SlideShare a Scribd company logo
1 of 1
Download to read offline
Design	
  of	
  a	
  Passive	
  Ankle	
  Prosthesis	
  with	
  Energy	
  Return	
  that	
  
Increases	
  with	
  Increasing	
  Walking	
  Velocity	
  
Alexander	
  Folz 	
  Advisor:	
  Dr.	
  Joseph	
  Schimmels 	
  Marque<e	
  University	
  
PROBLEM	
  
An	
   esFmated	
   159,000	
   TransFbial	
   (below	
   the	
   knee)	
  
amputaFons	
   were	
   performed	
   in	
   the	
   US	
   in	
   19961.	
   These	
  
individuals	
  are	
  oTen	
  met	
  with	
  a	
  difficult	
  decision:	
  selecFon	
  of	
  
a	
   prosthesis.	
   LimitaFons	
   of	
   currently	
   available	
   prostheses	
  
moFvates	
  work	
  on	
  a	
  new	
  soluFon,	
  the	
  EaSY	
  Walk,	
  a	
  passive	
  
device	
  that	
  mimics	
  two	
  key	
  aspects	
  of	
  the	
  natural	
  ankle:	
  non-­‐
linear	
   rotaFonal	
   sFffness	
   through	
   implementaFon	
   of	
   a	
  
sFffening	
  flexure	
  mechanism	
  and	
  rotaFonal	
  work	
  output	
  that	
  
varies	
   as	
   a	
   funcFon	
   of	
   walking	
   velocity	
   to	
   propel	
   the	
   user	
  
forward.	
  
	
  
INTRODUCTION	
  
MECHANICAL	
  REALIZATION	
  
§  Fabricate	
  and	
  build	
  prototype	
  device	
  
§  Robot	
  and	
  human	
  tesFng	
  
Figure	
  2:	
  Ankle	
  profiles	
  as	
  a	
  funcFon	
  of	
  Fme,	
  stance	
  phase2	
  
FUTURE	
  WORK	
  
CITATIONS	
  
CONCLUSIONS	
  
Post	
  opFmizaFon,	
  the	
  modeled	
  prosthesis	
  averaged	
  a	
  return	
  
of	
  58.57%	
  of	
  natural	
  ankle	
  work	
  over	
  12	
  trials	
  for	
  15	
  mm	
  of	
  
deflecFon	
  while	
  showing	
  sFffness	
  non-­‐lineariFes	
  akin	
  to	
  those	
  
of	
  the	
  natural	
  ankle	
  were	
  achieved.	
  In	
  addiFon,	
  as	
  shown	
  in	
  
Fig.	
  10,	
  the	
  device	
  is	
  capable	
  of	
  mapping	
  addiFonal	
  work	
  from	
  
the	
   translaFonal	
   space	
   to	
   the	
   rotaFonal	
   space	
   as	
   leg	
   force	
  
(and	
  therefore	
  walking	
  velocity)	
  increases.	
  
	
  
FUNCTION	
  THROUGHOUT	
  GAIT	
  CYCLE	
  
[1]:	
  Owings,	
  M.,	
  and	
  Kozak,	
  L.	
  J.,	
  1998.	
  “Ambulatory	
  and	
  inpaFent	
  procedures	
  in	
  the	
  united	
  
states,	
  1996”.	
  Vital	
  and	
  Health	
  StaFsFcs,	
  Series	
  13(139),	
  p.	
  24.	
  	
  
[2]:	
  Winter,	
  David	
  A.	
  Biomechanics	
  and	
  Motor	
  Control	
  of	
  Human	
  Mo5on.	
  New	
  Jersey:	
  John	
  
Wiley	
  &	
  Sons,	
  2009	
  
[3]:Palmer,	
  M.	
  L.	
  (2002).	
  Sagi9al	
  Plane	
  Characteriza5on	
  of	
  Normal	
  Human	
  Ankle	
  Func5on	
  
Across	
  a	
  Range	
  of	
  Walking	
  Gait	
  Speeds.	
  Thesis,	
  Massachuse<s	
  InsFtute	
  of	
  Technology,	
  
Mechanical	
  Engineering	
  	
  
	
  
MODELED	
  RESULTS	
  
ACKNOWLEDGEMENTS	
  
Work	
   supported	
   by	
   the	
   Department	
   of	
   Health	
   and	
   Human	
  
Services/NaFonal	
   InsFtute	
   of	
   Disability	
   and	
   RehabilitaFon	
  
Research.	
  
(1):	
  Heel	
  Strike	
  
K1	
  	
  compresses	
  
due	
  to	
  increasing	
  
leg	
  force	
  
(2):	
  Foot	
  Flat	
  
Ankle	
  planarflexes;	
  
K1	
  conFnues	
  to	
  
compress	
  unFl	
  leg	
  
force	
  reaches	
  a	
  
maxima	
  
	
  
(3):	
  Max	
  Leg	
  Force	
  
K1	
  looks	
  to	
  
decompress;	
  Sprags	
  
(i.e.,	
  mech.	
  diodes)	
  
lock	
  K1	
  at	
  current	
  
deflecFon	
  
	
  
(4.1):	
  Max	
  
Dorsiflexion	
  1	
  
Jamming	
  mech.	
  
causes	
  lower	
  K1	
  to	
  
“roll	
  off”	
  Body	
  B	
  
(4.2):	
  Max	
  
Dorsiflexion	
  2	
  
FricFon	
  between	
  
Yellow	
  Body	
  and	
  
Body	
  A	
  now	
  
constrains	
  moFon	
  of	
  
lower	
  K1	
  relaFve	
  to	
  
Body	
  A	
  
(5):	
  Powered	
  
Push-­‐off	
  
K1	
  now	
  provides	
  
moment	
  about	
  
the	
  ankle	
  joint,	
  
aiding	
  in	
  push-­‐off	
  
(6):	
  Toe	
  Off	
  
K1	
  conFnues	
  to	
  
provide	
  moment	
  
about	
  ankle	
  joint	
  
through	
  rest	
  of	
  stance	
  
cycle	
  
Swing	
  Phase	
  
Leg	
  force	
  now	
  acts	
  
upwards;	
  K2	
  unlocks	
  
sprags	
  and	
  lower	
  K1	
  
KinemaFcally	
  forced	
  
to	
  return	
  to	
  Body	
  B	
  
-­‐50	
  
0	
  
50	
  
100	
  
150	
  
200	
  
250	
  
-­‐25	
   -­‐20	
   -­‐15	
   -­‐10	
   -­‐5	
   0	
   5	
   10	
   15	
   20	
  
Ankle	
  Moment	
  [Nm]	
  
Ankle	
  Angle	
  [Deg]	
  
Prosthesis,	
  Modeled	
   Natural	
  Ankle	
  
The	
  prosthesis	
  was	
  opFmized	
  
for	
   12	
   sets	
   of	
   data,	
   11	
   sets	
  
from	
   Marque<e	
   University	
  
data	
  acquired	
  from	
  3	
  differing	
  
subjects	
   and	
   Winters	
   data.	
  
One	
   representaFve	
   set	
   of	
  
data	
  from	
  the	
  12	
  (Set	
  9)	
  was	
  
selected	
  and	
  plo<ed	
  at	
  right.	
  
Work	
   output	
   percentages,	
  
compared	
   to	
   the	
   natural	
  
ankle,	
   are	
   tabulated	
   in	
   Table	
  
1.	
  
In	
   addiFon,	
   the	
   primary	
   impetus	
   of	
   this	
   work	
   was	
   to	
   mimic	
  
energy	
  return	
  at	
  various	
  walking	
  velociFes.	
  It	
  is	
  known	
  that	
  leg	
  
force	
  varies	
  relaFvely	
  linearly	
  with	
  walking	
  velocity.	
  As	
  such,	
  	
  
to	
  test	
  this	
  objecFve,	
  known	
  leg	
  force	
  data	
  was	
  mulFplied	
  by	
  
several	
   scalar	
   values	
   to	
   simulate	
   various	
   walking	
   velociFes.	
  
Finally,	
  work	
  was	
  calculated	
  at	
  each	
  of	
  these	
  scalar	
  mulFples	
  
for	
   all	
   12	
   data	
   sets	
   and	
   averaged.	
   The	
   results	
   are	
   plo<ed	
  
below:	
  
0.0	
  
2.0	
  
4.0	
  
6.0	
  
8.0	
  
10.0	
  
12.0	
  
14.0	
  
16.0	
  
0.4	
   0.6	
   0.8	
   1	
   1.2	
   1.4	
   1.6	
  
WORK	
  [J]	
  
SCALAR	
  MULTIPLIER	
  OF	
  LEG	
  FORCE	
  
MODELED	
  RESULTS,	
  CONT.	
  
Figure	
  1:	
  Work	
  flow	
  diagram	
  for	
  2-­‐DOF	
  Novel	
  Ankle	
  Prosthesis	
  IniFaFve	
  
Figure	
  3:	
  Human	
  Walking	
  KineFcs	
  as	
  a	
  funcFon	
  of	
  Gait	
  Speed3	
  
Through	
  3	
  iteraFons,	
  the	
  design	
  philosophy	
  for	
  the	
  project	
  has	
  
stayed	
  idenFcal:	
  store	
  translaFon	
  work	
  along	
  the	
  leg	
  and	
  re-­‐
map	
  it	
  as	
  rotaFonal	
  work	
  about	
  the	
  ankle	
  joint.	
  
The	
  3rd	
  iteraFon	
  design	
  differenFates	
  itself	
  from	
  the	
  previous	
  
two	
  in	
  the	
  following	
  ways:	
  
A.  Early	
  stance	
  deflecFon/energy	
  storage	
  (Pt.	
  (3)	
  in	
  Fig.	
  2)	
  
B.  Variable	
  work	
  output	
  as	
  a	
  funcFon	
  of	
  leg	
  force	
  
Both	
   of	
   these	
   are	
   accomplished	
   through	
   the	
   use	
   of	
   Fming	
  
mechanisms	
  based	
  on	
  maxima/minima	
  of	
  ankle	
  profiles	
  (i.e.,	
  
dŸ/dt	
  =	
  0).	
  Regarding	
  B.,	
  an	
  increase	
  in	
  F(r),	
  assuming	
  opFmal	
  
work	
   mapping,	
   will	
   lead	
   to	
   a	
   corresponding	
   increase	
   in	
  
rotaFonal	
   work	
   output	
   (See	
   Fig.	
   1).	
   This	
   falls	
   inline	
   with	
  
desirable	
  ankle	
  funcFon	
  at	
  varying	
  walking	
  velociFes	
  as	
  shown	
  
in	
  Fig.	
  3.	
  
Figure	
  4:	
  Device	
  funcFon	
  at	
  criFcal	
  moments	
  in	
  the	
  gait	
  cycle;	
  See	
  Fig.	
  2	
  for	
  ankle	
  kineFcs	
  and	
  kinemaFcs	
  at	
  each	
  of	
  these	
  points	
  in	
  the	
  gait	
  cycle	
  
Figure	
  6:	
  Final	
  device,	
  isometric	
  view	
  
Figure	
  7:	
  Final	
  device,	
  side	
  view	
  
Figure	
  8:	
  RotaFonal	
  jamming	
  mechanism	
  and	
  fricFon	
  
block	
  
Figure	
  5:	
  TranslaFonal	
  jamming	
  mechanism	
  (sprags	
  
acFng	
  as	
  a	
  mechanical	
  diode)	
  
Figure	
  9:	
  Modeled	
  prosthesis	
  performance	
  compared	
  to	
  natural	
  ankle	
  of	
  a	
  
representaFve	
  Marque<e	
  University	
  test	
  subject	
  
Table	
  1:	
  Percent	
  of	
  Natural	
  Ankle	
  Work	
  
Set	
  1	
   Set	
  2	
   Set	
  3	
   Set	
  4	
  
Sub	
  1	
   61.60	
   60.51	
   94.15	
   47.49	
  
Sub	
  3	
   38.40	
   30.15	
   28.20	
   32.25	
  
Sub	
  4	
   119.00	
   86.82	
   79.94	
   N/A	
  
Winters	
   24.00	
   N/A	
   N/A	
   N/A	
  
Average	
   58.57	
  
Figure	
  10:	
  Modeled	
  work	
  output	
  at	
  various	
  levels	
  of	
  leg	
  force	
  
0	
   0.5	
   1	
   1.5	
   2	
   2.5	
  
-­‐1	
  
0	
  
1	
  
2	
  
3	
  
4	
  
5	
  
6	
  
7	
  
8	
  
-­‐1	
  
0	
  
1	
  
2	
  
3	
  
4	
  
5	
  
6	
  
7	
  
8	
  
0	
   0.5	
   1	
   1.5	
   2	
   2.5	
  
	
  FORCE	
  	
  PER	
  UNIT	
  MASS	
  
[N/KG]	
  
WORK	
  PER	
  UNIT	
  MASS	
  
[J/KG]	
  
GAIT	
  SPEED	
  [M/S]	
  
(Normalized	
  Ankle	
  Work)	
  *10	
   Normalized	
  Mean	
  Ground	
  ReacFon	
  Force	
  

More Related Content

What's hot

Takahashi et al 2016_foot stiffness
Takahashi et al 2016_foot stiffnessTakahashi et al 2016_foot stiffness
Takahashi et al 2016_foot stiffness
Neelam Modi
 
Final Year Project 2015
Final Year Project 2015Final Year Project 2015
Final Year Project 2015
Richard Turner
 
ME547 FInal Report
ME547 FInal ReportME547 FInal Report
ME547 FInal Report
Jinyi Xie
 
DW15Abstract_Hessel Anthony_Modified 3-12
DW15Abstract_Hessel Anthony_Modified 3-12DW15Abstract_Hessel Anthony_Modified 3-12
DW15Abstract_Hessel Anthony_Modified 3-12
Anthony Hessel
 
Adaptive Biarticular Muscle Force Control for Humanoid Robot Arms
Adaptive Biarticular Muscle Force Control for Humanoid Robot ArmsAdaptive Biarticular Muscle Force Control for Humanoid Robot Arms
Adaptive Biarticular Muscle Force Control for Humanoid Robot Arms
toukaigi
 
Muscle Force Control of a Kinematically Redundant Bionic Arm with Real-Time P...
Muscle Force Control of a Kinematically Redundant Bionic Arm with Real-Time P...Muscle Force Control of a Kinematically Redundant Bionic Arm with Real-Time P...
Muscle Force Control of a Kinematically Redundant Bionic Arm with Real-Time P...
toukaigi
 
A Study on 3D Finite Element Analysis of Anterior Cruciate Ligament Behavior ...
A Study on 3D Finite Element Analysis of Anterior Cruciate Ligament Behavior ...A Study on 3D Finite Element Analysis of Anterior Cruciate Ligament Behavior ...
A Study on 3D Finite Element Analysis of Anterior Cruciate Ligament Behavior ...
ijsrd.com
 
Dissertation Completed
Dissertation CompletedDissertation Completed
Dissertation Completed
Joel Huskisson
 

What's hot (20)

FINAL PAPER
FINAL PAPERFINAL PAPER
FINAL PAPER
 
Takahashi et al 2016_foot stiffness
Takahashi et al 2016_foot stiffnessTakahashi et al 2016_foot stiffness
Takahashi et al 2016_foot stiffness
 
Final Year Project 2015
Final Year Project 2015Final Year Project 2015
Final Year Project 2015
 
Mi gliaccio et al. 2018 leg press vs. smith
Mi gliaccio et al. 2018 leg press vs. smithMi gliaccio et al. 2018 leg press vs. smith
Mi gliaccio et al. 2018 leg press vs. smith
 
Lower Limb Musculoskeletal Modeling for Standing and Sitting Event by using M...
Lower Limb Musculoskeletal Modeling for Standing and Sitting Event by using M...Lower Limb Musculoskeletal Modeling for Standing and Sitting Event by using M...
Lower Limb Musculoskeletal Modeling for Standing and Sitting Event by using M...
 
A new look at the ball disteli diagram and its relevance to knee proprioception
A new look at the ball disteli diagram and its relevance to knee proprioceptionA new look at the ball disteli diagram and its relevance to knee proprioception
A new look at the ball disteli diagram and its relevance to knee proprioception
 
Finite element stress analysis of artificial femur head on hip joint
Finite element stress analysis of artificial femur head on hip jointFinite element stress analysis of artificial femur head on hip joint
Finite element stress analysis of artificial femur head on hip joint
 
ME547 FInal Report
ME547 FInal ReportME547 FInal Report
ME547 FInal Report
 
Suplex - Poster
Suplex - PosterSuplex - Poster
Suplex - Poster
 
DW15Abstract_Hessel Anthony_Modified 3-12
DW15Abstract_Hessel Anthony_Modified 3-12DW15Abstract_Hessel Anthony_Modified 3-12
DW15Abstract_Hessel Anthony_Modified 3-12
 
REHAB
REHABREHAB
REHAB
 
Study
StudyStudy
Study
 
Adaptive Biarticular Muscle Force Control for Humanoid Robot Arms
Adaptive Biarticular Muscle Force Control for Humanoid Robot ArmsAdaptive Biarticular Muscle Force Control for Humanoid Robot Arms
Adaptive Biarticular Muscle Force Control for Humanoid Robot Arms
 
Muscle Force Control of a Kinematically Redundant Bionic Arm with Real-Time P...
Muscle Force Control of a Kinematically Redundant Bionic Arm with Real-Time P...Muscle Force Control of a Kinematically Redundant Bionic Arm with Real-Time P...
Muscle Force Control of a Kinematically Redundant Bionic Arm with Real-Time P...
 
A Study on 3D Finite Element Analysis of Anterior Cruciate Ligament Behavior ...
A Study on 3D Finite Element Analysis of Anterior Cruciate Ligament Behavior ...A Study on 3D Finite Element Analysis of Anterior Cruciate Ligament Behavior ...
A Study on 3D Finite Element Analysis of Anterior Cruciate Ligament Behavior ...
 
Dissertation Completed
Dissertation CompletedDissertation Completed
Dissertation Completed
 
An emg driven-musculoskeletal_model_to_e
An emg driven-musculoskeletal_model_to_eAn emg driven-musculoskeletal_model_to_e
An emg driven-musculoskeletal_model_to_e
 
Bone Loss in Long-Duration Spaceflight: Measurements and Countermeasures
Bone Loss in Long-Duration Spaceflight: Measurements and CountermeasuresBone Loss in Long-Duration Spaceflight: Measurements and Countermeasures
Bone Loss in Long-Duration Spaceflight: Measurements and Countermeasures
 
2012 UKSCA poster
2012 UKSCA poster2012 UKSCA poster
2012 UKSCA poster
 
ICPES 2011 posters
ICPES 2011 postersICPES 2011 posters
ICPES 2011 posters
 

Viewers also liked

ANTICOAGULATE CAMPAIGN CLINICIANS TOOLKIT - BOOKLET SINGLE PAGE
ANTICOAGULATE CAMPAIGN CLINICIANS TOOLKIT - BOOKLET SINGLE PAGEANTICOAGULATE CAMPAIGN CLINICIANS TOOLKIT - BOOKLET SINGLE PAGE
ANTICOAGULATE CAMPAIGN CLINICIANS TOOLKIT - BOOKLET SINGLE PAGE
Jo Jerrome
 

Viewers also liked (11)

4.เรื่องการบริหารราชการยุคใหม่โดยดร.สมโภชน์ นพคุณ (หน้า83 99)
4.เรื่องการบริหารราชการยุคใหม่โดยดร.สมโภชน์ นพคุณ (หน้า83 99)4.เรื่องการบริหารราชการยุคใหม่โดยดร.สมโภชน์ นพคุณ (หน้า83 99)
4.เรื่องการบริหารราชการยุคใหม่โดยดร.สมโภชน์ นพคุณ (หน้า83 99)
 
Bassam's ETD
Bassam's ETDBassam's ETD
Bassam's ETD
 
Ruggero Pesce - scrittore
Ruggero Pesce - scrittoreRuggero Pesce - scrittore
Ruggero Pesce - scrittore
 
GIIFT-Brochure-No.-2
GIIFT-Brochure-No.-2GIIFT-Brochure-No.-2
GIIFT-Brochure-No.-2
 
Presentacion
PresentacionPresentacion
Presentacion
 
ANTICOAGULATE CAMPAIGN CLINICIANS TOOLKIT - BOOKLET SINGLE PAGE
ANTICOAGULATE CAMPAIGN CLINICIANS TOOLKIT - BOOKLET SINGLE PAGEANTICOAGULATE CAMPAIGN CLINICIANS TOOLKIT - BOOKLET SINGLE PAGE
ANTICOAGULATE CAMPAIGN CLINICIANS TOOLKIT - BOOKLET SINGLE PAGE
 
Triángulos notables
Triángulos notablesTriángulos notables
Triángulos notables
 
О проведении Фестиваля Межрайонного Совета Директоров образовательных организ...
О проведении Фестиваля Межрайонного Совета Директоров образовательных организ...О проведении Фестиваля Межрайонного Совета Директоров образовательных организ...
О проведении Фестиваля Межрайонного Совета Директоров образовательных организ...
 
Historia del diseño en latinoamerica.
Historia del diseño en latinoamerica.Historia del diseño en latinoamerica.
Historia del diseño en latinoamerica.
 
Titanic
TitanicTitanic
Titanic
 
Sherlock Mimi's media coursework
Sherlock Mimi's media courseworkSherlock Mimi's media coursework
Sherlock Mimi's media coursework
 

Similar to folza_meen_gs_poster_2016

ADAPTIVE TREADMILL CONTROL BY HUMAN WILL
ADAPTIVE TREADMILL CONTROL BY HUMAN WILLADAPTIVE TREADMILL CONTROL BY HUMAN WILL
ADAPTIVE TREADMILL CONTROL BY HUMAN WILL
toukaigi
 
Natural-Gait-FIU-FCRAR2015
Natural-Gait-FIU-FCRAR2015Natural-Gait-FIU-FCRAR2015
Natural-Gait-FIU-FCRAR2015
Alexis Garo
 
Real-time Estimation of Human’s Intended Walking Speed for Treadmill-style Lo...
Real-time Estimation of Human’s Intended Walking Speed for Treadmill-style Lo...Real-time Estimation of Human’s Intended Walking Speed for Treadmill-style Lo...
Real-time Estimation of Human’s Intended Walking Speed for Treadmill-style Lo...
toukaigi
 
ToR Poster - Peter Farlow v3
ToR Poster - Peter Farlow v3ToR Poster - Peter Farlow v3
ToR Poster - Peter Farlow v3
Peter Farlow
 
Squat jump Biomechanics
Squat jump BiomechanicsSquat jump Biomechanics
Squat jump Biomechanics
Daniel Yazbek
 
Modeling and Control of a Humanoid Robot Arm with Redundant Biarticular Muscl...
Modeling and Control of a Humanoid Robot Arm with Redundant Biarticular Muscl...Modeling and Control of a Humanoid Robot Arm with Redundant Biarticular Muscl...
Modeling and Control of a Humanoid Robot Arm with Redundant Biarticular Muscl...
toukaigi
 
Frontal motion analysis of the knee during a bicycle pedal revolution 2011
Frontal motion analysis of the knee during a bicycle pedal revolution 2011Frontal motion analysis of the knee during a bicycle pedal revolution 2011
Frontal motion analysis of the knee during a bicycle pedal revolution 2011
Harry_Sowieja
 
A LaPier Sigma Xi 2021 slides
A LaPier Sigma Xi 2021 slides A LaPier Sigma Xi 2021 slides
A LaPier Sigma Xi 2021 slides
Ansel LaPier
 
The Effects of Heel Lift Height on Back Squat Performance
The Effects of Heel Lift Height on Back Squat PerformanceThe Effects of Heel Lift Height on Back Squat Performance
The Effects of Heel Lift Height on Back Squat Performance
Christopher Johnston
 
Jbit Medpro Review - Lower Limb Purdue Biomechanical Analysis
Jbit Medpro Review - Lower Limb Purdue Biomechanical AnalysisJbit Medpro Review - Lower Limb Purdue Biomechanical Analysis
Jbit Medpro Review - Lower Limb Purdue Biomechanical Analysis
Jbit Affiliate
 

Similar to folza_meen_gs_poster_2016 (20)

MAE501 Independent Study
MAE501 Independent StudyMAE501 Independent Study
MAE501 Independent Study
 
ADAPTIVE TREADMILL CONTROL BY HUMAN WILL
ADAPTIVE TREADMILL CONTROL BY HUMAN WILLADAPTIVE TREADMILL CONTROL BY HUMAN WILL
ADAPTIVE TREADMILL CONTROL BY HUMAN WILL
 
Natural-Gait-FIU-FCRAR2015
Natural-Gait-FIU-FCRAR2015Natural-Gait-FIU-FCRAR2015
Natural-Gait-FIU-FCRAR2015
 
WISENC-15
WISENC-15WISENC-15
WISENC-15
 
Cavallaro2005
Cavallaro2005Cavallaro2005
Cavallaro2005
 
Real-time Estimation of Human’s Intended Walking Speed for Treadmill-style Lo...
Real-time Estimation of Human’s Intended Walking Speed for Treadmill-style Lo...Real-time Estimation of Human’s Intended Walking Speed for Treadmill-style Lo...
Real-time Estimation of Human’s Intended Walking Speed for Treadmill-style Lo...
 
ToR Poster - Peter Farlow v3
ToR Poster - Peter Farlow v3ToR Poster - Peter Farlow v3
ToR Poster - Peter Farlow v3
 
MAE501 Independent Study
MAE501 Independent StudyMAE501 Independent Study
MAE501 Independent Study
 
Squat jump Biomechanics
Squat jump BiomechanicsSquat jump Biomechanics
Squat jump Biomechanics
 
Design of a Super Twisting Sliding Mode Controller for an MR Damper-Based Sem...
Design of a Super Twisting Sliding Mode Controller for an MR Damper-Based Sem...Design of a Super Twisting Sliding Mode Controller for an MR Damper-Based Sem...
Design of a Super Twisting Sliding Mode Controller for an MR Damper-Based Sem...
 
Modeling and Control of a Humanoid Robot Arm with Redundant Biarticular Muscl...
Modeling and Control of a Humanoid Robot Arm with Redundant Biarticular Muscl...Modeling and Control of a Humanoid Robot Arm with Redundant Biarticular Muscl...
Modeling and Control of a Humanoid Robot Arm with Redundant Biarticular Muscl...
 
Frontal motion analysis of the knee during a bicycle pedal revolution 2011
Frontal motion analysis of the knee during a bicycle pedal revolution 2011Frontal motion analysis of the knee during a bicycle pedal revolution 2011
Frontal motion analysis of the knee during a bicycle pedal revolution 2011
 
A LaPier Sigma Xi 2021 slides
A LaPier Sigma Xi 2021 slides A LaPier Sigma Xi 2021 slides
A LaPier Sigma Xi 2021 slides
 
IUPESM_WC2015_Gal_Chan_Hay-2
IUPESM_WC2015_Gal_Chan_Hay-2IUPESM_WC2015_Gal_Chan_Hay-2
IUPESM_WC2015_Gal_Chan_Hay-2
 
The Effects of Heel Lift Height on Back Squat Performance
The Effects of Heel Lift Height on Back Squat PerformanceThe Effects of Heel Lift Height on Back Squat Performance
The Effects of Heel Lift Height on Back Squat Performance
 
Towards Restoring Locomotion for Paraplegics: Realizing Dynamically Stable Wa...
Towards Restoring Locomotion for Paraplegics: Realizing Dynamically Stable Wa...Towards Restoring Locomotion for Paraplegics: Realizing Dynamically Stable Wa...
Towards Restoring Locomotion for Paraplegics: Realizing Dynamically Stable Wa...
 
WorldCongPrez
WorldCongPrezWorldCongPrez
WorldCongPrez
 
KYSR 4th Seminar 서울과학기술대학교 정광필 교수
KYSR 4th Seminar 서울과학기술대학교 정광필 교수KYSR 4th Seminar 서울과학기술대학교 정광필 교수
KYSR 4th Seminar 서울과학기술대학교 정광필 교수
 
Paper id 28201417
Paper id 28201417Paper id 28201417
Paper id 28201417
 
Jbit Medpro Review - Lower Limb Purdue Biomechanical Analysis
Jbit Medpro Review - Lower Limb Purdue Biomechanical AnalysisJbit Medpro Review - Lower Limb Purdue Biomechanical Analysis
Jbit Medpro Review - Lower Limb Purdue Biomechanical Analysis
 

folza_meen_gs_poster_2016

  • 1. Design  of  a  Passive  Ankle  Prosthesis  with  Energy  Return  that   Increases  with  Increasing  Walking  Velocity   Alexander  Folz  Advisor:  Dr.  Joseph  Schimmels  Marque<e  University   PROBLEM   An   esFmated   159,000   TransFbial   (below   the   knee)   amputaFons   were   performed   in   the   US   in   19961.   These   individuals  are  oTen  met  with  a  difficult  decision:  selecFon  of   a   prosthesis.   LimitaFons   of   currently   available   prostheses   moFvates  work  on  a  new  soluFon,  the  EaSY  Walk,  a  passive   device  that  mimics  two  key  aspects  of  the  natural  ankle:  non-­‐ linear   rotaFonal   sFffness   through   implementaFon   of   a   sFffening  flexure  mechanism  and  rotaFonal  work  output  that   varies   as   a   funcFon   of   walking   velocity   to   propel   the   user   forward.     INTRODUCTION   MECHANICAL  REALIZATION   §  Fabricate  and  build  prototype  device   §  Robot  and  human  tesFng   Figure  2:  Ankle  profiles  as  a  funcFon  of  Fme,  stance  phase2   FUTURE  WORK   CITATIONS   CONCLUSIONS   Post  opFmizaFon,  the  modeled  prosthesis  averaged  a  return   of  58.57%  of  natural  ankle  work  over  12  trials  for  15  mm  of   deflecFon  while  showing  sFffness  non-­‐lineariFes  akin  to  those   of  the  natural  ankle  were  achieved.  In  addiFon,  as  shown  in   Fig.  10,  the  device  is  capable  of  mapping  addiFonal  work  from   the   translaFonal   space   to   the   rotaFonal   space   as   leg   force   (and  therefore  walking  velocity)  increases.     FUNCTION  THROUGHOUT  GAIT  CYCLE   [1]:  Owings,  M.,  and  Kozak,  L.  J.,  1998.  “Ambulatory  and  inpaFent  procedures  in  the  united   states,  1996”.  Vital  and  Health  StaFsFcs,  Series  13(139),  p.  24.     [2]:  Winter,  David  A.  Biomechanics  and  Motor  Control  of  Human  Mo5on.  New  Jersey:  John   Wiley  &  Sons,  2009   [3]:Palmer,  M.  L.  (2002).  Sagi9al  Plane  Characteriza5on  of  Normal  Human  Ankle  Func5on   Across  a  Range  of  Walking  Gait  Speeds.  Thesis,  Massachuse<s  InsFtute  of  Technology,   Mechanical  Engineering       MODELED  RESULTS   ACKNOWLEDGEMENTS   Work   supported   by   the   Department   of   Health   and   Human   Services/NaFonal   InsFtute   of   Disability   and   RehabilitaFon   Research.   (1):  Heel  Strike   K1    compresses   due  to  increasing   leg  force   (2):  Foot  Flat   Ankle  planarflexes;   K1  conFnues  to   compress  unFl  leg   force  reaches  a   maxima     (3):  Max  Leg  Force   K1  looks  to   decompress;  Sprags   (i.e.,  mech.  diodes)   lock  K1  at  current   deflecFon     (4.1):  Max   Dorsiflexion  1   Jamming  mech.   causes  lower  K1  to   “roll  off”  Body  B   (4.2):  Max   Dorsiflexion  2   FricFon  between   Yellow  Body  and   Body  A  now   constrains  moFon  of   lower  K1  relaFve  to   Body  A   (5):  Powered   Push-­‐off   K1  now  provides   moment  about   the  ankle  joint,   aiding  in  push-­‐off   (6):  Toe  Off   K1  conFnues  to   provide  moment   about  ankle  joint   through  rest  of  stance   cycle   Swing  Phase   Leg  force  now  acts   upwards;  K2  unlocks   sprags  and  lower  K1   KinemaFcally  forced   to  return  to  Body  B   -­‐50   0   50   100   150   200   250   -­‐25   -­‐20   -­‐15   -­‐10   -­‐5   0   5   10   15   20   Ankle  Moment  [Nm]   Ankle  Angle  [Deg]   Prosthesis,  Modeled   Natural  Ankle   The  prosthesis  was  opFmized   for   12   sets   of   data,   11   sets   from   Marque<e   University   data  acquired  from  3  differing   subjects   and   Winters   data.   One   representaFve   set   of   data  from  the  12  (Set  9)  was   selected  and  plo<ed  at  right.   Work   output   percentages,   compared   to   the   natural   ankle,   are   tabulated   in   Table   1.   In   addiFon,   the   primary   impetus   of   this   work   was   to   mimic   energy  return  at  various  walking  velociFes.  It  is  known  that  leg   force  varies  relaFvely  linearly  with  walking  velocity.  As  such,     to  test  this  objecFve,  known  leg  force  data  was  mulFplied  by   several   scalar   values   to   simulate   various   walking   velociFes.   Finally,  work  was  calculated  at  each  of  these  scalar  mulFples   for   all   12   data   sets   and   averaged.   The   results   are   plo<ed   below:   0.0   2.0   4.0   6.0   8.0   10.0   12.0   14.0   16.0   0.4   0.6   0.8   1   1.2   1.4   1.6   WORK  [J]   SCALAR  MULTIPLIER  OF  LEG  FORCE   MODELED  RESULTS,  CONT.   Figure  1:  Work  flow  diagram  for  2-­‐DOF  Novel  Ankle  Prosthesis  IniFaFve   Figure  3:  Human  Walking  KineFcs  as  a  funcFon  of  Gait  Speed3   Through  3  iteraFons,  the  design  philosophy  for  the  project  has   stayed  idenFcal:  store  translaFon  work  along  the  leg  and  re-­‐ map  it  as  rotaFonal  work  about  the  ankle  joint.   The  3rd  iteraFon  design  differenFates  itself  from  the  previous   two  in  the  following  ways:   A.  Early  stance  deflecFon/energy  storage  (Pt.  (3)  in  Fig.  2)   B.  Variable  work  output  as  a  funcFon  of  leg  force   Both   of   these   are   accomplished   through   the   use   of   Fming   mechanisms  based  on  maxima/minima  of  ankle  profiles  (i.e.,   dŸ/dt  =  0).  Regarding  B.,  an  increase  in  F(r),  assuming  opFmal   work   mapping,   will   lead   to   a   corresponding   increase   in   rotaFonal   work   output   (See   Fig.   1).   This   falls   inline   with   desirable  ankle  funcFon  at  varying  walking  velociFes  as  shown   in  Fig.  3.   Figure  4:  Device  funcFon  at  criFcal  moments  in  the  gait  cycle;  See  Fig.  2  for  ankle  kineFcs  and  kinemaFcs  at  each  of  these  points  in  the  gait  cycle   Figure  6:  Final  device,  isometric  view   Figure  7:  Final  device,  side  view   Figure  8:  RotaFonal  jamming  mechanism  and  fricFon   block   Figure  5:  TranslaFonal  jamming  mechanism  (sprags   acFng  as  a  mechanical  diode)   Figure  9:  Modeled  prosthesis  performance  compared  to  natural  ankle  of  a   representaFve  Marque<e  University  test  subject   Table  1:  Percent  of  Natural  Ankle  Work   Set  1   Set  2   Set  3   Set  4   Sub  1   61.60   60.51   94.15   47.49   Sub  3   38.40   30.15   28.20   32.25   Sub  4   119.00   86.82   79.94   N/A   Winters   24.00   N/A   N/A   N/A   Average   58.57   Figure  10:  Modeled  work  output  at  various  levels  of  leg  force   0   0.5   1   1.5   2   2.5   -­‐1   0   1   2   3   4   5   6   7   8   -­‐1   0   1   2   3   4   5   6   7   8   0   0.5   1   1.5   2   2.5    FORCE    PER  UNIT  MASS   [N/KG]   WORK  PER  UNIT  MASS   [J/KG]   GAIT  SPEED  [M/S]   (Normalized  Ankle  Work)  *10   Normalized  Mean  Ground  ReacFon  Force