SlideShare a Scribd company logo
Reliability of Nano-scale Circuits: A Partial Journey of my PhD
Usman Khalid
Richard Newton Young Fellow
Email: khalidu@diet.uniroma1.it Sapienza University of Rome, Italy
Abstract
Joint Impact of NBTI Aging with Process Variations
Related Work and Background Definitions
Influence of Threshold Variations on Reliability
Future Work
In future PhD work, the above schemes will be applied in order to compute the Reliability for a generic logic path for combinational
and memory elements. As well as the work will be extended from CMOS to emerging technologies such as FinFETs and Fully
Depleted (FD)-SOI technologies.
Threshold variations and process variations in conjunction to voltage noise can be responsible of logic
errors in digital circuits. The variations in process-induced parameters affect the probability of noise-
induced faulty operation of digital logic cells. Furthermore, process variation together with NBTI aging
have a huge impact on noise margins of memory elements such as flip-flops. This poster demonstrates the
novel techniques to model threshold variations, process variations as well as NBTI aging phenomenon
with verification Monte Carlo simulations scheme in terms of failure probability or reliability
computation.
Fig. 1. Left: Two inverter cells Right: Logic threshold voltages.
Grey area denotes undefined VoutA logic value.
Table : Failure probability for selected cases using Safe Operation
Region approach for 𝑽 𝑰𝑵 high
Table : Failure Probability Comparison b/w Safe Operation Region Vs
Spice MC Simulations for both 𝑽 𝑰𝑵 high and low for σVin=0.30
INV A INV B
Vout A Vout B
VIL VIH Vout A
Vout B
Fig. 3: Left: Variation between VTHP vs. Vin;
Right: High VIN; Bottom: Low VIN
σ Tox σ Ndep σ Leff σ Weff
σ
Vin=0.15
σ
Vin=0.20
σ
Vin=0.25
σ
Vin=0.30
15·10-12 20·1016 15·10-10 25·10-10 1.170·10-2 9.950·10-2 3.107·10-2 6.032·10-2
15·10-12 20·1016 25·10-10 30·10-10 1.170·10-2 9.960·10-2 3.101·10-2 6.033·10-2
20·10-12 25·1016 20·10-10 15·10-10 1.470·10-2 1.102·10-2 3.148·10-2 6.125·10-2
20·10-12 30·1016 30·10-10 25·10-10 1.460·10-2 1.100·10-2 3.146·10-2 6.121·10-2
25·10-12 15·1016 25·10-10 30·10-10 1.630·10-2 1.165·10-2 3.307·10-2 6.224·10-2
25·10-12 25·1016 25·10-10 25·10-10 1.640·10-2 1.165·10-2 3.308·10-2 6.221·10-2
30·10-12 25·1016 20·10-10 15·10-10 2.010·10-2 1.269·10-2 3.378·10-2 6.246·102
30·10-12 30·1016 30·10-10 30·10-10 2.000·10-2 1.267·10-2 3.375·10-2 6.241·102
Process Parameters Safe Operation
Region
Approach
SPICE Monte
Carlo
Simulations
HighVin
σ Tox σ Ndep σ Leff σ Weff
σVin=0.30 σ Vin=0.30
15·10-12 15·1016 20·10-10 15·10-10 0.060300 0.066700
20·10-12 15·1016 20·10-10 20·10-10 0.061270 0.068260
30·10-12 20·1016 20·10-10 20·10-10 0.062500 0.073530
25·10-12 25·1016 25·10-10 25·10-10 0.062210 0.074480
LowVin
15·10-12 15·1017 20·10-10 15·10-10 0.061790 0.062390
20·10-12 15·1017 20·10-10 20·10-10 0.062000 0.064003
30·10-12 20·1017 20·10-10 20·10-10 0.063920 0.064161
25·10-12 25·1017 25·10-10 25·10-10 0.063440 0.066714
We introduce NBTI degradation and process parameters variations, both
VIL and VIH will be actually functions of such effects. We can formally
express the dependence of VIL and VIH on oxide thickness (Tox), channel
width (W) and length (L) as a pair of functions 𝑉𝐼𝐿 = 𝑉𝐼𝐿(𝑡 𝑜𝑥, 𝐿, 𝑊, 𝑌),
𝑉𝐼𝐻 = 𝑉𝐼𝐻(𝑡 𝑜𝑥, 𝐿, 𝑊, 𝑌).
0
0,2
0,4
0,6
0,8
1
0 3E-11 6E-11 9E-11
Vout
Time (ps)
Input HL
0
0,2
0,4
0,6
0,8
1
0 4E-11 8E-11 1,2E-10
Vout
Time (ps)
Input LH
Vin
Vtp
Vtn
Vout
Vdd
Fig. : First: Simulated
circuit; Middle: Output
voltages for different VTHP
variations when Input HL.
Last: Output voltages for
different VTHP variations
when Input LH
Threshold Variations
Reliability of Nano-scale
Circuits
Digital-Logic Level
Bayesian
Netwroks
(BN)
Probablistic
Transfer
Matrix (PTM)
Probabilistic
Gate Model
(PGM)
Booelan
Difference
Error
Calculator
Transistor-Level
Stochastic
Estimation
Scheme
Gate Reliability
EDA Tool
(GREDA)
This Work
Analytical, Semi-Analytical, Monte Carlo Sim.
Failure Probaility Techniques
VIN, VTHN, VTHP VIN, Tox, NDEP, Leff, Weff
This Work
Techniques of Estimation Reliability
Process Variations NBTI Aging
NBTI Aging, VIN, Tox, NDEP, Leff,
Weff
This Work This Work
 ANALYTICAL Approach
Mathematically, the probability of incorrect output is the probability that the three random variables 𝑉𝐼𝑁, 𝑉𝑇𝑁, 𝑉𝑇𝑃 fall outside the
safe operation region, and can be computed analytically as a 3-D integral of the associated probability density function
𝑓𝑣 𝐼𝑁,𝑣 𝑇𝑁,𝑣 𝑇𝑃
∙ .
We discretize the integral computation by defining 𝑉𝐼𝑁 = 𝑖 ∙ 𝛿𝑣𝑖𝑛, 𝑉𝑇𝑁 = 𝑗 ∙ 𝛿𝑡𝑛, 𝑉𝑇𝑃 = 𝑘 ∙ 𝛿𝑣𝑡𝑝 so that we obtain
𝑃𝑒𝑟𝑟𝑜𝑟 =
𝑖=−∞
+∞
𝑝 𝑣𝑖𝑛 𝑖
𝑗=−∞
+∞
𝑝 𝑣𝑡𝑛 𝑗
𝑘=𝐻 𝑖,𝑗
+∞
𝑝 𝑣𝑡𝑝 𝑘
where 𝑝 𝑣𝑖𝑛 = 𝑖∙𝛿𝑣𝑖𝑛
𝑖+1 ∙𝛿𝑣𝑖𝑛
𝑓𝑣 𝐼𝑁
𝑉𝐼𝑁 𝑑𝑉𝐼𝑁 and similarly for 𝑝𝑗, 𝑝 𝑘, and 𝐻 𝑖, 𝑗 = 𝐺 𝑖 ∙ 𝛿𝑣𝑖𝑛 , 𝑗 ∙ 𝛿𝑡𝑛 / 𝛿𝑣𝑡𝑝.
In our analysis, we assume normal distributions and independence of VTN and VTP
0
0,02
0,04
0,06
0,08
0,1
0,12
0,14
0,16
SPICE MC analytical Results shows that in all cases the
relative difference of the
analytical calculation with
respect to SPICE MC is below
5%. The SPICE MC run time
was >100 hours per each case.
Semi-Analytical “Safe Operation Region”
1E-50
1E-45
1E-40
1E-35
1E-30
1E-25
1E-20
1E-15
1E-10
1E-05
1
0 5 10 15 20 25 30 35 40 45 50
0.02
0.03
0.04
0.05
Fig: Error probability results. Omitted values are below 10-50
Technology: 45 nm 32 nm 22 nm 16 nm
σVTN 0.0237 0.0341 0.0516 0.0715
σVTP 0.0167 0.0220 0.0346 0.0478
Table – Technology data
We performed the analysis of the error probability
𝜹 = (𝒕 𝒐𝒙 𝑵 𝑨)/ 𝑾 𝒆𝒇𝒇 𝑳 𝒆𝒇𝒇
Technology 45 nm 32 nm 22 nm 16 nm
VDD 1.0 0.9 0.8 0.7
VIH 0.60 0.57 0.54 0.48
VIL 0.38 0.33 0.28 0.22
Table – Logic thresholds values
-0.1
0.1
0.3
0.5
-0.5
0
0.5
1
1.5
-1
0
1
Vthn
Vin
(Low Value)
Vthp
Safe Operation
Region
0.5
0.7
0.9
1.11.1
-0.5
0
0.5
1
1.5
-2
-1
0
1
2
Vthn
Vin
(High Value)
Vthp
Safe Operation
Region
0.00E+00
5.00E-04
1.00E-03
1.50E-03
2.00E-03
2.50E-03
3.00E-03
s Tox
P{failure}
(a) (b) (c)
Fig: (a) Probability of Failure versus Vin standard deviation for different standard deviation of Tox. (b): Detail of the dependency of
Probability of failure from Tox for σ Vin=0.25 (c) Trendline of Tox behavior with extended Standard deviations
𝑃𝑒𝑟𝑟𝑜𝑟 =
−∞
+∞
−∞
+∞
𝐺 𝑉 𝐼𝑁,𝑉 𝑇𝑁
+∞
𝑓𝑣 𝐼𝑁,𝑣 𝑇𝑁,𝑣 𝑇𝑃
𝑉𝐼𝑁, 𝑉𝑇𝑁, 𝑉𝑇𝑃 𝑑𝑉𝑇𝑃 𝑑𝑉𝐼𝑁 𝑑𝑉𝑇𝑁.
Fig: 2D and 3D diagram of Safe operation region for VTN, VTP and VIN variation for High and Low VIN
D
CKN
CK CKN
CK
Q
Inv 1
Inv 2
TG 1 TG 2
Inv 3
Inv 5_load
Inv 4
Fig. Transmission Gate based static flip-flop
Inv 1CK
CKN
CKN
CK
Inv 3CKN
CK
CK
CKN
Inv 5_load
Q
D
VDD
VDD
VDD
VDD
CKN
CK
VDD
CK
CKN
VDD
CK
CKN
TG 1
CKN
CK
TG 2
Inv 4Inv 2
Fig. Bootstrap C2MOS based pseudo-static flip-flop
0 years 10 years
Q edge tCKtoQ tSetup MIN tCKtoQ tSetup MIN
flip flop 1
0-to-1 11.57 ps 09 ps 13.51 ps 10 ps
1-to-0 16.59 ps 11 ps 20.26 ps 16 ps
flip flop 2
0-to-1 04.20 ps 12 ps 05.78 ps 16 ps
1-to-0 06.35 ps 15 ps 07.40 ps 19 ps
Table – Characterized propagation delay and minimum setup
time for different types of flip flops at different aging times
VDD
100 p 100 p + trf
0 V
V
VIL
Time (s)
clkQVD
VDD
100 p 100 p + trf
0 V
V
Time (s)
clkQ
VD
VDD
100 p 100 p + trf
0 V
V
Time (s)
clk
Q
VD
(a)
(b)
(c)
Fig. 8. Timing scheme for the selection of: Left: VIL value, Right: VIH value
VDD
100 p 100 p + trf
0 V
V
VIH
Time (s)
clkQVD
VDD
100 p 100 p + trf
0 V
V
Time (s)
clkQ
VD
VDD
100 p 100 p + trf
0 V
V
Time (s)
clk
Q
VD
(a)
(b)
(c)
Setup
time
margin
Years Nominal MC Mean MC Sigma
long
VIL
0 0.398 0.402 0.01366
2 0.347 0.350 0.01102
5 0.336 0.338 0.01051
7 0.331 0.333 0.01033
10 0.326 0.328 0.01014
VIH
0 0.679 0.677 0.01947
2 0.746 0.743 0.02030
5 0.761 0.757 0.02024
8 0.767 0.763 0.02011
10 0.774 0.770 0.02001
short
VIL
0 0.148 0.151 0.02503
2 0.060 0.063 0.02661
5 0.038 0.042 0.02675
7 0.029 0.032 0.02672
10 0.018 0.022 0.02658
VIH
0 0.868 0.866 0.02873
2 0.958 0.955 0.03163
5 0.980 0.977 0.03227
8 0.989 0.987 0.03258
10 1.000 0.998 0.03296
Table . Noise Margin Results for flip flop 1.
Nominal Approach vs SPICE Monte Carlo
0,310
0,320
0,330
0,340
0,350
0,360
0,370
0 5 10 15
NoiseMargins
Years
VIL (MC Mean)
VIL (Nominal)
Poly. (VIL (MC Mean))
Poly. (VIL (Nominal))
0,72
0,73
0,74
0,75
0,76
0,77
0,78
0,79
0,8
0 5 10 15
NoiseMargins
Years
VIH (Nominal)
VIH (MC Mean)
Poly. (VIH (Nominal))
Poly. (VIH (MC Mean))
Fig: Error probability results. Omitted values are below 10-50
Logic
gate
Logic
gate
Logic
gate
Logic
gate FF
The probability that the register samples a wrong value
due to the voltage drop/rise is equal to the probability
that the voltage noise margins of the flip-flops in the
register is smaller than the voltage drop/rise 𝑣, i.e.
formally:
Pr 𝑉𝐼𝐿 < 𝑣 = −∞
𝑣
𝒩 𝑥, 𝜇 𝑉𝐼𝐿, 𝜎 𝑉𝐼𝐿 𝑑𝑥,
for logic ‘0’ at register input, with positive voltage rise
v;
Pr 𝑉𝐼𝐻 > 𝑉 𝐷𝐷 + 𝑣 = 𝑉𝐷𝐷+𝑣
+∞
𝒩 𝑥, 𝜇 𝑉𝐼𝐻, 𝜎 𝑉𝐼𝐻 𝑑𝑥,
for logic ‘1’ at register input, with negative voltage
drop 𝑣;
where 𝒩 𝑥, 𝜇, 𝜎 is the normal probability density
function.
Fig: A generic path in digital architecture design.
0 years 10 years
drop/rie
[V]
+0.05 +0.1 -0.05 -0.1 +0.05 +0.1 -0.05 -0.1
FF A 4.4e-05 2.7e-02 1.7e-03 1.2e-01 8.9e-01 9.9e-01 9.4e-01 9.9e-01
FF B 4.9e-05 1.7e-02 8.8e-05 2.4e-02 7.7e-01 9.9e-01 8.4e-01 9.9e-01
FF C 2.3e-04 5.7e-02 4.9e-05 1.7e-02 8.8e-01 9.9e-01 7.3e-01 9.8e-01
FF D 3.2e-15 1.2e-10 6.3e-15 5.4e-10 1.4e-01 3.6e-01 5.6e-01 8.0e-01
FF E 1.0e-02 2.9e-01 1.1e-16 6.4e-11 1.7e-02 3.3e-01 4.6e-01 8.7e-01
FF F 4.6e-07 9.0e-05 2.2e-13 1.7e-08 6.5e-01 8.3e-01 7.1e-01 9.4e-01
FF G 5.1e-07 4.0e-05 8.2e-12 2.1e-08 7.0e-01 8.9e-01 2.3e-01 4.7e-01
Table – Failure probability of registers for different types of flip flops
at different aging times (short setup time design case)

More Related Content

Viewers also liked

Cmi katia palencia
Cmi  katia palenciaCmi  katia palencia
Cmi katia palencia
Katiapalencia12
 
What CEO's want from CMO's - Michael Leander keynote at Semana Nacional de Ma...
What CEO's want from CMO's - Michael Leander keynote at Semana Nacional de Ma...What CEO's want from CMO's - Michael Leander keynote at Semana Nacional de Ma...
What CEO's want from CMO's - Michael Leander keynote at Semana Nacional de Ma...
Markedu - Innovative Marketing Education
 
ESTUDIO TECNICO DE UN PROYECTO
ESTUDIO TECNICO DE UN PROYECTOESTUDIO TECNICO DE UN PROYECTO
ESTUDIO TECNICO DE UN PROYECTO
Aby Ordonez
 
La vida de un estudiante universitario
La vida de un estudiante universitarioLa vida de un estudiante universitario
La vida de un estudiante universitario
Lizbeth Romero
 
Neopositivismo logico
Neopositivismo logicoNeopositivismo logico
Neopositivismo logico
Cecilia Coiana
 
Citologia liquida efusiones
Citologia liquida  efusionesCitologia liquida  efusiones
Citologia liquida efusiones
ernesto garcia ureta
 
Pitiriasis versicolor y candidosis
Pitiriasis versicolor y candidosisPitiriasis versicolor y candidosis
Pitiriasis versicolor y candidosis
Katy
 
Simulation Singularity - when simulation faithfully mirrors the real world?
Simulation Singularity - when simulation faithfully mirrors the real world?Simulation Singularity - when simulation faithfully mirrors the real world?
Simulation Singularity - when simulation faithfully mirrors the real world?
Andy Fawkes
 
API Management Platform Technical Evaluation Framework
API Management Platform Technical Evaluation FrameworkAPI Management Platform Technical Evaluation Framework
API Management Platform Technical Evaluation Framework
WSO2
 
Seed treatment by Muhammed Aslam COH,Thrishur
Seed treatment by Muhammed Aslam COH,ThrishurSeed treatment by Muhammed Aslam COH,Thrishur
Seed treatment by Muhammed Aslam COH,Thrishur
Aslam Muhammed
 
The breakthrough forecast
The breakthrough forecastThe breakthrough forecast
The breakthrough forecast
Sustainable Brands
 
L28 29 - challenges paragraph 1)
L28   29 - challenges paragraph 1)L28   29 - challenges paragraph 1)
L28 29 - challenges paragraph 1)
misshanks
 

Viewers also liked (13)

Cmi katia palencia
Cmi  katia palenciaCmi  katia palencia
Cmi katia palencia
 
What CEO's want from CMO's - Michael Leander keynote at Semana Nacional de Ma...
What CEO's want from CMO's - Michael Leander keynote at Semana Nacional de Ma...What CEO's want from CMO's - Michael Leander keynote at Semana Nacional de Ma...
What CEO's want from CMO's - Michael Leander keynote at Semana Nacional de Ma...
 
ESTUDIO TECNICO DE UN PROYECTO
ESTUDIO TECNICO DE UN PROYECTOESTUDIO TECNICO DE UN PROYECTO
ESTUDIO TECNICO DE UN PROYECTO
 
La vida de un estudiante universitario
La vida de un estudiante universitarioLa vida de un estudiante universitario
La vida de un estudiante universitario
 
Neopositivismo logico
Neopositivismo logicoNeopositivismo logico
Neopositivismo logico
 
Citologia liquida efusiones
Citologia liquida  efusionesCitologia liquida  efusiones
Citologia liquida efusiones
 
Pitiriasis versicolor y candidosis
Pitiriasis versicolor y candidosisPitiriasis versicolor y candidosis
Pitiriasis versicolor y candidosis
 
Simulation Singularity - when simulation faithfully mirrors the real world?
Simulation Singularity - when simulation faithfully mirrors the real world?Simulation Singularity - when simulation faithfully mirrors the real world?
Simulation Singularity - when simulation faithfully mirrors the real world?
 
API Management Platform Technical Evaluation Framework
API Management Platform Technical Evaluation FrameworkAPI Management Platform Technical Evaluation Framework
API Management Platform Technical Evaluation Framework
 
Seed treatment by Muhammed Aslam COH,Thrishur
Seed treatment by Muhammed Aslam COH,ThrishurSeed treatment by Muhammed Aslam COH,Thrishur
Seed treatment by Muhammed Aslam COH,Thrishur
 
The breakthrough forecast
The breakthrough forecastThe breakthrough forecast
The breakthrough forecast
 
Mozilla
MozillaMozilla
Mozilla
 
L28 29 - challenges paragraph 1)
L28   29 - challenges paragraph 1)L28   29 - challenges paragraph 1)
L28 29 - challenges paragraph 1)
 

Similar to PosterFormatRNYF(1)

A multi phase decision on reliability growth with latent failure modes
A multi phase decision on reliability growth with latent failure modesA multi phase decision on reliability growth with latent failure modes
A multi phase decision on reliability growth with latent failure modes
ASQ Reliability Division
 
IRJET- Metastability Mitigation & Error Masking of High Speed Flip-Flop
IRJET- Metastability Mitigation & Error Masking of High Speed Flip-FlopIRJET- Metastability Mitigation & Error Masking of High Speed Flip-Flop
IRJET- Metastability Mitigation & Error Masking of High Speed Flip-Flop
IRJET Journal
 
MODULE TITLE PROGRAMMABLE LOGIC CONTROLLERSTOPIC TITLE.docx
MODULE TITLE    PROGRAMMABLE LOGIC CONTROLLERSTOPIC TITLE.docxMODULE TITLE    PROGRAMMABLE LOGIC CONTROLLERSTOPIC TITLE.docx
MODULE TITLE PROGRAMMABLE LOGIC CONTROLLERSTOPIC TITLE.docx
roushhsiu
 
Ewdts 2018
Ewdts 2018Ewdts 2018
Ewdts 2018
Usatyuk Vasiliy
 
Javier Garcia - Verdugo Sanchez - Six Sigma Training - W4 Monte Carlo Simulat...
Javier Garcia - Verdugo Sanchez - Six Sigma Training - W4 Monte Carlo Simulat...Javier Garcia - Verdugo Sanchez - Six Sigma Training - W4 Monte Carlo Simulat...
Javier Garcia - Verdugo Sanchez - Six Sigma Training - W4 Monte Carlo Simulat...
J. García - Verdugo
 
LED電源回路アプリケーションガイド 金沢プレゼン資料
LED電源回路アプリケーションガイド 金沢プレゼン資料LED電源回路アプリケーションガイド 金沢プレゼン資料
LED電源回路アプリケーションガイド 金沢プレゼン資料
Tsuyoshi Horigome
 
Moc3011 optoacop motores 125 v
Moc3011 optoacop motores 125 vMoc3011 optoacop motores 125 v
Moc3011 optoacop motores 125 v
Pablo Inda-Huerta
 
Lect2 up330 (100328)
Lect2 up330 (100328)Lect2 up330 (100328)
Lect2 up330 (100328)aicdesign
 
Geohydrology ii (3)
Geohydrology ii (3)Geohydrology ii (3)
Geohydrology ii (3)
Amro Elfeki
 
[D08.00015] ROBUST AND OPTIMAL CONTROL FOR SUPERCONDUCTING QUBITS, 2-QUBIT G...
[D08.00015] ROBUST AND OPTIMAL CONTROL FOR  SUPERCONDUCTING QUBITS, 2-QUBIT G...[D08.00015] ROBUST AND OPTIMAL CONTROL FOR  SUPERCONDUCTING QUBITS, 2-QUBIT G...
[D08.00015] ROBUST AND OPTIMAL CONTROL FOR SUPERCONDUCTING QUBITS, 2-QUBIT G...
HarrisonBall1
 
MOSFET Model PSpice vs. Micro-Cap using TOSHIBA MOSFET
MOSFET Model PSpice vs. Micro-Cap using TOSHIBA MOSFETMOSFET Model PSpice vs. Micro-Cap using TOSHIBA MOSFET
MOSFET Model PSpice vs. Micro-Cap using TOSHIBA MOSFET
Tsuyoshi Horigome
 
Original Opto LTV-354T LTV354T 354T 354 SOP-4 New
Original Opto LTV-354T LTV354T 354T 354 SOP-4 NewOriginal Opto LTV-354T LTV354T 354T 354 SOP-4 New
Original Opto LTV-354T LTV354T 354T 354 SOP-4 New
AUTHELECTRONIC
 
Ltn173 kt01 c01
Ltn173 kt01 c01Ltn173 kt01 c01
Original Opto PC853H P853 853H 853 DIP-4 New SHARP
Original Opto PC853H P853 853H 853 DIP-4 New SHARPOriginal Opto PC853H P853 853H 853 DIP-4 New SHARP
Original Opto PC853H P853 853H 853 DIP-4 New SHARP
authelectroniccom
 
Original MOSFET N-Channel STGF10NC60KD GF10NC60KD 10NC60 10N60 10A 600V New
Original MOSFET N-Channel STGF10NC60KD GF10NC60KD 10NC60 10N60 10A 600V NewOriginal MOSFET N-Channel STGF10NC60KD GF10NC60KD 10NC60 10N60 10A 600V New
Original MOSFET N-Channel STGF10NC60KD GF10NC60KD 10NC60 10N60 10A 600V New
AUTHELECTRONIC
 
First-Order Open Loop VCO-Based ADC with XOR Gates as differentiator
First-Order Open Loop VCO-Based ADC with XOR Gates as differentiator First-Order Open Loop VCO-Based ADC with XOR Gates as differentiator
First-Order Open Loop VCO-Based ADC with XOR Gates as differentiator
IJMTST Journal
 
Adxl335
Adxl335Adxl335
Adxl335
sidd187
 

Similar to PosterFormatRNYF(1) (20)

A multi phase decision on reliability growth with latent failure modes
A multi phase decision on reliability growth with latent failure modesA multi phase decision on reliability growth with latent failure modes
A multi phase decision on reliability growth with latent failure modes
 
IRJET- Metastability Mitigation & Error Masking of High Speed Flip-Flop
IRJET- Metastability Mitigation & Error Masking of High Speed Flip-FlopIRJET- Metastability Mitigation & Error Masking of High Speed Flip-Flop
IRJET- Metastability Mitigation & Error Masking of High Speed Flip-Flop
 
20320140501015
2032014050101520320140501015
20320140501015
 
20320140501015
2032014050101520320140501015
20320140501015
 
20320140501015
2032014050101520320140501015
20320140501015
 
MODULE TITLE PROGRAMMABLE LOGIC CONTROLLERSTOPIC TITLE.docx
MODULE TITLE    PROGRAMMABLE LOGIC CONTROLLERSTOPIC TITLE.docxMODULE TITLE    PROGRAMMABLE LOGIC CONTROLLERSTOPIC TITLE.docx
MODULE TITLE PROGRAMMABLE LOGIC CONTROLLERSTOPIC TITLE.docx
 
Ewdts 2018
Ewdts 2018Ewdts 2018
Ewdts 2018
 
Javier Garcia - Verdugo Sanchez - Six Sigma Training - W4 Monte Carlo Simulat...
Javier Garcia - Verdugo Sanchez - Six Sigma Training - W4 Monte Carlo Simulat...Javier Garcia - Verdugo Sanchez - Six Sigma Training - W4 Monte Carlo Simulat...
Javier Garcia - Verdugo Sanchez - Six Sigma Training - W4 Monte Carlo Simulat...
 
LED電源回路アプリケーションガイド 金沢プレゼン資料
LED電源回路アプリケーションガイド 金沢プレゼン資料LED電源回路アプリケーションガイド 金沢プレゼン資料
LED電源回路アプリケーションガイド 金沢プレゼン資料
 
Moc3011 optoacop motores 125 v
Moc3011 optoacop motores 125 vMoc3011 optoacop motores 125 v
Moc3011 optoacop motores 125 v
 
Lect2 up330 (100328)
Lect2 up330 (100328)Lect2 up330 (100328)
Lect2 up330 (100328)
 
Geohydrology ii (3)
Geohydrology ii (3)Geohydrology ii (3)
Geohydrology ii (3)
 
[D08.00015] ROBUST AND OPTIMAL CONTROL FOR SUPERCONDUCTING QUBITS, 2-QUBIT G...
[D08.00015] ROBUST AND OPTIMAL CONTROL FOR  SUPERCONDUCTING QUBITS, 2-QUBIT G...[D08.00015] ROBUST AND OPTIMAL CONTROL FOR  SUPERCONDUCTING QUBITS, 2-QUBIT G...
[D08.00015] ROBUST AND OPTIMAL CONTROL FOR SUPERCONDUCTING QUBITS, 2-QUBIT G...
 
MOSFET Model PSpice vs. Micro-Cap using TOSHIBA MOSFET
MOSFET Model PSpice vs. Micro-Cap using TOSHIBA MOSFETMOSFET Model PSpice vs. Micro-Cap using TOSHIBA MOSFET
MOSFET Model PSpice vs. Micro-Cap using TOSHIBA MOSFET
 
Original Opto LTV-354T LTV354T 354T 354 SOP-4 New
Original Opto LTV-354T LTV354T 354T 354 SOP-4 NewOriginal Opto LTV-354T LTV354T 354T 354 SOP-4 New
Original Opto LTV-354T LTV354T 354T 354 SOP-4 New
 
Ltn173 kt01 c01
Ltn173 kt01 c01Ltn173 kt01 c01
Ltn173 kt01 c01
 
Original Opto PC853H P853 853H 853 DIP-4 New SHARP
Original Opto PC853H P853 853H 853 DIP-4 New SHARPOriginal Opto PC853H P853 853H 853 DIP-4 New SHARP
Original Opto PC853H P853 853H 853 DIP-4 New SHARP
 
Original MOSFET N-Channel STGF10NC60KD GF10NC60KD 10NC60 10N60 10A 600V New
Original MOSFET N-Channel STGF10NC60KD GF10NC60KD 10NC60 10N60 10A 600V NewOriginal MOSFET N-Channel STGF10NC60KD GF10NC60KD 10NC60 10N60 10A 600V New
Original MOSFET N-Channel STGF10NC60KD GF10NC60KD 10NC60 10N60 10A 600V New
 
First-Order Open Loop VCO-Based ADC with XOR Gates as differentiator
First-Order Open Loop VCO-Based ADC with XOR Gates as differentiator First-Order Open Loop VCO-Based ADC with XOR Gates as differentiator
First-Order Open Loop VCO-Based ADC with XOR Gates as differentiator
 
Adxl335
Adxl335Adxl335
Adxl335
 

PosterFormatRNYF(1)

  • 1. Reliability of Nano-scale Circuits: A Partial Journey of my PhD Usman Khalid Richard Newton Young Fellow Email: khalidu@diet.uniroma1.it Sapienza University of Rome, Italy Abstract Joint Impact of NBTI Aging with Process Variations Related Work and Background Definitions Influence of Threshold Variations on Reliability Future Work In future PhD work, the above schemes will be applied in order to compute the Reliability for a generic logic path for combinational and memory elements. As well as the work will be extended from CMOS to emerging technologies such as FinFETs and Fully Depleted (FD)-SOI technologies. Threshold variations and process variations in conjunction to voltage noise can be responsible of logic errors in digital circuits. The variations in process-induced parameters affect the probability of noise- induced faulty operation of digital logic cells. Furthermore, process variation together with NBTI aging have a huge impact on noise margins of memory elements such as flip-flops. This poster demonstrates the novel techniques to model threshold variations, process variations as well as NBTI aging phenomenon with verification Monte Carlo simulations scheme in terms of failure probability or reliability computation. Fig. 1. Left: Two inverter cells Right: Logic threshold voltages. Grey area denotes undefined VoutA logic value. Table : Failure probability for selected cases using Safe Operation Region approach for 𝑽 𝑰𝑵 high Table : Failure Probability Comparison b/w Safe Operation Region Vs Spice MC Simulations for both 𝑽 𝑰𝑵 high and low for σVin=0.30 INV A INV B Vout A Vout B VIL VIH Vout A Vout B Fig. 3: Left: Variation between VTHP vs. Vin; Right: High VIN; Bottom: Low VIN σ Tox σ Ndep σ Leff σ Weff σ Vin=0.15 σ Vin=0.20 σ Vin=0.25 σ Vin=0.30 15·10-12 20·1016 15·10-10 25·10-10 1.170·10-2 9.950·10-2 3.107·10-2 6.032·10-2 15·10-12 20·1016 25·10-10 30·10-10 1.170·10-2 9.960·10-2 3.101·10-2 6.033·10-2 20·10-12 25·1016 20·10-10 15·10-10 1.470·10-2 1.102·10-2 3.148·10-2 6.125·10-2 20·10-12 30·1016 30·10-10 25·10-10 1.460·10-2 1.100·10-2 3.146·10-2 6.121·10-2 25·10-12 15·1016 25·10-10 30·10-10 1.630·10-2 1.165·10-2 3.307·10-2 6.224·10-2 25·10-12 25·1016 25·10-10 25·10-10 1.640·10-2 1.165·10-2 3.308·10-2 6.221·10-2 30·10-12 25·1016 20·10-10 15·10-10 2.010·10-2 1.269·10-2 3.378·10-2 6.246·102 30·10-12 30·1016 30·10-10 30·10-10 2.000·10-2 1.267·10-2 3.375·10-2 6.241·102 Process Parameters Safe Operation Region Approach SPICE Monte Carlo Simulations HighVin σ Tox σ Ndep σ Leff σ Weff σVin=0.30 σ Vin=0.30 15·10-12 15·1016 20·10-10 15·10-10 0.060300 0.066700 20·10-12 15·1016 20·10-10 20·10-10 0.061270 0.068260 30·10-12 20·1016 20·10-10 20·10-10 0.062500 0.073530 25·10-12 25·1016 25·10-10 25·10-10 0.062210 0.074480 LowVin 15·10-12 15·1017 20·10-10 15·10-10 0.061790 0.062390 20·10-12 15·1017 20·10-10 20·10-10 0.062000 0.064003 30·10-12 20·1017 20·10-10 20·10-10 0.063920 0.064161 25·10-12 25·1017 25·10-10 25·10-10 0.063440 0.066714 We introduce NBTI degradation and process parameters variations, both VIL and VIH will be actually functions of such effects. We can formally express the dependence of VIL and VIH on oxide thickness (Tox), channel width (W) and length (L) as a pair of functions 𝑉𝐼𝐿 = 𝑉𝐼𝐿(𝑡 𝑜𝑥, 𝐿, 𝑊, 𝑌), 𝑉𝐼𝐻 = 𝑉𝐼𝐻(𝑡 𝑜𝑥, 𝐿, 𝑊, 𝑌). 0 0,2 0,4 0,6 0,8 1 0 3E-11 6E-11 9E-11 Vout Time (ps) Input HL 0 0,2 0,4 0,6 0,8 1 0 4E-11 8E-11 1,2E-10 Vout Time (ps) Input LH Vin Vtp Vtn Vout Vdd Fig. : First: Simulated circuit; Middle: Output voltages for different VTHP variations when Input HL. Last: Output voltages for different VTHP variations when Input LH Threshold Variations Reliability of Nano-scale Circuits Digital-Logic Level Bayesian Netwroks (BN) Probablistic Transfer Matrix (PTM) Probabilistic Gate Model (PGM) Booelan Difference Error Calculator Transistor-Level Stochastic Estimation Scheme Gate Reliability EDA Tool (GREDA) This Work Analytical, Semi-Analytical, Monte Carlo Sim. Failure Probaility Techniques VIN, VTHN, VTHP VIN, Tox, NDEP, Leff, Weff This Work Techniques of Estimation Reliability Process Variations NBTI Aging NBTI Aging, VIN, Tox, NDEP, Leff, Weff This Work This Work  ANALYTICAL Approach Mathematically, the probability of incorrect output is the probability that the three random variables 𝑉𝐼𝑁, 𝑉𝑇𝑁, 𝑉𝑇𝑃 fall outside the safe operation region, and can be computed analytically as a 3-D integral of the associated probability density function 𝑓𝑣 𝐼𝑁,𝑣 𝑇𝑁,𝑣 𝑇𝑃 ∙ . We discretize the integral computation by defining 𝑉𝐼𝑁 = 𝑖 ∙ 𝛿𝑣𝑖𝑛, 𝑉𝑇𝑁 = 𝑗 ∙ 𝛿𝑡𝑛, 𝑉𝑇𝑃 = 𝑘 ∙ 𝛿𝑣𝑡𝑝 so that we obtain 𝑃𝑒𝑟𝑟𝑜𝑟 = 𝑖=−∞ +∞ 𝑝 𝑣𝑖𝑛 𝑖 𝑗=−∞ +∞ 𝑝 𝑣𝑡𝑛 𝑗 𝑘=𝐻 𝑖,𝑗 +∞ 𝑝 𝑣𝑡𝑝 𝑘 where 𝑝 𝑣𝑖𝑛 = 𝑖∙𝛿𝑣𝑖𝑛 𝑖+1 ∙𝛿𝑣𝑖𝑛 𝑓𝑣 𝐼𝑁 𝑉𝐼𝑁 𝑑𝑉𝐼𝑁 and similarly for 𝑝𝑗, 𝑝 𝑘, and 𝐻 𝑖, 𝑗 = 𝐺 𝑖 ∙ 𝛿𝑣𝑖𝑛 , 𝑗 ∙ 𝛿𝑡𝑛 / 𝛿𝑣𝑡𝑝. In our analysis, we assume normal distributions and independence of VTN and VTP 0 0,02 0,04 0,06 0,08 0,1 0,12 0,14 0,16 SPICE MC analytical Results shows that in all cases the relative difference of the analytical calculation with respect to SPICE MC is below 5%. The SPICE MC run time was >100 hours per each case. Semi-Analytical “Safe Operation Region” 1E-50 1E-45 1E-40 1E-35 1E-30 1E-25 1E-20 1E-15 1E-10 1E-05 1 0 5 10 15 20 25 30 35 40 45 50 0.02 0.03 0.04 0.05 Fig: Error probability results. Omitted values are below 10-50 Technology: 45 nm 32 nm 22 nm 16 nm σVTN 0.0237 0.0341 0.0516 0.0715 σVTP 0.0167 0.0220 0.0346 0.0478 Table – Technology data We performed the analysis of the error probability 𝜹 = (𝒕 𝒐𝒙 𝑵 𝑨)/ 𝑾 𝒆𝒇𝒇 𝑳 𝒆𝒇𝒇 Technology 45 nm 32 nm 22 nm 16 nm VDD 1.0 0.9 0.8 0.7 VIH 0.60 0.57 0.54 0.48 VIL 0.38 0.33 0.28 0.22 Table – Logic thresholds values -0.1 0.1 0.3 0.5 -0.5 0 0.5 1 1.5 -1 0 1 Vthn Vin (Low Value) Vthp Safe Operation Region 0.5 0.7 0.9 1.11.1 -0.5 0 0.5 1 1.5 -2 -1 0 1 2 Vthn Vin (High Value) Vthp Safe Operation Region 0.00E+00 5.00E-04 1.00E-03 1.50E-03 2.00E-03 2.50E-03 3.00E-03 s Tox P{failure} (a) (b) (c) Fig: (a) Probability of Failure versus Vin standard deviation for different standard deviation of Tox. (b): Detail of the dependency of Probability of failure from Tox for σ Vin=0.25 (c) Trendline of Tox behavior with extended Standard deviations 𝑃𝑒𝑟𝑟𝑜𝑟 = −∞ +∞ −∞ +∞ 𝐺 𝑉 𝐼𝑁,𝑉 𝑇𝑁 +∞ 𝑓𝑣 𝐼𝑁,𝑣 𝑇𝑁,𝑣 𝑇𝑃 𝑉𝐼𝑁, 𝑉𝑇𝑁, 𝑉𝑇𝑃 𝑑𝑉𝑇𝑃 𝑑𝑉𝐼𝑁 𝑑𝑉𝑇𝑁. Fig: 2D and 3D diagram of Safe operation region for VTN, VTP and VIN variation for High and Low VIN D CKN CK CKN CK Q Inv 1 Inv 2 TG 1 TG 2 Inv 3 Inv 5_load Inv 4 Fig. Transmission Gate based static flip-flop Inv 1CK CKN CKN CK Inv 3CKN CK CK CKN Inv 5_load Q D VDD VDD VDD VDD CKN CK VDD CK CKN VDD CK CKN TG 1 CKN CK TG 2 Inv 4Inv 2 Fig. Bootstrap C2MOS based pseudo-static flip-flop 0 years 10 years Q edge tCKtoQ tSetup MIN tCKtoQ tSetup MIN flip flop 1 0-to-1 11.57 ps 09 ps 13.51 ps 10 ps 1-to-0 16.59 ps 11 ps 20.26 ps 16 ps flip flop 2 0-to-1 04.20 ps 12 ps 05.78 ps 16 ps 1-to-0 06.35 ps 15 ps 07.40 ps 19 ps Table – Characterized propagation delay and minimum setup time for different types of flip flops at different aging times VDD 100 p 100 p + trf 0 V V VIL Time (s) clkQVD VDD 100 p 100 p + trf 0 V V Time (s) clkQ VD VDD 100 p 100 p + trf 0 V V Time (s) clk Q VD (a) (b) (c) Fig. 8. Timing scheme for the selection of: Left: VIL value, Right: VIH value VDD 100 p 100 p + trf 0 V V VIH Time (s) clkQVD VDD 100 p 100 p + trf 0 V V Time (s) clkQ VD VDD 100 p 100 p + trf 0 V V Time (s) clk Q VD (a) (b) (c) Setup time margin Years Nominal MC Mean MC Sigma long VIL 0 0.398 0.402 0.01366 2 0.347 0.350 0.01102 5 0.336 0.338 0.01051 7 0.331 0.333 0.01033 10 0.326 0.328 0.01014 VIH 0 0.679 0.677 0.01947 2 0.746 0.743 0.02030 5 0.761 0.757 0.02024 8 0.767 0.763 0.02011 10 0.774 0.770 0.02001 short VIL 0 0.148 0.151 0.02503 2 0.060 0.063 0.02661 5 0.038 0.042 0.02675 7 0.029 0.032 0.02672 10 0.018 0.022 0.02658 VIH 0 0.868 0.866 0.02873 2 0.958 0.955 0.03163 5 0.980 0.977 0.03227 8 0.989 0.987 0.03258 10 1.000 0.998 0.03296 Table . Noise Margin Results for flip flop 1. Nominal Approach vs SPICE Monte Carlo 0,310 0,320 0,330 0,340 0,350 0,360 0,370 0 5 10 15 NoiseMargins Years VIL (MC Mean) VIL (Nominal) Poly. (VIL (MC Mean)) Poly. (VIL (Nominal)) 0,72 0,73 0,74 0,75 0,76 0,77 0,78 0,79 0,8 0 5 10 15 NoiseMargins Years VIH (Nominal) VIH (MC Mean) Poly. (VIH (Nominal)) Poly. (VIH (MC Mean)) Fig: Error probability results. Omitted values are below 10-50 Logic gate Logic gate Logic gate Logic gate FF The probability that the register samples a wrong value due to the voltage drop/rise is equal to the probability that the voltage noise margins of the flip-flops in the register is smaller than the voltage drop/rise 𝑣, i.e. formally: Pr 𝑉𝐼𝐿 < 𝑣 = −∞ 𝑣 𝒩 𝑥, 𝜇 𝑉𝐼𝐿, 𝜎 𝑉𝐼𝐿 𝑑𝑥, for logic ‘0’ at register input, with positive voltage rise v; Pr 𝑉𝐼𝐻 > 𝑉 𝐷𝐷 + 𝑣 = 𝑉𝐷𝐷+𝑣 +∞ 𝒩 𝑥, 𝜇 𝑉𝐼𝐻, 𝜎 𝑉𝐼𝐻 𝑑𝑥, for logic ‘1’ at register input, with negative voltage drop 𝑣; where 𝒩 𝑥, 𝜇, 𝜎 is the normal probability density function. Fig: A generic path in digital architecture design. 0 years 10 years drop/rie [V] +0.05 +0.1 -0.05 -0.1 +0.05 +0.1 -0.05 -0.1 FF A 4.4e-05 2.7e-02 1.7e-03 1.2e-01 8.9e-01 9.9e-01 9.4e-01 9.9e-01 FF B 4.9e-05 1.7e-02 8.8e-05 2.4e-02 7.7e-01 9.9e-01 8.4e-01 9.9e-01 FF C 2.3e-04 5.7e-02 4.9e-05 1.7e-02 8.8e-01 9.9e-01 7.3e-01 9.8e-01 FF D 3.2e-15 1.2e-10 6.3e-15 5.4e-10 1.4e-01 3.6e-01 5.6e-01 8.0e-01 FF E 1.0e-02 2.9e-01 1.1e-16 6.4e-11 1.7e-02 3.3e-01 4.6e-01 8.7e-01 FF F 4.6e-07 9.0e-05 2.2e-13 1.7e-08 6.5e-01 8.3e-01 7.1e-01 9.4e-01 FF G 5.1e-07 4.0e-05 8.2e-12 2.1e-08 7.0e-01 8.9e-01 2.3e-01 4.7e-01 Table – Failure probability of registers for different types of flip flops at different aging times (short setup time design case)