

Características de la situación actual de las relaciones entre docentes y est...
Características de la situación actual de las relaciones entre docentes y est...Características de la situación actual de las relaciones entre docentes y est...
Características de la situación actual de las relaciones entre docentes y est...
 
ділення раціональних дробів, урок 5
ділення раціональних дробів, урок 5ділення раціональних дробів, урок 5
ділення раціональних дробів, урок 5
 
Internet
InternetInternet
Internet
 
صنعت سبز
صنعت سبزصنعت سبز
صنعت سبز
 
phd_unimi_R08725
phd_unimi_R08725phd_unimi_R08725
phd_unimi_R08725
 
презентация звичайні дроби і дії з ними
презентация звичайні дроби і дії з нимипрезентация звичайні дроби і дії з ними
презентация звичайні дроби і дії з ними
 
İnovatif Kimya Dergisi Sayı-9
İnovatif Kimya Dergisi Sayı-9İnovatif Kimya Dergisi Sayı-9
İnovatif Kimya Dergisi Sayı-9
 
JOEY_STEPHENSON_(R1136)
JOEY_STEPHENSON_(R1136)JOEY_STEPHENSON_(R1136)
JOEY_STEPHENSON_(R1136)
 
Villas con piscina privada
Villas con piscina privadaVillas con piscina privada
Villas con piscina privada
 
Biomechanical Approach to Footwear KZ
Biomechanical Approach to Footwear KZBiomechanical Approach to Footwear KZ
Biomechanical Approach to Footwear KZ
 

Similar to Reducing Uncertainty of Groundwater Contaminant Transport Using Markov Chains

Reducing Concentration Uncertainty Using the Coupled Markov Chain Approach
 Reducing Concentration Uncertainty Using the Coupled Markov Chain Approach Reducing Concentration Uncertainty Using the Coupled Markov Chain Approach
Reducing Concentration Uncertainty Using the Coupled Markov Chain ApproachAmro Elfeki
 
Reducing Concentration Uncertainty in Geological Structures by Conditioning o...
Reducing Concentration Uncertainty in Geological Structures by Conditioning o...Reducing Concentration Uncertainty in Geological Structures by Conditioning o...
Reducing Concentration Uncertainty in Geological Structures by Conditioning o...Amro Elfeki
 
Geohydrology ii (3)
Geohydrology ii (3)Geohydrology ii (3)
Geohydrology ii (3)Amro Elfeki
 
Prediction of Contaminant Plumes (Shapes, Spatial Moments and Macro-dispersio...
Prediction of Contaminant Plumes (Shapes, Spatial Moments and Macro-dispersio...Prediction of Contaminant Plumes (Shapes, Spatial Moments and Macro-dispersio...
Prediction of Contaminant Plumes (Shapes, Spatial Moments and Macro-dispersio...Amro Elfeki
 
Oil Spill Simulation near The Red Sea Coast using The Random Walk Technique
Oil Spill Simulation near The Red Sea Coast using The Random Walk TechniqueOil Spill Simulation near The Red Sea Coast using The Random Walk Technique
Oil Spill Simulation near The Red Sea Coast using The Random Walk TechniqueAmro Elfeki
 
Stochastic Hydrology Lecture 1: Introduction
Stochastic Hydrology Lecture 1: Introduction Stochastic Hydrology Lecture 1: Introduction
Stochastic Hydrology Lecture 1: Introduction Amro Elfeki
 
Modeling Subsurface Heterogeneity by Coupled Markov Chains: Directional Depen...
Modeling Subsurface Heterogeneity by Coupled Markov Chains: Directional Depen...Modeling Subsurface Heterogeneity by Coupled Markov Chains: Directional Depen...
Modeling Subsurface Heterogeneity by Coupled Markov Chains: Directional Depen...Amro Elfeki
 
Geohydrology ii (1)
Geohydrology ii (1)Geohydrology ii (1)
Geohydrology ii (1)Amro Elfeki
 
Characterization of Subsurface Heterogeneity: Integration of Soft and Hard In...
Characterization of Subsurface Heterogeneity: Integration of Soft and Hard In...Characterization of Subsurface Heterogeneity: Integration of Soft and Hard In...
Characterization of Subsurface Heterogeneity: Integration of Soft and Hard In...Amro Elfeki
 
Numerical Methods: curve fitting and interpolation
Numerical Methods: curve fitting and interpolationNumerical Methods: curve fitting and interpolation
Numerical Methods: curve fitting and interpolationNikolai Priezjev
 
PosterFormatRNYF(1)
PosterFormatRNYF(1)PosterFormatRNYF(1)
PosterFormatRNYF(1)Usman Khalid
 
Tsp 2018 presentation Simulated Annealing Method for Construction of High-Gi...
Tsp 2018 presentation Simulated Annealing Method  for Construction of High-Gi...Tsp 2018 presentation Simulated Annealing Method  for Construction of High-Gi...
Tsp 2018 presentation Simulated Annealing Method for Construction of High-Gi...Usatyuk Vasiliy
 
Direct methanol fuel cell and proton Exchange membranes i
Direct methanol fuel cell and proton Exchange membranes iDirect methanol fuel cell and proton Exchange membranes i
Direct methanol fuel cell and proton Exchange membranes iShahXubair
 
SSII2018企画: センシングデバイスの多様化と空間モデリングの未来
SSII2018企画: センシングデバイスの多様化と空間モデリングの未来SSII2018企画: センシングデバイスの多様化と空間モデリングの未来
SSII2018企画: センシングデバイスの多様化と空間モデリングの未来SSII
 
Finite Element Solution On Effects Of Viscous Dissipation & Diffusion Thermo ...
Finite Element Solution On Effects Of Viscous Dissipation & Diffusion Thermo ...Finite Element Solution On Effects Of Viscous Dissipation & Diffusion Thermo ...
Finite Element Solution On Effects Of Viscous Dissipation & Diffusion Thermo ...IRJET Journal
 
Reliable multimedia transmission under noisy condition
Reliable multimedia transmission under noisy conditionReliable multimedia transmission under noisy condition
Reliable multimedia transmission under noisy conditionShahrukh Ali Khan
 

Similar to Reducing Uncertainty of Groundwater Contaminant Transport Using Markov Chains (20)

Reducing Concentration Uncertainty Using the Coupled Markov Chain Approach
 Reducing Concentration Uncertainty Using the Coupled Markov Chain Approach Reducing Concentration Uncertainty Using the Coupled Markov Chain Approach
Reducing Concentration Uncertainty Using the Coupled Markov Chain Approach
 
Reducing Concentration Uncertainty in Geological Structures by Conditioning o...
Reducing Concentration Uncertainty in Geological Structures by Conditioning o...Reducing Concentration Uncertainty in Geological Structures by Conditioning o...
Reducing Concentration Uncertainty in Geological Structures by Conditioning o...
 
Geohydrology ii (3)
Geohydrology ii (3)Geohydrology ii (3)
Geohydrology ii (3)
 
Prediction of Contaminant Plumes (Shapes, Spatial Moments and Macro-dispersio...
Prediction of Contaminant Plumes (Shapes, Spatial Moments and Macro-dispersio...Prediction of Contaminant Plumes (Shapes, Spatial Moments and Macro-dispersio...
Prediction of Contaminant Plumes (Shapes, Spatial Moments and Macro-dispersio...
 
Oil Spill Simulation near The Red Sea Coast using The Random Walk Technique
Oil Spill Simulation near The Red Sea Coast using The Random Walk TechniqueOil Spill Simulation near The Red Sea Coast using The Random Walk Technique
Oil Spill Simulation near The Red Sea Coast using The Random Walk Technique
 
Stochastic Hydrology Lecture 1: Introduction
Stochastic Hydrology Lecture 1: Introduction Stochastic Hydrology Lecture 1: Introduction
Stochastic Hydrology Lecture 1: Introduction
 
Modeling Subsurface Heterogeneity by Coupled Markov Chains: Directional Depen...
Modeling Subsurface Heterogeneity by Coupled Markov Chains: Directional Depen...Modeling Subsurface Heterogeneity by Coupled Markov Chains: Directional Depen...
Modeling Subsurface Heterogeneity by Coupled Markov Chains: Directional Depen...
 
Geohydrology ii (1)
Geohydrology ii (1)Geohydrology ii (1)
Geohydrology ii (1)
 
Characterization of Subsurface Heterogeneity: Integration of Soft and Hard In...
Characterization of Subsurface Heterogeneity: Integration of Soft and Hard In...Characterization of Subsurface Heterogeneity: Integration of Soft and Hard In...
Characterization of Subsurface Heterogeneity: Integration of Soft and Hard In...
 
Numerical Methods: curve fitting and interpolation
Numerical Methods: curve fitting and interpolationNumerical Methods: curve fitting and interpolation
Numerical Methods: curve fitting and interpolation
 
PosterFormatRNYF(1)
PosterFormatRNYF(1)PosterFormatRNYF(1)
PosterFormatRNYF(1)
 
Tsp 2018 presentation Simulated Annealing Method for Construction of High-Gi...
Tsp 2018 presentation Simulated Annealing Method  for Construction of High-Gi...Tsp 2018 presentation Simulated Annealing Method  for Construction of High-Gi...
Tsp 2018 presentation Simulated Annealing Method for Construction of High-Gi...
 
Direct methanol fuel cell and proton Exchange membranes i
Direct methanol fuel cell and proton Exchange membranes iDirect methanol fuel cell and proton Exchange membranes i
Direct methanol fuel cell and proton Exchange membranes i
 
SSII2018企画: センシングデバイスの多様化と空間モデリングの未来
SSII2018企画: センシングデバイスの多様化と空間モデリングの未来SSII2018企画: センシングデバイスの多様化と空間モデリングの未来
SSII2018企画: センシングデバイスの多様化と空間モデリングの未来
 
Aqhs
AqhsAqhs
Aqhs
 
Aqhs
AqhsAqhs
Aqhs
 
Ewdts 2018
Ewdts 2018Ewdts 2018
Ewdts 2018
 
Finite Element Solution On Effects Of Viscous Dissipation & Diffusion Thermo ...
Finite Element Solution On Effects Of Viscous Dissipation & Diffusion Thermo ...Finite Element Solution On Effects Of Viscous Dissipation & Diffusion Thermo ...
Finite Element Solution On Effects Of Viscous Dissipation & Diffusion Thermo ...
 
PhD presentation
PhD presentationPhD presentation
PhD presentation
 
Reliable multimedia transmission under noisy condition
Reliable multimedia transmission under noisy conditionReliable multimedia transmission under noisy condition
Reliable multimedia transmission under noisy condition
 

More from Amro Elfeki

Simulation of Tracer Injection from a Well in a Nearly Radial Flow
Simulation of Tracer Injection from a Well in a Nearly Radial FlowSimulation of Tracer Injection from a Well in a Nearly Radial Flow
Simulation of Tracer Injection from a Well in a Nearly Radial FlowAmro Elfeki
 
Aquifer recharge from flash floods in the arid environment: A mass balance ap...
Aquifer recharge from flash floods in the arid environment: A mass balance ap...Aquifer recharge from flash floods in the arid environment: A mass balance ap...
Aquifer recharge from flash floods in the arid environment: A mass balance ap...Amro Elfeki
 
Basics of Contaminant Transport in Aquifers (Lecture)
Basics of Contaminant Transport in Aquifers (Lecture)Basics of Contaminant Transport in Aquifers (Lecture)
Basics of Contaminant Transport in Aquifers (Lecture)Amro Elfeki
 
Well Hydraulics (Lecture 1)
Well Hydraulics (Lecture 1)Well Hydraulics (Lecture 1)
Well Hydraulics (Lecture 1)Amro Elfeki
 
Gradually Varied Flow in Open Channel
Gradually Varied Flow in Open ChannelGradually Varied Flow in Open Channel
Gradually Varied Flow in Open ChannelAmro Elfeki
 
Two Dimensional Flood Inundation Modelling In Urban Area Using WMS, HEC-RAS a...
Two Dimensional Flood Inundation Modelling In Urban Area Using WMS, HEC-RAS a...Two Dimensional Flood Inundation Modelling In Urban Area Using WMS, HEC-RAS a...
Two Dimensional Flood Inundation Modelling In Urban Area Using WMS, HEC-RAS a...Amro Elfeki
 
Lecture 6: Stochastic Hydrology (Estimation Problem-Kriging-, Conditional Sim...
Lecture 6: Stochastic Hydrology (Estimation Problem-Kriging-, Conditional Sim...Lecture 6: Stochastic Hydrology (Estimation Problem-Kriging-, Conditional Sim...
Lecture 6: Stochastic Hydrology (Estimation Problem-Kriging-, Conditional Sim...Amro Elfeki
 
Lecture 5: Stochastic Hydrology
Lecture 5: Stochastic Hydrology Lecture 5: Stochastic Hydrology
Lecture 5: Stochastic Hydrology Amro Elfeki
 
Lecture 4: Stochastic Hydrology (Site Characterization)
Lecture 4: Stochastic Hydrology (Site Characterization)Lecture 4: Stochastic Hydrology (Site Characterization)
Lecture 4: Stochastic Hydrology (Site Characterization)Amro Elfeki
 
Lecture 3: Stochastic Hydrology
Lecture 3: Stochastic HydrologyLecture 3: Stochastic Hydrology
Lecture 3: Stochastic HydrologyAmro Elfeki
 
Lecture 2: Stochastic Hydrology
Lecture 2: Stochastic Hydrology Lecture 2: Stochastic Hydrology
Lecture 2: Stochastic Hydrology Amro Elfeki
 
Development of Flash Flood Risk Assessment Matrix in Arid Environment: Case S...
Development of Flash Flood Risk Assessment Matrix in Arid Environment: Case S...Development of Flash Flood Risk Assessment Matrix in Arid Environment: Case S...
Development of Flash Flood Risk Assessment Matrix in Arid Environment: Case S...Amro Elfeki
 
Soft Computing and Simulation in Water Resources: Chapter 1 introduction
Soft Computing and Simulation in Water Resources: Chapter 1 introductionSoft Computing and Simulation in Water Resources: Chapter 1 introduction
Soft Computing and Simulation in Water Resources: Chapter 1 introductionAmro Elfeki
 
Derivation of unit hydrograph of Al-Lith basin in the south west of saudi ar...
Derivation of unit hydrograph of Al-Lith basin in the south  west of saudi ar...Derivation of unit hydrograph of Al-Lith basin in the south  west of saudi ar...
Derivation of unit hydrograph of Al-Lith basin in the south west of saudi ar...Amro Elfeki
 
Empirical equations for flood analysis in arid zones
Empirical equations for flood analysis in arid zonesEmpirical equations for flood analysis in arid zones
Empirical equations for flood analysis in arid zonesAmro Elfeki
 
Simulation of the central limit theorem
Simulation of the central limit theoremSimulation of the central limit theorem
Simulation of the central limit theoremAmro Elfeki
 
Empirical equations for estimation of transmission losses
Empirical equations for estimation  of transmission lossesEmpirical equations for estimation  of transmission losses
Empirical equations for estimation of transmission lossesAmro Elfeki
 
Representative elementary volume (rev) in porous
Representative elementary volume (rev) in porousRepresentative elementary volume (rev) in porous
Representative elementary volume (rev) in porousAmro Elfeki
 
Civil Engineering Drawings (Collection of Sheets)
Civil Engineering Drawings (Collection of Sheets)Civil Engineering Drawings (Collection of Sheets)
Civil Engineering Drawings (Collection of Sheets)Amro Elfeki
 
Geohydrology ii (2)
Geohydrology ii (2)Geohydrology ii (2)
Geohydrology ii (2)Amro Elfeki
 

More from Amro Elfeki (20)

Simulation of Tracer Injection from a Well in a Nearly Radial Flow
Simulation of Tracer Injection from a Well in a Nearly Radial FlowSimulation of Tracer Injection from a Well in a Nearly Radial Flow
Simulation of Tracer Injection from a Well in a Nearly Radial Flow
 
Aquifer recharge from flash floods in the arid environment: A mass balance ap...
Aquifer recharge from flash floods in the arid environment: A mass balance ap...Aquifer recharge from flash floods in the arid environment: A mass balance ap...
Aquifer recharge from flash floods in the arid environment: A mass balance ap...
 
Basics of Contaminant Transport in Aquifers (Lecture)
Basics of Contaminant Transport in Aquifers (Lecture)Basics of Contaminant Transport in Aquifers (Lecture)
Basics of Contaminant Transport in Aquifers (Lecture)
 
Well Hydraulics (Lecture 1)
Well Hydraulics (Lecture 1)Well Hydraulics (Lecture 1)
Well Hydraulics (Lecture 1)
 
Gradually Varied Flow in Open Channel
Gradually Varied Flow in Open ChannelGradually Varied Flow in Open Channel
Gradually Varied Flow in Open Channel
 
Two Dimensional Flood Inundation Modelling In Urban Area Using WMS, HEC-RAS a...
Two Dimensional Flood Inundation Modelling In Urban Area Using WMS, HEC-RAS a...Two Dimensional Flood Inundation Modelling In Urban Area Using WMS, HEC-RAS a...
Two Dimensional Flood Inundation Modelling In Urban Area Using WMS, HEC-RAS a...
 
Lecture 6: Stochastic Hydrology (Estimation Problem-Kriging-, Conditional Sim...
Lecture 6: Stochastic Hydrology (Estimation Problem-Kriging-, Conditional Sim...Lecture 6: Stochastic Hydrology (Estimation Problem-Kriging-, Conditional Sim...
Lecture 6: Stochastic Hydrology (Estimation Problem-Kriging-, Conditional Sim...
 
Lecture 5: Stochastic Hydrology
Lecture 5: Stochastic Hydrology Lecture 5: Stochastic Hydrology
Lecture 5: Stochastic Hydrology
 
Lecture 4: Stochastic Hydrology (Site Characterization)
Lecture 4: Stochastic Hydrology (Site Characterization)Lecture 4: Stochastic Hydrology (Site Characterization)
Lecture 4: Stochastic Hydrology (Site Characterization)
 
Lecture 3: Stochastic Hydrology
Lecture 3: Stochastic HydrologyLecture 3: Stochastic Hydrology
Lecture 3: Stochastic Hydrology
 
Lecture 2: Stochastic Hydrology
Lecture 2: Stochastic Hydrology Lecture 2: Stochastic Hydrology
Lecture 2: Stochastic Hydrology
 
Development of Flash Flood Risk Assessment Matrix in Arid Environment: Case S...
Development of Flash Flood Risk Assessment Matrix in Arid Environment: Case S...Development of Flash Flood Risk Assessment Matrix in Arid Environment: Case S...
Development of Flash Flood Risk Assessment Matrix in Arid Environment: Case S...
 
Soft Computing and Simulation in Water Resources: Chapter 1 introduction
Soft Computing and Simulation in Water Resources: Chapter 1 introductionSoft Computing and Simulation in Water Resources: Chapter 1 introduction
Soft Computing and Simulation in Water Resources: Chapter 1 introduction
 
Derivation of unit hydrograph of Al-Lith basin in the south west of saudi ar...
Derivation of unit hydrograph of Al-Lith basin in the south  west of saudi ar...Derivation of unit hydrograph of Al-Lith basin in the south  west of saudi ar...
Derivation of unit hydrograph of Al-Lith basin in the south west of saudi ar...
 
Empirical equations for flood analysis in arid zones
Empirical equations for flood analysis in arid zonesEmpirical equations for flood analysis in arid zones
Empirical equations for flood analysis in arid zones
 
Simulation of the central limit theorem
Simulation of the central limit theoremSimulation of the central limit theorem
Simulation of the central limit theorem
 
Empirical equations for estimation of transmission losses
Empirical equations for estimation  of transmission lossesEmpirical equations for estimation  of transmission losses
Empirical equations for estimation of transmission losses
 
Representative elementary volume (rev) in porous
Representative elementary volume (rev) in porousRepresentative elementary volume (rev) in porous
Representative elementary volume (rev) in porous
 
Civil Engineering Drawings (Collection of Sheets)
Civil Engineering Drawings (Collection of Sheets)Civil Engineering Drawings (Collection of Sheets)
Civil Engineering Drawings (Collection of Sheets)
 
Geohydrology ii (2)
Geohydrology ii (2)Geohydrology ii (2)
Geohydrology ii (2)
 

Recently uploaded

Post office management system project ..pdf
Post office management system project ..pdfPost office management system project ..pdf
Post office management system project ..pdfKamal Acharya
 
Computer Networks Basics of Network Devices
Computer Networks  Basics of Network DevicesComputer Networks  Basics of Network Devices
Computer Networks Basics of Network DevicesChandrakantDivate1
 
Linux Systems Programming: Inter Process Communication (IPC) using Pipes
Linux Systems Programming: Inter Process Communication (IPC) using PipesLinux Systems Programming: Inter Process Communication (IPC) using Pipes
Linux Systems Programming: Inter Process Communication (IPC) using PipesRashidFaridChishti
 
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptxHOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptxSCMS School of Architecture
 
Digital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptxDigital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptxpritamlangde
 
Augmented Reality (AR) with Augin Software.pptx
Augmented Reality (AR) with Augin Software.pptxAugmented Reality (AR) with Augin Software.pptx
Augmented Reality (AR) with Augin Software.pptxMustafa Ahmed
 
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills KuwaitKuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwaitjaanualu31
 
Path loss model, OKUMURA Model, Hata Model
Path loss model, OKUMURA Model, Hata ModelPath loss model, OKUMURA Model, Hata Model
Path loss model, OKUMURA Model, Hata ModelDrAjayKumarYadav4
 
Worksharing and 3D Modeling with Revit.pptx
Worksharing and 3D Modeling with Revit.pptxWorksharing and 3D Modeling with Revit.pptx
Worksharing and 3D Modeling with Revit.pptxMustafa Ahmed
 
Hostel management system project report..pdf
Hostel management system project report..pdfHostel management system project report..pdf
Hostel management system project report..pdfKamal Acharya
 
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...drmkjayanthikannan
 
Online food ordering system project report.pdf
Online food ordering system project report.pdfOnline food ordering system project report.pdf
Online food ordering system project report.pdfKamal Acharya
 
School management system project Report.pdf
School management system project Report.pdfSchool management system project Report.pdf
School management system project Report.pdfKamal Acharya
 
Online electricity billing project report..pdf
Online electricity billing project report..pdfOnline electricity billing project report..pdf
Online electricity billing project report..pdfKamal Acharya
 
Hospital management system project report.pdf
Hospital management system project report.pdfHospital management system project report.pdf
Hospital management system project report.pdfKamal Acharya
 
Query optimization and processing for advanced database systems
Query optimization and processing for advanced database systemsQuery optimization and processing for advanced database systems
Query optimization and processing for advanced database systemsmeharikiros2
 
Basic Electronics for diploma students as per technical education Kerala Syll...
Basic Electronics for diploma students as per technical education Kerala Syll...Basic Electronics for diploma students as per technical education Kerala Syll...
Basic Electronics for diploma students as per technical education Kerala Syll...ppkakm
 
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"mphochane1998
 
Theory of Time 2024 (Universal Theory for Everything)
Theory of Time 2024 (Universal Theory for Everything)Theory of Time 2024 (Universal Theory for Everything)
Theory of Time 2024 (Universal Theory for Everything)Ramkumar k
 
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...HenryBriggs2
 

Recently uploaded (20)

Post office management system project ..pdf
Post office management system project ..pdfPost office management system project ..pdf
Post office management system project ..pdf
 
Computer Networks Basics of Network Devices
Computer Networks  Basics of Network DevicesComputer Networks  Basics of Network Devices
Computer Networks Basics of Network Devices
 
Linux Systems Programming: Inter Process Communication (IPC) using Pipes
Linux Systems Programming: Inter Process Communication (IPC) using PipesLinux Systems Programming: Inter Process Communication (IPC) using Pipes
Linux Systems Programming: Inter Process Communication (IPC) using Pipes
 
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptxHOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
HOA1&2 - Module 3 - PREHISTORCI ARCHITECTURE OF KERALA.pptx
 
Digital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptxDigital Communication Essentials: DPCM, DM, and ADM .pptx
Digital Communication Essentials: DPCM, DM, and ADM .pptx
 
Augmented Reality (AR) with Augin Software.pptx
Augmented Reality (AR) with Augin Software.pptxAugmented Reality (AR) with Augin Software.pptx
Augmented Reality (AR) with Augin Software.pptx
 
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills KuwaitKuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
Kuwait City MTP kit ((+919101817206)) Buy Abortion Pills Kuwait
 
Path loss model, OKUMURA Model, Hata Model
Path loss model, OKUMURA Model, Hata ModelPath loss model, OKUMURA Model, Hata Model
Path loss model, OKUMURA Model, Hata Model
 
Worksharing and 3D Modeling with Revit.pptx
Worksharing and 3D Modeling with Revit.pptxWorksharing and 3D Modeling with Revit.pptx
Worksharing and 3D Modeling with Revit.pptx
 
Hostel management system project report..pdf
Hostel management system project report..pdfHostel management system project report..pdf
Hostel management system project report..pdf
 
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
Unit 4_Part 1 CSE2001 Exception Handling and Function Template and Class Temp...
 
Online food ordering system project report.pdf
Online food ordering system project report.pdfOnline food ordering system project report.pdf
Online food ordering system project report.pdf
 
School management system project Report.pdf
School management system project Report.pdfSchool management system project Report.pdf
School management system project Report.pdf
 
Online electricity billing project report..pdf
Online electricity billing project report..pdfOnline electricity billing project report..pdf
Online electricity billing project report..pdf
 
Hospital management system project report.pdf
Hospital management system project report.pdfHospital management system project report.pdf
Hospital management system project report.pdf
 
Query optimization and processing for advanced database systems
Query optimization and processing for advanced database systemsQuery optimization and processing for advanced database systems
Query optimization and processing for advanced database systems
 
Basic Electronics for diploma students as per technical education Kerala Syll...
Basic Electronics for diploma students as per technical education Kerala Syll...Basic Electronics for diploma students as per technical education Kerala Syll...
Basic Electronics for diploma students as per technical education Kerala Syll...
 
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments""Lesotho Leaps Forward: A Chronicle of Transformative Developments"
"Lesotho Leaps Forward: A Chronicle of Transformative Developments"
 
Theory of Time 2024 (Universal Theory for Everything)
Theory of Time 2024 (Universal Theory for Everything)Theory of Time 2024 (Universal Theory for Everything)
Theory of Time 2024 (Universal Theory for Everything)
 
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
scipt v1.pptxcxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx...
 

Reducing Uncertainty of Groundwater Contaminant Transport Using Markov Chains

  • 1. Reducing Uncertainty of Groundwater Contaminant Transport Using Markov Chains Amro Elfeki Dept. of Hydrology and Water Resources, Faculty of Meteorology, Environment and Arid Land Agriculture, KAU, Jeddah, KSA. On leave of absence from: Faculty of Civil Engineering, Mansoura University, Egypt Elfeki_amr@yahoo.co.uk
  • 2. Outlines • Definitions. • Motivation of this research. • Methodology: • Markov Chain in One-dimension. • Markov Chain in Multi-dimensions: Coupled Markov Chain (CMC). • Application of CMC at the Schelluinen study area (Bierkens, 94). • Comparison between: CMC (Elfeki and Dekking, 2001) and SIS (Sequential Indicator Simulation, Gomez-Hernandez and Srivastava, 1990) . • Flow and Transport Models in a Monte-Carlo Framework. • Geostatistical Results. • Transport Results. • Conclusions.
  • 3. Motivation and Issues Motivation of this research: • Test the applicability of CMC model on field data at many sites. • Incorporating CMC model in flow and transport models to study uncertainty in groundwater transport. • Deviate from the literature: - Non-Gaussian stochastic fields: (Markovian fields), - Statistically heterogeneous fields, and - Non-uniformity of the flow field (in the mean) due to boundary conditions.
  • 4.   Figure 1. Huesca outcrop, Spain, Courtesy Kees Geel (from Dept. of Geology, Faculty of Applied Earth Sciences, TU Delft, The Netherlands).   Geological Structure
  • 5. Typical Problem of Groundwater Contamination
  • 6. 0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 H o r iz o n t a l D is t a n c e b e t w e e n W e lls ( m ) - 5 0 0 Depth(m) W e ll 1 W e ll 2 ? K ( x ,y ,z ) ? ( x ,y ,z ) ? C ( x ,y ,z ) ? H = ? H = ? ? ? ?? ? ? ? ? ? Classification of Uncertainty: -Conceptual Model Uncertainty: Darcy’s and Fick’s Laws. -Geological Uncertainty: Connectivity and dis-connectivity of the layers, geological sequence, boundaries between geological units. -Parameter Uncertainty: -K, porosity. -Hydro-geological Uncertainty: Constant head boundaries, impermeable boundaries, Plume boundaries, source area boundaries. What is Uncertainty?
  • 7. - The lack of information about the subsurface structure which is known only at sparse sampled locations. - The erratic nature of the subsurface parameters observed at field scale. Why Addressing Uncertainty by Stochastic Approach? Courtesy lynn Gelhar
  • 8. Geological and Parameter Uncertainties Unconditional CMC 1 2 3 4 0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 - 5 0 0 0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 - 5 0 0 t i m e = 1 6 0 0 d a y s 0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 - 5 0 0 0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 - 5 0 0 0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 - 5 0 0 0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 - 4 0 - 2 0 0 0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 - 4 0 - 2 0 0 G e o lo g y is C e r t a in a n d P a r a m e t e r s a r e U n c e r t a in G e o lo g y is U n c e r t a in a n d P a r a m e t e r s a r e C e r t a in 0 0 . 0 1 0 . 1 1 C C actualC σC σC Elfeki, Uffink and Barends, 1998 Geological Uncertainty: Geological configuration. Parameter Uncertainty: Conductivity value of each unit. Mg/l
  • 9. Application of CMC at MADE Site 0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 - 1 0 - 5 0 0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 - 1 0 - 5 0 0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 - 1 0 - 5 0 0 0 . 1 1 1 0 1 0 0 0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 - 1 0 - 5 0 1 2 3 4 5 0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 - 1 0 - 5 0 Elfeki, (2003 ) Journal of Hydraulic Reserac Real field situation: MAcro-Disperison Experiment (MADE) Columbus, Mississippi Air Force Base Site in US Data is in the form of boreholes. Geological prediction is needed at unsampled locations. Boggs et al. (1990)
  • 10. Application of CMC at MADE Site
  • 11. ( ) Markov property (One-Step transition probability) Pr( ) Pr( ) : , Marginal Distribution lim Conditioning on the Fut N i i-1 i-2 i-3 0k l n pr i i-1k l lk N klk | , , S ,...,S S S SZ Z Z Z Z | pS SZ Z p w→∞ = = = = = = = = = = ( ) 1 ( 1) ure Pr ( ) N i kq lk i i Nk l q N i lq p p | ,S S SZ Z Z p − − − + = = = = S S o d One-dimensional Markov Chain (Elfeki and Dekking, 2001)
  • 12. 1,...n=l2,...n,=kpUp k q lq k q lq , 1 1 1 ∑∑ = − = ≤< 11 12 1 21 1 . . . . . . . . . . . . . . . . . . n lk n nn p p p p pl p p        =        1 2 ... ... n 1 2 . n p 11 11 12 1 1 21 1 1 1 . . 1 2 . . . . . . . . . . . . . . . . n i i k li i n n ni i p p p p p p l n p p = = =   +         =              ∑ ∑ ∑ 1 2 ... ... n P A B C D One-dimensional Markov Chain (Cont.)
  • 13. D a r k G r e y ( B o u n d a r y C e lls ) L ig h t G r e y ( P r e v io u s ly G e n e r a t e d C e lls ) W h it e ( U n k n o w n C e lls ) i - 1 ,j i ,j i ,j - 1 1 ,1 N x ,N y N x ,1 1 ,N y N x ,j , , 1, , 1 , 1, , 1 ,, Unconditioinal Coupled Markov Chains : Pr( | , ) . 1,... Conditioinal Coupled Markov Chains : Pr( | , , )x h v lk mk lm k i j k i j l i j m h v lf mf f i j k i j l i j m N j qlm k q h lk .p p p Z S Z S Z S k n .p p p Z S Z S Z S Z S .p − − − − = = = = = = = = = = = = ∑ ( ) ( ) , 1,... . x x h N i v kq mk h h N i v lf fq mf f .p p k n . .p p p − − = ∑ Coupled Markov Chain “CMC” in 2D (Elfeki and Dekking, 2001)
  • 15. Concept of Unconditional Realizations (CMC)-Cont. 0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 - 8 0 - 6 0 - 4 0 - 2 0 0 0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 - 8 0 - 6 0 - 4 0 - 2 0 0 1 2 3 4 5 6 7 8 0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 - 8 0 - 6 0 - 4 0 - 2 0 0
  • 16. Concept of Conditional Realizations (CMC) 1 2 3 4 5 6 7 8 0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 - 8 0 - 6 0 - 4 0 - 2 0 0 0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 - 8 0 - 6 0 - 4 0 - 2 0 0 0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 - 8 0 - 6 0 - 4 0 - 2 0 0 0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 - 8 0 - 6 0 - 4 0 - 2 0 0 0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 - 8 0 - 6 0 - 4 0 - 2 0 0 0 5 0 1 0 0 1 5 0 2 0 0 2 5 0 3 0 0 - 8 0 - 6 0 - 4 0 - 2 0 0
  • 17. CMC vs. Conventional Methods CMC Conventional Methods Based on conditional probability (transition matrix). Based on variogram or autocovariance. Marginal Probability. Sill. Asymmetry can be described. Asymmetry is impossible to describe. A model of spatial dependence is not necessary. A model of spatial dependence is needed for implementation. Compute only the one- step transition and the model takes care of the n-step transition probability. Need to compute many lags for the variogram or auto-correlations. (unreliable at large lags)
  • 18. Schelluinen study area, The Netherlands S t u d y A r e a (Bierkens, 94).
  • 19. Schelluinen study area, The Netherlands Soil Coding Soil description 1 Channel deposits (sand) 2 Natural levee deposits (fine sand, sandy clay, silty clay) 3 Crevasse splay deposits (fine sand, sandy clay, silty clay) 4 Flood basin deposits (clay, humic clay) 5 Organic deposits (peaty clay, peat) 6 Subsoil (sand) 0 8 0 1 6 0 2 4 0 - 1 0 - 5 0 0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 - 1 0 - 5 0 1 2 3 4 5 6 Data from Bierkens, 1994
  • 20. Parameter Estimation and Procedure     0 5 0 1 0 0 1 5 0 2 0 0 - 1 0 - 5 0 0 5 0 1 0 0 1 5 0 2 0 0 - 1 0 - 5 0 0 5 0 1 0 0 1 5 0 2 0 0 - 1 0 - 5 0 G e o l o g i c a l I m a g e D o m a i n D i s c r e t i z a t i o n G e n e r a t e d R e a l i z a t i o n 0 5 0 1 0 0 1 5 0 2 0 0 - 1 0 - 5 0 S u p e r p o s i t i o n o f t h e G r i d o v e r t h e G e o l o g i c a l I m a g e a n d E s t i m a t i o n o f T r a n s i t i o n P r o b a b i l i t y B o r e h o l e s L o c a t i o n s 0 5 0 1 0 0 1 5 0 2 0 0 - 1 0 - 5 0 P a r a m e t e r s E s t i m a t i o n C o n d i t i o n a l S i m u l a t i o n 1 v v lk lk n v lq q T p T = = ∑
  • 21. Horizontal transition probability matrix of 1650 m section calculated over sampling intervals of 25 m. Soil 1 2 3 4 5 6 1 0.979 0.004 0.001 0.006 0.009 0.001 2 0.020 0.965 0.001 0.008 0.006 0.000 3 0.003 0.002 0.966 0.013 0.016 0.000 4 0.000 0.001 0.009 0.983 0.007 0.000 5 0.001 0.001 0.006 0.007 0.984 0.001 6 0.000 0.000 0.001 0.000 0.002 0.997 Vertical transition probability matrix 1650 m section calculated over sampling intervals of 0.25 m. Soil 1 2 3 4 5 6 1 0.945 0.000 0.009 0.000 0.009 0.037 2 0.071 0.796 0.021 0.041 0.071 0.000 3 0.000 0.000 0.797 0.086 0.089 0.028 4 0.003 0.013 0.041 0.714 0.222 0.007 5 0.004 0.012 0.047 0.119 0.768 0.050 6 0.000 0.000 0.000 0.000 0.000 1.000 Transition Probabilities (1650 x10 m)
  • 22. Transition Probabilities (240 x10 m) Horizontal transition probability matrix Vertical transition probability matrix State 3 4 5 6 State 3 4 5 6 3 0.979 0.010 0.011 0.000 3 0.969 0.027 0.004 0.000 4 0.011 0.974 0.015 0.000 4 0.008 0.724 0.268 0.000 5 0.008 0.120 0.977 0.003 5 0.025 0.139 0.791 0.045 6 0.010 0.000 0.007 0.983 6 0.000 0.000 0.000 1.000 0 8 0 1 6 0 2 4 0 - 1 0 - 5 0 3 4 5 6 Sampling intervals Dx = 2 m Dy= 0.25 m 0.966 0.013 0.016 0.000 0.009 0.983 0.007 0.000 0.006 0.007 0.984 0.001 0.001 0.000 0.002 0.997 0.797 0.086 0.089 0.028 0.041 0.714 0.222 0.007 0.047 0.119 0.768 0.050 0.000 0.000 0.000 1.000 Horizontal Transition Probability from 1650x10 Vertical Transition Probability from 1650x10
  • 23. Parameter Numerical Value Time step 5 [day] Longitudinal dispersivity 0.1 [m] Transverse dispersivity 0.01 [m] Effective porosity 0.30 [-] Injected tracer mass 1000 [grams] Head difference at the site 1.0 [m] Monte-Carlo Runs 50 MC Number of particles 10,000 [particles] Physical and Simulation Parameters Soil Properties at the core scale from Bierkens, 1996 (Table 1). Soil Coding Soil type Wi 6 Fine & loamy sand 0.12 0.60 1.76 4.40 0.09 5 Peat 0.39 -2.00 1.7 0.30 2.99 3 Sand & silty clay 0.19 -4.97 3.49 0.1 5.86 4 Clay & humic clay 0.30 -7.00 2.49 0.01 10.1 2 ( )iLog Kσ( )iLog K ( / )iK m day 2 iKσ Convergence: ~14000 Iterations Accuracy 0.00001
  • 24. ( , ) ( , ) 0 ( , ) ( , ) x y K x y K x y x x y y K x yV x K x yV y     ÷ ÷  ÷ ÷     ∂ ∂Φ ∂ ∂Φ+ = ∂ ∂ ∂ ∂ ∂Φ=− ∂ ∂Φ=− ∂ ε ε Groundwater Flow Model              C o n t a m in a n t S o u r c e P lu m e a t T im e , t I m p e r m e a b le b o u n d a r y I m p e r m e a b le b o u n d a r y is the hydraulic head, Vx and Vy are pore velocities, is the hydraulic conductivity, and is the effective porosity. Φ ( , )K x y ε Hydrodynamic Condition: Non-uniform Flow in the Mean due to Boundary Conditions.
  • 25. Transport Model Governing equation of solute transport : C is concentration Vx and Vy are pore velocities, and Dxx , Dyy , Dxy , Dyx are pore-scale dispersion coefficients x y xx xy yx yy C C C C C C CV V D D D D t x y x x y y x y      ÷  ÷  ÷  ÷  ÷  ÷     ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂=− − + + + + ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂ * - i j mij ijL L T VV D V D V      ÷  ÷ ÷    = + +α δ α α *mD ijδ L α T α is effective molecular diffusion, is delta function, is longitudinal dispersivity, and is lateral dispersivity.
  • 26. 1 1 1 1 cos sin sin cos . / . / . / . / n n n n p p x p p yL T L T n n n n p p x x y p p y y xL T L T X X V t Z Z Y Y V t Z Z X X V t Z V V Z V V Y Y V t Z V V Z V V ϕ ϕ ϕ ϕ+ + + + = + ∆ + − = + ∆ + + = + ∆ + − = + ∆ + + 6444447444448678 dispersive termadvective term ( ) ( ) 1 22 2xy yxx x p p x L T D VD V X t t X t V t Z V t Z V t x y V V α α    ÷  ÷   ∂∂ + ∆ = + + + ∆ + ∆ − ∆ ∂ ∂ ( ) ( ) 1 22 2yx yy y x p p y L T D D V V Y t t Y t V t Z V t Z V t x y V V α α    ÷  ÷   ∂ ∂ + ∆ = + + + ∆ + ∆ + ∆ ∂ ∂ The displacement is a normally distributed random variable, whose mean is the advective movement and whose deviation from the mean is the dispersive movement. instantaneous injection + uniform flow Random Walk Method
  • 27. Application of SIS at the Site Geological Section Deterministic and Stochastic Zones In SIS Model Bierkens, 1996
  • 28. Comparison between CMC and SIS (1) 0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 - 1 0 - 5 0 Conditioning on half of the drillings SIS Model Simulation CMC Model Simulation Geological Section Bierkens, 1996
  • 29. Comparison between CMC and SIS (2) 0 2 0 0 4 0 0 6 0 0 8 0 0 1 0 0 0 1 2 0 0 1 4 0 0 1 6 0 0 - 1 0 - 5 0 Conditioning on all drillings SIS Model Simulation CMC Model Simulation Geological Section Bierkens, 1996
  • 30. Monte-Carlo on CMC 0 . 0 0 5 0 0 . 0 0 1 0 0 0 . 0 0 1 5 0 0 . 0 0 - 1 0 . 0 0 - 5 . 0 0 0 . 0 0 1 2 3 4 5 6 0 . 0 0 5 0 0 . 0 0 1 0 0 0 . 0 0 1 5 0 0 . 0 0 - 1 0 . 0 0 - 5 . 0 0 0 . 0 0 0 . 0 0 5 0 0 . 0 0 1 0 0 0 . 0 0 1 5 0 0 . 0 0 - 1 0 . 0 0 - 5 . 0 0 0 . 0 0 0 . 0 0 5 0 0 . 0 0 1 0 0 0 . 0 0 1 5 0 0 . 0 0 - 1 0 . 0 0 - 5 . 0 0 0 . 0 0 0 . 0 0 5 0 0 . 0 0 1 0 0 0 . 0 0 1 5 0 0 . 0 0 - 1 0 . 0 0 - 5 . 0 0 0 . 0 0 0 . 0 0 5 0 0 . 0 0 1 0 0 0 . 0 0 1 5 0 0 . 0 0 - 1 0 . 0 0 - 5 . 0 0 0 . 0 0 0 . 0 0 5 0 0 . 0 0 1 0 0 0 . 0 0 1 5 0 0 . 0 0 - 1 0 . 0 0 - 5 . 0 0 0 . 0 0 0 . 0 0 5 0 0 . 0 0 1 0 0 0 . 0 0 1 5 0 0 . 0 0 - 1 0 . 0 0 - 5 . 0 0 0 . 0 0 0 0 . 2 5 0 . 5 0 . 7 5 1 0 . 0 0 5 0 0 . 0 0 1 0 0 0 . 0 0 1 5 0 0 . 0 0 - 1 0 . 0 0 - 5 . 0 0 0 . 0 0 S t a t e # 6 S t a t e # 1 S t a t e # 2 S t a t e # 3 S t a t e # 4 S t a t e # 5 C o d i n g o f t h e S t a t e s S c h e m a t i c I m a g e o f t h e G e o l o g i c a l C r o s s S e c t i o n 3 9 B o r e h o l e s f o r C o n d i t i o n i n g C o n d i t i o n e d S i n g l e R e a l i z a t i o n
  • 31. Effect of Conditioning on 240 x10m Sec. 0 5 0 1 0 0 1 5 0 2 0 0 - 1 0 - 5 0 0 5 0 1 0 0 1 5 0 2 0 0 - 1 0 - 5 0 0 5 0 1 0 0 1 5 0 2 0 0 - 1 0 - 5 0 0 5 0 1 0 0 1 5 0 2 0 0 - 1 0 - 5 0 0 5 0 1 0 0 1 5 0 2 0 0 - 1 0 - 5 0 0 5 0 1 0 0 1 5 0 2 0 0 - 1 0 - 5 0 0 5 0 1 0 0 1 5 0 2 0 0 - 1 0 - 5 0 0 5 0 1 0 0 1 5 0 2 0 0 - 1 0 - 5 0 0 5 0 1 0 0 1 5 0 2 0 0 - 1 0 - 5 0 0 5 0 1 0 0 1 5 0 2 0 0 - 1 0 - 5 0 0 5 0 1 0 0 1 5 0 2 0 0 - 1 0 - 5 0 0 5 0 1 0 0 1 5 0 2 0 0 - 1 0 - 5 0 0 5 0 1 0 0 1 5 0 2 0 0 - 1 0 - 5 0 1 2 3 4 L it h o lo g y C o d in g 0 8 0 1 6 0 2 4 0 - 1 0 - 5 0 1 2 3 4 31 boreholes 25 boreholes 9 boreholes 2 boreholes
  • 32. Effect of Conditioning on S. R. Plume mg/lit 0 5 0 1 0 0 1 5 0 2 0 0 - 1 0 - 5 0 0 5 0 1 0 0 1 5 0 2 0 0 - 1 0 - 5 0 0 5 0 1 0 0 1 5 0 2 0 0 - 1 0 - 5 0 0 5 0 1 0 0 1 5 0 2 0 0 - 1 0 - 5 0 0 5 0 1 0 0 1 5 0 2 0 0 - 1 0 - 5 0 0 5 0 1 0 0 1 5 0 2 0 0 - 1 0 - 5 0 0 5 0 1 0 0 1 5 0 2 0 0 - 1 0 - 5 0 0 5 0 1 0 0 1 5 0 2 0 0 - 1 0 - 5 0 0 5 0 1 0 0 1 5 0 2 0 0 - 1 0 - 5 0 0 5 0 1 0 0 1 5 0 2 0 0 - 1 0 - 5 0 0 5 0 1 0 0 1 5 0 2 0 0 - 1 0 - 5 0 0 5 0 1 0 0 1 5 0 2 0 0 - 1 0 - 5 0 0 5 0 1 0 0 1 5 0 2 0 0 - 1 0 - 5 0 0 5 0 1 0 0 1 5 0 2 0 0 - 1 0 - 5 0 0 5 0 1 0 0 1 5 0 2 0 0 - 1 0 - 5 0 0 5 0 1 0 0 1 5 0 2 0 0 - 1 0 - 5 0 0 5 0 1 0 0 1 5 0 2 0 0 - 1 0 - 5 0 0 5 0 1 0 0 1 5 0 2 0 0 - 1 0 - 5 0 0 5 0 1 0 0 1 5 0 2 0 0 - 1 0 - 5 0 0 5 0 1 0 0 1 5 0 2 0 0 - 1 0 - 5 0 0 0 . 1 1 1 0 3 4 L it h o lo g y C o d in g 6 5 T= 82 years # drillings 2 3 5 9 25 31
  • 33. Effect of Conditioning Single Realiz. Cmax 0 4 8 1 2 1 6 2 0 2 4 2 8 3 2 N o . o f C o n d it io n in g B o r e h o le s 0 4 0 8 0 1 2 0 1 6 0 2 0 0 2 4 0 PeakConcentration(mg/lit) S in g le R e a liz a t io n C m a x ( t = 3 4 .2 Y e a r s ) S in g le R e a liz a t io n C m a x ( t = 6 8 .4 Y e a r s ) S in g le R e a liz a t io n C m a x ( t = 9 5 .8 Y e a r s ) S in g le R e a liz a t io n C m a x ( t = 1 3 6 .9 Y e a r s ) O r ig in a l S e c t io n ( t = 3 4 . 2 Y e a r s ) O r ig in a l S e c t io n ( t = 6 8 . 4 Y e a r s ) O r ig in a l S e c t io n ( t = 9 5 . 8 Y e a r s ) O r ig in a l S e c t io n ( t = 1 3 6 . 9 Y e a r s ) Practical convergence is reached after about 21 boreholes 0 5 0 1 0 0 1 5 0 2 0 0 - 1 0 - 5 0
  • 34. First Moment (Single Realization) 0 1 0 0 0 0 2 0 0 0 0 3 0 0 0 0 4 0 0 0 0 T im e ( d a y s ) 0 2 0 4 0 6 0 8 0 1 0 0 1 2 0 X_CoordinateoftheCentroid(m) O r ig in a l S e c t io n C o n d it io n in g o n 2 b o r e h o le s C o n d it io n in g o n 3 b o r e h o le s C o n d it io n in g o n 5 b o r e h o le s C o n d it io n in g o n 9 b o r e h o le s C o n d it io n in g o n 2 5 b o r e h o le s 0 1 0 0 0 0 2 0 0 0 0 3 0 0 0 0 4 0 0 0 0 T im e ( d a y s ) - 1 0 - 8 - 6 - 4 - 2 0 Y_CoordinateoftheCentroid(m) O r ig in a l S e c tio n C o n d itio n in g o n 2 b o r e h o le s C o n d itio n in g o n 3 b o r e h o le s C o n d itio n in g o n 5 b o r e h o le s C o n d itio n in g o n 9 b o r e h o le s C o n d itio n in g o n 2 5 b o r e h o le s Trend is reached at 3 boreholes Convergence at 9 boreholes              C o n t a m in a n t S o u r c e P lu m e a t T im e , t I m p e r m e a b le b o u n d a r y I m p e r m e a b le b o u n d a r y
  • 35. Second Moment (Single Realization) 0 1 0 0 0 0 2 0 0 0 0 3 0 0 0 0 4 0 0 0 0 T im e ( d a y s ) 0 0 . 5 1 1 . 5 2 2 . 5 VarianceinY_direction(m2) O r ig in a l S e c t io n C o n d it io n in g o n 2 b o r e h o le s C o n d it io n in g o n 3 b o r e h o le s C o n d it io n in g o n 5 b o r e h o le s C o n d it io n in g o n 9 b o r e h o le s C o n d it io n in g o n 2 5 b o r e h o le s 0 1 0 0 0 0 2 0 0 0 0 3 0 0 0 0 4 0 0 0 0 T im e ( d a y s ) 0 1 0 0 0 2 0 0 0 3 0 0 0 4 0 0 0 VarianceinX_direction(m2 ) O r ig in a l S e c t io n C o n d it io n in g o n 2 b o r e h o le s C o n d it io n in g o n 3 b o r e h o le s C o n d it io n in g o n 5 b o r e h o le s C o n d it io n in g o n 9 b o r e h o le s C o n d it io n in g o n 2 5 b o r e h o le s Trend is reached at 3 boreholes Convergence at 5 and 25 boreholes Convergence at 9 boreholes              C o n t a m in a n t S o u r c e P lu m e a t T im e , t I m p e r m e a b le b o u n d a r y I m p e r m e a b le b o u n d a r y
  • 36. Breakthrough Curve (Single Realization) 0 1 0 0 0 0 2 0 0 0 0 3 0 0 0 0 4 0 0 0 0 5 0 0 0 0 T im e ( d a y s ) 0 0 . 2 0 . 4 0 . 6 0 . 8 1 NormalizedMassDistribution O r ig in a l S e c tio n C o n d it io n in g o n 2 b o r e h o le s C o n d it io n in g o n 3 b o r e h o le s C o n d it io n in g o n 5 b o r e h o le s C o n d it io n in g o n 9 b o r e h o le s C o n d it io n in g o n 2 5 b o r e h o le s 0 5 0 1 0 0 1 5 0 2 0 0 - 1 0 - 5 0 Convergence at 25 boreholes
  • 37. Conditioning on 2 boreholes (Ensemble ) 0 5 0 1 0 0 1 5 0 2 0 0 - 1 0 - 5 0 0 5 0 1 0 0 1 5 0 2 0 0 - 1 0 - 5 0 0 5 0 1 0 0 1 5 0 2 0 0 - 1 0 - 5 0 0 5 0 1 0 0 1 5 0 2 0 0 - 1 0 - 5 0 0 5 0 1 0 0 1 5 0 2 0 0 - 1 0 - 5 0 0 0 . 1 1 1 0 0 5 0 1 0 0 1 5 0 2 0 0 - 1 0 - 5 0 0 5 0 1 0 0 1 5 0 2 0 0 - 1 0 - 5 0 0 5 0 1 0 0 1 5 0 2 0 0 - 1 0 - 5 0 0 5 0 1 0 0 1 5 0 2 0 0 - 1 0 - 5 0 0 5 0 1 0 0 1 5 0 2 0 0 - 1 0 - 5 0 0 5 0 1 0 0 1 5 0 2 0 0 - 1 0 - 5 0 CactualC σC mg/lit T = 4.1 years T = 82.2 years T = 136.9 years
  • 38. Conditioning on 5 boreholes (Ensemble) 0 5 0 1 0 0 1 5 0 2 0 0 - 1 0 - 5 0 0 5 0 1 0 0 1 5 0 2 0 0 - 1 0 - 5 0 0 5 0 1 0 0 1 5 0 2 0 0 - 1 0 - 5 0 0 5 0 1 0 0 1 5 0 2 0 0 - 1 0 - 5 0 0 5 0 1 0 0 1 5 0 2 0 0 - 1 0 - 5 0 0 5 0 1 0 0 1 5 0 2 0 0 - 1 0 - 5 0 0 5 0 1 0 0 1 5 0 2 0 0 - 1 0 - 5 0 0 5 0 1 0 0 1 5 0 2 0 0 - 1 0 - 5 0 0 5 0 1 0 0 1 5 0 2 0 0 - 1 0 - 5 0 0 5 0 1 0 0 1 5 0 2 0 0 - 1 0 - 5 0 0 5 0 1 0 0 1 5 0 2 0 0 - 1 0 - 5 0 0 0 . 1 1 1 0 mg/lit actualC C σC
  • 39. Conditioning on 9 boreholes (Ensemble) 0 5 0 1 0 0 1 5 0 2 0 0 - 1 0 - 5 0 0 5 0 1 0 0 1 5 0 2 0 0 - 1 0 - 5 0 0 5 0 1 0 0 1 5 0 2 0 0 - 1 0 - 5 0 0 5 0 1 0 0 1 5 0 2 0 0 - 1 0 - 5 0 0 5 0 1 0 0 1 5 0 2 0 0 - 1 0 - 5 0 0 5 0 1 0 0 1 5 0 2 0 0 - 1 0 - 5 0 0 5 0 1 0 0 1 5 0 2 0 0 - 1 0 - 5 0 0 5 0 1 0 0 1 5 0 2 0 0 - 1 0 - 5 0 0 5 0 1 0 0 1 5 0 2 0 0 - 1 0 - 5 0 0 5 0 1 0 0 1 5 0 2 0 0 - 1 0 - 5 0 0 5 0 1 0 0 1 5 0 2 0 0 - 1 0 - 5 0 actualC C σC
  • 40. Conditioning on 21 boreholes(Ensemble) 0 5 0 1 0 0 1 5 0 2 0 0 - 1 0 - 5 0 0 5 0 1 0 0 1 5 0 2 0 0 - 1 0 - 5 0 0 5 0 1 0 0 1 5 0 2 0 0 - 1 0 - 5 0 0 5 0 1 0 0 1 5 0 2 0 0 - 1 0 - 5 0 0 5 0 1 0 0 1 5 0 2 0 0 - 1 0 - 5 0 0 5 0 1 0 0 1 5 0 2 0 0 - 1 0 - 5 0 0 5 0 1 0 0 1 5 0 2 0 0 - 1 0 - 5 0 0 5 0 1 0 0 1 5 0 2 0 0 - 1 0 - 5 0 0 5 0 1 0 0 1 5 0 2 0 0 - 1 0 - 5 0 0 5 0 1 0 0 1 5 0 2 0 0 - 1 0 - 5 0 0 5 0 1 0 0 1 5 0 2 0 0 - 1 0 - 5 0 actualC C σC
  • 41. Conditioning on 31 boreholes(Ensemble) 0 5 0 1 0 0 1 5 0 2 0 0 - 1 0 - 5 0 0 5 0 1 0 0 1 5 0 2 0 0 - 1 0 - 5 0 0 5 0 1 0 0 1 5 0 2 0 0 - 1 0 - 5 0 0 5 0 1 0 0 1 5 0 2 0 0 - 1 0 - 5 0 0 5 0 1 0 0 1 5 0 2 0 0 - 1 0 - 5 0 0 5 0 1 0 0 1 5 0 2 0 0 - 1 0 - 5 0 0 5 0 1 0 0 1 5 0 2 0 0 - 1 0 - 5 0 0 5 0 1 0 0 1 5 0 2 0 0 - 1 0 - 5 0 0 5 0 1 0 0 1 5 0 2 0 0 - 1 0 - 5 0 0 5 0 1 0 0 1 5 0 2 0 0 - 1 0 - 5 0 0 5 0 1 0 0 1 5 0 2 0 0 - 1 0 - 5 0 actualC C σC
  • 42. Effect of Conditioning on Ensemble Cmax 0 4 8 1 2 1 6 2 0 2 4 2 8 3 2 N o . o f C o n d it io n in g B o r e h o le s 0 1 0 2 0 3 0 4 0 5 0 6 0 7 0 8 0 9 0 1 0 0 1 1 0 EnsemblePeakConcentration(mg/lit) E n s e m b le C m a x ( t = 3 4 . 2 Y e a r s ) E n s e m b le C m a x ( t = 6 8 . 4 Y e a r s ) E n s e m b le C m a x ( t = 9 5 . 8 Y e a r s ) E n s e m b le C m a x ( t = 1 3 6 . 9 Y e a r s ) O r ig in a l S e c tio n ( t = 3 4 . 2 Y e a r s ) O r ig in a l S e c tio n ( t = 6 8 . 4 Y e a r s ) O r ig in a l S e c tio n ( t = 9 5 . 8 Y e a r s ) O r ig in a l S e c tio n ( t = 1 3 6 . 9 Y e a r s ) 0 4 8 1 2 1 6 2 0 2 4 2 8 3 2 N o . o f C o n d it io n in g B o r e h o le s 0 1 2 3 4 5 6 CVofCmax t = 3 4 .2 Y e a r s t = 6 8 .4 Y e a r s t = 9 5 .8 Y e a r s t = 1 3 6 .9 Y e a r s max actualC Cp max 1 for #boreholes 5 σ ≤ ≥c C max 1 for #boreholes 5 σ ≥c C p max time σ ↑ ↑c C
  • 43. Conclusions 1. CMC model proved to be a valuable tool in predicting heterogeneous geological structures which lead to reducing uncertainty in concentration distributions of contaminant plumes. 2. Convergence to actual concentration is of oscillatory type, due to the fact that some layers are connected in one scenario and disconnected in another scenario. 3. In non-Gaussian fields, single realization concentration fields and the ensemble concentration fields are non-Gaussian in space with peak skewed to the left. 4. Reproduction of peak concentration, plume spatial moments and breakthrough curves in a single realization requires many conditioning boreholes (20-31 boreholes). However, reproduction of plume shapes require less boreholes (5 boreholes).
  • 44. Conclusions 5. Ensemble concentration and ensemble variance have the same pattern. Ensemble variance is peaked at the location of the peak ensemble concentration and decreases when one goes far from the peak concentration. This supports early work by Rubin (1991). However, in Rubin’s case the maximum concentration was in the center of the plume which is attributed to Gaussian fields. The non- centered peak concentration, in this study, is attributed to the non- Gaussian fields. 6. Coefficient of variation of max concentration [CV(Cmax)] decreases significantly when conditioning is performed on more than 5 boreholes. 7. Reproduction of peak concentration, plume spatial moments and breakthrough curves in a single realization requires many conditioning boreholes (20-31 boreholes). However, reproduction of plume shapes require less boreholes (5 boreholes).